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INF 5300 – Regularization, energy functions, 
and snakes

Anne Solberg (anne@ifi.uio.no)
25.02.15

This and the next lecture will cover:

•Introduction to energy functions 

• Snakes

• Mean shift segmentation

• Contextual classification

This lecture
• Introduction to regularization
• Segmentation by closed contours using snakes
• Snake optimization algorithms
• Practical  use of snakes
• Limitations of snakes
• (Continued next week if needed)
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Curriculum
• Szeliski 3.7.1 Introduction to energy functions

• Lectures notes for snakes are based on 6.1-6.3 in 
Nixon and Aguado ~inf5300/pensum-
artikler/activecontour_kap6.pdf

• Snakes are briefly covered in Szeliski 5.1.1
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Segmentation and energy functions

• Simple segmentation often gives non-continuous or 
noisy results.

• Smoothness constrains are also used for e.g. image 
restoration/interpolation etc. 

• Regularization is a method to impose smoothness 
contraints by using an energy function.

• Markov random fields is a related field where we can 
use prior models for constraining the segmentation.
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Regularization
• Regularization originates 

from statistics:
– Finding a smooth surface 

that fits a set of data points.
• Many surfaces might fit, 

but the shape of the 
surface might be sensitive 
to noise in input data.

• Regularization can be 
formulated as estiming an 
unknown function f(x,t) 
from data points d(x,y).
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Producing smooth 1D functions
• The derivative of the function 

is integrated to get a scalar 
measure of smoothness. 

• Integrated first derivative:

• Integrated second derivative:
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•Function f(x)
•First derivative fx(x)
•Second derivative fxx(x)

 dxxfx )(2
1

 dxxfxx )(2
2

• For a boundary: 
Sum the first derivatives – minimize the length of the boundary
Sum the second derivatives – avoid points with high curvature

Smooth 2D functions
• For images or surfaces, the smoothness functionals 

are:

• These functions are often combined, and they can be 
assigned a weight term.
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First derivative:
Often called membrane
because it is similar to 
a tent-like structure

Second derivative:
Often called thin-plate spline
because it is similar to how a 
thin plate bends under small
deformation.

Data terms
• The energy function must also include a data term considering 

the gray levels/gradients/feature vectors in the image.
• A simple discrete data term:

• For continuous data:

• The combined energy function is:

 is a parameter that controls the amount of smoothing.
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Minimizing the energy function
• f(x,y) is normally discretized to a regular grid. 
• This is done by finite element analysis, and the function is 

approximated with a piecewise continuous spline (for this we 
need a discrete derivation operator, which we know well in 
image analysis).

• Energy function for the first derivative (grid size h):

• sx(i,j) and sy(i,j) are the smoothness weights and control the 
location of horizontal or vertical tears in the data.

• gx(i,j) and gy(i,j) the horizontal and vertical gradient of the data.
• This function is minimized if the gradients of f is similar to the 

gradients of the image.
• INF 5300 9
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Minimizing the energy function
• Energy function for the second derivative
• The resulting discrete forms are simple (grid size h):

• cx(i,j), cm(i,j) and cy(i,j) are the crease variables.
• Crease: a line made by pressing, folding or wrinkling (folding a 

thin-plate)
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Parameters:
• sx(i,j) and sy(i,j) are the smoothness weights and control the 

location of horizontal or vertical tears in the data.
• cx(i,j), cm(i,j) and cy(i,j) are the crease variables.
• gx(i,j) and gy(i,j) the horizontal and vertical gradient of the data.
• The discrete data term is:

The data weight w(i,j) controls the influence of the data term.

Estimating/specifying these parameters may be difficult.
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A quadratic optimization problem
• The total energy can be written as a quadratic form:

• We minimize this by solving the equation we get 
when the dervative is zero:
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Example – segmenting ultrasound images 
of the hearth

Find the border of the left ventricle
• 3D object with a closed border
• 2D views have partly 

discontinuous border
• Noisy image
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Can previous segmentation methods 
work?

• Thresholding?
• Hit and miss?
• Region growing?
• Edge-based segmentation?
• Watershed?
• Line detection?
• Hough transform?

– Ellipse?
– Can be extended to general 

shapes if the precise 
mathematical description of the 
shape is known.
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Motivation
• Common assumption for many segmentation 

methods:
– Digital images will show real world objects as well-defined 

regions with unique gray levels and a clear border against a 
uniform background.

• There are many applications where this assumption does not 
hold.

– Textured images.
– Noisy images (ultrasound,  SAR (syntetic aperture radar)) 

images.
– Images with partly occluded borders

» 2D images of 3D objects
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Motivation

Beware of extreme case of blending and occlusion
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Motivation
• We have seen several cases where prior knowledge 

is used:
– Thresholding: knowledge about distribution of gray levels 

can be used.
– Adaptive thresholding: Window size should be determined in 

relation to the size of the objects we want to find.
– Character recognition: size (and shape) of the typical 

characters useful for both segmentation and feature 
extraction. 

– Hough transform: a precise model for the shape is used. 
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Motivation
1. The images we will look at now are just another 

example of segmentation methods using models 
external to the image in order to obtain the best 
possible segmentation.

2. A typical application where these methods are useful 
is segmentation of medical ultrasound images
• Much noise and blurred edges
• Much knowledge about the shape of the objects. 
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The initial idea: Snakes
• An active contour (snake) is a set of points which 

aims to enclose a target feature. 
• Snakes are model-based methods for localization and 

tracking of image structures.
• The snake is defined as an energy minimizing 

contour (often defined using splines). 
• The energy of the snake depends on its shape and 

location within the image.
• Snakes are attracted to image boundaries through 

forces. 
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The initial idea: Snakes
• The approach is iterative:

1. The user draws an initial approximate contour.
2. A dynamic simulation is started.
3. The contour is deformed until it reaches equilibrium.

• Snakes depend on:
– Interaction with the user
– Interaction with a high-level description.
– Interaction with image data adjacent in space and time. 
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The initial idea: Snakes
• The energy of the snakes is affected by different 

types of forces:
1. Internal forces:

• Tension/elasticity forces that make the snake act like a 
membrane.

• Rigidity forces that make the snake act like a thin plate that 
resists bending. 

2. Image forces.
3. Constraint forces

• User-supplied forces that come from higher-level image 
understanding processes. 
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Representation of the contour
• The contour is represented as:

v(s) = (x(s), y(s))T

• This is a parametric representation of the contour.
• The vector describing the position of every point on 

the contour makes one pass over the entire contour 
as s varies from its mimimum to its maximum value.

• Typically, s is normalized
s[0,1]

• We only need coordinates (x(s),y(s)) of the points on 
the contour, not a mathematical equation for the 
contour. 
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What is a parametric contour?
• Let x(s)=cos(2s) and y(s)=sin(2s)
• Let s[0,1]
• Then v(s) describes a circle as s varies from 0 to 1. 

• See also contour representation in INF 3300 
http://www.ifi.uio.no/~inf3300/2007H/object-representation.pdf
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Energy functions
• Finding the contour is described as an energy 

minimization problem. 
• The energy function consists of several terms:

– The snakes own properties (bending, stretching)
– Image energy (edge magnitude along the snake)
– Constraints making the contour smooth etc. 

• The energy function is also called a functional. 
• The final position of the contour will correspond to a 

minimum of this energy function.
• Typically, the energy function is minimized in a 

iterative algorithm. 
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The energy function
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Internal deformation energy
of the snake itself.
How it can bend and stretch. A term that relates to gray 

levels in the image, e.g. 
attracts the snake to points
with high gradient magnitude.

Constraints on the shape of the
snake. Enchourages the contour
to be smooth. (Often omitted)

• Let the contour points v(s)=f(s) be the function we want to find
• The minimum value is found by derivation: 

0
df

dEsnake
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The internal deformation term
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First derivative
Measures how stretched the contour is.
Keyword: point spacing.
Imposes tension.
The curve should be short if possible.
Physical analogy: v acts like a membrane. 

Second derivative
Measures the curvature or bending energy.
Keyword: point variation.
Imposes rigidity.
Changes in direction should be smooth.
Physical analogy: v acts like a thin plate. 

•  and  are penalty parameters that control the weight of the two terms.
• Low  values: the snake can stretch much.
• Low  values: the snake can have high curvature. 
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The image term
• Attracts the snake to features in the image, like edge pixels or bright 

pixels.
• Originally, it consisted of a term for lines, edges (and maybe also 

terminations):

• wline, wedge, and wterm are weights that control the influence of each term. 
• Eline can be set to image intenstity values. If wline is positive, it will attract 

the snake to dark regions, and to bright regions if wline is negative. 
• Eedge can be computed using an edge detector.
• Eterm is not commonly used. 

termtermedgeedgelinelineimage EwEwEwE 
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The image term
• We choose the image term in such a way that is coincides with 

special features in the image, e.g. bright or dark areas, or edges. 

• If I(x,y) is the image intensity for point (x,y), what kind of 
structure does this function attract the snake to?

• A common way of defining EImage is: 

• If we want to attract the snake to user-defined points d(i) we add 
the term:
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The energy function
• Simple snake with only two terms (no termination 

energy):

• We need to approximate both the first derivative and 
the second derivative of vs, and specify how Eedge will be 
computed.  

• How should the snake iterate from its initial position?
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How do we implement this?
• The energy function involves finding the new 

location of S new coordinates (xs,ys), 0s1 for one 
iteration.

• Which algorithm can we use to find the new 
coordinate locations?
1. Greedy algorithm

– Simple, suboptimal, easier to understand
2. Complete Kass algorithm

– Optimizes all points on the countour simultaneously by solving 
a set of differential equations. 

– These two algorithms will now be presented.
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The greedy algorithm for snakes
Define snake points and 

parameters ,, 

Start with first snake point

Initialize minimum energy 
and coordinates

Determine coordinates of neighbourhood 
point with lowest energy

Set new snake point coordinates 
to new minimum

Finish iteration

More
snake
points?

No

Yes
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Coordinates of the initial contour
• The starting point of the snake is the initial contour. 

It can e.g. be no (number of points) on a circle with 
radius r: 
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Approximating the first derivative of vs
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Average distance
between points
on the contour

•When will this function be a minimum?
•Why is this a problem?
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Approximating the second derivative of vs
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Why is this correct?
Hint: Check the derivation

of the Laplace operator
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Computing Eedge

• Eedge can be implemented as the magnitude of the 
Sobel operator at point (x,y).

• The energy should be minimized, so we invert the 
edge image (maximizing a function f is equvalent to 
minimizing –f).

• Normalize all energy terms so that they have an 
output in the interval [0,1].
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The full greedy algorithm
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Comments on the greedy algorithm
• Edge points can be allowed to form corners if points 

with large gradient magnitude and large change in 
direction (above a threshold) are not included in the 
summations.

• A threshold on the number of changes done in a 
single iteration can be used to avoid oscillations 
between two contours with very similar energy. 

• If =0, contour points can have very different 
spacing.

• If =0, points with high curvature can be allowed 
(this can be allowed locally if  varies with s). 

• If =0, we ignore the image and the position of the 
contour can be far from the real edge in the image. 
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From the greedy algorithm to a full snake

• The greedy algorithm only finds the minimum energy 
for one point (x,y) on the snake at the time, and only 
points that are neighbors of current snake points are 
checked at a given iteration.

• A full algorithm should minimize the energy for all 
snake points vs, s=1,S. 

The complete snake algorithm
• Derivation of the complete snake algorithm is only for 

those interested in mathematical details. 
• The derivation is given, but not part of the 

curriculum.
• What we end up with, is a set of differential 

equations controlling how v(s) = (x(s),y(s)) change 
with time. 
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The full snake equations
• Simple snake with only two terms (no termination 

energy):

• We want to minimize this energy.
• Without Eedge, it will be minimum if v(s) has length 0.
• To avoid this, the internal forces must balance with 

Eedge
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The complete snake 
• Assume that we seek an iterative solution.
• Assume that we have one solution 

• If this solution is perturbated slightly by v(s), the solution that 
has minimum energy must satisfy:

• The slight spatial perturbation is defined as v(s)=(x(s), y(s)). 
• The perturbed snake solution is: 
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The new solution should be a minimum,
so the derivative must be 0.
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• After some derivation (see last slides) we get the following equation:

• Because this must be true for all x(s) the term within the outer {} must be 
zero:

• A similar derviation can be done for y(s). Thus, we have a pair of 
differential equations. 

• A complete snake must solve these two equations. 
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Snake differential equations
• The full snake consists of two differential equations, one for 

x(s) and one for y(s).
• We approximate the first order derivatives: dx(s)/dsxs+1-xs
• And the second order derivatives:

d2x(s)/ds2 xs+1-2xs+xs-1
• We discretize the contour into S (s=1,..,S) points with spacing 

h. 
• The discrete equation is then:
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• We can write this on the form 

• This is also a matrix equation:  Ax=fx(x,y) where fx(x,y) is the first 
order differential edge magnitude along the x-axis (horisontal 
gradient magnitude) and 
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• The equivalent holds for y(s). So we have two equations
Ax=fx(x,y)    
Ay=fy(x,y)

• These means that the snake energy should be balanced by the 
edge energy. 

• We need an iterative approach to get a solution that is globally 
optimal (one single iteration by computing A-1 gives a local 
optimal solution). 

• An iterative solution must have snake points that depend on 
time, a snake that can move. 

• Let x<i>,y<i> denote the solution at time i. 
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Manipulating the equation
• We have: 

• To solve these equations, set them equal to a small step size 
times the negative time derivatives of the coordinates (also 
assume for simplicity that fx and fy are constant during one 
time step):

• If the solution is at an equilibrium, the right hand side will 
equal 0 and the original equation be fullfilled.

• Rewrite this as:
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• The matrix A+I is pentadiagonal banded and can be 
inverted fast using LU-decomposition. 

• A whole set of contour points is found for each 
solution. 
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Derivation of the snake equations
• The following slides are intended for those who like 

derivations.
• Deriving this is not part of the curriculum.
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Derivation of the snake equations
• Assume that we seek an iterative solution.
• Assume that we have one solution 

• If this solution is perturbated slightly by v(s), the solution that 
has minimum energy must satisfy:

• The slight spatial perturbation is defined as v(s)=(x(s), y(s)). 
• The perturbed snake solution is: 
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The new solution should be a minimum,
so the derivative must be 0.
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Derivation of the snake equations
• The snake equation is: 

• With a slight perturbation:

• Insert the values derived for Eint and Eedge:
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Insert the perturbated
solution 
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Derivation of the snake equations
• Separate into x(s) and y(s): 
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Derivation of the snake equations
• Use Taylor series expansion on Eedge: 

• Eedge must be twice differentiable, which holds for edge information. 
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Taylor expansion of f(x+h)=f(x)+hf’(x)+h/2f’’(x)+....
If  is small, 2 can be neglected.
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Derivation of the snake equations
• Since  is small, ignore alle second order terms in  and reformulate  

Esnake: 
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Derivation of the snake equations
• Since     is a valid solution, it must be a local minimum and the two 

intergral terms must be zero:
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Derivation of the snake equations
• By integration we get:

• As s goes from 0 to 1, we tranverse one full contour and end up at 
precisely the same point. Thus 

• Because of this, the first, third and fourth term is zero. 
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Derivation of the snake equations
• So we get: 

• Because this must be true for all x(s) the term within the outer {} 
must be zero:

• A similar derviation can be done for y(s). Thus, we have a pair of 
differential equations. 

• A complete snake must solve these two equations. 
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The practical part of using snakes
• The pratical part of the Kass snake algorithm 

• Matlab implementation

• The capture range problem

• Distance measure based solutions

• Gradient vector flow field based solutions

• Briefly on alternative models:

• Active shape models
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The Kass snake algorithm
• Initialize the snake by selecting an initial countour
• Compute the initial energy terms and the gradient.
• Select parameters , , , h

–  and   can be functions of s, but this is difficult to estimate. In practice we 
ofter use scalar values for  and 

• Given the solution at iteration i x<i>,y<i>, compute x<i+1>,y<i+1>:
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Capture range problems
• The snake must be initialized fairly close to the final 

target  in order to get convergence.
• To make a really good initialization we need to have 

a very good estimate of the solution before starting 
the iterative process of adapting the snake. 

• So we can find a good solution if we already know 
the solution. Obviously not very intersting...

• What do you think happens if you initialize the snake 
inside the structure you want to find?
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Capture range problems
• The problem stems from the short ”range” of the 

external forces.
• The inverse magnitude of the gradient will have 

significant values only in the vicinity of the salient 
edges. 

• This basically forces us to initialize the snake very 
close to the target contour.

• This problem is know as the capture range 
problem.
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Capture range problems
• One good way of visualizing this is by looking at the 

negative of the gradient of the external force field.
• These are the fources that pull the snake.
• The next slide shows this for a circle.
• Notice that outside the area in the immediate vicinity 

of the circle, these forces are negligible.
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Capture range problems

•Zoomed version of the gradient. 
•Arrow lenght: gradient magnitude
•Arrow direction: gradient angle
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Capture range problems
• This phenomenon is also the reason why you will not 

get convergence into concavities, there are simply no 
forces to ”drag” the snake into the concavity. 
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Capture range problems
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Capture range problems
• Many authors have suggested different methods for 

increasing the capture range of the external gradient 
vector field.

• We will look at a method suggested by Xu and Prince 
in: Snakes, Shapes and Gradient Vector Flow, IEEE 
Tr. Image Processing, vol. 7, no. 3, pp. 359-369, 
1998.
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Capture range problems
• Xu and Prince observed that smoothing will increase 

the capture range, but will NOT provide convergence 
into concavities.

• Other methods, for instance those based on distance 
maps are even better at increasing capture range, 
but the concavity problem remains the same.

• Xu and Prince’s solution is based on diffusing the 
gradient information.
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Capture range problems
• Remember the snake differential equations:

• The right hand side is the negative gradient of the external 
force field. The limited reach of this field is our problem.

• Xu and Prince’s method consists of replacing this vector field 
with another one – a diffused version of the gradient field. 

yx

yx

s

edge

s

edge

x
E

ds
sxds

ds
sxds

x
E

ds
sxds

ds
d

ds
sxds

ds
d

ˆ,ˆ

ˆ,ˆ

1

0
4

4

2

2

1

0
2

2

2

2

2
1)(ˆ

)()(ˆ
)(

0
2
1)(ˆ

)()(ˆ
)(











































INF 530068

Principle for gradient vector flow
• Xu and Prince considered an edge map (-f). 
• The gradient of this edge map would point towards the edges.
• The idea of Xu and Prince is that this gradient of the edge map 

should be diffused to all other parts of the image in a smooth 
manner. 

• In areas where f is high, the gradient edge map should be 
close to f.

• In homogeneous areas in the image, the gradient edge map 
should be smooth (the flow should be small and without «curl» 
or turbulence in form of  rapid directional changes.  
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Capture range problems
• Xu and Prince define the vector field:

• It is v that will be the GVF.
• The field v is the field that minimizes the following functional:

• v(x,y) is  found by solving this equation.
•  is a parameter that controls the amount of smoothing. 

Tyxvyxuyx )),(),,((),( v

  dxdyfvfvvuuG yxyx
222222   

INF 530070

Capture range problems

• The goal is to minimize G. 
• The second term will have a minimum if v=f.
• If f is small, the first term will dominate.
• From calculus of variation, this can be written as 

• If f is small, what remains is Lagrange’s equation:
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Capture range problems

• The first term is Lagrange’s equation which appear in often in 
physics, e.g. in heat flow or fluid flow.

• Imaging the a set of heaters is initialized at certain boundary 
conditions. As time evolves, the heat will redistribute/diffuse 
until we reach an equilibrium. 

• In our setting, the gradient term act as the starting conditions.
• As the differential equation iterate, the gradient will diffuse 

gradually to other parts of the image in a smooth manner. 
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Capture range problems
• The first term will smooth the data, that is, far from edges the 

field will be kept as smooth as possible by imposing that the 
spatial derivatives be as small as possible.

• When |f| is small, the vector field will be dominated by the 
partial derivatives of the vector field, yielding a smooth field. 

• Close to edges (where |f| is large) the field is forced to 
resemble the gradient of f itself.

• So v is smooth far from edges and nearly equal to the gradient 
of f close to edges.

• The term μ just defines the weight we give the different terms 
in the functional.

• The field v is computed iteratively  
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Capture range problems
• This equation has a similar solution to the original 

differential equation.
• We treat u and v as functions of time and solve the 

equations iteratively.
– Comparable to how we iteratively computed x<i+1>,y<i+1>

from x<i>,y<i>

• The solution is obviously a numerical one, we use 
two sets of iterations, one for u and one for v.

• After we have computed v(x,y), we replace Eext (the 
edge magnitude term) by v(x,y)

• So an interative algorithm is first used to compute 
v(x,y) 

Now back to the U-shape

• Start with the gradient vector field and diffuse it over 
the image as we iterate
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v after 50 iterations
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Capture range problems
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Capture range problems
• Xu and Prince provide extensive material on their 

web address. This is an excellent site for further 
exploration of the GVF approach to solving the 
capture range problem.

• http://iacl.ece.jhu.edu/projects/gvf/
• In order to run the GVF examples you must place all 

GVF matlab files provided at this address in a 
directory where matlab will find them.

Alternatives to the snake algorithm

• Snakes have many degrees of freedom in their shape and can 
sometimes be trapped in local minima.

• One solution: control the snake more strict by using a B-spline 
for the contour. This is called a B-snake:

• If we have additional information about local variations in 
location, scale or orientation, these can be modelled as 
additional tranformations of x. 
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Shape priors
• Shape prior is an approach to model the statistical variance of  

certain boundary points on a contour based on a set of training 
sample. 

• Consider the objects in a). Control points are selected on the 
contour. 

• In c) we visualize the variance of each control point over the 
training set.
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• Now, add a prior model for the location xk and its 
covariance Ck.

• A penalty function (or prior in the Bayesian 
terminology) would be:

• Neighboring points often have correlated motion.

• How do we estimate the covariance matrices???
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Active shape models
• Concatenate all control points into a long vector x.
• The distribution of x can be described by its mean and 

covariance matrix of the P training samples:

• The main components of C can be found using eigenvector 
decomposition, by Principal component analysis where  is the 
largest eigenvectors and b is a shape parameter vector (they 
can also be restricted).
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From a single image to a sequence of images…

• So far, we estimate the boundary in one single 
image.

• In a later lecture, we will study tracking of objects.
• Similar principles can then be applied to regularize 

the motion of the contour in time. 
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Learning goals - snakes
• Understand simple energy functions
• Understand the snake energy function
• Know the greedy algorithm
• Know that the full snake is solved using iterative 

differential equations
• Know the limitations of snakes and how to solve 

them
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Next lecture
• Regularized models for segmentation/classification of 

ALL pixels in a scene.
• Example: contextual classification using Markov 

random field models.
• Material partly from:

– 3.7.2 in Szeliski
– 5.3-5.5 in Szelisk
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