Revision control systems (RCS)

and

%
S
(D
-
2
@)

C

Problem area

o Software projects with multiple developers need to
coordinate and synchronize the source code

Approaches to version control

Work on same computer and take turns coding
— Nabh...

Send files by e-mail or put them online
— Lots of manual work

Put files on a shared disk

— Files get overwritten or deleted and work is lost, lots of direct
coordination

In short: Error prone and inefficient

The preferred solution

Use a revision control system (like Subversion)

RCS - software that allows for multiple developers to
work on the same codebase in a coordinated fashion

Can manage any sorts of files
Alternatives are Bazaar, Git, Mercurial

3

How It works

Repository: .

Central

———

™

c
{ ONizg

/

storage of .__‘:;,

the source code at
. a server /

S

E %’z
e

Some actions:
Import (check out)
Read (update)
Write (commit)

Working copy:
Local copy of the
source code
residing on the
developer’s
computer (a client)

The repository

A central store of data

Stores information in a virtual ,
filesystem tree - |
Remembers every change ever > =]
written to it L =
Clients can check out an -
Independent, private copy of the T
filesystem called a working copy -

Clients connect to the repository and
read or write to the filesystem

; ; Illl"—h__

Working copies

Ordinary directory tree

Each directory contains an
administrative directory named .svn

Changes are not incorporated or =
published until you tell it to do so

A working copy corresponds to a
subtree of the repository

Revisions

Every commit creates a new revision, which

IS identified by a unique revision number

Every revision is remembered 0
by the RCS and forms a .
revision history !

Every revision can be
checked out independently

The current revision can be
roll-backed to any revision

Commits are atomic

A

o

Work cycle

Initial check out: 1) Development: 2) Update:
The developer The developer makes The developer receives
checks out the changes to the changes made by other

developers and
syncronizes his local
working copy with the

source code from working copy
the repository

repository

Client
3) Resolve conflicts: 4) Commit:
When a developer has The developer
made local changes makes changes and
that won’t merge nicely writes or merges
with other changes, them back into the
conflicts must be repository

Repository manually resolved

Trunk and Branches

e Trunk is the original main line of development

e A branch is a copy of trunk which exists independently
and Iis maintained separately
e Useful in several situations:

— Large madifications which takes long time and affects other
parts of the system (safety, flexibility, transparency)

— Different versions for productlon and development

Branch 3

v

Branch 1

v

Trunk

\ 4

v

Branch 2

Conflicts

* Avrises if several developers edit the same part of a file
e Solution in Subversion: "Copy-modify-merge”

1) Developer A makes a
change to Code.java
and commits

ool

/

4) Developer B edits
and resolves the
conflicts, and commits
the file back in the
repository

A

)
|I [R

[18]

2) Developer B makes a
change to Code.java and
tries to commit, but gets an
"out-of-date” warning.

3) Developer B updates
his working copy. He will
be noticed that
Code.java is in a state of
conflict.

Conflicts

e Changes that do not overlap are merged automatically

* 4 solutions are provided in conflict situations:
— Use "mine” version — the developers local copy
— Use "their” version — the copy in the repository
— Use "base” version — the file before you started editing
— Use the original file with conflict markers and edit the conflict
manually before comitting
e Subversion must be told that the conflict is resolved
— Will remove the temporary files and let you commit

Advantages of RCS

Concurrent development by multiple developers

Possible to roll-back to earlier versions if development
reaches a dead-end

Allows for multiple versions (branches) of a system

Logs useful for finding bugs and monitoring the
development process

Works as back-up

Good practises

Update, build, test, then commit
— Do not break the checked in copy

Update out of habit before you start editing
— Reduce your risk for integration problems

Commit often
— Reduce others risk for integration problems

Check changes (diff) before committing
— Don’t commit unwanted code in the repo

Do not use locking
— Obstructs collaboration

What to add to the repository

Source code including tests
Resources like configuration files

What to not add:

— Compiled classes / binaries (target folder)
— IDE project files

— Third party libraries

Add sources, not products (generated files)!

Subversion online commands

Checkout a working copy:
— $ svn checkout http://svn.example.com/scm

Update a working copy:
— $ svn update

Commit your changes:
— $ svn commit —m "a log message”

Create a branch

— $ svn copy http://svn.example.com/scm/trunk
http://svn.example.com/scm/branches/my-branch

Subversion offline commands

Add a file to the working copy:
— $ svn add Code.java

Delete a file from the working copy:
— $ svn delete Code.java

Move a file:
— $ svn move Code.java dir/Code.java

Compare working copy with repository on file-level:
— $ svn status

Compare working copy with repository on code-level:
— $ svn diff

Revert a file to the state from last commit
— $ svn revert Code.java

Create a repository

/home/projects $ svnadmin create assignmentl

/myhome/assignmentl $ svn checkout svn+ssh://username@
svn.server.url/home/projects/assignmentl

/home/projects/assignmentl \

/myhome/assignmentl/...

Repository
Client

Summary

Revision control systems enable multiple developers to
work on the same code base

Subversion uses a client/server system with a repository
and working copies

Every commit generates a new revision, which can be
checked out independently

Projects have a trunk version and might have multiple
branches
=

S

W\

Resources

"Version control with Subversion”
— Free PDF book online
— http://svnbook.red-bean.com/

Subversion home page
— http://subversion.tigris.org/

Subversion help command
— $ svn help <command>

TortoiseSVN — Graphical user interface for Subversion
— http://tortoisesvn.tigris.org

