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What will we learn today?

* |ntroduction to parallel computing
* Finding parallelism
e Parallel programming
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Background (1)

y sophisticated mathematical models
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nigher resolution Ax, Ay, Az, At
onger computation time

arger memory requirement
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Background (2)

Traditional serial computing (single processor) has limits

* Physical size of transistors

e Memory size and speed

* |Instruction level parallelism is limited
* Power usage, heat problem

Moore’s law will not continue forever
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Background (3)

Parallel computing platforms are nowadays widely available

* Access to HPC centers

* Local Linux clusters

e Multiple multi-core CPUs in laptops
* GPUs (graphics processing units)
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What is parallel computing?

Parallel computing: simultaneous use of multiple
processing units to solve one computational problem

problem instructions
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Plot obtained from htt ps: // conputing. |1 nl.gov/tutorial s/parallel _conp/
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Why parallel computing?

Saving computation time

Solving larger and more challenging problems

access to more memory
Providing concurrency
Saving cost
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Example of Indian Ocean
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e 1kmx1km resolution overall: about 40 x 106 mesh
points

e 200mx200m resolution overall: 10° mesh points

INF5620 lecture: Parallel computing — [



Example of Indian Ocean (cont’d)

Suppose we solve a 2D shallow-water wave equation

02U
Fria (gH (x,y)Cu)

over the Indian Ocean, using finite differences

* Four 2D arrays are needed: u/t*, uf;, u;;*, Hij

e Using double-precision (each value needs 8 bytes)

40x 10° mesh points — 4 x40x 10° x 8=1.28 GB
memory needed

10° mesh points — 32 GB memory needed — too
large for a regular computer

e Parallel computing necessary also because of the
amount of floating-point operations
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Today’s most powerful computer

IBM BlueGene/Q system at Lawrence Livermore Lab

1,572,864 CPU cores

Theoretical peak performance: 20.13 petaFLOPS
(20.13 x 10 floating-point operations per second)

Linpack benchmark: 16.32 petaFLOPS
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Top 5 supercomputers (June 2012)

Rank Name Location Peak Linpack
1 Sequoia Lawrence Livermore 20.132 16.325
2 K computer RIKEN, Japan 11.280 10.510
3 Mira Argonne 10.066 8.162
4 SuperMUC Leibniz, Germany 3.185 2.897
5 Tianhe-1A  Tianjin, China 4.701 2.566
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Top500 list (June 2012)
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Flynn’s taxonomy

Classification of computer architectures:
e SISD (single instruction, single data) — serial
computers

e SIMD (single instruction, multiple data) — array
computers, vector computers, GPUs

 MISD (mulitple instruction, single data) — systolic array
(very rare)

e MIMD (mulitple instruction, multiple data) —
mainstream parallel computers
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Classification of parallel computers

From the memory perspective:

e Shared-memory systems

A single global address space

SMP — (symmetric multiprocessing)

NUMA — (non-uniform memory access)

Multi-core processor — CMP (chip multi-processing)
e Distributed-memory systems

Each node has its own physical memory
Massively parallel systems
Different types of clusters

 Hybrid distributed-shared memory systems
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Shared memory

* Advantage: user-friendly
e Disadvantage: poor scalability

Plot obtained from htt ps:// conputing. | I nl.gov/tutorial s/parallel _conp/
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Distributed memory

network

e Advantages: data locality (no interference),
cost-effective

* Disadvantages: explicit communication, explicit
decomposition of data or tasks

Plot obtained from htt ps: // conputing. |1 nl.gov/tutorial s/parallel _conp/
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Hybrid distributed-shared memory

network

Plot obtained from htt ps:// conputing. |l nl.gov/tutorial s/parallel _conp/
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Finding parallelism

e Parallelism: Some work of a computational problem
can be divided into a number of simultaneously
computable pieces

* Applicablility of parallel computing depends on the
existence of parallelism

No parallelism — no use of parallel computers
e Parallelism can exist in different forms
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Example 1

The axpy operation involves two vectors:
y =ax+y

e Computing y; can be done totally independently of y;

* The entries of y can be computed simultaneously

e Suppose the length of y is n, we can employ n workers,
each computing a single entry

 Embarrassingly parallel
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Example 2

Dot-product between two vectors:

d=X-y:i=Xy1+XY2+ ...+ Xn¥n.

Can we also employ n workers to do the computational
work?
* At a first glance, parallelism is not obvious

* However, if we temporally introduce an assistant vector
d, such that d; = xy;, then each worker can
Independently compute one entry of d
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Example 2 (cont’'d)

But what about the remaining computational work?
d=0, d«d+d fori=12,....n

e Now, the n workers need to collaborate!

* Let each even-ID worker k give its computed di value
to worker k— 1, who does dy_1 + d

* Then, all the even-1D workers retire and let the
remaining workers repeat the above step, until there is
only one worker left

* The solely surviving worker has the correctly computed
value of d
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Parallel reduction

e Parallel reduction: Using n workers to carry out similar
computations such as

d=0, d«+d+d fori=12...,n

* [log,n]| stages are needed
During each stage, two and two workers
collaborate
* |t is seemingly much faster than the original serial
operation, which has n stages

However, collaboration means additional time
usage—overhead
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Example 2 revisited

What if we employ m workers, where m< n?
e Each worker is responsible for several entries of d

* First, each worker independently does a local
summation over its assigned entries of d

* Then, the mworkers carry out a parallel reduction

* Very important that the workers are assigned with
(roughly) the same number of entries of d—load
balance

Even if nis not a multiple of m, a fair work division
makes the heaviest and lightest loaded workers
only differ by one entry
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Example 3

Matrix-vector multiply
y = AX

where A is a nx nmatrix, and y; = Y13 AijX;

e Suppose nworkers are employed

e Division of work with respect to the rows of A
Each worker computes one entry of y
Each worker makes use of the entire x vector

e Division of work with respect to the columns of A
Each worker uses only one entry of x

However, parallel reduction is needed to compute
each entry of y

 Actually, we can employ as many as n* workers
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Example 4

1D standard wave equation

0%u 0%u
— =V — 0,1),t>0
5z~ Ve X0, 1>0,
U(O,t) — U|_,
U(l,t) — UR,
u(x,0) = f(x),
0
—Uu(x,0)=0
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Example 4 (cont’'d)

Finite difference discretization (with n interior mesh points):
u = f(x), i=0,...,n+1,
1 .
Ut =u’+ ECZ(uiOH— 2004+ ), i=1,...,n

= 20— Ol -2 o),

k+l UL) K Z O)

k+1
n_|_1 UR, k Z O.

C = yAt /AX
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Example 4 (cont’'d)

Each worker responsible for a sub-interval of the domain

O O O o O O O o O

* The spatial domain is divided

e Each worker only updates the values of u“*! on its
assigned mesh points

e Coordination is needed: A worker cannot go to the
next time level, unless both its left and right neighbors
have finished the current time level
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Example 5

Finite differences for 2D wave equation
* An explicit numerical scheme (point-wise update):

k+1 K K

U; S(ul g Ui o Uiy, Ui 7XI Jvtk)

e Can compute all new uk+1 values simultaneously

e Each worker is responsible for a rectangular region

e Before moving onto a new time level, workers need
coordination
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Example of work division

Example 5 (cont’d)

ONONORORONORONOINO)
ONONORORONORONOIE)
ONONORORONORONOIE)
OO0 0000000
OOOO]'OOOOO
O0O0O0OO0O00OO0O0|0
O0O0O0OO0O00OO0O0|0
OO0 0000000
OO0 0000000
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Example 6

Floyd’s algorithm: finding the shortest paths
e Starting point: a graph of vertices and weighted edges

nf”’ﬂ

_v-f-""”\,;

* Each edge is of a direction and has a length

If there’s path from vertex i to |, there may not be
path from vertex | to |

path length from vertex | to | may be different than
path length from vertex | to |

* Objective: finding the shortest path between every pair
of vertices (i — |)
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Example 6 (cont’'d)

Input: n — number of vertices

a — adjacency matrix
Output: Transformed a that contains the shortest path
lengths

fork<0Oton—-1
fori<-Oton—-1
forj <« O0Oton—1
a[ia ” — min(a[ia J]a a[ia k] —l_a[k? J])
endfor
endfor
endfor
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Example 6 (cont’'d)

* Inside the K'th iteration
for (1=0; 1<n; 1++)
for (J=0; J<n, |++)
a[1][1] = MNCa[1][J], a[t][k]+a[k][]]);
e Can all the entries in a be updated concurrently?

* Yes, because the k'th column and the k’'th row will not
change during the k’th iteration!

Note that
a[1][k]=M NCa[i][K],a[1][k]+a[k][k])
will be the same as af i ][ k]

Note that
a[K][J]=M NCa[Kk][j],a[k][k]+a[k][]])
will be the same as a[ k] [ ]
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Remarks so far

For different computational problems, parallelism may
exist in different forms

For a same computational problem, parallelism may
exist on different levels

Finding parallelism (as much as possible) may not be
straightforward

However, once parallelism is identified, parallel
computing becomes possible

Also need to understand the required collaboration
between workers

Parallel programming is the next big step
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Parallel programming models

Threads model
Easy to program (such as OpenMP)

Difficult to scale to many CPUs (NUMA, cache

coherence)
Message-passing model

Many programming details (MPI or PVM)
Better user control (data & work decomposition)
Larger systems and better performance

Stream-based programming (for using GPUS)

Hybrid parallel programming
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OpenMP programming
OpenMP is a portable API for programming shared-memory

computers

e Existence of multiple threads
e Use of compiler directives
e Fork-join model

m— —
master
thread

{ parallel region } { parallel region }

e—-

Z2 H O 4

Plot obtained from htt ps: // conputing. | I nl.gov/tutorial s/ openVP/

INF5620 lecture: Parallel computing — p.



OpenMP example

Dot-product between two vectors x and :

d=X-y:i=Xy1+XY2+ ...+ Xn¥n.
d = 0.0;

#pragnma onp parallel for \
defaul t (shared) private(i) schedul e(static, chunk) reduction(+:d)

for (i=0; i < n; i++4)
d=d+ (x[iI] = y[i]);
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MPI programming

MPI (message passing interface) is a library standard

* Implementation(s) of MPI available on almost every
major parallel platform

e Portability, good performance & functionality

e Each process has its local memory

* EXplicit message passing enables information
exchange and collaboration between processes

More info: htt p: // www uni x. nts. anl . gov/ npi /
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MPI| example

Dot-product between two vectors: d = >\, Xy

MPI _Comm si ze (MPI _COVM WORLD, &num procs);
MPI _Comm rank (MPI_COVMM WORLD, &ny_rank);

nmy_start = n*ny_rank/ num procs;
my_stop = n*(ny_rank+1l)/num procs;

nmy d = 0.;
for (i=ny_start; i<ny_stop; i++)

ny_d =ny_d+ (x[1] = y[i]);

MPI _Allreduce (&my _d, &d, 1, MPI _DOUBLE,
MPI _SUM MPI _COVM WORLD) ;

In this example, we’ve assumed that both x and y are duplicated on all MPI processes
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Data decomposition

e |f an MPI process only uses a subset of the entire data
structure, data decomposition should be done

Otherwise, data duplication will be a killing factor

* Very often, neighboring MPI processes have some
overlap in their “data footprints”

Need to distinguish the computational
responsibility from data footprint

Ghost points (halo points) are usually part of the
local data structure of an MPI process
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Solving 1D wave equation; revisited

0°u  ,0°U
— =YY= 0<x<1
oz Ve X
* Uniform mesh in x-direction: n+ 2 points, AX = nil

Xo IS left boundary point, x,.1 IS right boundary point
X1,Xo,...,Xy @re interior points

 Notation: u’ ~ u(iAx, ¢At)

%u 1 +1 ¢ /—1
° o2 7 At? (u 2u- +U; )

02u 1 ¢
y 0x2 ~ e (u, 1 2u —l_ul—i—l)
e Qverall numerical scheme:

At? (

Ut = 2uf Ui 1+V2AX2

2u +u,+1) 1=1,2,...,n
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Revisit continues (1)

Serial implementation

 Three 1D arrays are needed:
U£+4T doubl e *up=(doubl ex) mal | oc((n+2)*si zeof (doubl e)) ;
Lﬂ: doubl e *u=(doubl ex) mal | oc((n+2)*si zeof (doubl e));

UK_JT doubl e *um=(doubl ex) mal | oc((n+2) *si zeof (doubl e));

* A whi | e-loop for doing the time steps

e At each time step, a f or -loop for updating the interior
points
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Revisit continues (2)

Main time loop:
while (t<T){
t += dt;
for (i=1; i<=n; |++)
up[i] = 2+«u[i]-umi]+C(u[i-1]-2*u[i]+ul[i+1]);
up[ 0] = value of left BC(t); /'l enforcing |eft BC
up[ n+1] = value of rigt BC(t); // enforcing right BC

[+ preparation for next tinme step: shuffle the three arrays =*/

tnp = um

um = u;

u = up;

up = tnp;
}
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MPI for 1D wave equation

MPI parallelization starts with work division

* The global domain is decomposed into P subdomains

Actually, the n interior points are divided, due to the
chosen Dirichlet boundary conditions

In case of Neumann boundary conditions, the n+ 2
points are to be divided

O O O o O O O o O
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MPI for 1D wave eqguation (cont’'d)

e Each subdomain has n/P interior points, plus two
“ghost points”

int n_|local = n/P; /1l assune that nis divisible by P

doubl e *up_| ocal =(doubl ex) mal | oc((n_I ocal +2) *si zeof (doubl e) ) ;
doubl e *u_| ocal =(doubl ex)mal | oc((n_I ocal +2) *si zeof (doubl e) ) ;
doubl e *um | ocal =(doubl ex) mal | oc((n_I ocal +2) *si zeof (doubl e) ) ;

If there is a neighbor subdomain to the side, the
value of the ghost point is to be provided

Otherwise, the ghost point is actually a physical
boundary point
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MPI for 1D wave eqguation (cont’'d)

Parallel implementation using MPI

e First, up_l ocal [i] I1s computed on each interior point
1=1,2,...,n_. ocal
 |f there’s neighbor on the left,
send up_l ocal [ 1] to the left neighbor
receive up_l ocal [ 0] from the left neighbor

 |f there’s neighbor on the left,
send up_l ocal [ n_l ocal ] to the right neighbor

receive up_l ocal [ n_I ocal +1] from the right
neighbor
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MPI for 1D wave eqguation (cont’'d)

Overlapping communication with computation
e up_l ocal [ 1] is computed first

* |nitiate communication with the left neighbor using
MPI _I send and MPI I recv

e up_l ocal [ Ml ocal ] is then computed

 |nitiate communication with the right neighbor using
MPI _I send and MPI I recv

e Afterward, main local computation over indices
1=2,3,...,nlocal-1

* Finally, finish communication with left neighbor using
MPI Vi t

* Finally, finish communication with right neighbor using
VPl Wi t
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What about 2D wave equation?

In 2D, each subdomain is a rectangle
One layer of ghost points around

Each MPI process has (at most) four neighbors

Four outgoing messages
Four incoming messages

Each pair of neighbors exchange a 1D array in

between
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Recap of parallelization

* |dentify the parts of a serial code that have
concurrency

* Be aware of inhibitors to parallelism (e.g. data
dependency)

* When using OpenMP
Insert directives to create parallel regions

* When using MPI

decide an explicit decomposition of tasks and/or
data

Insert MPI calls

Parallel programming requires a new way of thinking
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Some useful concepts

Cost model of sending a message tc(L) =1+ L

Speed-up
_TQ)
T
Parallel efficiency
n(P) = @

Factors of parallel inefficiency
communication, synchronization
load imbalance
additional calculations due to parallelization
non-parallelizable sections
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Amdahl’'s law

The upper limit of speedup

w__Tw 11
(P) = (fs+)T(1) fs+i5t s

e fy— fraction of code that is serial (not parallelizable)
* f, —fraction of code parallelizable: f, =1— fs
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Gustafson—Barsis’s law

Things are normally not so bad as Amdahl’s law says

* Normalize the parallel execution time to be 1
e Scaled speed-up

f. 1 Pf
S(P) =Pt P(1—f) =P+ (1-P)f
fS—I—fp

* fshas a different meaning than Amdahl’s law
* fsnormally decreases as the problem size grows
* Encouraging to solve larger problems with larger P
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Granularity

Granularity is a qualitative measure of the ratio of
computation over communication

* Fine-grain parallelism

small amounts of computation between
communication

load imbalance may be a less important issue

e Coarse-grain parallelism

large amounts of computation between
communication

high ratio of computation over communication

Objective: Design coarse-grain parallel algorithms, if
possible
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Summary

We’'re already at the age of parallel computing
Parallel computing relies on parallel hardware

Parallel computing needs parallel software

So parallel programming is very important
new way of thinking
Identification of parallelism
design of parallel algorithm
Implementation can be a challenge
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