
INF 5510 exam Spring 2011, page 1 of 5

 Page 1

 UNIVERSITY OF OSLO

 Faculty of Mathematics and Natural Sciences

Exam in INF 5510

Day of exam: June 10th, 2011

Exam hours: 14:30 – 18:30

This examination paper consists of 5 pages.

Appendices: none

Permitted materials: ANY written material including own notes.

Teacher: Eric Jul

Teacher at the exam: Arne Maus

Exams collected by: Tor Ivar Johansen

Make sure that your copy of this examination paper is complete before answering.

INF 5510 exam Spring 2011, page 2 of 5

1 Emerald Conformity
Given the following Emerald program:

const BankAccount <- typeobject BankAccount
 operation deposit[Integer]
 operation withdraw[Integer] -> [Integer]
 function fetchBalance[] -> [Integer]
end BankAccount

const BAClass <- class BAClass
 var balance: Integer <-0
 export operation deposit[d: Integer]
 balance <- balance + d
 end deposit
 export operation withdraw[amount: Integer] -> [r:Integer]
 if balance < 0 then
 r <- 0
 elseif amount > balance then
 r <- balance
 end if
 balance <- balance - r
 r <- amount
 end withdraw
 export function fetchBalance[] -> [r:Integer]
 r <- balance
 end fetchBalance
end BAClass

const Prog1 <- object Prog1
 process
 var ba: BankAccount
 var a: array.of[Any] <- array.of[Any].create[0]

 % Insert extra declaration here, if necessary

 a.addUpper[17]
 ba <- BAClass.create
 ba.deposit[250]
 a.addUpper[ba]
 a.addUpper["Emerald"]
 ba <- BAClass.create
 ba.deposit[300]
 a.addUpper[ba]

 % Insert your code here

 end process
end Prog1

1.1 Write Emerald Code for Iterating through Array
In the given program write some code that iterates through the array and for each element prints the index

of the element the array and the balance for any element that conforms to BankAccount.

INF 5510 exam Spring 2011, page 3 of 5

1.2 NIL
Will your code above work for NIL?

If yes, explain what you had to do to make it work.

If no, point out the problem.

2 Emerald Distributed Garbage Collection

2.1 Detection of the End of the Mark Phase
Give a short description of why a 2-phase commit algorithm is needed to complete the Mark Phase of the

Emerald Distributed Garbage Collector. Illustrate the problem that the 2-phase commit algorithm solves by

a simple example. Use either words, or a sequence of simple diagrams showing parts of the object graph

including the color of the nodes. If you wish, you may use graphs similar to Figure 6.5 in Eric’s Ph.D.

3 Storage Layout
Given the following class and a variable declaration:

const Semaphore <- monitor class Semaphore [initial : Integer]
 class export operation create -> [r : Semaphore]
 r <- Semaphore.create[1]
 end create
 var count : Integer <- initial
 var waiters : Condition <- Condition.create
 export operation P
 count <- count - 1
 if count < 0 then
 wait waiters
 end if
 end P
 export operation V
 count <- count + 1
 if count <= 0 then
 signal waiters
 end if
 end V
end Semaphore

var s: Semaphore <- Semaphore.create[]

move s to locate self

3.1 Draw Storage Layout for an Emerald Object
Given the following piece of Emerald code, show the storage layout of the object reference by the variable

s, in a diagram similar to Figure 4.1 in Eric’s Ph.D. but also including actual numbers for virtual addresses

and Object IDs. Include the Object Table, Object Descriptors, and Object Data Areas. Assign the objects an

Object ID starting with 100. Assign objects virtual Memory addresses starting with 500. Note: You must

assume that due to the move statement, the object referenced by s is a global object.

INF 5510 exam Spring 2011, page 4 of 5

4 Immutability
Given the following piece of Emerald Code:

const ICoordinateClass <- immutable class ICoordinateClass ...
 ...
end ICoordinateClass

const CoordinateClass <- class CoordinateClass
 var x: Real <- 0.0
 var y: Real <- 0.0
 export operation setX[newX: Real]
 x <- newX
 end setX
 export operation setY[newY: Real]
 y <- newY
 end setY
 export operation getX[] -> [r: Real]
 r <- x
 end getX
 export operation getY[] -> [r: Real]
 r <- y
 end getY
 export operation getImmutable ...
 ...
 end getImmutable
end CoordinateClass

const Prog1 <- object Prog1
 process
 var c: CoordinateClass
 var ic: ICoordinateClass
 c <- CoordinateClass.create[]
 ic <- c.getImmutable[]
 end process
end Prog1

4.1 Write Emerald Code for Generating an Immutable Copy
Replace the “...“ in the code piece by Emerald Code so that an immutable copy of the

CoordinateClass is generated and returned from the operation getImmutable.

5 Emerald Concurrency: Rendezvous

5.1 Write Emerald Code for Rendezvous
Write a monitored Emerald Class that has a Rendezvous operation that allows two processes to meet up:

When a process calls Rendezvous , it will wait for another process to call Rendezvous, thereafter both

processes will proceed.

INF 5510 exam Spring 2011, page 5 of 5

6 Emerald Mobility

6.1 Run-time Costs of Attachment
What is the run-time overhead in connection with assignment of an attached variable? Compare to an

assignment to a non-attached variable.

6.2 Layout of the Template for an Object
Describe the content of the template for the objects created by the Semaphore class shown in 3.1 above.

Make your diagram similar to Figure 4.5 in Eric’s Ph.D.

