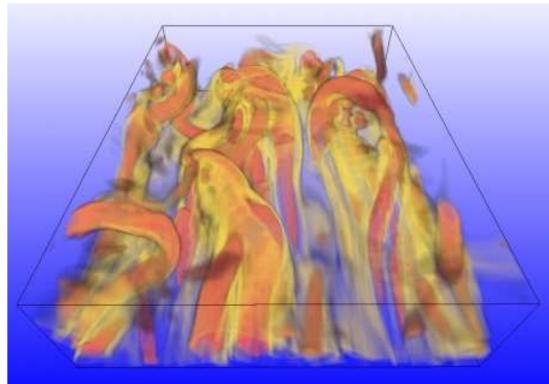
Parallel Computing

What will we learn today?

- Introduction to parallel computing
- Finding parallelism
- Parallel programming

Background (1)

- Increasingly sophisticated mathematical models
- Increasingly higher resolution Δx , Δy , Δz , Δt
- Increasingly longer computation time
- Increasingly larger memory requirement



Background (2)

Traditional serial computing (single processor) has limits

- Physical size of transistors
- Memory size and speed
- Instruction level parallelism is limited
- Power usage, heat problem

Moore's law will not continue forever

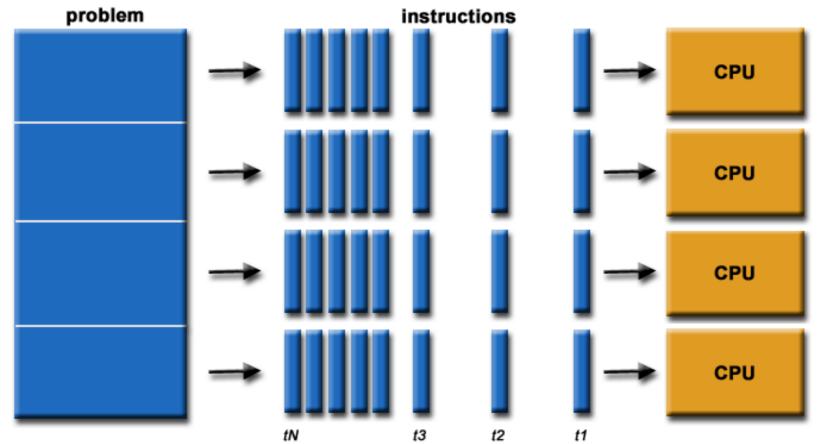
Background (3)

Parallel computing platforms are nowadays widely available

- Access to HPC centers
- Local Linux clusters
- Multiple multi-core CPUs in laptops
- GPUs (graphics processing units)

What is parallel computing?

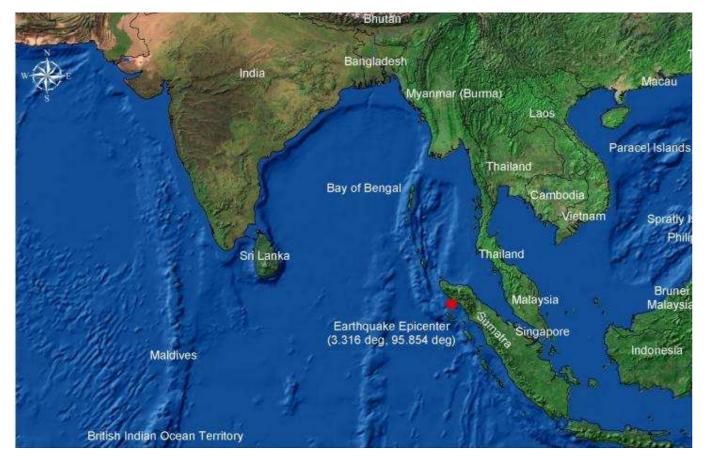
Parallel computing: simultaneous use of multiple processing units to solve one computational problem



Why parallel computing?

- Saving computation time
- Solving larger and more challenging problems
 - access to more memory
- Providing concurrency
- Saving cost

Example of Indian Ocean



- $1 \text{km} \times 1 \text{km}$ resolution overall: about 40×10^6 mesh points
- 200m×200m resolution overall: 10⁹ mesh points

Example of Indian Ocean (cont'd)

Suppose we solve a 2D shallow-water wave equation

$$\frac{\partial^2 u}{\partial t^2} = \nabla \cdot (gH(x, y)\nabla u)$$

over the Indian Ocean, using finite differences

- Four 2D arrays are needed: $u_{i,j}^{\ell+1}$, $u_{i,j}^{\ell}$, $u_{i,j}^{\ell-1}$, $H_{i,j}$
- Using double-precision (each value needs 8 bytes)
 - 40×10^{6} mesh points $\rightarrow 4 \times 40 \times 10^{6} \times 8 = 1.28$ GB memory needed
 - 10^9 mesh points $\rightarrow 32$ GB memory needed \rightarrow too large for a regular computer
- Parallel computing necessary also because of the amount of floating-point operations

Today's most powerful computer

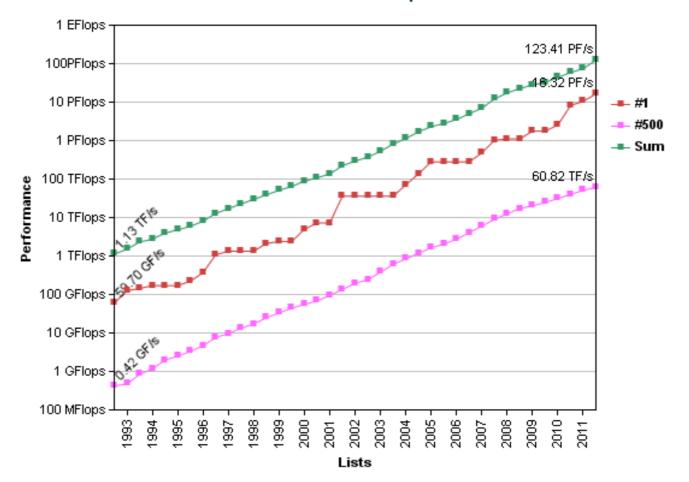
- IBM BlueGene/Q system at Lawrence Livermore Lab
- 1,572,864 CPU cores
- Theoretical peak performance: 20.13 petaFLOPS $(20.13 \times 10^{15} \text{ floating-point operations per second})$
- Linpack benchmark: 16.32 petaFLOPS

Top 5 supercomputers (June 2012)

Rank	Name	Location	Peak	Linpack
1	Sequoia	Lawrence Livermore	20.132	16.325
2	K computer	RIKEN, Japan	11.280	10.510
3	Mira	Argonne	10.066	8.162
4	SuperMUC	Leibniz, Germany	3.185	2.897
5	Tianhe-1A	Tianjin, China	4.701	2.566

Top500 list (June 2012)

Performance Development



http://www.top500.org

Flynn's taxonomy

Classification of computer architectures:

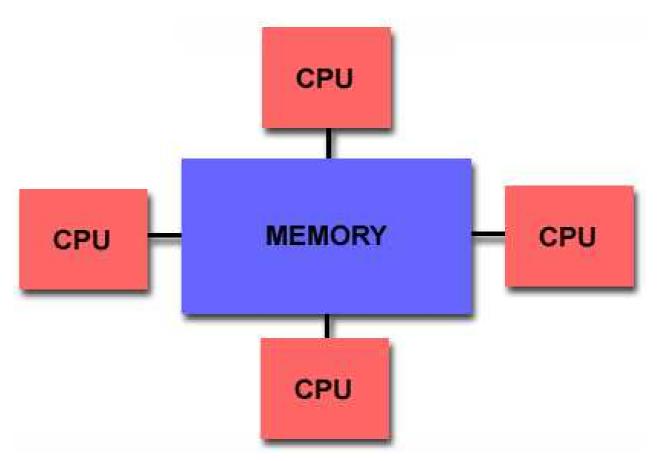
- SISD (single instruction, single data) serial computers
- SIMD (single instruction, multiple data) array computers, vector computers, GPUs
- MISD (mulitple instruction, single data) systolic array (very rare)
- MIMD (mulitple instruction, multiple data) mainstream parallel computers

Classification of parallel computers

From the memory perspective:

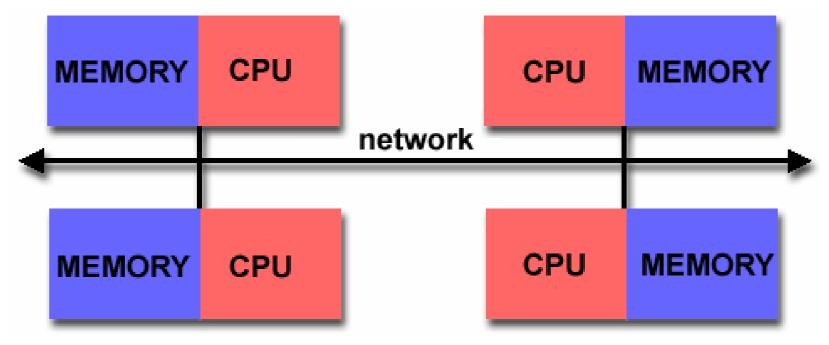
- Shared-memory systems
 - A single global address space
 - SMP (symmetric multiprocessing)
 - NUMA (non-uniform memory access)
 - Multi-core processor CMP (chip multi-processing)
- Distributed-memory systems
 - Each node has its own physical memory
 - Massively parallel systems
 - Different types of clusters
- Hybrid distributed-shared memory systems

Shared memory



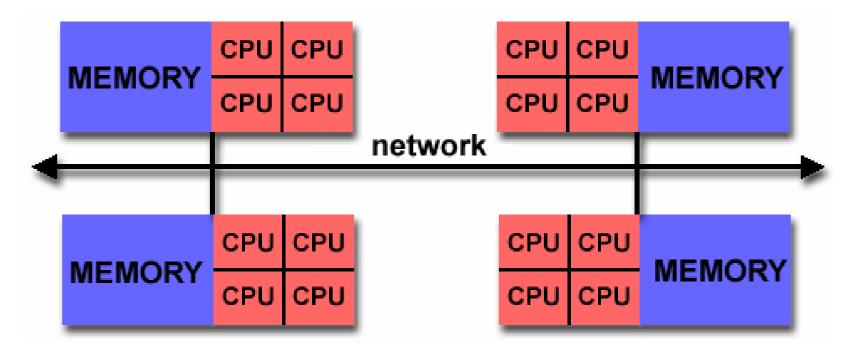
- Advantage: user-friendly
- Disadvantage: poor scalability

Distributed memory



- Advantages: data locality (no interference), cost-effective
- Disadvantages: explicit communication, explicit decomposition of data or tasks

Hybrid distributed-shared memory



Finding parallelism

- Parallelism: Some work of a computational problem can be divided into a number of simultaneously computable pieces
- Applicability of parallel computing depends on the existence of parallelism
 - No parallelism \rightarrow no use of parallel computers
- Parallelism can exist in different forms

Example 1

The *axpy* operation involves two vectors:

 $\mathbf{y} = \alpha \mathbf{x} + \mathbf{y}$

- Computing y_i can be done totally independently of y_j
- The entries of y can be computed simultaneously
- Suppose the length of y is n, we can employ n workers, each computing a single entry
- Embarrassingly parallel

Example 2

Dot-product between two vectors:

$$d = \mathbf{x} \cdot \mathbf{y} := x_1 y_1 + x_2 y_2 + \ldots + x_n y_n.$$

Can we also employ *n* workers to do the computational work?

- At a first glance, parallelism is not obvious
- However, if we temporally introduce an assistant vector
 d, such that d_i = x_iy_i, then each worker can
 independently compute one entry of d

Example 2 (cont'd)

But what about the remaining computational work?

$$d = 0, \quad d \leftarrow d + d_i \quad \text{for } i = 1, 2, \dots, n$$

- Now, the *n* workers need to collaborate!
- Let each even-ID worker k give its computed d_k value to worker k 1, who does $d_{k-1} + d_k$
- Then, all the even-ID workers retire and let the remaining workers repeat the above step, until there is only one worker left
- The solely surviving worker has the correctly computed value of *d*

Parallel reduction

 Parallel reduction: Using n workers to carry out similar computations such as

$$d = 0, \quad d \leftarrow d + d_i \quad \text{for } i = 1, 2, \dots, n$$

- $\lceil \log_2 n \rceil$ stages are needed
 - During each stage, two and two workers collaborate
- It is seemingly much faster than the original serial operation, which has *n* stages
 - However, collaboration means additional time usage—overhead

Example 2 revisited

What if we employ m workers, where m < n?

- Each worker is responsible for several entries of d
- First, each worker independently does a local summation over its assigned entries of d
- Then, the *m* workers carry out a parallel reduction
- Very important that the workers are assigned with (roughly) the same number of entries of d—load balance
 - Even if *n* is not a multiple of *m*, a fair work division makes the heaviest and lightest loaded workers only differ by one entry

Example 3

Matrix-vector multiply

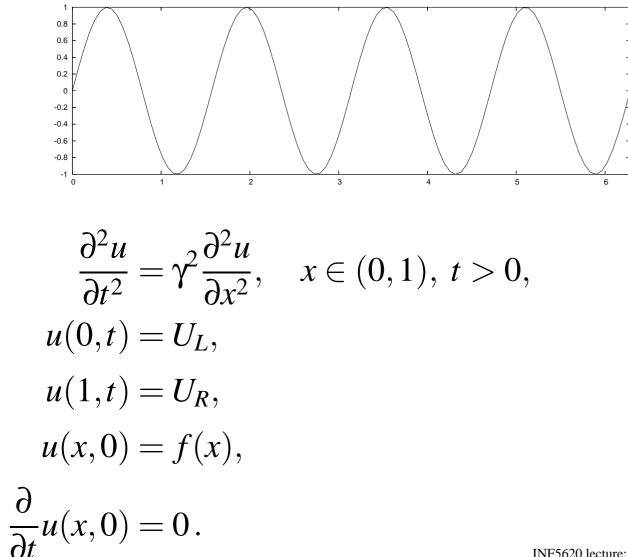
$$\mathbf{y} = \mathbf{A}\mathbf{x}$$

where **A** is a $n \times n$ matrix, and $y_i = \sum_{j=1}^n A_{ij} x_j$

- Suppose *n* workers are employed
- Division of work with respect to the rows of A
 - Each worker computes one entry of y
 - Each worker makes use of the entire x vector
- Division of work with respect to the columns of A
 - Each worker uses only one entry of **x**
 - However, parallel reduction is needed to compute each entry of y
- Actually, we can employ as many as n^2 workers

Example 4

1D standard wave equation



INF5620 lecture: Parallel computing - p. 25

Example 4 (cont'd)

Finite difference discretization (with *n* interior mesh points):

$$u_i^0 = f(x_i), \quad i = 0, \dots, n+1,$$

$$u_i^{-1} = u_i^0 + \frac{1}{2}C^2(u_{i+1}^0 - 2u_i^0 + u_{i-1}^0), \quad i = 1, \dots, n$$

$$u_i^{k+1} = 2u_i^k - u_i^{k-1} + C^2(u_{i+1}^k - 2u_i^k + u_{i-1}^k),$$

$$i = 1, \dots, n, \ k \ge 0,$$

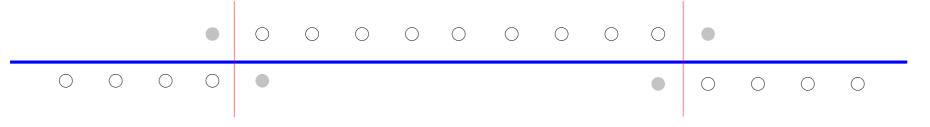
$$u_0^{k+1} = U_L, \quad k \ge 0,$$

$$u_{n+1}^{k+1} = U_R, \quad k \ge 0.$$

 $C = \gamma \Delta t / \Delta x$

Example 4 (cont'd)

Each worker responsible for a sub-interval of the domain



- The spatial domain is divided
- Each worker only updates the values of u^{k+1} on its assigned mesh points
- Coordination is needed: A worker cannot go to the next time level, unless both its left and right neighbors have finished the current time level

Example 5

Finite differences for 2D wave equation

• An explicit numerical scheme (point-wise update):

$$u_{i,j}^{k+1} = S(u_{i,j\pm 1}^k, u_{i\pm 1,j}^k, u_{i,j}^k, u_{i,j}^{k-1}, x_{i,j}, t_k)$$

- Can compute all new $u_{i,j}^{k+1}$ values simultaneously
- Each worker is responsible for a rectangular region
- Before moving onto a new time level, workers need coordination

Example 5 (cont'd)

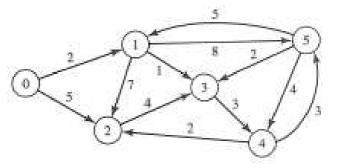
Example of work division

000000000	\bigcirc	
00000000	0	
00000000	0	
$ \circ \circ \circ \circ_{\bullet} \circ \circ \circ \circ$	0 2	F
$ \circ\circ\circ\circ^{\mathbf{l}}\circ\circ\circ\circ$	\circ 3	3
00000000	0	
00000000	0	
00000000	$\circ \circ \circ \circ \circ \circ \circ$	
00000000	$O \oplus \oplus$	
, - \ \i		
O		
0		<u> </u>
	000000000	
\bigcirc		

Example 6

Floyd's algorithm: finding the shortest paths

• Starting point: a graph of vertices and weighted edges



- Each edge is of a direction and has a length
 - if there's path from vertex *i* to *j*, there may not be path from vertex *j* to *i*
 - path length from vertex *i* to *j* may be different than path length from vertex *j* to *i*
- Objective: finding the shortest path between every pair of vertices $(i \rightarrow j)$

Example 6 (cont'd)

Input: n — number of vertices
 a — adjacency matrix
 Output: Transformed a that contains the shortest path
 lengths

```
for k \leftarrow 0 to n-1
for i \leftarrow 0 to n-1
for j \leftarrow 0 to n-1
a[i,j] \leftarrow \min(a[i,j], a[i,k]+a[k,j])
endfor
endfor
endfor
```

Example 6 (cont'd)

Inside the k'th iteration

- Can all the entries in a be updated concurrently?
- Yes, because the k'th column and the k'th row will not change during the k'th iteration!
 - Note that
 - a[i][k]=MIN(a[i][k],a[i][k]+a[k][k])
 will be the same as a[i][k]
 - Note that

a[k][j]=MIN(a[k][j],a[k][k]+a[k][j]) will be the same as a[k][j]

Remarks so far

- For different computational problems, parallelism may exist in different forms
- For a same computational problem, parallelism may exist on different levels
- Finding parallelism (as much as possible) may not be straightforward
- However, once parallelism is identified, parallel computing becomes possible
 - Also need to understand the required collaboration between workers
- Parallel programming is the next big step

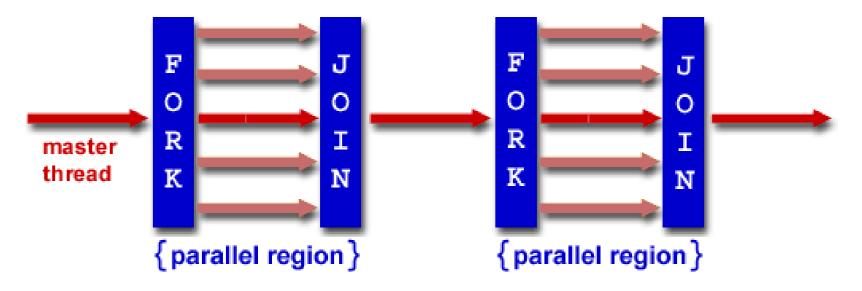
Parallel programming models

- Threads model
 - Easy to program (such as OpenMP)
 - Difficult to scale to many CPUs (NUMA, cache coherence)
- Message-passing model
 - Many programming details (MPI or PVM)
 - Better user control (data & work decomposition)
 - Larger systems and better performance
- Stream-based programming (for using GPUs)
- Hybrid parallel programming

OpenMP programming

OpenMP is a portable API for programming shared-memory computers

- Existence of multiple threads
- Use of compiler directives
- Fork-join model



Plot obtained from https://computing.llnl.gov/tutorials/openMP/ INF5620 lecture: Parallel computing - p. 35

OpenMP example

Dot-product between two vectors **x** and **y**:

$$d = \mathbf{x} \cdot \mathbf{y} := x_1 y_1 + x_2 y_2 + \ldots + x_n y_n.$$

d = 0.0;

```
#pragma omp parallel for \
  default(shared) private(i) schedule(static,chunk) reduction(+:d)
```

```
for (i=0; i < n; i++)
d = d + (x[i] * y[i]);</pre>
```

MPI programming

MPI (message passing interface) is a library standard

- Implementation(s) of MPI available on almost every major parallel platform
- Portability, good performance & functionality
- Each process has its local memory
- Explicit message passing enables information exchange and collaboration between processes

More info: http://www-unix.mcs.anl.gov/mpi/

MPI example

Dot-product between two vectors: $d = \sum_{i=1}^{n} x_i y_i$

```
MPI_Comm_size (MPI_COMM_WORLD, &num_procs);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
my_start = n*my_rank/num_procs;
my_stop = n*(my_rank+1)/num_procs;
my_d = 0.;
```

In this example, we've assumed that both x and y are duplicated on all MPI processes

Data decomposition

- If an MPI process only uses a subset of the entire data structure, data decomposition should be done
 - Otherwise, data duplication will be a killing factor
- Very often, neighboring MPI processes have some overlap in their "data footprints"
 - Need to distinguish the computational responsibility from data footprint
 - Ghost points (halo points) are usually part of the local data structure of an MPI process

Solving 1D wave equation; revisited

$$\frac{\partial^2 u}{\partial t^2} = \gamma^2 \frac{\partial^2 u}{\partial x^2} \quad 0 < x < 1$$

- Uniform mesh in *x*-direction: n+2 points, $\Delta x = \frac{1}{n+1}$
 - x_0 is left boundary point, x_{n+1} is right boundary point
 - x_1, x_2, \ldots, x_n are interior points
- Notation: $u_i^{\ell} \approx u(i\Delta x, \ell\Delta t)$

•
$$\frac{\partial^2 u}{\partial t^2} \approx \frac{1}{\Delta t^2} \left(u_i^{\ell+1} - 2u_i^{\ell} + u_i^{\ell-1} \right)$$

- $\frac{\partial^2 u}{\partial x^2} \approx \frac{1}{\Delta x^2} \left(u_{i-1}^{\ell} 2u_i^{\ell} + u_{i+1}^{\ell} \right)$
- Overall numerical scheme:

$$u_i^{\ell+1} = 2u_i^{\ell} - u_i^{\ell-1} + \gamma^2 \frac{\Delta t^2}{\Delta x^2} \left(u_{i-1}^{\ell} - 2u_i^{\ell} + u_{i+1}^{\ell} \right) \quad i = 1, 2, \dots, n$$

Revisit continues (1)

Serial implementation

- Three 1D arrays are needed:
 - $u^{\ell+1}$: double *up=(double*)malloc((n+2)*sizeof(double));
 - u^{ℓ} : double *u=(double*)malloc((n+2)*sizeof(double));
 - $u^{\ell-1}$: double *um=(double*)malloc((n+2)*sizeof(double));
- A while-loop for doing the time steps
- At each time step, a for-loop for updating the interior points

Revisit continues (2)

Main time loop:

}

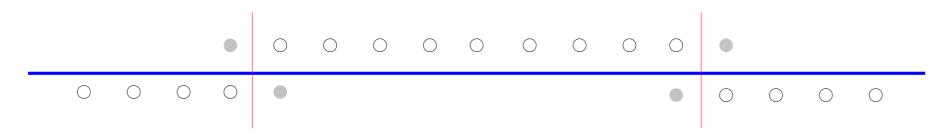
```
while (t<T){
    t += dt;
    for (i=1; i<=n; i++)
        up[i] = 2*u[i]-um[i]+C*(u[i-1]-2*u[i]+u[i+1]);
        up[0] = value_of_left_BC(t); // enforcing left BC
        up[n+1] = value_of_rigt_BC(t); // enforcing right BC</pre>
```

```
/* preparation for next time step: shuffle the three arrays */
tmp = um;
um = u;
u = up;
up = tmp;
```

MPI for 1D wave equation

MPI parallelization starts with work division

- The global domain is decomposed into *P* subdomains
 - Actually, the *n* interior points are divided, due to the chosen Dirichlet boundary conditions
 - In case of Neumann boundary conditions, the n+2 points are to be divided



MPI for 1D wave equation (cont'd)

 Each subdomain has n/P interior points, plus two "ghost points"

int n_local = n/P; // assume that n is divisible by P
double *up_local=(double*)malloc((n_local+2)*sizeof(double));
double *u_local=(double*)malloc((n_local+2)*sizeof(double));
double *um_local=(double*)malloc((n_local+2)*sizeof(double));

- If there is a neighbor subdomain to the side, the value of the ghost point is to be provided
- Otherwise, the ghost point is actually a physical boundary point

MPI for 1D wave equation (cont'd)

Parallel implementation using MPI

- First, up_local[i] is computed on each interior point
 i=1,2,...,n_local
- If there's neighbor on the left,
 - send up_local[1] to the left neighbor
 - receive up_local[0] from the left neighbor
- If there's neighbor on the left,
 - **send** up_local[n_local] **to the right neighbor**
 - receive up_local[n_local+1] from the right neighbor

MPI for 1D wave equation (cont'd)

Overlapping communication with computation

- up_local[1] is computed first
- Initiate communication with the left neighbor using MPI_Isend and MPI_Irecv
- up_local[M_local] is then computed
- Initiate communication with the right neighbor using MPI_Isend and MPI_Irecv
- Afterward, main local computation over indices
 i=2,3,...,n_local-1
- Finally, finish communication with left neighbor using MPI_Wait
- Finally, finish communication with right neighbor using MPI_Wait

What about 2D wave equation?

- In 2D, each subdomain is a rectangle
- One layer of ghost points around
- Each MPI process has (at most) four neighbors
 - Four outgoing messages
 - Four incoming messages
- Each pair of neighbors exchange a 1D array in between

Recap of parallelization

- Identify the parts of a serial code that have concurrency
- Be aware of inhibitors to parallelism (e.g. data dependency)
- When using OpenMP
 - insert directives to create parallel regions
- When using MPI
 - decide an explicit decomposition of tasks and/or data
 - insert MPI calls

Parallel programming requires a new way of thinking

Some useful concepts

- Cost model of sending a message $t_C(L) = \tau + \beta L$
- Speed-up

$$S(P) = \frac{T(1)}{T(P)}$$

• Parallel efficiency

$$\eta(P) = \frac{S(P)}{P}$$

- Factors of parallel inefficiency
 - communication, synchronization
 - load imbalance
 - additional calculations due to parallelization
 - non-parallelizable sections

Amdahl's law

The upper limit of speedup

$$\frac{T(1)}{T(P)} \le \frac{T(1)}{(f_s + \frac{f_p}{P})T(1)} = \frac{1}{f_s + \frac{1 - f_s}{P}} < \frac{1}{f_s}$$

- f_s fraction of code that is serial (not parallelizable)
- f_p fraction of code parallelizable: $f_p = 1 f_s$

Gustafson–Barsis's law

Things are normally not so bad as Amdahl's law says

- Normalize the parallel execution time to be 1
- Scaled speed-up

$$S_s(P) = \frac{f_s + Pf_p}{f_s + f_p} = f_s + P(1 - f_s) = P + (1 - P)f_s$$

- f_s has a different meaning than Amdahl's law
- *f_s* normally decreases as the problem size grows
- Encouraging to solve larger problems with larger P

Granularity

Granularity is a qualitative measure of the ratio of computation over communication

- Fine-grain parallelism
 - small amounts of computation between communication
 - load imbalance may be a less important issue
- Coarse-grain parallelism
 - large amounts of computation between communication
 - high ratio of computation over communication

Objective: Design coarse-grain parallel algorithms, if possible

Summary

- We're already at the age of parallel computing
- Parallel computing relies on parallel hardware
- Parallel computing needs parallel software
- So parallel programming is very important
 - new way of thinking
 - identification of parallelism
 - design of parallel algorithm
 - implementation can be a challenge