
Unit Testing

and

JUnit

Problem areaProblem area

• Code components must be tested!
– Confirms that your code works

C t t b t t d i i l ti• Components must be tested in isolation
– A functional test can tell you that a bug exists in the

implementationp e e tat o
– A unit test tells you where the bug is located

Component A
Test failure!
But where
is the bug?

<using> <using>

Component B Component C

<using> <using>

Example: The CalculatorExample: The Calculator

public interface Calculator
{

int add(int number1, int number2);

int multiply(int number1, int number2);
}

public class DefaultCalculator
implements Calculator

{{
public int add(int number1, int number2)
{

return number1 + number2;
}

public int multiply(int number1, int number2)
{

return number1 * number2;
}

}}

Approaches to unit testingApproaches to unit testing

• Write a small command-line program, enter values, and
verify output

Involves your ability to type numbers– Involves your ability to type numbers
– Requires skills in mental calculation
– Doesn’t verify your code when its releasedy y

Approaches to unit testingApproaches to unit testing

• Write a simple test program
– Objective and preserves testing efforts

Requires you to monitor the screen for error messages– Requires you to monitor the screen for error messages
– Inflexible when more tests are needed

public class TestCalculator
{

public static void main(String[] args)
{{

Calculator calculator = new DefaultCalculator();

int result = calculator.add(8, 7);

if (result != 15)
{

System.out.println(”Wrong result: ” + result);
}

}}
}

The preferred solutionThe preferred solution

• Use a unit testing framework like JUnit
• A unit is the smallest testable component in an

li tiapplication
• A unit is in most cases a method

A it d t d d th t hi h• A unit does not depend on other components which are
not unit tested themselves

• Focus on whether a method is following its API contract• Focus on whether a method is following its API contract

Component A Unit test AComponent A

<using> <using>

Unit test A

Component B Component C Unit test CUnit test B

JUnitJUnit

• De facto standard for developing unit tests in Java
– One of the most important Java libraries ever developed

Made unit testing easy and popular among developers– Made unit testing easy and popular among developers

• Two techniques:q
– Extending the TestCase class (prior to version 4)
– Using Java annotations (after version 4)

Extending the TestCase classExtending the TestCase class

• Your test class should extend the TestCase class
• Will find and execute all methods starting with test in

t t lyour test class
• Lets you set up a test fixture by overriding the setUp and

tearDown methodstearDown methods
• Provides methods for verifying method output through

the Assert classthe Assert class

Test fixturesTest fixtures

T t i t b t• Tests may require common resources to be set up
– Complex data structures
– Database connectionsDatabase connections

• A fixture is a set of common needed resources
• Common setup code inside tests doesn’t make sensep
• A fixture can be created by overriding the setUp and

tearDown methods from TestCase
• setUp is invoked before each test, tearDown after

setUp() testXXX() tearDown()

TestCase
lifecycle

JUnit Calculator testJUnit Calculator test

import junit.framework.TestCase;

public class CalculatorTest

Import TestCase

public class CalculatorTest
extends TestCase

{
Calculator calculator;

public void setUp()

Extend TestCase

Override setUp() public void setUp()
{

calculator = new DefaultCalculator();
}

Override setUp()

Make methods that
public void testAdd()
{

int sum = calculator.add(8, 7);

assertEquals(sum, 15);

begin with test

Use assertEquals to asse qua s(su , 5);
}

}

Use assertEquals to
verify output

Example: The EventDAOExample: The EventDAO

public class Event()
{

private int id;
private String title;

Event object

private String title;
private Date date;

// constructors
// get and set methods

}

bli i f E DAO

}

public interface EventDAO
{

int saveEvent(Event event);

Event getEvent(int id);

EventDAO interface

g ();

void deleteEvent(Event event);
}

Fixture in EventDAOTestFixture in EventDAOTest
public class EventDAOTest

extends TestCase
{

private EventDAO eventDAO;
private Date date;
private Event event;p ;

public void setUp()
{

eventDAO = new MemoryEventDAO();

Overrides setUp(), will be
invoked before each test

Calendar calendar = Calendar.getInstance();
calendar.set(2007, Calendar.NOVEMBER, 10);
date = calendar.getTime();

t E t(”U2 t” d t)

Instantiates an EventDAO,
Date, and Event for use in

test methods
event = new Event(”U2 concert”, date);

}

public void testAddEvent()
{Using the EventDAO and {

int id = eventDAO.saveEvent(event);

// more testing code follows
}

Using the EventDAO and
Event inside a test

// more test methods
}

The Assert classThe Assert class

• Contains methods for testing whether
– Conditions are true or false

Objects are equal or not– Objects are equal or not
– Objects are null or not

• If the test fails an AssertionFailedError is thrownIf the test fails, an AssertionFailedError is thrown
• All methods have overloads for various parameter types
• Methods available because TestCase inherits Assert• Methods available because TestCase inherits Assert

Assert

TestCase

<inherits>

<inherits>

EventDAOTest

<inherits>

Assert methodsAssert methods

Method Description

assertTrue(boolean) Asserts that a condition is true.

assertFalse(boolean) Asserts that a condition is false.

assertEquals(Object Object) Asserts that two objects are equalassertEquals(Object, Object) Asserts that two objects are equal.

assertNotNull(Object) Asserts that an object is not null.

assertNull(Object) Asserts that an object is null.

assertSame(Object, Object) Asserts that two references refer to the same object.

assertNotSame(Object, Object) Asserts that two references do not refer to the same object.

fail(String) Asserts that a test fails, and prints the given message.

Assert in EventDAOTestAssert in EventDAOTest

public void testSaveEvent()
{

int id = eventDAO.saveEvent(event);

Descriptive name following
the testXXX convention

event = eventDAO.getEvent(id);

assertEquals(event.getId(), id);
assertEquals(event.getTitle(), ”U2 concert”);

}

Asserts that the saved object is
equal to the retrieved object

}

public void testGetEvent()
{

int id = eventDAO.saveEvent(event);

Saves and retrieves an Event
with the generated identifier ()

event = eventDAO.getEvent(id);

assertNotNull(event);An object is expected

event = eventDAO.getEvent(-1);

assertNull(event);
}Asserts that null is returned

when no object existswhen no object exists

Using Java annotationsUsing Java annotations

• No need to follow JUnit naming conventions
– Tests identified by the @Test annotation

Fixture methods identified by @Before and @After annotations– Fixture methods identified by @Before and @After annotations

• Class-scoped fixture
– Identified by the @BeforeClass and @AfterClass annotations– Identified by the @BeforeClass and @AfterClass annotations
– Useful for setting up expensive resources, but be careful...

• Ignored testsg o ed es s
– Identified by the @Ignore annotation
– Useful for slow tests and tests failing for reasons beyond you

• Timed tests
– Identified by providing a parameter @Test(timeout=500)
– Useful for benchmarking and network testing

EventDAOTest with annotationsEventDAOTest with annotations

import static junit.framework.Assert.assertEquals;

@Before
public void init()

Assert imported statically

Fi t th d id tifi d public void init()
{

eventDAO = new MemoryEventDAO();
event = new Event(”U2 concert”, date);

}

Fixture method identified
by the @Before annotation

@Test
public void saveEvent()
{

int id = eventDAO.saveEvent(event);

Test identified by the @Test
annotation. Test signature is
equal to method signature. ();

event = eventDAO.getEvent(id);

assertEquals(event.getId(), id);
}

q g

}

@Test @Ignore
Public void getEvent()
{

// T ff

Test being ignored

// Test stuff...
}

Testing ExceptionsTesting Exceptions

• Methods may be required to throw exceptions
• Expected exception can be declared as an annotation

– @Test(expected = UnsupportedOperationException.class)

Annotation declares that an @Test(expected = UnsupportedOperationException.class)
public void divideByZero()
{

calculator.divide(4, 0);
}

Annotation declares that an
exception of class

UnsupportedOperationException
is supposed to be thrown

}

Running JUnitRunning JUnit

• Textual test runner
– Used from the command line

Easy to run– Easy to run

• Integrate with Eclipse
– Convenient integrated testing within your development– Convenient, integrated testing within your development

environment!

• Integrate with Maveng
– Gets included in the build lifecycle!

JUnit with EclipseJUnit with Eclipse

• Eclipse features a JUnit view
• Provides an informativ GUI displaying test summaries
• Lets you edit the code, compile and test without leaving

the Eclipse environment

JUnit with MavenJUnit with Maven

• Maven provides support for automated unit testing
through JUnit
U it t ti i i l d d i th b ild lif l• Unit testing is included in the build lifecycle
– Verifies that existing components work when other components

are added or changed

<dependency>
<groupId>junit</groupId>Add dependency

a e added o c a ged

<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.4</version>

</dependency>

Add dependency
to POM to put

JUnit on the classpath

Execute the Maven
test phase $ mvn testtest phase

JUnit with MavenJUnit with Maven

• Maven requires all test-class names to contain Test
• Standard directory for test classes is src/test/java

– Maven will execute all tests for you

• The test phase is mapped to the Surefire plugin
S fi ill t t b d t t• Surefire will generate reports based on your test runs

• Reports are located in target/surefire-reports

Best practisesBest practises

• One unit test for each tested method
– Makes debugging easier

E i t i t i– Easier to maintain

• Choose descriptive test method names
TestCase: Use the testXXX naming convention– TestCase: Use the testXXX naming convention

– Annotations: Use the method signature of the tested method

• Automate your test executionAutomate your test execution
– If you add or change features, the old ones must still work
– Also called regression testing

• Test more than the ”happy path”
– Out-of-domain values
– Boundary conditions

Advantages of unit testingAdvantages of unit testing

• Improves debugging
– Easy to track down bugs

F ilit t f t i• Facilitates refactoring
– Verifies that existing features still work while changing the code

structurest uctu e

• Enables teamwork
– Lets you deliver tested components without waiting for whole y g

application to finish

• Promotes object oriented design
– Requires your code to be divided in small, re-usable units

• Serving as developer documentation
U it t t l th t d t t f th API– Unit tests are samples that demonstrates usage of the API

ResourcesResources

• Vincent Massol: JUnit in Action
– Two free sample chapters

http://www manning com/massol– http://www.manning.com/massol

• JUnit home pageJUnit home page
– Articles and forum
– http://www.junit.org

• Articles
– http://www-128.ibm.com/developerworks/java/library/j-junit4.html
– http://www-128.ibm.com/developerworks/opensource/library/os-junit/

