
INF5820: Language technological applications

INF5820: Language technological applications

Convolutional Neural Networks

Erik Velldal

University of Oslo

9 October 2018



So far: MLPs + embeddings as inputs

I Embeddings have benefits over discrete one-hot encodings; makes use
of unlabeled data + information sharing across features.

I But we still lack power for representing sentences and documents.
I Concatenation? Would blow up the parameter space for a fully
connected layer.

I Averaging? gives a fixed-length representation, but no information
about order or structure.

I Need for specialized NN architectures that extract higher-level features:
I CNNs and RNNs – the agenda for the coming weeks.
I Learns intermediate representations that are then plugged into
additional layers for prediction.

I Pitch: layers and architectures are like Lego bricks – mix and match.

2



So far: MLPs + embeddings as inputs

I Embeddings have benefits over discrete one-hot encodings; makes use
of unlabeled data + information sharing across features.

I But we still lack power for representing sentences and documents.
I Concatenation? Would blow up the parameter space for a fully
connected layer.

I Averaging? gives a fixed-length representation, but no information
about order or structure.

I Need for specialized NN architectures that extract higher-level features:
I CNNs and RNNs – the agenda for the coming weeks.
I Learns intermediate representations that are then plugged into
additional layers for prediction.

I Pitch: layers and architectures are like Lego bricks – mix and match.

2



Example text classification tasks

Document- / sentence-level polarity; positive or negative?
I The food was expensive but hardly impressive.
I The food was hardly expensive but impressive.

I Strong local indicators of class,
I some ordering constraints,
I but independent of global position.
I In sum: a small set relevant n-grams could provide strong features.

Many text classification tasks have the similar traits:. . .
I sentences as subjective or objective
I questions types
I authorship of texts
I text topics
I emails as spam
I comments as abusive

3



Example text classification tasks

Document- / sentence-level polarity; positive or negative?
I The food was expensive but hardly impressive.
I The food was hardly expensive but impressive.

I Strong local indicators of class,
I some ordering constraints,
I but independent of global position.
I In sum: a small set relevant n-grams could provide strong features.

Many text classification tasks have the similar traits:. . .
I sentences as subjective or objective
I questions types
I authorship of texts
I text topics
I emails as spam
I comments as abusive

3



What would be a suitable model?

I BoW or CBoW? Not suitable:
I Do not capture local ordering.
I An MLP can learn feature combinations, but not easily positional /
ordering information.

I Bag-of-n-grams or n-gram embeddings?
I Want to be able to share statistical strength between related features.
I Potentially wastes many parameters; only a few n-grams relevant.
I Data sparsity issues + does not scale to higher order n-grams.

I Want to learn to efficiently model relevant n-grams.
I Enter convolutional neural networks.

4



CNNs: overview

I AKA convolution-and-pooling architectures or ConvNets.

CNNs explained in three lines
I A convolution layer extracts n-gram features across a sequence.
I A pooling layer then samples the features to identify the most
informative ones.

I These are then passed to a downstream network for prediction.

I We’ll spend the next two lectures fleshing out the details.

5



CNNs and vision / image recognition

I Evolved in the 90s in the fields of signal processing and computer vision.
I 1989–98: Yann LeCun, Léon Bottou et al.: digit recognition
I 2012: Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton: great
reduction of error rates for ImageNet object recognition

(Taken from image-net.org) (Taken from Bottou et al. 2016)

I These roots are witnessed by the terminology associated with CNNs.

6



2d convolutions for image recognition

I Generally, we can consider an image as a matrix of pixel values.
I The size of this matrix is height x width x channels:
I A gray-scale image has 1 channel, an RGB color image has 3.
I Several standard convolution operations are available for image
processing: Blurring, sharpening, edge detection, etc.

I A convolution operation is defined on the basis of a kernel or filter: a
matrix of weights.

I Several terms often used interchangeably: filter, filter kernel, filter
mask, filter matrix, convolution matrix, kernel matrix, . . .

I The size of the filter referred to as the receptive field.

7



2d convolutions for image processing
I The output of an image convolution is computed as follows:
(We’re assuming square symmetrical kernels.)

I Slide the filter matrix across every pixel.
I For each pixel, compute the matrix convolution operation:
I Multiply each element of the filter matrix with its corresponding element
of the image matrix, and sum the products.

I Edges requires special treatment (e.g. zero-padding or reduced filter).
I Each pixel in the resulting filtered image is a weighted combination of
its neighboring pixels in the original image.

8



2d convolutions for image processing

I Examples of some standard filters and their kernel matrices.
I https://en.wikipedia.org/wiki/Kernel_(image_processing)

9

https://en.wikipedia.org/wiki/Kernel_(image_processing)


Convolutions and CNNs

I Convolutions are also used for feature extraction for ML models.
I Forms the basic build block of convolutional neural networks.
I But then we want to learn the weights of the filter,
I and typically apply a non-linear activation function to the result,
I and typically also apply several filters.

But let’s not get carried away, back to NLP:
I Convolution filters can also be used for feature extraction from text:
I ‘n-gram detectors’.
I Pioneered by Collobert et al. (2008, 2011) for various tagging tasks,
and later by Kalchbrenner et al. (2014) and Kim (2014) for sentence
classification.

I A massive proliferation of CNN-based work in the field since.

10



Convolutions and CNNs

I Convolutions are also used for feature extraction for ML models.
I Forms the basic build block of convolutional neural networks.
I But then we want to learn the weights of the filter,
I and typically apply a non-linear activation function to the result,
I and typically also apply several filters.

But let’s not get carried away, back to NLP:
I Convolution filters can also be used for feature extraction from text:
I ‘n-gram detectors’.
I Pioneered by Collobert et al. (2008, 2011) for various tagging tasks,
and later by Kalchbrenner et al. (2014) and Kim (2014) for sentence
classification.

I A massive proliferation of CNN-based work in the field since.

10



1d CNNs for NLP

I In NLP we apply CNNs to sequential data: 1-dimensional input.
I Consider a sequence of words w1:n = w1, . . . , wn.
I Each word is represented by a d dimensional embedding E[wi] = wi.

I A convolution corresponds to ‘sliding’ a window of size k across the
sequence and applying a filter to each.

I Let ⊕(wi:i+k−1) = [wi; wi+1; . . . ; wi+k−1] be the concatenation of
the embeddings wi, . . . , wi+k−1.

I The vector for the ith window is xi = ⊕(wi:i+k−1), where xi ∈ Rkd.

x1 −→

11



Convolutions on sequences

To apply a filter to a window xi:
I compute its dot-product with a weight vector u ∈ Rkd

I and then apply a non-linear activation g,
I resulting in a scalar value pi = g(xi · u)

I Typically use ` different filters, u1, . . . , u`.
I Can be arranged in a matrix U ∈ Rkd×`.
I Also include a bias vector b ∈ R`.
I Gives an `-dimensional vector pi summarizing
the ith window: pi = g(xi ·U + b)

I Ideally different dimensions captures different
indicative information.

12



Convolutions on sequences

To apply a filter to a window xi:
I compute its dot-product with a weight vector u ∈ Rkd

I and then apply a non-linear activation g,
I resulting in a scalar value pi = g(xi · u)

I Typically use ` different filters, u1, . . . , u`.
I Can be arranged in a matrix U ∈ Rkd×`.
I Also include a bias vector b ∈ R`.
I Gives an `-dimensional vector pi summarizing
the ith window: pi = g(xi ·U + b)

I Ideally different dimensions captures different
indicative information.

12



Convolutions on sequences

I Applying the convolutions over the text results in m vectors p1:m.
I Each pi ∈ R` represents a particular k-gram in the input.
I Sensitive to the identity and order of tokens within the sub-sequence,
I but independent of its particular position within the sequence.

13



Narrow vs. wide convolutions

I What is m in p1:m?
I For a given window size k and a sequence w1, . . . , wn, how many
vectors pi will be extracted?

I There are m = n− k + 1 possible positions for the window.
I This is called a narrow convolution.
I Another strategy: pad the with k− 1 extra dummy-tokens on each side.
I Let’s us slide the window beyond the boundaries of the sequence.
I We then get m = n + k + 1 vectors pi.
I Called a wide convolution.
I Necessary when using window-sizes that might be wider than the input.

14



Stacking view (1:3)

I So far we’ve visualized inputs, filters, and filter outputs as sequences:
I What Goldberg (2017) calls the ‘concatenation notation’.
I An alternative (and perhaps more common) view: ‘stacking notation’.

I Imagine the n input embeddings stacked
on top of each other, resulting in an
n× d sentence matrix.

I Correspondingly, imagine each column u
in the matrix U ∈ Rkd×` be arranged as
a k × d matrix.

I We can then slide ` different k × d filter
matrices down the sentence matrix,
computing matrix convolutions:

I Sum of element-wise multiplications.

15



Stacking view (1:3)

I So far we’ve visualized inputs, filters, and filter outputs as sequences:
I What Goldberg (2017) calls the ‘concatenation notation’.
I An alternative (and perhaps more common) view: ‘stacking notation’.

I Imagine the n input embeddings stacked
on top of each other, resulting in an
n× d sentence matrix.

I Correspondingly, imagine each column u
in the matrix U ∈ Rkd×` be arranged as
a k × d matrix.

I We can then slide ` different k × d filter
matrices down the sentence matrix,
computing matrix convolutions:

I Sum of element-wise multiplications.

15



Stacking view (1:3)

I So far we’ve visualized inputs, filters, and filter outputs as sequences:
I What Goldberg (2017) calls the ‘concatenation notation’.
I An alternative (and perhaps more common) view: ‘stacking notation’.

I Imagine the n input embeddings stacked
on top of each other, resulting in an
n× d sentence matrix.

I Correspondingly, imagine each column u
in the matrix U ∈ Rkd×` be arranged as
a k × d matrix.

I We can then slide ` different k × d filter
matrices down the sentence matrix,
computing matrix convolutions:

I Sum of element-wise multiplications.

15



Stacking view (1:3)

I So far we’ve visualized inputs, filters, and filter outputs as sequences:
I What Goldberg (2017) calls the ‘concatenation notation’.
I An alternative (and perhaps more common) view: ‘stacking notation’.

I Imagine the n input embeddings stacked
on top of each other, resulting in an
n× d sentence matrix.

I Correspondingly, imagine each column u
in the matrix U ∈ Rkd×` be arranged as
a k × d matrix.

I We can then slide ` different k × d filter
matrices down the sentence matrix,
computing matrix convolutions:

I Sum of element-wise multiplications.

15



Stacking view (1:3)

I So far we’ve visualized inputs, filters, and filter outputs as sequences:
I What Goldberg (2017) calls the ‘concatenation notation’.
I An alternative (and perhaps more common) view: ‘stacking notation’.

I Imagine the n input embeddings stacked
on top of each other, resulting in an
n× d sentence matrix.

I Correspondingly, imagine each column u
in the matrix U ∈ Rkd×` be arranged as
a k × d matrix.

I We can then slide ` different k × d filter
matrices down the sentence matrix,
computing matrix convolutions:

I Sum of element-wise multiplications.

15



Stacking view (1:3)

I So far we’ve visualized inputs, filters, and filter outputs as sequences:
I What Goldberg (2017) calls the ‘concatenation notation’.
I An alternative (and perhaps more common) view: ‘stacking notation’.

I Imagine the n input embeddings stacked
on top of each other, resulting in an
n× d sentence matrix.

I Correspondingly, imagine each column u
in the matrix U ∈ Rkd×` be arranged as
a k × d matrix.

I We can then slide ` different k × d filter
matrices down the sentence matrix,
computing matrix convolutions:

I Sum of element-wise multiplications.

15



Stacking view (1:3)

I So far we’ve visualized inputs, filters, and filter outputs as sequences:
I What Goldberg (2017) calls the ‘concatenation notation’.
I An alternative (and perhaps more common) view: ‘stacking notation’.

I Imagine the n input embeddings stacked
on top of each other, resulting in an
n× d sentence matrix.

I Correspondingly, imagine each column u
in the matrix U ∈ Rkd×` be arranged as
a k × d matrix.

I We can then slide ` different k × d filter
matrices down the sentence matrix,
computing matrix convolutions:

I Sum of element-wise multiplications.

15



Stacking view (1:3)

I So far we’ve visualized inputs, filters, and filter outputs as sequences:
I What Goldberg (2017) calls the ‘concatenation notation’.
I An alternative (and perhaps more common) view: ‘stacking notation’.

I Imagine the n input embeddings stacked
on top of each other, resulting in an
n× d sentence matrix.

I Correspondingly, imagine each column u
in the matrix U ∈ Rkd×` be arranged as
a k × d matrix.

I We can then slide ` different k × d filter
matrices down the sentence matrix,
computing matrix convolutions:

I Sum of element-wise multiplications.

15



Stacking view (1:3)

I So far we’ve visualized inputs, filters, and filter outputs as sequences:
I What Goldberg (2017) calls the ‘concatenation notation’.
I An alternative (and perhaps more common) view: ‘stacking notation’.

I Imagine the n input embeddings stacked
on top of each other, resulting in an
n× d sentence matrix.

I Correspondingly, imagine each column u
in the matrix U ∈ Rkd×` be arranged as
a k × d matrix.

I We can then slide ` different k × d filter
matrices down the sentence matrix,
computing matrix convolutions:

I Sum of element-wise multiplications.

15



Stacking view (2:3)

I The stacking view makes the convolutions
more similar to what we saw for images.

I Except the width of the ‘receptive field’ is
always fixed to d,

I the height is given by k (aka region size),
I and we slide the filter in increments of d,
corresponding to the word boundaries,

I i.e. along the height dimension only.

16



Stacking view (3:3)
I Now imagine the output vectors p1:m stacked in a matrix P ∈ Rm×`.
I Each `-dimensional row of P holds the features extracted for a given

k-gram by different filters.
I Each m-dimensional column of P holds the features extracted across
the sequence for a given filter.

I These columns are sometimes referred to as feature maps.

17



Next step: pooling (1:2)
I The convolution layer results in m vectors p1:m.
I Each pi ∈ R` represents a particular k-gram in the input.
I m (the length of the feature maps) can vary depending on input length.
I Pooling combines these vectors into a single fixed-sized vector c.

18



Next step: pooling (2:2)
I The fixed-sized vector c (possibly in combination with other vectors) is
what gets passed to a downstream network for prediction.

I Want c to contain the most important information from p1:m.
I Different strategies available for ‘sampling’ features.

19



Pooling strategies

Max pooling
I Most common. AKA max-over-time pooling.
I c[j] = arg max

1<i≤m
pi[j] ∀j ∈ [1, l]

I Picks the maximum value across each dimension (feature map).

Average pooling

I c = 1
m

m∑
i=1

pi

I CBOW or average of all the filtered k-gram representations.

K-max pooling
I Concatenate the k highest values for each dimension / filter.
I Preserves relative ordering information (but insensitive to specific
positions).

20



Dynamic pooling

I Combines with any of the strategies above.
I Perform pooling separately over r different regions of the input.
I Concatenate the r resulting vectors c1, . . . cr.
I Allows us to retain positional information relevant to a given task (e.g.
based on document structure).

I Not using dynamic pooling is sometimes called global pooling.

21



Multiple window sizes

I So far considered CNNs with ` different filters for a single window size
k.

I Typically, CNNs in NLP are applied with multiple window sizes, and
multiple filters for each.

I Pooled separately, with the results concatenated.
I Rather large window sizes often used:
I 2–5 is most typical, but even k > 20 is not uncommon.

I With standard n-gram features, anything more than 3-grams quickly
become infeasible.

I CNNs learn to represent large n-grams efficiently, without blowing up
the parameter space and without having to represent the whole
vocabulary.

I (Related to the notion of ‘neuron’ in a CNN – will get back to this!)

22



Multiple window sizes

I So far considered CNNs with ` different filters for a single window size
k.

I Typically, CNNs in NLP are applied with multiple window sizes, and
multiple filters for each.

I Pooled separately, with the results concatenated.
I Rather large window sizes often used:
I 2–5 is most typical, but even k > 20 is not uncommon.
I With standard n-gram features, anything more than 3-grams quickly
become infeasible.

I CNNs learn to represent large n-grams efficiently, without blowing up
the parameter space and without having to represent the whole
vocabulary.

I (Related to the notion of ‘neuron’ in a CNN – will get back to this!)

22



Baseline architecture of Zhang et al. (2017)

23



What is a neuron in a convolution? (1:2)

I A CNN has no backward connections between layers, no cycles (as we’ll
have once we get to RNNs).

I Can therefore be seen as a type of feed-forward network.
I But in contrast to the fully-connected (‘dense’) layers of an MLP, the
convolution layers are ‘sparsely connected’.

I Each filter defines m identical neurons:
I Each neuron instance is fully-connected only for a given k-gram.
I After (max-)pooling; only the most strongly activated neurons are used.

24



What is a neuron in a convolution? (2:2)

I Alternatively: Think of each filter as defining an abstract neuron (like a
mathematical function).

I Allows us to apply this neuron multiple times.
I Example of weight sharing / parameter tying:
I The parameters are shared for all copies of the neuron.
I Allows us to have lots of neurons while having a relatively small number
of parameters to be learned.

25



Input length

I Conceptually, CNNs are independent of input-length.
I Pooling allows us to represent variable-length input with a fixed-sized
vector.

I Naturally deals with e.g. sentences of varying length.
I In practice, however, it is common to pad all inputs to match the
maximum input length (or some specified lower cut-off).

I Using some reserved token such as <PAD>.
I Main reason; batch computation: Each example in a batch is required
to have the same length.

26



Estimated parameters

I Backpropagation after the final prediction layer.
I Estimates MLP weights, the convolution weights and bias, and
(possibly) the embeddings.

I Embedding layer can be: learned from scratch or pre-trained.
I When pre-trained, the embedding layer can be:
I Static: fixed, no backpropagation.
I Dynamic: further trained / fine-tuned.
I CNNs also useful for representation learning!

27



CNNs and representation learning (1:2)

I Kim (2014) shows the effect
of fine-tuning embeddings
with a CNN for SA.

I Compares the 4 nearest
neighbors of words with static
and non-static embeddings.

I Deals with a well-known
challenge for distributional
semantics:

I Antonyms end up similar.
I Learned task-specific
embeddings can be useful
beyond the CNN.

Target Pre-trained Fine-tuned

bad

good terrible
terrible horrible
horrible lousy
lousy stupid

good

great nice
bad decent
terrific solid
decent terrific

n’t

os not
ca never
ireland nothing
wo neither

28



CNNs and representation learning (2:2)

I A CNN can also be used for creating document embeddings:
I The vectors produced by the pooling layer.
I Yields a fixed-sized representation, independent of input length.
I Similar documents / sentences will have pooling vectors that are close
to each other.

I Can be used for retrieval or other document similarity tasks.

29



Example CNN applications by LT MSc students

I Camilla E. S.: predicting abusive comments expressing threats of
violence, using the YouTube Threat Corpus.

I Eivind A. B.: predicting review ratings (1–6) using NoReC (Norwegian
Review Corpus).

I Karianne K. A.: will create sentiment lexicons based on embeddings
fine-tuned with a CNN for document-level SA classification.

I Mateo C. A.: CNN sentence classification for review summarization.
I Atle O.: CNN for predicting document meta-data, used for learning
document representations (the pooling layer) for text retrieval in the
Lovdata legal document collection.

I Eivind H. T.: will use them for predicting party affiliations of speeches
in the Talk of Norway Corpus of parliamentary proceedings.

I Celina M.: document classification for the Norwegian welfare
administration.

30



Example CNN applications by LT MSc students

I Camilla E. S.: predicting abusive comments expressing threats of
violence, using the YouTube Threat Corpus.

I Eivind A. B.: predicting review ratings (1–6) using NoReC (Norwegian
Review Corpus).

I Karianne K. A.: will create sentiment lexicons based on embeddings
fine-tuned with a CNN for document-level SA classification.

I Mateo C. A.: CNN sentence classification for review summarization.
I Atle O.: CNN for predicting document meta-data, used for learning
document representations (the pooling layer) for text retrieval in the
Lovdata legal document collection.

I Eivind H. T.: will use them for predicting party affiliations of speeches
in the Talk of Norway Corpus of parliamentary proceedings.

I Celina M.: document classification for the Norwegian welfare
administration.

30



Example CNN applications by LT MSc students

I Camilla E. S.: predicting abusive comments expressing threats of
violence, using the YouTube Threat Corpus.

I Eivind A. B.: predicting review ratings (1–6) using NoReC (Norwegian
Review Corpus).

I Karianne K. A.: will create sentiment lexicons based on embeddings
fine-tuned with a CNN for document-level SA classification.

I Mateo C. A.: CNN sentence classification for review summarization.
I Atle O.: CNN for predicting document meta-data, used for learning
document representations (the pooling layer) for text retrieval in the
Lovdata legal document collection.

I Eivind H. T.: will use them for predicting party affiliations of speeches
in the Talk of Norway Corpus of parliamentary proceedings.

I Celina M.: document classification for the Norwegian welfare
administration.

30



Example CNN applications by LT MSc students

I Camilla E. S.: predicting abusive comments expressing threats of
violence, using the YouTube Threat Corpus.

I Eivind A. B.: predicting review ratings (1–6) using NoReC (Norwegian
Review Corpus).

I Karianne K. A.: will create sentiment lexicons based on embeddings
fine-tuned with a CNN for document-level SA classification.

I Mateo C. A.: CNN sentence classification for review summarization.

I Atle O.: CNN for predicting document meta-data, used for learning
document representations (the pooling layer) for text retrieval in the
Lovdata legal document collection.

I Eivind H. T.: will use them for predicting party affiliations of speeches
in the Talk of Norway Corpus of parliamentary proceedings.

I Celina M.: document classification for the Norwegian welfare
administration.

30



Example CNN applications by LT MSc students

I Camilla E. S.: predicting abusive comments expressing threats of
violence, using the YouTube Threat Corpus.

I Eivind A. B.: predicting review ratings (1–6) using NoReC (Norwegian
Review Corpus).

I Karianne K. A.: will create sentiment lexicons based on embeddings
fine-tuned with a CNN for document-level SA classification.

I Mateo C. A.: CNN sentence classification for review summarization.
I Atle O.: CNN for predicting document meta-data, used for learning
document representations (the pooling layer) for text retrieval in the
Lovdata legal document collection.

I Eivind H. T.: will use them for predicting party affiliations of speeches
in the Talk of Norway Corpus of parliamentary proceedings.

I Celina M.: document classification for the Norwegian welfare
administration.

30



Example CNN applications by LT MSc students

I Camilla E. S.: predicting abusive comments expressing threats of
violence, using the YouTube Threat Corpus.

I Eivind A. B.: predicting review ratings (1–6) using NoReC (Norwegian
Review Corpus).

I Karianne K. A.: will create sentiment lexicons based on embeddings
fine-tuned with a CNN for document-level SA classification.

I Mateo C. A.: CNN sentence classification for review summarization.
I Atle O.: CNN for predicting document meta-data, used for learning
document representations (the pooling layer) for text retrieval in the
Lovdata legal document collection.

I Eivind H. T.: will use them for predicting party affiliations of speeches
in the Talk of Norway Corpus of parliamentary proceedings.

I Celina M.: document classification for the Norwegian welfare
administration.

30



Example CNN applications by LT MSc students

I Camilla E. S.: predicting abusive comments expressing threats of
violence, using the YouTube Threat Corpus.

I Eivind A. B.: predicting review ratings (1–6) using NoReC (Norwegian
Review Corpus).

I Karianne K. A.: will create sentiment lexicons based on embeddings
fine-tuned with a CNN for document-level SA classification.

I Mateo C. A.: CNN sentence classification for review summarization.
I Atle O.: CNN for predicting document meta-data, used for learning
document representations (the pooling layer) for text retrieval in the
Lovdata legal document collection.

I Eivind H. T.: will use them for predicting party affiliations of speeches
in the Talk of Norway Corpus of parliamentary proceedings.

I Celina M.: document classification for the Norwegian welfare
administration.

30



Next week: more on CNNs

I More advanced CNN architectures:
I Hierarchical convolutions
I Multiple channels

I Overview of the parameter space and design choices
I Tuning (Zhang & Wallace, 2015/2017)
I Use cases.

31


