
Revision control systems (RCS)y ()

and

SubversionSubversion

Problem areaProblem area

• Software projects with multiple developers need to
coordinate and synchronize the source code

Approaches to version controlApproaches to version control

• Work on same computer and take turns coding
– Nah...

S d fil b il t th li• Send files by e-mail or put them online
– Lots of manual work

• Put files on a shared disk• Put files on a shared disk
– Files get overwritten or deleted and work is lost, lots of direct

coordination

• In short: Error prone and inefficient

The preferred solutionThe preferred solution

• Use a revision control system (like Subversion)
• RCS - software that allows for multiple developers to

k th d b i di t d f hiwork on the same codebase in a coordinated fashion
• Can manage any sorts of files

Alt ti B Git M i l• Alternatives are Bazaar, Git, Mercurial

How it worksHow it works

Repository:
Central storage ofCentral storage of
the source code at
a server

Working copy:
Local copy of the
source codesource code
residing on the
developer’s
computer (a client)p ()

Some actions:Some actions:
Import (check out)
Read (update)
Write (commit)()

The repositoryThe repository

A t l t f d t• A central store of data
• Stores information in a virtual

filesystem treefilesystem tree
• Remembers every change ever

written to it
• Clients can check out an

independent, private copy of the
filesystem called a working copyfilesystem called a working copy

• Clients connect to the repository and
read or write to the filesystemread or write to the filesystem

Working copiesWorking copies

• Ordinary directory tree
• Each directory contains an

d i i t ti di t dadministrative directory named .svn
• Changes are not incorporated or

published until you tell it to do sopublished until you tell it to do so
• A working copy corresponds to a

subtree of the repositorysubtree of the repository

RevisionsRevisions

• Every commit creates a new revision, which
is identified by a unique revision number
E i i i b d• Every revision is remembered
by the RCS and forms a
revision historyrevision history

• Every revision can be
checked out independentlyc ec ed ou depe de y

• The current revision can be
roll-backed to any revisiony

• Commits are atomic

Work cycleWork cycle
Initial check out: 2) Update:1) Development:
The developer
checks out the
source code from

) p
The developer receives
changes made by other
developers and

) p
The developer makes
changes to the
working copy

the repository syncronizes his local
working copy with the
repository

Client

4) Commit:
The developer
makes changes and

3) Resolve conflicts:
When a developer has
made local changes makes changes and

writes or merges
them back into the
repository

made local changes
that won’t merge nicely
with other changes,
conflicts must be repository conflicts must be
manually resolvedRepository

Trunk and BranchesTrunk and Branches

f• Trunk is the original main line of development
• A branch is a copy of trunk which exists independently

and is maintained separatelyand is maintained separately
• Useful in several situations:

– Large modifications which takes long time and affects otherg g
parts of the system (safety, flexibility, transparency)

– Different versions for production and development
– Customised versions for different requirements– Customised versions for different requirements

Branch 3

Trunk

Branch 1

Branch 2

ConflictsConflicts

• Arises if several developers edit the same part of a file
• Solution in Subversion: ”Copy-modify-merge”

2) Developer B makes a

1) Developer A makes a
change to Code.java
and commits

) p
change to Code.java and
tries to commit, but gets an
”out-of-date” warning.

and commits

3) Developer B updates
his working copy. He will
be noticed that

4) Developer B edits
and resolves the
conflicts and commits be noticed that

Code.java is in a state of
conflict.

conflicts, and commits
the file back in the
repository

ConflictsConflicts

• Changes that do not overlap are merged automatically
• 4 solutions are provided in conflict situations:

– Use ”mine” version – the developers local copy
– Use ”their” version – the copy in the repository
– Use ”base” version – the file before you started editing– Use base version – the file before you started editing
– Use the original file with conflict markers and edit the conflict

manually before comitting

• Subversion must be told that the conflict is resolved
– Will remove the temporary files and let you commit

Advantages of RCSAdvantages of RCS

• Concurrent development by multiple developers
• Possible to roll-back to earlier versions if development

h d d dreaches a dead-end
• Allows for multiple versions (branches) of a system

L f l f fi di b d it i th• Logs useful for finding bugs and monitoring the
development process

• Works as back up• Works as back-up

Good practisesGood practises

• Update, build, test, then commit
– Do not break the checked in copy

U d t t f h bit b f t t diti• Update out of habit before you start editing
– Reduce your risk for integration problems

• Commit often• Commit often
– Reduce others risk for integration problems

• Check changes (diff) before committing• Check changes (diff) before committing
– Don’t commit unwanted code in the repo

• Do not use lockingDo not use locking
– Obstructs collaboration

What to add to the repositoryWhat to add to the repository

• Source code including tests
• Resources like configuration files

• What to not add:
– Compiled classes / binaries (target folder)
– IDE project files

Third party libraries– Third party libraries

• Add sources not products (generated files)!• Add sources, not products (generated files)!

Subversion online commandsSubversion online commands

• Checkout a working copy:
– $ svn checkout http://svn.example.com/scm

U d t ki• Update a working copy:
– $ svn update

• Commit your changes:• Commit your changes:
– $ svn commit –m ”a log message”

• Create a branch• Create a branch
– $ svn copy http://svn.example.com/scm/trunk

http://svn.example.com/scm/branches/my-branch

Subversion offline commandsSubversion offline commands

Add fil t th ki• Add a file to the working copy:
– $ svn add Code.java

• Delete a file from the working copy:• Delete a file from the working copy:
– $ svn delete Code.java

• Move a file:
– $ svn move Code.java dir/Code.java

• Compare working copy with repository on file-level:
$– $ svn status

• Compare working copy with repository on code-level:
– $ svn diff– $ svn diff

• Revert a file to the state from last commit
– $ svn revert Code.java

Create a repositoryCreate a repository

/home/projects $ svnadmin create assignment1

/myhome/assignment1 $ svn checkout svn+ssh://username@
svn.server.url/home/projects/assignment1

/home/projects/assignment1

/ h / i t1//myhome/assignment1/...

Repository
Cli tClient

SummarySummary

• Revision control systems enable multiple developers to
work on the same code base
S b i li t/ t ith it• Subversion uses a client/server system with a repository
and working copies

• Every commit generates a new revision which can be• Every commit generates a new revision, which can be
checked out independently

• Projects have a trunk version and might have multiple• Projects have a trunk version and might have multiple
branches

ResourcesResources
• ”Version control with Subversion”

– Free PDF book online
http://svnbook red bean com/– http://svnbook.red-bean.com/

• Subversion home pageSubversion home page
– http://subversion.tigris.org/

• Subversion help command
– $ svn help <command>

• TortoiseSVN – Graphical user interface for Subversion
– http://tortoisesvn.tigris.org

