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So far: MLPs + embeddings as inputs

I Embeddings have benefits over discrete one-hot encodings; makes use
of unlabeled data + information sharing across features.

I But we still lack power for representing sentences and documents.
I Concatenation? Would blow up the parameter space for a fully
connected layer.

I Averaging? gives a fixed-length representation, but no information
about order or structure.

I Need for specialized NN architectures that extract higher-level features:
I CNNs and RNNs – the agenda for the coming weeks.
I Learns intermediate representations that are then plugged into
additional layers for prediction.

I Pitch: layers and architectures are like Lego bricks – mix and match.
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Example text classification tasks

Document- / sentence-level polarity; positive or negative?
I The food was expensive but hardly impressive.
I The food was hardly expensive but impressive.

I Strong local indicators of class,
I some ordering constraints,
I but independent of global position.
I In sum: a small set relevant n-grams could provide strong features.

Many text classification tasks have the similar traits:. . .
I sentences as subjective or objective
I questions types
I authorship of texts
I text topics
I emails as spam
I comments as abusive

3



Example text classification tasks

Document- / sentence-level polarity; positive or negative?
I The food was expensive but hardly impressive.
I The food was hardly expensive but impressive.

I Strong local indicators of class,
I some ordering constraints,
I but independent of global position.
I In sum: a small set relevant n-grams could provide strong features.

Many text classification tasks have the similar traits:. . .
I sentences as subjective or objective
I questions types
I authorship of texts
I text topics
I emails as spam
I comments as abusive

3



What would be a suitable model?

I BoW or CBoW? Not suitable:
I Do not capture local ordering.
I An MLP can learn feature combinations, but not easily positional /
ordering information.

I Bag-of-n-grams or n-gram embeddings?
I Want to be able to share statistical strength between related features.
I Potentially wastes many parameters; only a few n-grams relevant.
I Data sparsity issues + does not scale to higher order n-grams.

I Want to learn to efficiently model relevant n-grams.
I Enter convolutional neural networks.
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CNNs: overview

I AKA convolution-and-pooling architectures or ConvNets.

CNNs explained in three lines
I A convolution layer extracts n-gram features across a sequence.
I A pooling layer then samples the features to identify the most
informative ones.

I These are then passed to a downstream network for prediction.

I We’ll spend the next two lectures fleshing out the details.
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CNNs and vision / image recognition

I Evolved in the 90s in the fields of signal processing and computer vision.
I 1989–98: Yann LeCun, Léon Bottou et al.: digit recognition
I 2012: Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton: great
reduction of error rates for ImageNet object recognition

(Taken from image-net.org) (Taken from Bottou et al. 2016)

I These roots are witnessed by the terminology associated with CNNs.
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2d convolutions for image recognition

I Generally, we can consider an image as a matrix of pixel values.
I The size of this matrix is height x width x channels:
I A gray-scale image has 1 channel, an RGB color image has 3.
I Several standard convolution operations are available for image
processing: Blurring, sharpening, edge detection, etc.

I A convolution operation is defined on the basis of a kernel or filter: a
matrix of weights.

I Several terms often used interchangeably: filter, filter kernel, filter
mask, filter matrix, convolution matrix, kernel matrix, . . .

I The size of the filter referred to as the receptive field.
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2d convolutions for image processing
I The output of an image convolution is computed as follows:
(We’re assuming square symmetrical kernels.)

I Slide the filter matrix across every pixel.
I For each pixel, compute the matrix convolution operation:
I Multiply each element of the filter matrix with its corresponding element
of the image matrix, and sum the products.

I Edges requires special treatment (e.g. zero-padding or reduced filter).
I Each pixel in the resulting filtered image is a weighted combination of
its neighboring pixels in the original image.
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2d convolutions for image processing

I Examples of some standard filters and their kernel matrices.
I https://en.wikipedia.org/wiki/Kernel_(image_processing)
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Convolutions and CNNs

I Convolutions are also used for feature extraction for ML models.
I Forms the basic build block of convolutional neural networks.
I But then we want to learn the weights of the filter,
I and typically apply a non-linear activation function to the result,
I and typically also apply several filters.

But let’s not get carried away, back to NLP:
I Convolution filters can also be used for feature extraction from text:
I ‘n-gram detectors’.
I Pioneered by Collobert et al. (2008, 2011) for various tagging tasks,
and later by Kalchbrenner et al. (2014) and Kim (2014) for sentence
classification.

I A massive proliferation of CNN-based work in the field since.
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1d CNNs for NLP

I In NLP we apply CNNs to sequential data: 1-dimensional input.
I Consider a sequence of words w1:n = w1, . . . , wn.
I Each word is represented by a d dimensional embedding E[wi] = wi.

I A convolution corresponds to ‘sliding’ a window of size k across the
sequence and applying a filter to each.

I Let ⊕(wi:i+k−1) = [wi; wi+1; . . . ; wi+k−1] be the concatenation of
the embeddings wi, . . . , wi+k−1.

I The vector for the ith window is xi = ⊕(wi:i+k−1), where xi ∈ Rkd.

x1 −→
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Convolutions on sequences

To apply a filter to a window xi:
I compute its dot-product with a weight vector u ∈ Rkd

I and then apply a non-linear activation g,
I resulting in a scalar value pi = g(xi · u)

I Typically use ` different filters, u1, . . . , u`.
I Can be arranged in a matrix U ∈ Rkd×`.
I Also include a bias vector b ∈ R`.
I Gives an `-dimensional vector pi summarizing
the ith window: pi = g(xi ·U + b)

I Ideally different dimensions captures different
indicative information.
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Convolutions on sequences

I Applying the convolutions over the text results in m vectors p1:m.
I Each pi ∈ R` represents a particular k-gram in the input.
I Sensitive to the identity and order of tokens within the sub-sequence,
I but independent of its particular position within the sequence.
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Narrow vs. wide convolutions

I What is m in p1:m?
I For a given window size k and a sequence w1, . . . , wn, how many
vectors pi will be extracted?

I There are m = n− k + 1 possible positions for the window.
I This is called a narrow convolution.
I Another strategy: pad the with k− 1 extra dummy-tokens on each side.
I Let’s us slide the window beyond the boundaries of the sequence.
I We then get m = n + k + 1 vectors pi.
I Called a wide convolution.
I Necessary when using window-sizes that might be wider than the input.
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Stacking view (1:3)

I So far we’ve visualized inputs, filters, and filter outputs as sequences:
I What Goldberg (2017) calls the ‘concatenation notation’.
I An alternative (and perhaps more common) view: ‘stacking notation’.

I Imagine the n input embeddings stacked
on top of each other, resulting in an
n× d sentence matrix.

I Correspondingly, imagine each column u
in the matrix U ∈ Rkd×` be arranged as
a k × d matrix.

I We can then slide ` different k × d filter
matrices down the sentence matrix,
computing matrix convolutions:

I Sum of element-wise multiplications.
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Stacking view (2:3)

I The stacking view makes the convolutions
more similar to what we saw for images.

I Except the width of the ‘receptive field’ is
always fixed to d,

I the height is given by k (aka region size),
I and we slide the filter in increments of d,
corresponding to the word boundaries,

I i.e. along the height dimension only.
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Stacking view (3:3)
I Now imagine the output vectors p1:m stacked in a matrix P ∈ Rm×`.
I Each `-dimensional row of P holds the features extracted for a given

k-gram by different filters.
I Each m-dimensional column of P holds the features extracted across
the sequence for a given filter.

I These columns are sometimes referred to as feature maps.
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Next step: pooling (1:2)
I The convolution layer results in m vectors p1:m.
I Each pi ∈ R` represents a particular k-gram in the input.
I m (the length of the feature maps) can vary depending on input length.
I Pooling combines these vectors into a single fixed-sized vector c.
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Next step: pooling (2:2)
I The fixed-sized vector c (possibly in combination with other vectors) is
what gets passed to a downstream network for prediction.

I Want c to contain the most important information from p1:m.
I Different strategies available for ‘sampling’ features.
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Pooling strategies

Max pooling
I Most common. AKA max-over-time pooling.
I c[j] = arg max

1<i≤m
pi[j] ∀j ∈ [1, l]

I Picks the maximum value across each dimension (feature map).

Average pooling

I c = 1
m

m∑
i=1

pi

I CBOW or average of all the filtered k-gram representations.

K-max pooling
I Concatenate the k highest values for each dimension / filter.
I Preserves relative ordering information (but insensitive to specific
positions).
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Dynamic pooling

I Combines with any of the strategies above.
I Perform pooling separately over r different regions of the input.
I Concatenate the r resulting vectors c1, . . . cr.
I Allows us to retain positional information relevant to a given task (e.g.
based on document structure).

I Not using dynamic pooling is sometimes called global pooling.
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Multiple window sizes

I So far considered CNNs with ` different filters for a single window size
k.

I Typically, CNNs in NLP are applied with multiple window sizes, and
multiple filters for each.

I Pooled separately, with the results concatenated.
I Rather large window sizes often used:
I 2–5 is most typical, but even k > 20 is not uncommon.

I With standard n-gram features, anything more than 3-grams quickly
become infeasible.

I CNNs learn to represent large n-grams efficiently, without blowing up
the parameter space and without having to represent the whole
vocabulary.

I (Related to the notion of ‘neuron’ in a CNN – will get back to this!)
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Baseline architecture of Zhang et al. (2017)
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What is a neuron in a convolution? (1:2)

I A CNN has no backward connections between layers, no cycles (as we’ll
have once we get to RNNs).

I Can therefore be seen as a type of feed-forward network.
I But in contrast to the fully-connected (‘dense’) layers of an MLP, the
convolution layers are ‘sparsely connected’.

I Each filter defines m identical neurons:
I Each neuron instance is fully-connected only for a given k-gram.
I After (max-)pooling; only the most strongly activated neurons are used.

24



What is a neuron in a convolution? (2:2)

I Alternatively: Think of each filter as defining an abstract neuron (like a
mathematical function).

I Allows us to apply this neuron multiple times.
I Example of weight sharing / parameter tying:
I The parameters are shared for all copies of the neuron.
I Allows us to have lots of neurons while having a relatively small number
of parameters to be learned.
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Input length

I Conceptually, CNNs are independent of input-length.
I Pooling allows us to represent variable-length input with a fixed-sized
vector.

I Naturally deals with e.g. sentences of varying length.
I In practice, however, it is common to pad all inputs to match the
maximum input length (or some specified lower cut-off).

I Using some reserved token such as <PAD>.
I Main reason; batch computation: Each example in a batch is required
to have the same length.
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Estimated parameters

I Backpropagation after the final prediction layer.
I Estimates MLP weights, the convolution weights and bias, and
(possibly) the embeddings.

I Embedding layer can be: learned from scratch or pre-trained.
I When pre-trained, the embedding layer can be:
I Static: fixed, no backpropagation.
I Dynamic: further trained / fine-tuned.
I CNNs also useful for representation learning!
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CNNs and representation learning (1:2)

I Kim (2014) shows the effect
of fine-tuning embeddings
with a CNN for SA.

I Compares the 4 nearest
neighbors of words with static
and non-static embeddings.

I Deals with a well-known
challenge for distributional
semantics:

I Antonyms end up similar.
I Learned task-specific
embeddings can be useful
beyond the CNN.

Target Pre-trained Fine-tuned

bad

good terrible
terrible horrible
horrible lousy
lousy stupid

good

great nice
bad decent
terrific solid
decent terrific

n’t

os not
ca never
ireland nothing
wo neither
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CNNs and representation learning (2:2)

I A CNN can also be used for creating document embeddings:
I The vectors produced by the pooling layer.
I Yields a fixed-sized representation, independent of input length.
I Similar documents / sentences will have pooling vectors that are close
to each other.

I Can be used for retrieval or other document similarity tasks.

29



Example CNN applications by LT MSc students

I Camilla E. S.: predicting abusive comments expressing threats of
violence, using the YouTube Threat Corpus.

I Eivind A. B.: predicting review ratings (1–6) using NoReC (Norwegian
Review Corpus).

I Karianne K. A.: will create sentiment lexicons based on embeddings
fine-tuned with a CNN for document-level SA classification.

I Mateo C. A.: CNN sentence classification for review summarization.
I Atle O.: CNN for predicting document meta-data, used for learning
document representations (the pooling layer) for text retrieval in the
Lovdata legal document collection.

I Eivind H. T.: will use them for predicting party affiliations of speeches
in the Talk of Norway Corpus of parliamentary proceedings.

I Celina M.: document classification for the Norwegian welfare
administration.

30



Example CNN applications by LT MSc students

I Camilla E. S.: predicting abusive comments expressing threats of
violence, using the YouTube Threat Corpus.

I Eivind A. B.: predicting review ratings (1–6) using NoReC (Norwegian
Review Corpus).

I Karianne K. A.: will create sentiment lexicons based on embeddings
fine-tuned with a CNN for document-level SA classification.

I Mateo C. A.: CNN sentence classification for review summarization.
I Atle O.: CNN for predicting document meta-data, used for learning
document representations (the pooling layer) for text retrieval in the
Lovdata legal document collection.

I Eivind H. T.: will use them for predicting party affiliations of speeches
in the Talk of Norway Corpus of parliamentary proceedings.

I Celina M.: document classification for the Norwegian welfare
administration.

30



Example CNN applications by LT MSc students

I Camilla E. S.: predicting abusive comments expressing threats of
violence, using the YouTube Threat Corpus.

I Eivind A. B.: predicting review ratings (1–6) using NoReC (Norwegian
Review Corpus).

I Karianne K. A.: will create sentiment lexicons based on embeddings
fine-tuned with a CNN for document-level SA classification.

I Mateo C. A.: CNN sentence classification for review summarization.
I Atle O.: CNN for predicting document meta-data, used for learning
document representations (the pooling layer) for text retrieval in the
Lovdata legal document collection.

I Eivind H. T.: will use them for predicting party affiliations of speeches
in the Talk of Norway Corpus of parliamentary proceedings.

I Celina M.: document classification for the Norwegian welfare
administration.

30



Example CNN applications by LT MSc students

I Camilla E. S.: predicting abusive comments expressing threats of
violence, using the YouTube Threat Corpus.

I Eivind A. B.: predicting review ratings (1–6) using NoReC (Norwegian
Review Corpus).

I Karianne K. A.: will create sentiment lexicons based on embeddings
fine-tuned with a CNN for document-level SA classification.

I Mateo C. A.: CNN sentence classification for review summarization.

I Atle O.: CNN for predicting document meta-data, used for learning
document representations (the pooling layer) for text retrieval in the
Lovdata legal document collection.

I Eivind H. T.: will use them for predicting party affiliations of speeches
in the Talk of Norway Corpus of parliamentary proceedings.

I Celina M.: document classification for the Norwegian welfare
administration.

30



Example CNN applications by LT MSc students

I Camilla E. S.: predicting abusive comments expressing threats of
violence, using the YouTube Threat Corpus.

I Eivind A. B.: predicting review ratings (1–6) using NoReC (Norwegian
Review Corpus).

I Karianne K. A.: will create sentiment lexicons based on embeddings
fine-tuned with a CNN for document-level SA classification.

I Mateo C. A.: CNN sentence classification for review summarization.
I Atle O.: CNN for predicting document meta-data, used for learning
document representations (the pooling layer) for text retrieval in the
Lovdata legal document collection.

I Eivind H. T.: will use them for predicting party affiliations of speeches
in the Talk of Norway Corpus of parliamentary proceedings.

I Celina M.: document classification for the Norwegian welfare
administration.

30



Example CNN applications by LT MSc students

I Camilla E. S.: predicting abusive comments expressing threats of
violence, using the YouTube Threat Corpus.

I Eivind A. B.: predicting review ratings (1–6) using NoReC (Norwegian
Review Corpus).

I Karianne K. A.: will create sentiment lexicons based on embeddings
fine-tuned with a CNN for document-level SA classification.

I Mateo C. A.: CNN sentence classification for review summarization.
I Atle O.: CNN for predicting document meta-data, used for learning
document representations (the pooling layer) for text retrieval in the
Lovdata legal document collection.

I Eivind H. T.: will use them for predicting party affiliations of speeches
in the Talk of Norway Corpus of parliamentary proceedings.

I Celina M.: document classification for the Norwegian welfare
administration.

30



Example CNN applications by LT MSc students

I Camilla E. S.: predicting abusive comments expressing threats of
violence, using the YouTube Threat Corpus.

I Eivind A. B.: predicting review ratings (1–6) using NoReC (Norwegian
Review Corpus).

I Karianne K. A.: will create sentiment lexicons based on embeddings
fine-tuned with a CNN for document-level SA classification.

I Mateo C. A.: CNN sentence classification for review summarization.
I Atle O.: CNN for predicting document meta-data, used for learning
document representations (the pooling layer) for text retrieval in the
Lovdata legal document collection.

I Eivind H. T.: will use them for predicting party affiliations of speeches
in the Talk of Norway Corpus of parliamentary proceedings.

I Celina M.: document classification for the Norwegian welfare
administration.

30



Next week: more on CNNs

I More advanced CNN architectures:
I Hierarchical convolutions
I Multiple channels

I Overview of the parameter space and design choices
I Tuning (Zhang & Wallace, 2015/2017)
I Use cases.
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