Outline

Finite Continuous Apertures

Spatial sampling
 Sampling in one dimension

Arrays of discrete sensors
 Regular arrays
 Grating lobes
 Element response
 Irregular arrays

Periodic spatial sampling in one dimension

- Array:
 - Consists of individual sensors that sample the environment spatially
 - Each sensor could be an aperture or omni-directional transducer
 - Spatial sampling introduces some complications (Nyquist sampling, folding, ...)

- Question to be asked/answered:
 When can \(f(x, t_0) \) be reconstructed by \(\{y_m(t_0)\} \)?
 - \(f(x, t) \) is the continuous signal and
 - \(\{y_m(t)\} \) is a sequence of temporal signals where \(y_m(t) = f(md, t) \), \(d \) being the spatial sampling interval.

Sampling theorem (Nyquist):

If a continuous-variable signal is band-limited to frequencies below \(k_0 \), then it can be periodically sampled without loss of information so long as the sampling period \(d \leq \pi/k_0 = \lambda_0/2 \).

Figure A.1: The periodic aperture \(f(x) \) is equal to the sum of periodic replicas of the spectrum \(F(k) \). In this case the periodic replicas do not overlap because \(|F(k)| \) is bandlimited to a frequency \(k_0 \). When the aperture \(f(x) \) is not bandlimited to frequencies below \(k_0 \), one period of the periodic spectrum \(F(k) \) then does not equal \(F(k) \). This phenomenon is called aliasing.
Periodic spatial sampling in one dimension ...

- Periodic sampling of one-dimensional signals can be straightforwardly extended to multidimensional signals.
- "Rectangular / regular" sampling not necessary for multidimensional signals.

Regular arrays; linear array

- Consider linear array; M equally spaced ideal sensor with inter-element spacing d along the x direction.
 - The discrete aperture function, w_m.
 - The discrete aperture smoothing function, $W(k)$:

 $$W(k) \equiv \sum_m w_m e^{jkmd}$$
 - Spatial aliasing given by d relative to λ.

Grating lobes

- Given an linear array of M sensors with element spacing d.
 - $W(k) = \frac{\sin \frac{\pi Md}{2}}{\frac{\pi Md}{2}}$.
 - Mainlobe given by $D = Md$.
 - Grating lobes (if any) given by d.
 - Maximal response for $\phi = 0$. Does it exist other ϕ_g with the same maximal response?

 $$k_x = 2\pi \sin \phi_g \pm 2\pi n \Rightarrow \sin \phi_g = \pm \frac{1}{2} n.$$

 - $n = 1$: No gratinglobes for $\lambda/d > 1$, i.e. $d < \lambda$.
 - $d = 4\lambda$:

 $$\sin \phi_g \pm n \cdot 1/4 \Rightarrow \phi_g = \pm 14.5^\circ, \pm 30^\circ, \pm 48.6^\circ, \pm 90^\circ.$$
Element response

- If the elements have finite size:
 \[W_e(\vec{k}) = \int_{-\infty}^{\infty} w(\vec{k}) e^{i\vec{k} \cdot \vec{x}} d\vec{x} \]

 - If linear array:
 Continuous aperture “devided into” \(M \) parts of size \(d \)
 Each single element: \(\sin(kd/2) \rightarrow \) first zero at \(k = 2\pi/d \)

- Total response:
 \[W_{\text{total}}(\vec{k}) = W_e(\vec{k}) \cdot W_a(\vec{k}) \]
 where \(W_a(\vec{k}) \) is the array response when point sources are assumed.

Irregular arrays

- Discrete co-array function:
 \[c(\vec{\chi}) = \sum_{(m_1, m_2) \in \vartheta(\vec{\chi})} w_{m_1} w_{m_2}^* \]
 where \(\vartheta(\vec{\chi}) \) denotes the set of indices \((m_1, m_2)\) for which \(\vec{x}_{m_2} - \vec{x}_{m_1} = \vec{\chi} \).
 \[0 \leq c(\vec{\chi}) \leq M = c(\vec{0}) \]
 \[\Rightarrow \text{sample spacing in the lag-domain must be small enough to avoid aliasing in the spatial power spectrum.} \]
 \[\text{Redundant lag: The number of distinct baselines of a given length is greater than one.} \]

Examples

- The Haslach array shown on the left has the co-array on the right. Because there are no redundant baselines in the array, the co-array values are all equal to one except at the origin (zero lag), where the co-array value is \(M \).
Irregular arrays

- Sparse arrays
 - Underlying regular grid, all position not filled.
 - Position fills to acquire a given co-array
 - Non-redundant arrays with minimum number of gaps
 - Maximal length redundant arrays with no gaps.
 - Sparse array optimization
 - Irregular arrays can give regular co-arrays ...

Random arrays

- $W(\vec{k}) = \sum_{m=0}^{M-1} e^{j \vec{k} \cdot \vec{x}_m}$ (assumes unity weights)
- $E[W(\vec{k})] = \sum_{m=0}^{M-1} E[e^{j \vec{k} \cdot \vec{x}_m}] = \int p_x(\vec{x}_m) e^{j \vec{k} \cdot \vec{x}_m} d\vec{x} = M \cdot \Phi_x(\vec{k})$
 - i.e. Equals the array pattern of a continuous aperture where the probability density function plays the same role as the weighting function.

- $\text{var}[W(\vec{k})] = E[|W(\vec{k})|^2] - (E[W(\vec{k})])^2$
 - $E[|W(\vec{k})|^2] = E[\sum_{m=0}^{M-1} e^{j \vec{k} \cdot \vec{x}_m} \cdot \sum_{m' \neq m, m'=0}^{M-1} e^{-j \vec{k} \cdot \vec{x}_{m'}}]$
 - $E[M \cdot 1 + \sum_{m, m' \neq m, m'=0}^{M-2} e^{-j \vec{k} \cdot \vec{x}_{m'}}]$
 - Assumes uncorrelated x_m ($E[x \cdot y] = E[x] \cdot E[y]$)
 - $E[|W(\vec{k})|^2] = M + (M^2 - M)|\Phi_x(\vec{k})|^2$
 - $\Rightarrow \text{var}[W(\vec{k})] = M - M|\Phi_x(\vec{k})|^2$

Examples

- Non-redundant arrays == Minimum hole arrays == Golumb arrays 1101, 1100101, 11001000101
- Redundant arrays == Minimum redundancy arrays 1101, 1100101, 1100100101

![Figure 3.27](image.png) A six-sensor filled array and its co-array are shown. Two arrays having the same aperture are derived by successively removing sensors from the array. This thinning procedure results in the depicted co-arrays. To derive the four-sensor perfect array, one must start with a seven-sensor filled array.