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1 Introduction

The primary goal of Emerald [BHJL86, BHJ+87, JLHB88, RTL+91] is to simplify distributed programming
through language support while providing acceptable performance and flexibility both in local and distributed
environments. Emerald also demonstrates that the object-based model of programming can be incorporated
both elegantly and efficiently in distributed systems. Emerald draws heavily upon the experience gained from
Smalltalk [GR83], the Argus Language and System [Lis84] and, in particular, the Eden system [ABLN85,
Bla85a] and the Eden Programming Language (EPL) [Bla85b].
Featuring an object-oriented style of programming, Emerald presents a unified semantic view of objects
appropriate for private, local, data-only objects as well as shared, remote, concurrently-executing objects.
The nature of objects in Emerald is similar to that in Smalltalk [GR83], i.e., all data items are objects
with a uniform semantic model for operations on them, but Emerald does not have any notion of class.
Emerald was explicitly designed to support data abstraction: all typing of objects is at an abstract level
and does not depend on the implementation chosen. Abstract typing aids in the dynamic construction of
distributed programs by allowing any object in a large, possibly distributed, program to be replaced by any
other type-consistent object. Type consistency or conformity is an important aspect of Emerald, and is
discussed below. Another advantage of treating types as first class objects is that it makes polymorphism
inherent in Emerald.
Recognizing location as an important attribute of an object in distributed programs, Emerald gives the pro-
grammer access to the location of objects through primitives that permit the inspection and selection of loca-
tion. Alternatively, when desired, the location details may be left to the reasonably-chosen system-defaults.
However, this recognition of the importance of location for distributed programming has its drawbacks, viz.,
the semantics of Emerald are complicated both because location is apparent and because systems may be
partially unavailable.
This report defines the Emerald programming language. The Emerald approach to programming is discussed
in [RTL+91], where several examples of Emerald programs may be found.

2 Notation and Vocabulary

This report uses a slight variation of the commonly-used Extended Backus Naur Form (EBNF) to express the
syntax of Emerald. Terminal symbols in Emerald (i.e. symbols in its vocabulary) are shown in the syntax
descriptions in typewriter font as , or ", or in bold font for reserved words like loop. Non-terminal symbols
are denoted by italicized English words that intuitively illustrate the meaning of the syntactic constructs.
In EBNF, alternatives are indicated by |:

A | B

means choosing either A or B; optional elements are shown using square brackets [ ]:

[ A ]

means either zero or one A; and (possibly empty) sequences by braces { }:

{ A }

means zero or more repetitions of A.
Emerald is case insensitive—the case of input letters is significant only in character literals and string literals.
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2.1 Literals

Literal objects in Emerald are divided into the following categories:

Numeric

numericLiteral ::= 0x { hexdigit }
| 0 { octdigit }
| digit { digit } . { digit }
| digit { digit }

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
octdigit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
hexdigit ::= digit | a | b | c | d | e | f

Numeric literals without a decimal point (.) denote objects of the predefined type Integer ; those with
decimal points denote objects of the predefined type Real . Literals beginning with 0x are interpreted
in hexadecimal; literals beginning with 0 are interpreted in octal, For example, 12, 014, and 0xc are
Integer literals representing the decimal number 12, and 2.1 and 215.45 are Real literals.

Booleans

booleanLiteral ::= true | false

The reserved words true and false refer to the two objects of builtin type Boolean.

Nil

nilLiteral ::= nil

The reserved word nil refers to the distinguished nil object, whose type is None.

Characters and Strings

characterLiteral ::= ’ ccharacter ’

ccharacter ::= AnyCharacterExceptBackSlash
| scharacter

stringLiteral ::= " { scharacter } "
scharacter ::= AnyCharacterExceptDoubleQuoteOrBackSlash

| \ anyCharacterExceptUpArrow
| \^anyCharacter
| \oneTwoOrThreeOctalDigits

A character literal denotes an object of builtin type Character and consists of a single character written
within single quotes. The character \ permits the introduction of escape sequences for the entry of
special characters. \\ generates a single \ character, \^C where C is any character generates a control
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character in an implementation-defined manner3. Standard escape sequences as in C (\n, \t, etc.) are
permitted, including one, two, or three octal digits following a \ which represents a character by giving
its numerical (octal) equivalent. \ followed by any other character stands for that character.

Examples of characters are ’A ’, ’ r ’, ’ \^C ’, ’ \\ ’, ’ \^? ’, ’ \^J ’, ’ \n ’ and ’ \012 ’; the last
three examples equivalently denote the newline character.

A string literal denotes an object of the builtin type String and consists of a possibly empty sequences of
characters enclosed in double quotes, using the same escape conventions as character literals. Examples
of strings are "Emerald City", "The \"Evergreen\" State", and "".

Vectors

vectorLiteral ::= { expression { , expression } [ : typeExpression ] }

A vector literal is a sequence of expressions enclosed in curly braces, representing immutable (read-only)
vectors. The type of the expression is ImmutableVector.of[t], where t is either:

• the type expression (if present), otherwise

• the syntactic type of the elements, if they are all the same, otherwise

• Any

Examples of vector literals are {1, 3, 5} (with type ImmutableVector.of[Integer]), {1, 3, 5 : Any}
with type ImmutableVector.of[Any]) , and { 1, ’a’, true} (with type ImmutableVector.of[Any]).

Objects
Emerald objects are created using object literals (also known as object constructors) or one of the
syntactic extensions which translate to an object constructor, which include class constructors, record
constructors and enumeration constructors. These are discussed in Section 8.

Types
Emerald types are created using type constructors, which are described in Section 7.1.

2.2 Identifiers

An Emerald identifier is a non-empty sequence of letters, digits and the underscore character “_”, beginning
with a letter or the underscore character. Identifiers are case-insensitive and significant up to 64 characters
in length. Identifiers are used as reserved words, constant names, variable names, operation names (cf.
Section 2.4), parameter names, and local names of objects.

2.3 Reserved Identifiers

Reserved identifiers are identifiers that have been reserved for special use and may not be used otherwise as
identifiers. Reserved identifiers are further subdivided into keywords and literals.

3In ASCII implementations, \^C generates the ascii character formed by turning off the upper 2 bits in the character code
for C. Thus, \^J is the newline character, and \^@ is the null character. The exception is the delete character, (octal 177)
which is generated by the sequence \^?.
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Literals

The reserved literal identifiers are:

false nil self true

Keywords

Emerald keywords are used to delimit language constructs; for example, the keywords loop and end loop
are used to enclose a loop body.
The reserved keywords are:

all and as assert
at attached awaiting begin
builtin by checkpoint class
codeof confirm const else
elseif end enumeration exit
export external failure field
fix for forall from
function if immutable initially
isfixed islocal locate loop
monitor move nameof new
object op operation or
primitive process record recovery
refix restrict return returnandfail
signal syntactictypeof suchthat then
to typeobject typeof unavailable
unfix var view visit
wait when where while

2.4 Operators

operatorCharacter ::= ! | # | & | *
| + | - | / | <
| = | > | ? | @
| ^ | | | ~

operator ::= operatorCharacter { operatorCharacter }

An operator is a non-empty sequence of operator characters. Operators are used as punctuation and as
operation names.

Reserved Operators

Reserved operators are operators that have been reserved for special use and may not be used otherwise
as operators or operation names. Reserved operators are further subdivided into expression operators and
punctuation.
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Expression operators

Expression operators are used within expressions. The reserved expression operators are4:

◦> == !== .

These operators are described in Section 4.

Punctuation operators

Punctuation operators are used to delimit language constructs. The reserved punctuation operators are:

← →

2.5 Separators

Separators are sequences consisting of only spaces, tabs, and newlines; they are used to separate consecutive
language tokens. Consecutive identifiers, operators and/or numeric literals must be separated by at least
one separator.

2.6 Comments

Comments in Emerald are line-oriented. A comment starts on any line with the comment delimiter, %, and
terminates at the end of the same line. The comment delimiter is ignored within string and character literals.
A comment is lexically equivalent to a separator.

3 Declarations

Every identifier used in Emerald must be declared. There are two (general purpose) declarative forms: one
for constants and one for variables.

declaration ::= variableDeclaration
| constantDeclaration

constantDeclaration ::= [ attached ] const identifier [ : type ] initializer
variableDeclaration ::= [ attached ] var identifierList : type [ initializer ]
identifierList ::= identifier { , identifier }
initializer ::= ← expression

A constant declaration introduces an identifier that refers to a single object throughout its lifetime. If the
optional type clause is present, the type of the identifier is the value of the type expression, and the type
of the initializer expression must conform to the type of the identifier. If the type clause is not present,
the type of the identifier is the syntactic type of the initializer (cf. Section 7.2). While a constant identifier
always refers to the same object; the object’s state may change if it is mutable.

4The symbols typeset as ←, →, ◦>, and . are typed using <-, ->, *>, and *> respectively. The potential ambiguity caused
by using the same symbol for conforms and matches is resolved by context.
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A variable declaration introduces a new variable for each element of the identifierList. The type of each
identifier is the value of the type expression. When an initializer clause is present the type of the initializer
must conform to the type of the identifiers, and each variable in the list is assigned the value of the initializer
expression. When not explicitly initialized, variables initially name the object nil. A variable identifier may
have its value changed by assignment (cf. Section 5.1).
The optional attached permits the programmer to provide one-way attachment between objects; the relo-
cation of an object additionally relocates all co-located objects attached to it (cf. Section 5.7.4).
A declaration is an executable construct, and the initialization of constants and variables is performed each
time the declaration is executed.

3.1 Scope

An identifier name is visible throughout the scope in which it is declared, not just textually after that
declaration. The following constructs open new scopes for identifiers, and identifiers are imported implicitly
into nested scopes where they are not redefined:

• if, elseif, and else clauses (cf. Section 5.2)

• loop statement bodies (cf. Section 5.3.1)

• blocks, unavailable, and failure handlers (cf. Section 5.4)

• operation definitions and signatures (cf. Section 6.1)

• typeobject constructors (cf. Section 7.1)

• object constructor, process, initially-block and recovery-block definitions (cf. Section 8.1)

Since object constructors and typeobject constructors create new objects that are independent of their
enclosing referencing environment (closures), identifiers imported into these constructs are treated specially.
When the type or object constructor is executed, all imported identifiers are made constant. Throughout
the lifetime of the created type or object, these identifiers will have the values that they had when the object
constructor was executed. Consider the following example:

for i : Integer ← 0 while i < 10 by i ←i + 1
o ← object trivial

export operation getI → [r : Integer ]
r ← i

end getI
end trivial

end for

This loop creates ten identical objects, except that the value of the identifier i is different for each object.
Once the first object (whose i = 0) is created, changes to the loop control variable i are not visible to it, as
the i that it sees was made constant when that object was created.
While identifiers are in scope for the entire block in which they are declared (even textually before their
declaration), they are normally given values as their declarations are executed. For example, the following
operation definition is correct as far as scope is concerned, but the final value of x will be nil while the final
value of of y will be 6.
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operation nonintuitive
const x ← y
const y ← 6

end nonintuitive

There are two exceptions to this rule:

1. In a compilation unit, all exported identifiers get their values simultaneously. This permits the con-
struction of mutually recursive object structures.

2. When typechecking an invocation of a polymorphic operation, the values of all identifiers introduced in
whee and for all clauses get their values simultaneously. This permits the construction of the mutually
recursive type objects that are often necessary when creating polymorphic operations.

4 Expressions

Expressions are Emerald constructs that denote objects.

4.1 Literals and Identifier Expressions

expression ::= literal
| constantIdentifier
| variableIdentifier

A literal expression directly denotes an object. A constant identifier names the object it was initialized to
while a variable identifier names the object most recently bound to it.

4.2 Operator Expressions

Before examining Emerald expressions that involve operators, we define the precedence of the operators
used. In Table 1, the operators are ordered by increasing precedence. Operators of the same precedence
level are evaluated from left to right.

4.3 Reserved Operators

The reserved operators have meanings defined by the language, and may not be redefined.

expression ::= expression { reservedop expression }
reservedop ::= == | ! == | ◦> | or | and

== evaluates to true if the two expressions denote the same object; ! == is its opposite. The ◦> operator
compares its two operands (each of type type) for conformity, i.e., it evaluates to true if the left operand
conforms to the right operand (cf. Section 7.3).
The operator and is a conditional and and evaluates as follows: if the left operand evaluates to false, the
result is false; otherwise, the result is the value of the right expression. The operator or is a conditional or
and evaluates as follows: if the left operand evaluates to true, the result is true; otherwise, the result is the
value of the right expression.
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Precedence Operator Operation
Level

1 view-as Narrow or widen object’s type
restrict-to Permanently narrow or widen object’s type

2 Logical or
or Logical conditional (short-circuit) or

3 & Logical and
and Logical conditional (short-circuit) and

4 ! Logical negation
5 ==, !== Object identity and distinction

◦> Type conformity
=, ! =, <, <=, >=, > Relational operators

6 +,− Additive operators
7 *, / Multiplicative operators

# Modulus
User-defined

8 −, ˜ Arithmetic negation
isfixed Checks if object is fixed at node
islocal Checks if object is on the local node
locate Finds a possible location of the operand
awaiting Processes waiting on condition
codeof Concrete type (implementation) of an object
nameof Name of an object
typeof Type of an object
syntactictypeof Compile time type of an expression

Table 1: Precedence of Emerald Operators
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expression ::= locate expression
| isfixed expression
| islocal expression
| awaiting expression
| codeof expression
| nameof expression
| typeof expression
| syntactictypeof expression

isfixed e evaluates to true if e is currently fixed at a site, otherwise it evaluates to false. islocal e evaluates
to true if e is currently on the local node, and false otherwise. locate e evaluates to an object (of type
Node) that gives a location of the operand object during the execution of this expression. This is explained
in detail in Section 9.
The awaiting operator takes as its operand an expression of type Condition and returns true if at least
one process is suspended on the operand condition, and false otherwise (cf. Section 8).
codeof, nameof, and typeof return the concrete type object (a ConcreteType), the name (a String), or the
type (a Signature) of any object (including nil). syntactictypeof an expression returns the compile time
type of an expression (cf. Section 7.2). See Appendix B for a description of these builtin types.

4.4 Invocations

expression ::= invocation

Any invocation which returns exactly one object may be used as an expression. Invocations are discussed in
Section 6.

4.5 Other Operators

All other operators are translated into object invocations. Each occurrence of a unary operator is translated
into an invocation of the operand with the invocation name being the name of the operator and with no
arguments. Each occurrence of a binary operator is translated into an invocation of the left operand with
the invocation name being the name of the operator and with a single argument which is the right operand.
For example: !e is translated as e.!, and a + b is translated as a.+[b].

4.6 Field selection

Emerald supports syntactic sugar to facilitate accessing the data components of objects. Conventionally, a
visible data component named f will have an operation named getF which returns the value of the compo-
nent and an operation setF which modifies the value of the component. Two syntactic forms support this
convention by making the invocation of get and set operations more convenient.

fieldSelection ::= expression $ identifier

In an expression context (as an r-value) a$f is translated as a.getF while in an assignment context (as an
l-value) a$f ← c is translated as a.setF[c]. The get operation always takes no arguments and returns one
result, while the set operation always takes one argument and returns no results.
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4.7 Subscripts

By convention, subscriptable values like Vectors and Arrays will have an operation getElement to retrieve
values and an operation setElement to store values. This convention is supported by the subscripting
expression syntax:

subscript ::= expression [ expression { , expression } ]

The variable number of expressions inside the square brackets may be used to support subscriptable values
of higher dimension, or to select ranges of values. Such interpretation is up to the implementor of the
subscripted object.
In an expression context (as an r-value) a[b, c, d ] is translated as a.getElement[b, c, d], while in an assignment
context (as an l-value) a[b, c, d] ← e is translated as a.setElement[b, c, d, e].

4.8 Type widening and narrowing

expression ::= view expression as typeExpression
| restrict expression to typeExpression

The view expression permits an object to be regarded as being of a different type, subject to the restriction
that no object expression be viewed as a type it does not conform to. In other words, this expression permits
the user to narrow or widen the type of an object. The restrict expression is similar, except that it is
later impossible to widen the type of the resulting object reference to a type wider than that denoted by
typeExpression.

5 Statements

5.1 Assignment statement

assignment ::= identifierList ← expressionList
| [ identifierList ← ] procedureInvocation

In the first case, the expression list is evaluated to yield a number of objects. In the latter case, the procedure
invocation is performed, resulting in a number of objects (possibly 0). In both cases, the resulting objects
are positionally bound to the variables on the left side of the assignment operator. The number of variables
on the left side and the number of resulting objects on the right must be equal and must positionally conform
in type (see Section 7.3).

5.2 Selection

ifStatement ::= if expression then
declarationsAndStatements

{ elseif expression then
declarationsAndStatements }

[ else
declarationsAndStatements ]

end if
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The expressions following the if and optional elseif keywords (which must be of type Boolean) are evaluated
in textual order until one evaluates to true or they are exhausted. In the former case, the statements
following the next then keyword are executed, and in the latter case, the statements following the else
keyword (when present) are executed.

5.3 Iteration

5.3.1 Loop statement

loopStatement ::= loop
declarationsAndStatements

end loop

The statements bracketed by loop and end loop are executed repeatedly until an exit statement at the
same level of nesting is executed.

5.3.2 Exit statement

exitStatement ::= exit [ when expression ]

This statement terminates the execution of the textually inner-most enclosing loop; this statement is invalid
if there is no such loop. The simple exit provides an unconditional exit from the loop; the optional when
clause permits a conditional exit if the evaluated expression, which must be of type Boolean, evaluates to
true.

5.3.3 For statement

Emerald has two forms of the for statement. These are conveniences whose semantics are defined in terms
of their translations as given below.

forStatement ::= for ( initial : condition : step )
declarationsAndStatements

end for

This is equivalent to:

begin
initial
loop

exit when !condition
begin

declarationsAndStatements
end
step

end loop
end
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forStatement ::= for identifier : typeExpression initialization while condition by step
declarationsAndStatements

end for

This is equivalent to

begin
var identifier : typeExpression initialization
loop

exit when !condition
begin

declarationsAndStatements
end
step

end loop
end

5.4 Compound statement

compoundStatement ::= begin
blockBody

end

blockBody ::= declarationsAndStatements
[ unavailableHandler ]
[ failureHandler ]

The compound statement permits several statements to be grouped together as one composite statement.
In addition, it permits suitable recovery code to be attached in the form of handlers dealing with object
unavailability and failures (cf. Sections 9.1 and 9.2).

5.5 Assertions

assertStatement ::= assert expression

The expression, whose type must be Boolean, is evaluated. If the result is false, a failure occurs (as explained
in Section 9.2). If the result is true, the statement has no further effect.

5.6 Concurrency

Concurrency features are described in detail in Section 8 and are briefly outlined here. Each object may have
an optional process associated with it; this process is created after the termination of the object’s initially
section and it executes until it reaches the end of its block. Any object which is defined as monitor
guarantees mutual exclusion in the execution of all of its operations. Objects of system-implemented type
Condition may be used for synchronization within monitored objects; the semantics of condition waits and
signals follows that proposed by Hoare. Note that a condition object used in a wait or signal statement or
an awaiting expression must be used only inside the monitored object by which it was created.
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5.6.1 Wait statement

waitStatement ::= wait expression

The wait statement must be executed inside a monitored object, and the type of the expression must be
Condition. The process executing the wait is suspended on the condition object, and the monitor lock is
passed on to the next process waiting to enter the monitor; if no process is waiting to enter, the monitor
lock is released.

5.6.2 Signal statement

signalStatement ::= signal expression

The type of the expression must be Condition. If the condition object has one or more processes suspended
on it, one of these processes will be resumed, the monitor lock will be passed to it, and the signalling process
will be placed at the head of the monitor entry queue. If the condition object does not have any processes
suspended on it, the signal statement has no effect.

5.7 Location-related Statements

Mobility is an important feature of Emerald ([Jul88, JLHB88]) and is supported via several language con-
structs. The statements that permit the programmer to specify and change the location of objects are
discussed below.

5.7.1 Fix statement

fixStatement ::= fix expression1 at expression2

The object named by expression1 is moved to the location of the object named by expression2, and forced
to remain there; the unfix and refix statements described below permit the movement of previously fixed
objects. Attempts to move or fix previously fixed objects result in failures (cf. Section 9.2).

5.7.2 Unfix statement

unfixStatement ::= unfix expression

The object denoted by the expression is made free to move. It is not an error to unfix an object not currently
fixed at any location.

5.7.3 Refix statement

refixStatement ::= refix expression1 at expression2

This statement unfixes the object named by expression1 and fixes it at some (presumably different) location;
the refix is performed atomically.
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5.7.4 Move statement

moveStatement ::= move expression1 to expression2

The object denoted by expression1 is moved to the current location of the object denoted by expression2.
The statement fails if the object denoted by expression1 is fixed. The move primitive is actually a hint, i.e.,
the implementation is not required to perform the move suggested. On the other hand, the primitives fix
and refix have stronger semantics, and when they succeed, the object must stay at the specified destination
until explicitly unfixed or refixed.

5.8 The Checkpoint statement

checkpointStatement ::= checkpoint

The checkpoint statement permits an object to store its state on permanent storage. On node failure and
subsequent recovery, the object uses this stored state and continues from that state, first performing any
programmer-specified recovery action.

5.9 The Return Statement

returnStatement ::= return

This statement is used to terminate the execution of an operation and return to the invoking object. It may
also be used to prematurely terminate an initially, process, or recovery section.

5.10 The ReturnAndFail statement

returnAndFailStatement ::= returnandfail

The return and fail statement is analogous to the return statement, but in addition, it permits the invoked
object to report a failure to the invoking object. The return happens first so the state of the invoked object
is not affected by the failure (cf. Section 9.2).

5.11 The Primitive Statement

primitiveStatement ::= primitive [ self ] [ var ] primitiveImplementation
[ identifierList ] ←[ identifierList ]

primitiveImplementation ::= { stringLiteral | integerLiteral }

This statement is used to implement lower-level calls to the underlying operating system and to implement
certain operations on builtin-types. Primitive statements are used only in the implementation of the builtin
Emerald types and should not be used by the Emerald programmer directly.
The optional self means that the receiving object ought to be pushed onto the stack before the argument
variables, otherwise it is not pushed. The optional var means that all the things pushed onto the stack
and all the results are assumed to be variables represented as 2 words: a data pointer and a concrete type
pointer. Otherwise all arguments and results are assumed to just be data (1 word). The strings and integers
in the primitiveImplementation are placed in the instruction stream as a sequence of bytes. Strings are
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looked up as either names of bytecodes in “..../lib/bcdef” or system defined operations in “..../lib/jsdef” or
“..../lib/ccdef”. The list of identifiers on the right provide the arguments for the primitive, while the list of
identifiers on the left get the results of the primitive. The following code is generated:

• If self is present, the push the receiving object onto the stack

• Push the value of each of the argument identifiers onto the stack, left to right

• Emit the literals in the primitive implementation into the instruction stream

• Pop results off the stack storing them in the result identifiers, left to right

There is no check that the implementation of the primitive actually expects the number of arguments or
returns the number of results that the argument and result identifier lists mention.

6 Operations

Emerald objects communicate with one another only through the invocation of operations. This section
describes the definition and invocation of operations.

6.1 Defining operations

operationSignature ::= operationKind operationName [ parameterList ]
[ “→” resultList ] { clause }

operation ::= [ export ] operationSignature
blockBody

end operationName
operationKind ::= op | operation | function
parameterList ::= [ parameter { , parameter } ]
resultList ::= parameterList
parameter ::= [ attached ] [ identifier : ] type
clause ::= whereClause

| forallClause
| suchthatClause

Emerald provides two kinds of operations: procedural and functional. Procedural operations are heralded by
the keyword operation or op, while the keyword function indicates a functional operation. In declaring a
functional operation, the programmer asserts that the operation is side-effect free, i.e., the abstract state of
the system is not modified by the execution of the operation5. Note that the burden is on the programmer;
the Emerald system may perform optimizations on function invocations that are incorrect if the operation
has side effects.
The operation signature (cf. Section 7) includes the operation name and the number, names and abstract
types of its arguments and results. An object may implement multiple operations with the same name,
provided that the number of arguments that they accept is different. Where clauses serve to introduce new
names for types whose scope is the entire operation signature (and body if present). For all clauses declare
new type identifiers. Such that clauses impose constraints on the formal parameters. These clauses are
primarily useful for the implementation of polymorphic types and are defined in Section 7.4.

5Note that Emerald does not rule out the possibility of the operation having concrete side-effects (sometimes termed beneficial
or benevolent side-effects).
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6.2 Parameter Passing

The Emerald language uses call-by-object-reference semantics for all invocations, local or remote. That is,
a reference to the argument object is passed to the called procedure. There are no restrictions on the types
of objects that can be passed.

6.3 Making Invocations

procedureInvocation ::= expression . operationName [ argumentList ]
operationName ::= identifier | operator
argumentList ::= [ argument { , argument } ]
argument ::= [ move | visit ] expression

An invocation specifies the target object, the operation to be invoked, and any arguments. When an
invocation returns results, they are assigned to variables using an assignment (see Section 5.1).
Because Emerald objects are mobile, it may be possible to optimize an invocation by avoiding many remote
references by moving argument objects to the site of a remote invocation. The keywords move and visit
suggest that the expression be physically moved to the same node as the invoked object; visit further suggests
that the expression be moved back when the invocation returns. These two parameter passing modes are
called call-by-move and call-by-visit respectively. Neither mode affects the location-independent semantics
of the invoked operation.
Executing an operation invocation involves:

• evaluating the invocation target expression,

• evaluating the argument objects and then positionally assigning them to the formal parameters of the
operation,

• executing the body of the operation in the context of the target object of the invocation, and

• returning the final values of any output parameters of the invocation.

7 Types

A type is defined as a collection of operation signatures, where each operation signature includes the operation
name, and the names and types of its arguments and results. Types, being objects, are first-class citizens in
Emerald. Each type object exports a function without arguments called getSignature that returns an object
of the predefined Signature type. In other words, any object that conforms to the following type:

immutable typeobject type
function getSignature → [Signature]

end type

is a type. Note that each object with type signature has a getSignature operation that returns self, thus
Signatures are Types.
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7.1 Type Constructors

Signatures are created using type constructors. A type constructor has the following structure:

typeConstructor ::= [ immutable ] typeobject typeIdentifier
{ operationSignature }

end typeIdentifier

Operation signatures have been defined in Section 6.1, however in type constructors, the identifiers in param-
eter declarations may be omitted. An immutable type implies that its objects are abstractly immutable, i.e.
its objects cannot change their state over time. For example, the predefined type Integer is immutable be-
cause its objects represent integer values which cannot change; for instance, the integer 3 cannot be changed
to the integer 4.

7.2 Syntactictypeof and typeof

The syntactictypeof operator evaluates to the statically determined type of an expression. That is, the type
of the expression as it can be determined by the compiler. This operation is always evaluated at compile
time. In contrast the typeof operator returns the most accurate type of the expression at run time, which
can be a wider type than the syntactic type, if either implicit or explicit narrowing has occurred. This most
accurate type is also called the best fitting type of the expression. See section 8.1. It is always the case that
for any expression e, typeof e ◦>syntactictypeof e.

7.3 Conformity

Conformity is the basic relationship between types. A type S conforms to a type T (written S ◦> T ) if:

1. S is immutable if T is immutable.

2. For each operation oT in T, there exists an operation oS in S with the same name and number of
arguments, and

3. oT and oS have the same number of results, and

4. The types of the results of oS operations conform to the types of the results of oT , and

5. The types of the arguments of oT conform to the types of the arguments of oS (i.e., arguments must
conform in the opposite direction).

If either S or T is recursive (the definition of at least one of its operations uses its own name), then the
previous checks must be performed under an assumption that S ◦> T.
This simple description of conformity suffices for all invocations that do not involve parametric polymorphism.
Discussion of polymorphic operations and the extensions to the type checking rules required to type check
them is deferred until Section 7.4.
Some types in the system are exceptions to the standard rules for conformity. For ensuring correctness,
types such as Boolean, Condition, Node, Signature and Time must be implemented only by the system.
For performance enhancement, the types Character , Integer , Real , and String are also restricted to be
implemented only by the system.
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7.4 Polymorphism

Inclusion polymorphism, where one type is a subtype of another and can be used in any context in which the
supertype is expected, is fundamental to Emerald. Its type system is defined so that the subtyping relation
(conformity) is as large as possible while still guaranteeing safety: an operation will never be performed on
an object that doesn’t implement that operation.
Emerald also supports parametric polymorphism, where types are either explicitly or implicitly passed as
arguments to invocations. The cardinal rule regarding types is that it must be possible for the compiler at
compile time to determine the value of every expression that is used in a position where a type is required.
Such positions include variable, constant, and parameter declarations, and the second argument to view and
restrict expressions.
Since types are objects, no special type parameterization form is necessary in Emerald; types are passed to
operations in the same way as are other objects. The operation signature definition syntax is supplemented
with three clauses that permit:

• the introduction of dependent types whose values depend on the value of type arguments (the where
clause)

• the declaration of type variables that may take on the value of the types of other arguments (the for
all clause)

• the specification of constraints on the values of type variables (the such that clause).

7.4.1 For all clause

forallClause ::= forall identifier

The for all clause defines the identifier as a type variable without constraint. If the identifier is not defined
elsewhere in the operation signature, the for all clause also serves to define it. The type variable will take
as its value the type value positionally assigned to it during invocation. The primary purpose of the for all
clause is to capture the type of some other argument to an invocation, as in the following example of the
polymorphic identity function which returns its argument and in which the type of the result is the same as
the type of the argument:

function identity [a : t ] → [b : t ]
forall t
b ← a

end identity

The for all clause can also be used to introduce a type variable whose value is further constrained by a such
that clause.

7.4.2 Where clause

whereClause ::= where identifier ← typeExpression

A where clause is semantically equivalent to a constant declaration. It defines the identifier to have the value
of the given typeExpression. The type expression is evaluated during type checking of invocations after type
values have been bound to the argument identifiers defined in the operation signature and any type variables
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have also been bound to their values. This permits the construction of dependent types whose values depend
on the values of type arguments to the invocation, as demonstrated in the following example:

function makeVector [arg : argType] → [res : resType]
forall argType
where resType ← Vector.of [argType]

res ← resType.create[10 ]
for i : Integer ← 0 while i < 10 by i ← i + 1

res[i ] ← arg
end for

end makeVector

7.4.3 Such that clause

suchthatClause ::= suchthat identifier . typeLiteral

The such that clause allows the possible values that may be taken on by a type variable to be constrained.
Any value bound to the given identifier (which must be a type variable) must match the typeExpression. This
clause allows the programmer to require that an argument type have a particular collection of operations,
as demonstrated in the following example:

function inOrder [a : t, b : t, c : t ] → [r : Boolean]
forall t
suchthat t ◦> typeobject comparable

function <=[comparable, comparable] → [Boolean]
end comparable

r ← a <= b and b <= c
end inOrder

7.5 Typechecking operation definitions

In the presence of parametric polymorphism, some of the identifiers defined in the signature of an operation
definition will be type variables, which will take on different values for each invocation of the operation.
In type checking the body of the operation, we can assume only that the value of each type variable will
match its constraint. Therefore we type check the body of the operation with all type variables bound to
their constraints. Once the operation body has been shown to be type correct under this assumption, it
will be type correct for every invocation since the actual type bound to each type variable must match the
constraint on that type variable.

7.6 Typechecking invocations

In the presence of parametric polymorphism, the simple rules for typechecking invocations (that the type of
each argument expression must conform to the type of its corresponding formal parameter) is insufficient.
Therefore, when typechecking an invocation involving type variables, the following steps are performed:

1. Bind each type variable to its corresponding type value from the actual arguments. These may be the
arguments themselves, or in the case of type variables introduced by for all clauses, the types of the
arguments.
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2. Create the dependent type introduced in each where clauses in the operation signature. All of these
objects are created simultaneously so that recursive type structures can be successfully created.

3. Check that the value bound to each type variable matches the constraint on that type variable.

4. Check that the type of each argument conforms to the type of its corresponding formal parameter.

5. Determine the result types of the invocation by using the current values of any type variables or
dependent type identifiers.

7.7 Conformity revisited

Parametric polymorphism complicates the conformity rules as well, since it introduces type variables and
constraints on them. The previous rules for conformity still must be satisfied, but in addition:

0 If either or both of S and T is a bound type variable, then consider the values bound to them rather
than the type variable when checking the other rules.

5 If T is an unbound type variable then S must be also, and the constraint on S must match the constraint
on T.

7.8 Matches

The matches relation (.) between types is very similar to the conformity relation (◦>). In fact, if the types
being considered are not recursive then the two relations are equivalent. When checking the conformity of
two recursive types (S and T) we must first assume that S ◦> T. When checking whether S matches T we
assume instead that S and T are equivalent types — that S ◦> T and that T ◦> S — because if the types
do match then they will be bound together (since matches only comes into play in the presence of type
variables).

7.9 Polymorphism Example

To demonstrate the polymorphism present in Emerald, a polymorphic Set object is presented in Figure 1.
Set has an operation of that takes a type as an argument and returns an object that can be used as the
abstract type of, as well as a creator of, sets of things conforming to the original argument to the operation
of. The element type for a set (the type passed to the of function) must be immutable and must implement
an = operation that returns a Boolean object. With this Set definition, we can define creators for sets of
integers and strings as:

const IntSet ← Set.of [Integer ]
const StringSet ← Set.of [String ]

and we can create singleton sets of integers and strings as:

const i ← IntSet.singleton[6 ]
const s ← StringSet.singleton["abc"]
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const Set ← immutable object Set
export function of [eType : type] → [result : NewSetType]

suchthat
eType .

immutable typeobject eType
function =[eType] → [Boolean]

end eType
where

NewSetType ←
immutable typeobject NewSetType

operation empty → [NewSet ]
operation singleton[eType] → [NewSet ]
operation create[sequenceOfeType] → [NewSet ]

end NewSetType
where

sequenceOfeType ←
immutable typeobject sequenceOfeType

function lowerbound → [Integer ]
function upperbound → [Integer ]
function getElement [Integer ] → [eType]

end sequenceOfeType
where

NewSet ←
immutable typeobject NewSet

function contains[eType] → [Boolean]
function +[NewSet ] → [NewSet ]
function ∗[NewSet ] → [NewSet ]
function −[NewSet ] → [NewSet ]
function cardinality → [Integer ]

end NewSet
result ←

object SetCreator
export operation create[v : sequenceOfeType]→ [result : NewSet ]

result ←
object NewSet

const repType ← Vector.of [eType]
var rep : repType

% The implementation of the operations and functions.
end NewSet

end create
export operation empty → [r : NewSet ]

r ← self.create[nil]
end new
export operation singleton[e : eType] → [r : NewSet ]

r ← self.create[e]
end singleton

end SetCreator
end of

end Set

Figure 1: A Polymorphic Set Object
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8 Objects

Emerald provides a single general purpose object constructor which creates all objects, as well as a number
of syntactic shorthands for commonly occurring usage patterns.

8.1 Object Constructors

An object constructor defines the complete representation, operations, and active behaviour of a single
object. Objects are created when an object constructor is executed. In other words, object constructors are
expressions. The form of a constructor shown below demonstrates its generality, i.e., all Emerald objects
may be defined using this feature.

objectConstructor ::= [ immutable ] [ monitor ] object identifier
{ declaration }
{ operation | initially | process | recovery }

end identifier

process ::= process
blockBody

end process

initially ::= initially
blockBody

end initially

recovery ::= recovery
blockBody

endrecovery

Each object in Emerald owes its existence to either an implicit or explicit execution of an object constructor.
The object constructor provides the necessary information about the object’s implementation, i.e.,

• Representation declarations for data and processes that are contained in the object.

• A collection of operation bodies containing both the signature as well as the implementation of each
operation that the object is capable of executing.

The type of an object constructor expression is determined by including in the type the signature of every
exported operation in the constructor. This defines the best fitting type, and may be retrieved during
execution by the typeof expression.

8.1.1 Initialization

When an object constructor is executed, the newly created object is initialized by performing the following
steps in order:

1. Initialize any implicitly created constants holding the values of imported identifiers.

2. Initialize all variables and constants declared in the constructor in textual order.

3. Execute the declarations and statements in the initially section, if present.
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Any attempt to invoke any operation on the object is deferred until its initialization is complete. The only
exception to his rule is that invocations of the object by itself during initialization are allowed.
Once initialization is complete, the process defined by the object constructor is started and then the execution
of the object constructor expression terminates. The value of the expression is a reference to the newly created
object.

8.1.2 Recovery

When an Emerald node on which objects have previously checkpointed recovers, all checkpointed object
have their state restored as of the time of the most recently completed checkpoint, and then the declarations
and statements in the recovery section of the object constructor that caused the creation of the object
are executed. During recovery, invocations on the object are deferred as during initialization. When the
execution of the recovery block is complete, the process defined by the object constructor is started anew.

8.1.3 Object creators

An object whose primary purpose is the creation of other object is termed an object creator. No additional
language mechanisms are needed to program object creators; one simply nests one object constructor inside
another, but see also Section 8.3.

8.2 Objects as Types

Type constructors are the basic method for constructing abstract types in Emerald (cf. Section 7). Since
typing in Emerald is based entirely on the signatures of operations, any object which conforms to the type

immutable typeobject type
function getSignature → [Signature]

end type
is a type. Thus objects which serve other useful purposes can also be used as types. Object creators in
particular can take advantage of this to allow a single object to serve as both a creator and a type.

8.3 Classes

Emerald does not have a notion of class. That is, it is not possible to distinguish a class object from some
other object. Or, stated differently again, Emerald does not have a type class which class objects conform
to but other objects do not. However, Emerald does have a syntactic construct called a class that provides
the functionality normally expected of classes.

class ::= [ immutable ] [ monitor ] class identifier
[ ( baseClass ) ] [ parameterList ]
{ classoperation }
{ declaration }
{ operation | initially | process | recovery }

end identifier
baseClass ::= identifier
classoperation ::= class operation
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Classes are expanded syntactically into two nested object constructors. The outer object (the class, factory,
or creator object) is immutable and declares a single constant, a Signature which represents the type of the
instances and whose name is derived from the name of the type with the string “type” appended. This
signature object contains the signature of each operation that is exported from the inner object constructor
(which defines the instances), and is the best fitting type of those instances. The class exports operations
getSignature and create in addition to the class operations defined by the programmer. The getSignature
operation returns the signature constant described above. The parameterList specifies the parameter list to
the create operation; the body of the create operation is a single assignment statement which returns the
result of executing the inner object constructor. The inner object constructor is given the name of the class
prefixed with the string “a” (or “an” as appropriate). The rest of the components of the class construct
become the body of the inner object constructor and thereby define the class’s instances.
This is most easily understood through examples. Suppose we write the following declaration:

const Complex ← immutable class Complex [r : Real, i : Real ]
class export operation fromReal [a : Real ] → [e : Complex ]

e ← self.create[a, 0.0 ]
end fromReal
export function +[other : Complex ] → [e : Complex ]

e ← Complex.create[other.getReal + r, other.getImag + i ]
end +
export function getReal → [e : Real ]

e ← r
end getReal
export function getImag → [e : Real ]

e ← i
end getImag

end Complex

This is rearranged into the following:
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const Complex ← immutable object Complex
const ComplexType ← immutable typeobject ComplexType

function +[ComplexType] → [ComplexType]
function getReal → [ComplexType]
function getImag → [ComplexType]

end ComplexType
export function getSignature → [r : Signature]

r ← ComplexType
end getSignature
export operation fromReal [a : Real ] → [e : Complex ]

e ← self.create[a, 0.0 ]
end fromReal
export operation create[r : Real, i : Real ] → [e : Complex ]

e ← immutable object aComplex
export function +[other : Complex ] → [e : Complex ]

e ← Complex.create[other.getReal + r, other.getImag + i ]
end +
export function getReal → [e : Real ]

e ← r
end getReal
export function getImag → [e : Real ]

e ← i
end getImag

end aComplex
end create

end Complex

Inheritance

Emerald supports single inheritance. That is, every class may have at most one superclass from which it
inherits. There are three kinds of components that may be inherited from the parent class:

• class operations

• instance declarations (constants and variables)

• instance operations including any initially, recovery, and process

• parameters to the class.

The parameters to the subclass are concatenated to the end of the list of parameters to the superclass in
order to form the final parameter list for the subclass.
Inheritance of the other three kinds of components is performed by considering in turn each component
of the superclass, and searching for an identically named component of the same kind in the subclass. If
the subclass contains the component then the superclass component is ignored, otherwise the superclass
component is added to the subclass.
There is no support for changing the visibility of a component (exporting in the subclass an operation that is
private in the superclass or making private in the subclass an operation that is exported in the superclass),
nor is there support for deleting a component. Because subclass components completely replace those from
the superclass, changing the visibility of a component may be accomplished by copying the component from
the superclass manually and changing the visibility of the copy. A data component may be effectively deleted
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by declaring an identically named constant in the subclass whose value is sufficiently simple that it need not
be stored (an excellent choice of value is 0).
Because any component of the superclass may be redefined in the subclass, there is no guarantee that either
the type of the subclass will conform to the type of the superclass, or that the type of instances of the
subclass will conform to the type of instances of the superclass. The objects resulting from inheritance do
not retain at run time any record of their inheritance relationships. That is, there is no operation that can
be performed on a class object to retrieve its superclass. This is a side effect of the fact that there is no type
class. Such operations can easily be implemented, if desired, as in the following example:

const parent ← class parent
end parent

const child ← class child (parent)
class export function getSuperClass → [r : Any ]

r ← parent
end getSuperClass

end child

8.4 Enumerations

enum ::= enumeration identifier
enumIdentifier { , enumIdentifier }

end identifier

An enumeration is a class that represents an ordered collection of identifiers. The operations on the class
consist of:

• a function getSignature, which returns a Signature describing the type of the enumeration instances

• for each enumeration identifier a, a creation operation named a that returns an object representing
that element of the enumeration

• first and last that return the first and last elements of the enumeration, respectively

• an operation named create that takes an integer argument n and returns the nth element of the
enumeration, with the numbering starting at 0.

Each instance of the class implements the following operations:

• the comparison functions <, <=, =, ! =, >=, >

• functions succ which returns the successor object (or fails if invoked on the last element of the enu-
meration) and pred which returns the predecessor object (or fails if invoked on the first element of the
enumeration)

• a function ord which returns the position of the element in the enumeration ordering, starting at 0

• a function asString which returns the name of the element as a String .

All instance of enumeration classes are immutable. To be concrete, consider the declaration:
const colors ← enumeration colors red, blue, green end colors

The class object colors will have type:
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immutable typeobject ColorCreatorType
function getSignature → [Signature]
operation create[Integer ] → [ColorType]
operation first → [ColorType]
operation last → [ColorType]
operation red → [ColorType]
operation green → [ColorType]
operation blue → [ColorType]

end ColorCreatorType

and each element of the enumeration will have type:
immutable typeobject ColorType

function <[ColorType] → [Boolean]
function <=[ColorType] → [Boolean]
function =[ColorType] → [Boolean]
function ! =[ColorType] → [Boolean]
function >=[ColorType] → [Boolean]
function >[ColorType] → [Boolean]
function succ → [ColorType]
function pred → [ColorType]
function ord → [Integer ]
function asString → [String ]

end ColorType

8.5 Fields

field ::= [ attached ] const field identifier : type initializer
| [ attached ] field identifier : type [ initializer ]

It is often convenient to declare an externally accessible data element of an object. A field declaration does
exactly this. Field declarations can only occur within the declaration part of an object constructor. Constant
field declarations expand to a constant declaration and an operation to get the value of the constant. Variable
fields expand to a variable declaration and operations to both get and set the value of the variable. The
expansion of the constant field:

attached const field f : t ← init

is
attached const f : t ← init
export function getF → [x : t ]

x ← f
end getF

And the expansion of the variable field:
attached field f : t ← init

is
attached var f : t ← init
export operation setF [x : t ]

f ← x
end setF
export function getF → [x : t ]

x ← f
end getF
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8.6 Records

record ::= [ immutable ] record identifier
recordfield { recordfield }

end identifier
recordfield ::= [ attached ] [ var ] fieldIdentifier : type

A record is a class that contains a field for each element of the record, and a create function that takes
as its parameters initial values for each field. If the record is defined as immutable, then the class will be
immutable as well, and each field will be a constant field. For example, the declaration of the mutable record:

record aRecord
a : Integer
c : String

end aRecord

expands to a class:
class aRecord [xa : Integer, xc : String ]

field a : Integer ← xa
field c : String ← xc

end aRecord

Given the above declaration, the following code declares and initializes a record variable.
var a : aRecord

a ← aRecord.create[34, “A string”]

8.7 Predefined objects

Emerald implements a number of pre-defined objects; these objects are outlined in Table 2 and specified in
greater detail in Appendix B.

9 Location and Reliability

Emerald was developed primarily to facilitate the construction of distributed application programs. To be
resilient to machine crashes, these programs should be capable of detecting and recovering from such crashes.
They should also be able to control the location of component objects so that the available nodes in the
system are optimally exploited. This section discusses the Emerald location-related constructs.
There are two Emerald concepts that concern location. These correspond to two desires that motivate
application programmers to deal with location. As stated previously, invocation in Emerald is location
independent. This means that the location of an object need not be determined in order to invoke it. There
are however two considerations that we expect to motivate application programmers to concern themselves
with location: performance and reliability/availability.

Performance

Since remote invocation will necessarily be at least an order of magnitude more expensive than local invo-
cation, the placement of Emerald objects may seriously affect their performance. In order to provide the
programmer with control over the placement of objects the move statement (see Section 5.7.4) is provided.
In addition, the call-by-move implementation strategy for arguments to invocations (see Section 6.3) allows
further optimizations.
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Predefined Type Type Description
Any Has no operations.
Array A polymorphic, flexible array.
AOpVector A sequence of operation signatures in a Signature.
AOpVectorE A single operation signature in a Signature.
AParamList A list of parameters in an operation Signature.
BitChunk A container of bits supporting bit-level operations.
Boolean Logical values with literals true and false.
Character Individual characters with operations such as <, >, =, ord,

etc.
ConcreteType A container for the executable code of an object.
Condition Condition variables satisfying Hoare monitor semantics.
COpVector A sequence of operation definitions in a ConcreteType.
COpVectorE A single operation definition in a ConcreteType.
Directory An object defining the type of primitive name server

directories.
Handler An object defining the type of objects capable of receiving

Node state change updates from the run time system.
InterpreterState An internal object capturing the state of the execution of a

process.
ImmutableVector Read-only vector.
ImmutableVectorOfAny Read-only vector of Any.
ImmutableVectorOfInt Read-only vector of Integers.
InStream Input streams.
Integer Signed integers.
Node Objects representing machines.
NodeList Immutable vectors of node descriptions.
NodeListElement Immutable node descriptions.
None The type of nil.
OutStream Output streams.
Real Approximations of real numbers.
RISA Readable Indexed Sequence of Any.
RISC Readable Indexed Sequence of Character.
Signature Primitive abstract type
String Character strings.
Time Times and dates
Type The type of all types.
Vector Fixed sized polymorphic vectors.
VectorOfChar Vector.of[Character].
VectorOfInt Vector.of[Integer].

Table 2: Built-in Types
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Reliability and Availability

Since an object may be moved at arbitrary times by any other object with a reference to it, a more permanent
binding between objects and locations is often required. In particular, in order to implement an available
replicated service, it is necessary to place the replicas on differing machines and not allow them to move.
This allows the programmer to guarantee that a single machine failure will not cause more than one of his
replicas to become unavailable.
In order to provide for this requirement, the fix and unfix statements (see Sections 5.7.1 and 5.7.2) may be
used. An object, once fixed at a particular location, may not be moved from there. Any attempt to do so
will fail (see subsection 9.2).

9.1 Unavailable objects

Due to machine crashes or communication network failures, objects may be temporarily or permanently
unavailable. Emerald provides unavailable handlers to allow programmers to detect such situations and
attempt recovery.

unavailableHandler ::= unavailable [ [identifier ] ]
blockBody

end unavailable

An object is regarded as being unavailable when it cannot be located at any available node following suitable
system action [JLHB88]. When an attempt is made to invoke an object which is unavailable, the appropriate
hander is located in a manner similar to that for failures (see Section 9.2), the unavailable object is bound
to the identifier declared in that unavailable handler (if present), and the body of the handler is executed.
The type of the identifier in the handler definition is Any .
While invoking an object which is unavailable results in an unavailable exception, the typeof, codeof, and
nameof expressions will correctly identify even unavailable objects.

9.2 Failures

Failures can result from a number of causes; these include attempting to invoke a nil reference, assertion
failures, divide-by-zero and subscript-range errors.

failureHandler ::= failure
blockBody

end failure

After a failure is detected, the following action is taken.

1. The appropriate failure handler to execute is found. This handler is the handler attached to the smallest
block containing the statement. Note that failures are considered a “superclass” of unavailables, and
so when an unavailable exception has been raised, each block that may have a handler is first searched
for an unavailable handler, and then a failure handler, and only if no handler can be found is the next
larger enclosing block searched. Similarly when propagating an unavailable exception up the call stack,
each block is first searched for an unavailable handler and then for a failure handler.
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2. If the block body of a monitored operation, the initially section, or the recovery section of an object
fails, then the object is said to have failed. Any subsequent invocation attempted on the object will
fail, and any invocations that have started but have not yet completed also fail.

3. An unhandled failure in the block body of an operation is propagated by causing the corresponding
invocation to fail.

4. An unhandled failure in an initially section implies that the object creation has failed; this is propagated
by causing the statement containing the object constructor expression to fail.

5. An unhandled failure in the block body of a recovery section cannot be propagated because its execution
did not result from an invocation.

6. An unhandled failure in a process block body cannot be propagated. The process is terminated, but
the object itself does not fail.

7. When an object fails, no attempt is made to immediately track down and fail all processes (including
the one contained in the object) that have threads of control that have passed through the object.
When these threads of control return to the body of any operation inside the object, they will then
fail.
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x ./reserved.tex, 1374 bytes, 3 tape blocks

A Reserved Words in Emerald

The reserved words in Emerald are listed out below under the four categories mentioned in Section 2.3. It
should be borne in mind that Emerald is an active research language and is constantly being modified so
there may be additional reserved words not mentioned below.

A.1 Keywords

and as assert at attached
awaiting begin checkpoint const else
elseif end enumeration exit export
failure fix from function if
immutable import initially isfixed locate
loop monitor move object on
op operation or primitive process
record recovery refix return
returnandfail signal then to type
unavailable unfix union var view
visit wait when where

A.2 Literals

false nil self true
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B Built-in Objects

This appendix defines the built-in objects. These descriptions will mention that an object is a type rather
than explicitly refering to the object’s immutability and its getSignature operation.

B.1 Any

Any is the type that requires no operations; every Emerald object has type Any.

B.2 Array

Arrays implement expandable indexable storage. The of operation on Array takes a Type, and returns
an array creator. As arrays can expand and shrink, common data types such as Stacks and Queues can
be implemented using Arrays: Stacks use addUpper and removeUpper, while Queues use addUpper and
removeLower.
The object Array is immutable and has the following interface:

function of [T : type] → [aNewArrayCreatorType] forall T

The object resulting from Array.of [T ] (with type aNewArrayCreatorType) is a creator as well as a type. It
is immutable and has the following interface:

operation empty → [aNewArrayType]
Return a new empty Array .

operation literal [Sequence.of [T ]] → [aNewArrayType]
Return a new Array initialized with all the elements from the given sequence.

operation create[size : Integer ] → [aNewArrayType]
Return a new Array with size elements all initialized to nil.

Objects with type Array.of [T ] have the following interface, named aNewArrayType:

function getElement [index : Integer ] → [T ]
Get the element indexed by index, failing if index is out of range.

operation setElement [index :Integer, value :T ]
Set the element indexed by index to value, failing if index is out of range.

function upperbound → [Integer ]
Return the highest valid index.

function lowerbound → [Integer ]
Return the lowest valid index.

function getElement [lb : Integer, length : Integer ] → [aNewArrayType]
Return a new Array , a, with lower bound lb, and length length, such that for lb ≤ i ≤ lb + length - 1:
self[i] == a[i]. Fail if lb or lb + length - 1 is out of range.

function getSlice[lb :Integer, length :Integer ] → [aNewArrayType]
Same as getElement.

operation setElement [lb : Integer, length : Integer, a : RIS ]
Set the elements indexed starting at lb for length elements, so that for each such i in that range: self[i]
== a[i]. Fail if lb or lb + length - 1 is out of range.
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operation setSlice[lb : Integer, length : Integer, a : Sequence.of [T ]]
Same as setElement.

operation slideTo[newlb : Integer ]
Change the valid indices for self so that the new lowerbound is newlb.

operation addUpper [value : T ]
Extend the set of valid indices, changing ub to ub + 1, and setting the element indexed by the new ub
to be value.

operation removeUpper → [T ]
Return the element indexed by ub, after contracting the set of valid indices to lb ≤ i ≤ ub − 1.

operation addLower [value : T ]
Extend the set of valid indices, changing lb to lb − 1, and setting the element indexed by the new lb
to be value.

operation removeLower → [T ]
Return the element indexed by lb, after contracting the set of valid indices to lb + 1 ≤ i ≤ ub.

function empty → [Boolean]
Return true if lb == ub + 1.

operation catenate[a : RIS ] → [r : aNewArrayType]
Create a new array like self, and then add (using addUpper) each element in a to that new array.

B.3 BitChunk

BitChunks allow the manipulation of arbitrarily sized sequences of bits. There are operations to set or
retrieve collections of bits at arbitrary bit positions with lengths up to 32 bits. BitChunk is a type with the
following interface:

export operation create[n : Integer ] → [Bitchunk ]
Create a bitChunk large enough to hold n bytes of information.

An object whose type is BitChunk has the following interface:

function getSigned [off: Integer, len: Integer ] → [Integer ]
Return the bits at offset off for length len as a signed Integer (treat the highest order bit as a sign bit).

function getUnsigned [off : Integer, len : Integer ] → [Integer ]
Return the bits at offset off for length len as an unsigned Integer

function getElement [Integer, Integer ] → [Integer ]
Equivalent to getUnsigned.

operation setSigned [off:Integer, len:Integer, val:Integer ]
Set the bits at offset off for length len to the low order bits of val.

operation setUnsigned [Integer, Integer, Integer ]
Equivalent to setSigned.

operation setElement [Integer, Integer, Integer ]
Equivalent to setSigned.

operation ntoh[off : Integer, len : Integer ]
Convert the bits at offset off with length len from network to host byte order. Len must be either 16
or 32.
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B.4 Boolean

In addition to the operations on Booleans listed here, Booleans are involved in the evaluation of the con-
ditional and (and) and conditional or (or) expressions. The immutable object Boolean has the following
interface:

function create[ord : Integer ] → [Boolean]
If ord is 0 then return false, otherwise return true.

Objects whose type is Boolean are immutable with the following interface: Comparisons are based on the
ordinal values as given by ord

function > [Boolean] → [Boolean]
function >= [Boolean] → [Boolean]
function < [Boolean] → [Boolean]
function <= [Boolean] → [Boolean]
function = [Boolean] → [Boolean]
function ! = [Boolean] → [Boolean]

Comparison functions.
function & [Boolean] → [Boolean]

Logical and.
function | [Boolean] → [Boolean]

Logical or.
function ! → [Boolean]

Logical negation.
function ord → [Integer ]

Return 0 when invoked on false, 1 when invoked on true.
function asString → [String ]

Return either “true” or “false”.
function hash → [Integer ]

return self.ord

B.5 Character

The immutable object Character has the following interface:

function Literal [o : Integer ] → [Character ]
Return the Character whose ordinal is given by o.

Objects whose type is Character are immutable and have the following interface:

function > [Character ] → [Boolean]
function >= [Character ] → [Boolean]
function < [Character ] → [Boolean]
function <= [Character ] → [Boolean]
function = [Character ] → [Boolean]
function ! = [Character ] → [Boolean]

Comparison functions.
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function asString → [String ]
Return a single character string “c” when invoked on a character ‘c’.

function ord → [Integer ]
Return the character’s ordinal number.

function hash → [Integer ]
Return self.ord.

function isalpha → [r : Boolean]
Return true if the character appears in the alphabet.

function isupper → [r : Boolean]
Return true if the character is upper case.

function islower → [r : Boolean]
Return true if the character is lower case.

function isdigit → [r : Boolean]
Return true if the character is a decimal digit.

function isxdigit → [r : Boolean]
Return true if the character is a hexadecimal digit.

function isalnum → [r : Boolean]
Return true if the character is alphanumeric.

function isspace → [r : Boolean]
Return true if the character is white space (blank, tab, newline, etc).

function ispunct → [r : Boolean]
Return true if the character is a punctuation mark.

function isprint → [r : Boolean]
Return true if the character is printable.

function isgraph → [r : Boolean]
Return true if the character is visible when printed.

function iscntrl → [r : Boolean]
Return true if the character is a control character.

function toupper → [r : Character ]
If the character is a lower case alphabetic, return the upper case letter corresponding to it, otherwise
return the character itself.

function tolower → [r : Character ]
If the character is an upper case alphabetic, return the lower case letter corresponding to it, otherwise
return the character itself.

B.6 ConcreteType

A ConcreteType captures the implementation of some other object. It contains all the information required
to create and operate on the collection of objects created from a single object constructor. ConcreteTypes
can only be usefully created by the compiler. The object ConcreteType is a type and has the following
interface:

operation create[
instanceSize : Integer , instanceTagMask : Integer , ops : COpVector, name : String , filename : String ,
template : String ] → [ConcreteType]

Objects whose type is ConcreteType are immutable and have the following interface. All of these operations
return information describing all of the objects that could ever be created using this object constructor.
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function getInstanceSize → [Integer ]
Return the size in bytes of the data area of the object.

function getInstanceTagMask → [Integer ]
Return a collection of flag bits that include whether the objects are immutable and how they are
represented by the interpreter.

function getOps → [COpVector ]
Return a list of the operations defined for the objects.

function getName → [String ]
Return the name of the object constructor.

function getFileName → [String ]
Return the file name of the Emerald source file that contained the typeobject from which I was created.

function getTemplate → [String ]
Return the template that describes the data area of the objects. The format of the template string is
private.

function getLiterals → [ImmutableVectorOfInt ]
Return a list of literals that are referenced by the code for operations on the object. The format of
this structure is private.

COpVector is ImmutableVector.of[COpVectorE].
A COpVectorE describes an operation. COpVectorE is a type with the following interface:

operation create[
id : Integer , nArgs : Integer , nRess : Integer , name : String , template : String , code : String ] → [n :
COpVectorEType]

Objects whose type is COpVectorE are immutable and have the following interface:

function getID → [Integer ]
Return the internal id of the operation.

function getNArgs → [Integer ]
Return the number of arguments to the operation.

function getNRess → [Integer ]
Return the number of results returned by the operation.

function getName → [String ]
Return the name of the operation.

function getTemplate → [String ]
Return the template that describes the activation record of the operation. The format of the template
string is private.

function getCode → [String ]
Return the code for the operation, as a string.

The internal representation of the state of the interpreter. InterpreterState is a type with the following
interface:

operation create[
pc : Integer , sp : Integer , fp : Integer , sb : Integer , o : Any , e : Any ] → [InterpreterState]

Objects whose type is InterpreterState have the following interface:
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function getPC → [Integer ]
operation setPC [Integer ]
function getSP → [Integer ]
operation setSP [Integer ]
function getFP → [Integer ]
operation setFP [Integer ]
function getO → [Any ]
operation setO [Any ]
function getSB → [Integer ]
operation setSB [Integer ]
function getE → [Any ]
operation setE [Any ]

PC is the program counter, SP is the stack pointer, FP is the frame pointer, and SB is the base of the stack.
O is the current object, and E is the environment of the current process. Each Emerald process has a per-
process environment which can be used at the programmer’s discretion.

B.7 Condition

A condition object may only be used within the monitor within which it was created. The object Condition
is immutable, and has the following interface:

operation create → [Condition]

Objects whose type is Condition have no operations; wait, signal, and awaiting are language primitives.

B.8 InStream

InStream objects provide the ability to read files. The InStream object is immutable and has the following
interface:

operation fromUnix [fn : String, mode : String ] → [InStream]
Return a new input stream attached to the given operating system file. Mode is as in fopen in C, and
must begin with ‘r’. The operation fails if the file does not exist or cannot be opened.

operation create[file : Integer ] → [InStream]
Return a new input stream attached to the given file descriptor.

All of the input operations on InStream objects fail if the operation cannot be performed. In particular,
they fail upon reaching end-of-file or if the stream has been closed. Objects whose type is InStream have
the following interface:

operation getChar → [Character ]
Return the next character from the input source. Fail if the stream is closed or eos has been reached.

operation unGetChar [c : Character ]
Push the character on the the front of the input stream. There is no requirement that the character
be one previously read from the stream. Only the amount of available memory limits the amount of
data that can be pushed back on a stream.
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operation getString → [String ]
Return one line of input, including the terminating newline character, if any.

function eos → [Boolean]
Return true if the end of the input stream has been reached. Note that this predicate will block for
terminal input on a terminal stream if necessary in order to determine whether the end of the stream
has been reached.

operation close
Close the stream.

function isAtty → [Boolean]
Return true if the underlying Unix file is a tty.

operation fillVector [VectorOfChar ] → [Integer ]
Reads up to one line from the input, placing the characters in the provided vector. Returns the
number of characters read. The vector will contain the newline character that caused reading to
terminate unless no newline character is read before the vector is full.

operation rawRead [VectorOfChar ] → [Integer ]
Reads from the input placing the characters in the provided vector. Returns the number of characters
read.

B.9 Integer

Conversion between integers and reals is accomplished by the asReal operation on Integers, and the asInteger
operation on Reals. The immutable object Integer has the following interface:

function literal [rep : String ] → [Integer ]
Return the integer parsed from the front of the string rep. The C function strtol is used to parse the
integer.

Objects whose type is Integer are immutable, and have the following interface. For those operations that
manipulate bits, bit numbering starts at 0, which represents the high order bit of the integer.

function + [Integer ] → [Integer ]
function − [Integer ] → [Integer ]
function ∗ [Integer ] → [Integer ]
function / [Integer ] → [Integer ]
function # [Integer ] → [Integer ]

Arithmetic functions. # represents modulus.
function > [Integer ] → [Boolean]
function >= [Integer ] → [Boolean]
function < [Integer ] → [Boolean]
function <= [Integer ] → [Boolean]
function = [Integer ] → [Boolean]
function ! = [Integer ] → [Boolean]

Comparison functions.
function ~ → [Integer ]

Negation.
function − → [Integer ]

Negation, identical to ~.
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function asString → [String ]
Return a String representing the value of the Integer with no leading zeros in decimal.

function hash → [Integer ]
Return self.

function abs → [Integer ]
Return the absolute value of self.

function asReal → [Real ]
Return a Real value representing the same value as self.

function & [other : Integer ] → [Integer ]
Return the bitwise and of self and other.

function | [other : Integer ] → [Integer ]
Return the bitwise or of self and other.

function setBit [o : Integer, v : Boolean] → [r : Integer ]
Return an Integer like self except in the o’th bit position, where it has the bit v.

function getBit [o : Integer ] → [r : Boolean]
Return the bit in o’th bit position.

function setBits[o : Integer, l : Integer, v : Integer ] → [r : Integer ]
Return an Integer like self except in the o through o + l − 1’th positions, where the bits represent the
low order bits of the Integer v.

function getBits[o : Integer, l : Integer ] → [r : Integer ]
Return the bits in the o through o + l − 1’th bit positions, without sign extension.

B.10 Node, NodeList, NodeListElement, Directory, Handler

The nodeEventHandler entries allow appropriate operations to be invoked when the node detects changes
in the network topology. The operations that query network topology use the auxiliary types NodeList and
NodeListElement which are described below. The object Node is a type with the following interface:

operation getStdin → [InStream]
Return an InStream representing the current Node’s standard input.

operation getStdout → [OutStream]
Return an OutStream representing the current Node’s standard output.

Objects with type Node are mutable, are fixed at their initial locations, and have the following interface:

operation getActiveNodes → [NodeList ]
Return a list containing information about all nodes in the Emerald environment that are known to
be functioning.

operation getAllNodes → [NodeList ]
Return a list containing information about all nodes in the Emerald environment, whether they are
functioning or not.

operation getNodeInformation → [NodeListElement ]
Return information about the node. This is not currently implemented.

operation getTimeOfDay → [Time]
Return an object of type Time representing the current wall clock time.

operation delay [howlong : Time]
Put the current process to sleep until the amount of time specified by howlong has passed.
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operation waitUntil [untilwhen : Time]
Put the current process to sleep until the absolute time specified by untilwhen has arrived.

operation getLoadAverage → [Real ]
Return a Real number representing the load on the machine on which the target node is executing.
This is not currently implemented.

operation setNodeEventHandler [h : HandlerType]
Register h as an additional handler to receive notification when nodes come up or do down. This is
not currently implemented.

operation removeNodeEventHandler [h : HandlerType]
Unregister h as a node event handler. This is not currently implemented.

operation getStdin → [InStream]
Return an InStream representing the target Node’s standard input.

operation getStdout → [OutStream]
Return an OutStream representing the target Node’s standard output.

function getLNN → [Integer ]
Return the current node’s Logical Node Number. This value is not interesting.

function getName → [String ]
Return a string containing the name of the current host. If the current host name cannot be determined
(as on DOS) return a string containing as much information as is available.

function getRootDirectory → [Directory ]
Return the root directory of the Emerald universe. Each cooperationg collection of Emerald nodes has
a single root directory which is the root of the name service.

A NodeListElement is an immutable record with 4 fields that provide information about a node:

function getTheNode → [Node]
function getUp → [Boolean]
function getIncarnationTime → [Time]
function getLNN → [Integer ]

NodeList is ImmutableVector.of [NodeListElement ].
Directory is the type of name service directories. Directory is a type with interface:

operation create → [r : Directory ]
Return a new directory.

Objects whose type is Directory have the following interface:

operation insert [name : String, value : Any ]
Insert the object value in the directory under the name name.

function lookup[name : String ] → [Any ]
Return the object in the directory stored under the name name. If there is no object stored under that
name, return nil.

operation delete[String ]
Delete the object in the directory stored under the name name. It is not an error to delete a nonexistent
entry.

function list → [ImmutableVectorOfString ]
Return a list of all of the names defined in the directory.
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Handler represents the type of objects that can register to be informed when Nodes come up and go down.
Such objects must conform to the type Handler, which is:

typeobject HandlerType
operation nodeUp[Node, Time]
operation nodeDown[Node, Time]

end HandlerType

B.11 None

None is the type that supports all operations, and is therefore implemented only by the nil object. It is
defined to complete the lattice structure of Emerald types; None represents the top element of the type
lattice.

B.12 OutStream

OutStream objects provide the ability to write files. The OutStream object is a type with the following
interface:

operation toUnix [fn : String, mode : String ] → [OutStream]
Return a new output stream attached to the given operating system file. Mode is as in fopen in C,
and must begin with ‘w’ or ‘a’. The operation fails if the file cannot be opened in the given mode.

operation create[file : Integer ] → [OutStream]
Return a new output stream attached to the given file descriptor.

Objects with type OutStream have the following interface. All of the output operations on OutStream
objects fail if the requested operation cannot be performed.

operation putChar [c : Character ]
Append the character c on the stream.

operation putInt [n : Integer, width : Integer ]
Append the decimal string representation of the Integer n on the stream, right justified in a field width
wide. If the value n cannot be accurately represented in width characters, then the width specification
will be treated as infinity.

operation writeInt [n : Integer, size : Integer ]
Write the binary representation of the Integer n in size bytes, in network byte order. Size must be 1,
2, or 4.

operation putReal [x : Real ]
Append the decimal string representation of the Real x on the stream. A representation of the value
of x will be chosen so as to not lose accuracy.

operation putString [s : String ]
Append the String s on the stream.

operation flush
Flush any buffered output.

operation close
Close the stream, flushing any buffered output and preventing any further output.

42



B.13 Real

The Real type is implemented as a 32-bit floating-point number. The object Real is a type with the following
interface:

function literal [s : String ] → [Real ]
Return a Real number parsed from the string s. The C language function atof is used to parse the
string.

Objects with type Real are immutable and have the following interface:

function + [Real ] → [Real ]
function − [Real ] → [Real ]
function ∗ [Real ] → [Real ]
function / [Real ] → [Real ]

Arithmetic functions.
function ˆ [Real ] → [Real ]

Exponentiation. aˆb returns a raised to the exponent b.
function > [Real ] → [Boolean]
function >= [Real ] → [Boolean]
function < [Real ] → [Boolean]
function <= [Real ] → [Boolean]
function = [Real ] → [Boolean]
function ! = [Real ] → [Boolean]

Comparison functions.
function ~ → [Real ]

Return the negation of self.
function − → [Real ]

Return the negation of self, same as ~.
function asString → [String ]

Return a string representing my value. The C language function sprintf’s %g specification is used.
function asInteger → [Integer ]

Return an integer as close as possible to, but lower than my value.

B.14 Sequence, SequenceOfAny, SequenceOfString

Sequence represents indexable sequences. The object Sequence is immutable and has interface:

function of [T : type] → [aNewSequenceType : Type] forall T

The object resulting from Sequence.of [T ] is a Signature defined as follows:
typeobject aNewSequence

function lowerbound → [Integer ]
function upperbound → [Integer ]
function getElement [Integer ] → [T ]

end aNewSequence
SequenceOfAny is Sequence of Any. Vector.of[Any], ImmutableVector.of[Any], and Array.of[Any] all conform
to SequenceOfAny.
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SequenceOfCharacter is Sequence of Character. Vector.of[Character], ImmutableVector.of[Character], and
Array.of[Character] all conform to SequenceOfCharacter.

B.15 Signature, AOpVector, AOpVectorE, AParamList

Signature is the type of the object constructed by the compiler as the result of a typeobject constructor.
Signature has no interesting operations.
Objects whose type is Signature are types, and have the following interface, all of which operations return
information about the typeobject constructor that was used in the creation of the signature.

function getIsImmutable → [Boolean]
Return true if the typeobject is immutable.

function getIsTypeVariable → [Boolean]
Return true if the typeobject is a type variable which resulted from a for all or such that clause.

function getOps → [AOpVector ]
Return a list of the operations in the typeobject.

function getName → [String ]
Return the name of the typeobject.

function getFileName → [String ]
Return the file name of the Emerald source file that contained the typeobject from which I was created.

AParamList is ImmutableVector.of[Signature].
AOpVector is ImmutableVector.of[AOpVectorE].
An AOpVectorE describes an operation in a Signature. AOpVectorE is a type with the following interface:

operation create[
id : Integer , NArgs : Integer , NRess : Integer , isFunction : Boolean, name : String , arguments :
AParamList, results : AParamList] → [AOpVectorE]

Objects whose type is AOpVectorE are immutable and have the following interface:

function getID → [Integer ]
Return the internal id of the operation.

function getNArgs → [Integer ]
Return the number of arguments to the operation.

function getNRess → [Integer ]
Return the number of results returned by the operation.

function getIsFunction → [Boolean]
Return true if the operation is a function.

function getName → [String ]
Return the name of the operation.

function getArguments → [AParamList ]
Return a list of the argument types.

function getResults → [AParamList ]
Return a list of the result types.
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B.16 String

The object String is a type and has the following interface:

operation Literal [rep : Sequence.of [Character ], offset : Integer, len : Integer ] → [String ]
Return a String with the characters from the given sequence of characters.

operation FLiteral [rep : VectorOfChar, offset : Integer, len : Integer ] → [String ]
Same as literal, but with a more restrictive argument type (it must be a Vector), which makes the
implementation more efficient.

Objects whose type is String are immutable and have the following interface:

function > [String ] → [Boolean]
function >= [String ] → [Boolean]
function < [String ] → [Boolean]
function <= [String ] → [Boolean]
function = [String ] → [Boolean]
function ! = [String ] → [Boolean]

Comparison functions.
function getElement [index : Integer ] → [Character ]

Return the character at position index, numbering from 0.
function getSlice[lb : Integer, length : Integer ] → [String ]

Return a substring of the string, starting at position lb, for length characters.
function getElement [lb : Integer, length : Integer ] → [String ]

Same as getSlice, but can use the convenient subscript syntax.
function length → [Integer ]

Return the length of the string.
function || [more : String ] → [String ]

Return the result of concatenating the string more at the end of self.
function asString → [String ]

Return self.
function lowerbound → [Integer ]

Return 0.
function upperbound → [Integer ]

Return self.length − 1
function hash → [Integer ]

Return a characteristic Integer . The hash function is chosen to make the probability of two distinct
strings having the same hash value quite small.

function index [ch : Character ] → [r : Integer ]
Return the first position in the string at which the character ch appears. If ch does not appear, then
return nil.

function rindex [ch : Character ] → [r : Integer ]
Return the last position in the string at which the character ch appears. If ch does not appear, then
return nil.

function span[s : String ] → [r : Integer ]
Return the first position in the string at which a character not in the string s appears. If all characters
are in s, then return the length of the string.
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function cspan[s : String ] → [r : Integer ]
Return the first position in the string at which a character in the string s appears. If no character in
s appears in the string, then return the length of the string.

function str [s : String ] → [r : Integer ]
Return the first position in the string at which the string s appears as a substring. If s is not a substring
of the string, then return nil.

operation token[sep : String ] → [token : String, rest: String ]
Parse a token from the front of the string. Leading characters that appear in the string sep are skipped,
the first sequence of characters that do not appear in the string sep are returned in the result variable
token. If any additional characters appear in the string after the token, then return the rest of the
string after the token in the result variable rest, otherwise return nil in rest. If there is no token in the
string (all characters are in the string sep), then return nil as both token and rest.

B.17 Time

Times represent times and dates. They are stored as a number of seconds (since Jan 1, 1970 when interpreted
as dates) and a number of microseconds. They can be used as either dates or times, and the standard
arithmetic operations are defined on them (where they make sense). The object Time is a type and has the
following interface:

operation create[seconds : Integer, microseconds : Integer ] → [Time]
Create a new time object with the given values for its seconds and microseconds fields.

Objects with type Time are immutable and have the following interface:

function + [Time] → [Time]
function − [Time] → [Time]
function ∗ [n : Integer ] → [Time]
function / [Integer ] → [Time]

Arithmetic functions.
function > [Time] → [Boolean]
function >= [Time] → [Boolean]
function < [Time] → [Boolean]
function <= [Time] → [Boolean]
function = [Time] → [Boolean]
function ! = [Time] → [Boolean]

Comparison functions.
function getSeconds → [Integer ]

Return the seconds component.
function getMicroSeconds → [Integer ]

Return the microseconds component.
function asString → [String ]

Return a string representing the number of seconds and microseconds formatted in decimal, as in
6:002342.

function asDate → [String ]
Return a string representing the value of the time as a date. The string has the form: Sat Aug 17
20:19:50 PDT 1996.
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B.18 Type

The object Type represents the type of all types. It has no other useful operations.

B.19 Vector, VectorOfInt, VectorOfChar,

Vector is the name of an object with a polymorphic operation of that creates mutable vectors. Vectors provide
the most primitive mechanism for acquiring indexable storage. The builtin object Array is implemented
entirely in Emerald, using the facilities offered by Vector. The object Vector is immutable and has the
following interface:

function of [T : Type] → [aNewVectorCreatorType]forall T

The creator object resulting from Vector.of [T ] is a type with the following interface, named aNewVector-
CreatorType:

operation create[length : Integer ] → [aNewVectorType]
Create a new vector of length length, all of whose elements are nil.

Objects with type Vector.of [T ] have the following interface, called aNewVectorType:

function getElement [index : Integer ] → [T ]
Return the element at index.

operation setElement [index : Integer, value : T ]
Set the element at index to value.

function lowerbound → [Integer ]
Return 0.

function upperbound → [Integer ]
Return the largest valid index.

function getSlice[lb : Integer, length: Integer ] → [aNewVectorType]
Return a new object with type aNewVectorType containing the length elements starting at position lb.

function getElement [lb : Integer, length: Integer ] → [aNewVectorType]
The same as getSlice, but is able to use the subscript notation.

VectorOfInt is Vector.of[Integer].
VectorOfChar is Vector.of[Character].

B.20 ImmutableVector, ImmutableVectorOfAny, ImmutableVectorOfInt, Im-
mutableVectorOfString

ImmutableVector is the name of an object that creates immutable vectors. The object ImmutableVector is
immutable and has the following interface:

function of [T : Type] → [aNewVectorCreatorType]forall T

The object resulting from ImmutableVector.of [T ] is a type and a creator with the following interface, named
aNewVectorCreatorType:
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operation create[length : Integer ] → [aNewVectorType]
Create a new immutable vector of length length, all of whose elements are nil. This is not terribly
useful.

operation literal [other : Sequence.of [T ]] → [aNewVectorType]
Create a new immutable vector, initialized with all of the elements of other.

operation literal [other : Sequence.of [T ], length : Integer ] → [aNewVectorType]
Create a new immutable vector of length length, initialized with the first length elements of other.

operation literal [other : Sequence.of [T ], start : Integer, length : Integer ] → [aNewVectorType]
Create a new immutable vector of length length, initialized with the length elements of other, starting
at index start.

Objects with type ImmutableVector.of [T ] have the following interface, called aNewVectorType:

function getElement [index : Integer ] → [T ]
Return the element at index.

function lowerbound → [Integer ]
Return 0.

function upperbound → [Integer ]
Return the largest valid index.

operation catenate [other : aNewVectorType] → [aNewVectorType]
Return a new Immutable vector containing all of the elements of self followed by all of the elements of
other.

function getSlice[lb : Integer, length: Integer ] → [aNewVectorType]
Return a new object with type aNewVectorType containing the length elements starting a position lb.

function getElement [lb : Integer, length: Integer ] → [aNewVectorType]
The same as getSlice, but is able to use the subscript notation.

ImmutableVectorOfAny is ImmutableVector.ofAny.
ImmutableVectorOfInt is ImmutableVector.ofInteger.
ImmutableVectorOfString is ImmutableVector.ofString.
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C Compiling Emerald Programs

This appendix presents a sample Emerald program, and shows how Emerald programs are compiled and
executed. Examples of the Emerald style of programming can be found in [RTL+91].
The latest implementation of Emerald uses an interpreter to increase portability. The compiler is written in
Emerald, and generates executable files containing byte codes which are then interpreted. The two commands
of interest are:

emc
The emerald compiler is interactive. The primary commands of interest to casual Emerald users are:

load filename
Define the environment in which this compilation is to be executed. Environments are stored in
Unix files in the working directory. Exported identifiers are made known in the environment in
order to facilitate separate compilation. A compilation environment consists of two files: filename
and filename.idb. Both will be created as needed if they do not already exist.

filename
Compile the given file (whose name should end in .m). The executable is written to a file with
the extension .x.

emx
The emerald interpreter. Typically invoked as:

emx filename.x

Emx supports a large number of flags, the most useful of which are:

-i
Invoke the integrated Emerald debugger when errors occur.

-Tcall
Generate a call trace giving the calls and returns of all operations and functions.

-v
Generate summary statistics on program termination.

The environment mechanism permits the sharing of object definitions between compilations. Objects (ac-
tually, identifiers) exported from one compilation unit that are to be used in another must be exported to
the environment in order to be visible to later compilation units. An Emerald compilation unit is defined as
follows:

compilation ::= { environmentExport | constantDeclaration }
environmentExport ::= export identifier { , identifier }

For example, if an object Directory is being defined in compilation, and needs to be used by other objects
(being compiled later), a statement:

export Directory

is needed. Other source code that uses the identifier Directory must be compiled in the context of this export.
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% Define an Integer stack creation object

export Stack

const Stack ←
immutable object Stack

const StackType ←
typeobject StackType

operation Push[n: Integer ]
operation Pop → [n: Integer ]
function Empty → [result : Boolean]

end StackType

export function getSignature → [r : Signature]
r ← StackType

end getSignature

export operation create → [result : StackType]
result ←

object aStack
const store ← Array.of [Integer ].empty

export operation Push[n: Integer ]
store.addUpper [n]

end Push

export operation Pop → [n: Integer ]
n ← store.removeUpper

end Pop

export function Empty → [result : Boolean]
result ← store.empty

end Empty
end aStack

end create

end Stack

Figure 2: The file stack.m

C.1 A Sample Program

This simple example involves an integer stack creator (Stack), which is compiled first, and a test object
(Tester), which is compiled later and makes use of the Stack. The two programs are entered into separate
Unix files.

The file stack.m

This Emerald program file defines the stack-creator (see Figure 2); once created, this object accepts create
invocations and returns a new stack-like object (conforming to Stacktype) on each such invocation. See
[Hut87, RTL+91] for a better understanding of this program. Note that the name Stack is exported to the
compilation environment using the export directive.
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% This program first creates a stack named myStack by invoking Stack.create.
% It pushes 4 integers into myStack, and then pops and prints them.

const Tester ← object Tester
process

const myStack: Stack ← Stack.create

for i : Integer ← 0 while i < 4 by i ← i + 1
stdout.PutString [“Pushing ” || i.asString || ” on my stack.\n”]
myStack.Push[i ]

end for

stdout.PutString [“Printing in reverse order.\n”]
loop

var x: Integer
exit when myStack.Empty
x ← myStack.Pop
stdout.PutString [“Popped ” || x.asString || ” from my stack.\n”]

end loop
stdout.close
stdin.close

end process
end Tester

Figure 3: The file tester.m

The file tester.m

This file (see Figure 3) contains a simple object that can be used to test the Stack object defined in Figure 2.
This object invokes the stack-creator object Stack to create the new stack named myStack; the rest of the
program is fairly straight-forward. The name Stack in unbound in this example, therefore this program must
be compiled in a compilation environment that includes the name Stack . Also note the predefined identifier
stdin and stdout which name the (already opened) standard input and output streams respectively.

C.2 Compiling the Program

Compiling the program requires the following steps. We assume that the source files are named stack.m and
stacktest.m. The following steps provide input to the compiler at its “Command:” prompt, after it has been
started using the Unix command “emc”.

1. Direct the compiler to load the stack environment: “load stackenv”.

2. Compile the stack creator: “stack.m”.

3. Compile the stack tester: “stacktest.m”.

4. Terminate the compiler “quit”.

C.3 Executing the Program

The previous steps have generated two emerald executable files, stack.x and stacktest.x. These must be
executed together:
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emx stack.x stacktest.x

On executing this command, we get the following output:

Pushing 0 on my stack.
Pushing 1 on my stack.
Pushing 2 on my stack.
Pushing 3 on my stack.
Printing in reverse order.
Popped 3 from my stack.
Popped 2 from my stack.
Popped 1 from my stack.
Popped 0 from my stack.
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D Debugging Emerald Programs

This appendix presents the interface to the Emerald debugger, edb. Edb is built into the interpreter and is
enabled by invoking the interpreter with the -i option, as either:

emx -i broken.x

or

broken.x -i

D.1 Breakpoints

The debugger currently does not support breakpoints, but it does allow one to continue past a failed assertion.
Therefore the user may insert breakpoints by:

1. Inserting an assertion into the source program. For a conditional breakpoint, assert the negation of the
condition that you want to cause the program to stop. For an unconditional breakpoint, assert false.

2. Recompile the program. Note that if you are compiling a large system, using “unset perfile” will cause
all generated code to be added to a single file, named CP (for checkpoint), and later added code will
overwrite previous code.

3. Run the code. When the breakpoint happens, you can poke around, and continue using the continue
command.

D.2 Commands

The debugger supports the following commands:

quit

q
Terminate both the debugger and the interpreter.

where
Provide a brief stack backtrace of the current process.

dump
Provide a complete stack backtrace of the current process. This backtrace includes instance variable
of the target of each invocation as well as parameters, results, and local variables in each invocation.

processes
List all the processes in the current program. For each, the location of the bottom (most recent)
invocation is given.

process n
Switch the debugger’s attention to the stack of process number n. The available processes are given
using the “processes” command.

continue
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cont

c
Continue execution of the target program. This will likely cause tremendous problems if the cause of
the program’s stop was anything other than a failed assertion. Segmentation faults can be expected
for continuing through other failures.

print e

p e
Display the value of the expression e. Expressions take the form of identifier{.identifier}. Spaces are not
permitted in expressions. The current call stack is searched for the first identifier, additional identifiers
are taken to be instance variables with that object. The debugger prints as much information as it
can determine about the named object. To look at the current object (the one that was invoked at the
current stack level) use the name “self”.

up
Move up the call stack (towards older activations) one level.

down
Move down the call stack (towards younger activations) one level.

look

info
Print as much information as is available about the current activation.
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