
Copyright © 2008 Accenture All Rights Reserved. Accenture, its logo, and Accenture High Performance Delivered are trademarks of Accenture.

Open Source in Public Sector

Holger Zobel

2008-04-21

2Copyright © 2008 Accenture All Rights Reserved.

3Copyright © 2008 Accenture All Rights Reserved.

Accenture

Countries with one or more Accenture offices

System

Integration

& Technology

Management

Consulting
Outsourcing

4Copyright © 2008 Accenture All Rights Reserved.

Agenda

1. Public sector and Open Source

2. Case study: Pension Project

3. Spring Batch

5Copyright © 2008 Accenture All Rights Reserved.

Public Sector Policies

• The ministry responsible for ICT is

“Fornyingsdepartementet”

• Key policies:

– eNorway 2009

– Mandatory Open Standards

– Currently strong support of Open Source by the

Minister.

6Copyright © 2008 Accenture All Rights Reserved.

eNorway 2009

• eNorway 2009 has three target areas:

– The individual in the digital Norway

– Innovation and growth in business and industry

– A coordinated and user-adapted public sector

7Copyright © 2008 Accenture All Rights Reserved.

Use of Open Standards and open

Source Applications

• “Initiatives should be undertaken to develop open source skills in the public
sector. A recommendation concerning use of open source software in the public
sector will be developed in 2005. By the end of 2006, all public sector agencies
shall have drawn up plans for use of open source applications.”

• Goals
– By 2009, all new ICT and information systems in the public sector shall use open
standards.

– By 2006, a set of administration standards for data and document exchange
shall have been established.

– By 2006, all public sector agencies shall have incorporated how they are going
to use open standards, service-oriented architecture and open source
applications in the relevant planning documents.

– By 2008, data and document exchange in the public sector shall satisfy
administration standards.

– By 2008, all official forms shall be available electronically and built round a
common user interface.

8Copyright © 2008 Accenture All Rights Reserved.

Mandatory Open Standards

• HTML - 4.01/ XHTML - 1.0 is recommended for
public sector web sites

• In special circumstances, like need to keep
formatting or documents for further editing, the
following formats shall be used:

– PDF 1.4 or PDF/A - ISO 19005-1 is mandatory
for documents which should not be edited

– ODF 1.0 (Second Edition), ISO/IEC 26300:2006
is mandatory, but it is suggested that other
formats be used in parallel.

– OOXML is observed and will be evaluated later

9Copyright © 2008 Accenture All Rights Reserved.

Licences

• Public sector seldom has constraints on

keeping trade secrets

• But still have to consider licences to make sure

that they are compatible.

– Example: Using proprietary source code and

GPL in the same project.

10Copyright © 2008 Accenture All Rights Reserved.

Open sourcing software owned by

Public Sector

• Almost no software is open sourced by public

sector organisations.

• Reasons include:

– No culture for sharing

– Few people with experience with open source

– Very specialised applications like Child Support

administration

– Security

11Copyright © 2008 Accenture All Rights Reserved.

Agenda

1. Public sector and Open Source

2. Case study: Pension Project

3. Spring Batch

12Copyright © 2008 Accenture All Rights Reserved.

• The Norwegian Labour and Welfare Organisation (NAV) is responsible for

government pensions, unemployment benefits, children's allowance,

disability and several other government benefits. NAV has 14 000

employees and is administrating one third of the Norwegian governments

budget.

• The Norwegian Parliament decided on the Pension reform in the spring

session of 2005. The reform is planned to be effective as of 2010.

• There is broad political agreement upon the principles in the reform

• A Government White Paper about Old Age Pensions in the National

Insurance was released November 2006

The Pension Reform - One of the largest

reforms in public sector

13Copyright © 2008 Accenture All Rights Reserved.

The new Pension Application

The pension project is developing two front end

applications:

• Internet self service application

• Internal Case Worker Application (2000 users)

The project also develops six new backend

systems and integrates with 14 existing backend

systems based on different platforms and technologies.

The first release of the application was in

December 2007.

14Copyright © 2008 Accenture All Rights Reserved.

Technical Architecture Vision and

Strategy

Architecture Strategy:

– Service Oriented

Architecture

– Layering

– End to End Operation

– Virtualisation

Business Processes

Loose Coupling Modern Technology

Technical Architecture Vision:

• The Pension Reform Project’s platform will establish the foundation for The Client’s preferred future

technical platform.

• The solution implemented will be available to anyone, anywhere, anytime.

• The platform is modern in 2010, allowing room for changes in technology and new functionality within

a reasonable timeframe, as seen from the system management perspective.

15Copyright © 2008 Accenture All Rights Reserved.

Technical Architecture

• Java based custom application

– Documentation

– Example Code

• SOA Platform

– Service Identification

– Guidelines and connectivity

– Developer Training and Certification

• Security

– Identity and Access Management (I & AM)

• Rule engine

16Copyright © 2008 Accenture All Rights Reserved.

Selection Criteria

• Functionality

• Standards based

• Future proof

• Support and available competent people

• Price

17Copyright © 2008 Accenture All Rights Reserved.

Technical Platform

• Red Had Linux

• Java Frameworks (next slide)

• WebSphere Application Server

• WebSphere Process Server

• Rational Application Developer (Eclipse based)

• Tivoli Access Manager / Tivoli Identity Manager

• Blaze Advisor (rule engine)

• Content Manager (document archive)

• VMWare for development and test environments

18Copyright © 2008 Accenture All Rights Reserved.

Java Frameworks

• Java EE 5

• Spring

• Apache Commons

• JSF (myfaces)

• Spring Web Flow

• Hibernate

• Dozer

• Ajax4Jsf

19Copyright © 2008 Accenture All Rights Reserved.

Agenda

1. Public sector and Open Source

2. Case study: Pension Project

3. Spring Batch

20Copyright © 2008 Accenture All Rights Reserved.

Why Batch?

• Large volumes

• Import/export files

• Convert data

• Archiving

• Not a part of Java EE today

21Copyright © 2008 Accenture All Rights Reserved.

Alternatives for Java

developers today

• Do it in Java:

– Develop an in house architecture

– Implement business logic in a language you

know

• Use an ETL tool

– Expensive

– Implement business logic in another language

22Copyright © 2008 Accenture All Rights Reserved.

Spring Batch background

• Why is Accenture contributing to open source?

– Collecting many years of experience with batch

– Want to standardize batch implementation

• Why Spring?

– Established and active community with regular releases.

– A part of many/most Java projects

• Goal

– A standarized, scalable batch architecture that is easy to

use.

23Copyright © 2008 Accenture All Rights Reserved.

Spring Batch: Scenarios

• Periodical commitment of chunks

• Manual or planned restart after errors

• Sequential processing of dependent steps

• Parallel processing

24Copyright © 2008 Accenture All Rights Reserved.

Batch reference model

Spring Batch - Simple Batch Execution Container

Job Script

Job

Configuration

Job Tier Application Tier Data Tier

Step

Input Source

Read

Job

Write

Module

Data

Files

Data Access

Config.

Read

Output

Source

Initialize

Run Tier

Scheduler

Config.

Message

Queue

Execute

Print

Queue

Database

Custom Application Artifacts
Application Architecture Services
Applications, App Servers, VMs

Key

Batch

Launcher

Business

Logic

Finalize

25Copyright © 2008 Accenture All Rights Reserved.

Spring Batch:

Features

• Built in support of different formats

– fixed length, delimited, XML…

• Automatic retry (policy driven)

• Execution status and statistics while batch is running

and historical

• Different ways to start batch (JMX, command line)

• Support functions like

– logging, resource management, restart, skip, etc.

26Copyright © 2008 Accenture All Rights Reserved.

Spring Batch:

Layered architecture

Application

Batch Container

Infrastructure

Business Domain—

Record-level data

(e.g., Trade)

Batch Domain—

Container, Job,

Chunk, Step,

Module, Status

Repeat, Retry,

Transaction

Tier leakage limited

to declarative-style

approach (e.g.,

@Transactional)

27Copyright © 2008 Accenture All Rights Reserved.

Spring Batch:

different containere

Application

Infrastructure

Simple
Message

Processing
Partitioned

Specialized

Batch Container

Layer

Implementations

Common

Infrastructure

Same Business

Logic

28Copyright © 2008 Accenture All Rights Reserved.

Spring Batch:

Scalability

==

Application

Batch Container

Infrastructure

Same application

code can be used

at all levels

Specialized Batch

Container Layer

Implementations

Common

Infrastructure

Multiple JVMs

Single JVM

Multi-Threaded

Single JVM

Single Process

Multiple

Clustered

JVMs

Workload

Application

changes are

not required

when

changing the

deployment

approach

29Copyright © 2008 Accenture All Rights Reserved.

Simple Batch Pseudo Code
JOB processJob: {

STEP processStep: {

ITERATE(Until Module Complete){

TX{

ITERATE(Until CommitPolicy = true){

Try {

Module process {: object |

Object o = INPUT { Return Next(); }

OUTPUT {: o }

}

} Catch (INPUT_ERROR){

Log(INPUT_ERROR.INPUT)

continue

} Catch (OUTPUT_ERROR) {

Log(OUTPUT_ERROR.INPUT)

Rollback()

} Catch (CRITICAL_ERROR){

Terminate()

} } } } } }

RepeatTemplate

RepeatTemplate

TransactionTemplate

Business Logic

30Copyright © 2008 Accenture All Rights Reserved.

Input and Output Retries
• Input Retry—Skip

– Error in input data

– Should not stop futher processing.

– Skip row, log it and continue

• Output Retry—Recover

– Transient errors (backend system down)

– Will force roll back and retry.

31Copyright © 2008 Accenture All Rights Reserved.

Input Retry—Skip

ITERATE(Until Module Complete){

RETRY(chunk) {

TX {

ITERATE(Until CommitPolicy = true){

RETRY(input) {

input;

} PROCESS {

output;

} RECOVER {

skip;

}

}

}

}

}

FAIL! (1)

Recover (2)

Skip (3)

Complete

normally (4)

32Copyright © 2008 Accenture All Rights Reserved.

Output Retry—Recover

ITERATE(Until Module Complete){

RETRY(chunk) {

TX{

ITERATE(Until CommitPolicy = true){

RETRY(input) {

input;

} PROCESS {

output;

} RECOVER {

recover;

}

}

}

}

}

FAIL! (1)

Re-throw (2)

Roll back (3)

Re-try

transaction (4)

Success on

Second

Attempt (5)

Complete

normally (6)Commit (7)

33Copyright © 2008 Accenture All Rights Reserved.

Programming the Spring way

• Write business logic in POJOs

– ItemProvider: Returns single item

– ItemProcessor: More complex, but allows logic

spanning several items.

• Postpone architecture choices

– Implementation of batch logic is unchanged even if

deployment is changes, simplifies scalability

34Copyright © 2008 Accenture All Rights Reserved.

Configuration of simple container

35Copyright © 2008 Accenture All Rights Reserved.

Configuration of simple batch job

36Copyright © 2008 Accenture All Rights Reserved.

JMX

