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1 Comparing to a fixed reference value

We will take this step by step. First, consider the situation where it is well
known that the best parser has a 90% accuracy. You are not testing the
best parser. You are only testing your own parser. You test it on 1600
sentences and it parses 1460 of them correctly. You calculate this to be
91.25% accuracy and you wonder whether this is statistically significantly
better than 90%.

Let us take one step back and reflect a little: why can’t you just conclude
that this is better than 90%? Think about flipping a fair coin. You expect
it to come up heads half of the times you flip it. But you cannot from this
conclude that it should always come up heads exactly 5 times when flipped
10 times. Choosing test sentences is similar to flipping a coin or—maybe a
better analogy—drawing white and black balls from an urn. Suppose 90%
of the balls are white and 10% are black. If you pick 1600 balls from the urn,
you can’t expect to draw exactly 1440 white balls. There might be more—
there might be fewer. The question for us is: How unlikely is it that you
draw 1460 or more white balls? Example sentences are like white and black
balls. Whether you select a sentence that your parser can handle (=white)
or one it can’t handle(=black) is a random choice, just like drawing a ball.

So far the motivation. Let’s move on to the test procedure. First we
have to formulate the null hypothesis Hy and the alternative hypothesis H 4.

e Hy The accuracy of the parser < 0.9.
e H,: The accuracy of the parser > 0.9.

Observe that this is what is called a one-sided test: We are only testing
whether the parser’s accuracy is better than 0.9. If we instead wanted to
test whether the parser’s accuracy was different from 0.9—including the
possibility that it was less than 0.9—we would have perfomed what we call
a two-sided test. Observe also that Hy4 is not claiming that the parser’s
accuracy is 0.9125—only that it is better than 0.9.

To select one test sentence from all possible test sentences is what we
call a Bernoulli trial. The outcome is 1 or 0. It is 1 with probability p, here



0.9. Hence to select 1600 sentences is the same as performing 1600 Bernoulli
trials each with probability 0.9. (We here make the assumption that we are
drawing from a larger population with a lot more than 1600 sentences. We
are therefore entitled to think of it as a drawing with replacement.) Hence
we can model this with the binomial distribution B(1600, 0.9). We want to
answer how unlikely it is to get 1460 or more successes from this. This can
be calculated as

e 1 - binom_cdf(1459, 1600, 0.9)

In principle, we could have used our own implementation of this function
from obligl. But it turns out the implementation is not able to handle such
large numbers. Hence we turn to the SciPy implementation and calculate

e 1 - stats.binom.cdf(1459, 1600, 0.9)

The answer is 0.05003 (if we include 5 decimal places). Hence, it is exactly
on the border for whether we will conclude that the test is statistically
significant at the level 0.05. Strictly speaking it is not.

Exercise See how large a difference one test result can make by calculating
e 1 - stats.binom.cdf(1460, 1600, 0.9)

Why isn’t this the correct calculation given our observation?

1.1 Approximation by a normal distribution

Nowadays we can calculate the binomial distribution itself given proper soft-
ware. But in the older days one had to use normal distributions to approx-
imate the binomial distribution. It may still be useful in many situations
to use the normal distribution approximation. We will therefore also con-
sider how the same task can be solved by using the approximate normal
distribution.

To determine which normal distribution that approximates a particular
binomial distribution, one needs to calculate the mean and the standard
deviation. The mean is g = n x p = 1440. For the standard deviation, we
first consider the variance. We know that the variance of one Bernoulli trial
is p(1—p) = 0.9(1-0.9) = 0.09. And since we consider n independent trials,
the variance of n trials is np(1—p) = 1600x0.9(1—0.9) = 144. The standard
deviation is o = /np(1 — p) = /1600 x 0.9(1 — 0.9) = v/144 = 12. Hence
we use the standard distribution

N(u,0) = N(np,/np(1 — p)) = N(1440,12)

We calculate the z-score from the observation:
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To find the corresponding p-value, we may use a table or the normal distri-
bution in SciPy.

e 1 - stats.norm.cdf(5.0/3)

This yields 0.04779 (with five decimal places). This is quite close to the
number we found using the binomial distribution. In particular, it is between
the values we get for the binomial distribution for 1459 and 1460. But
interestingly enough, it is sufficiently different from the number we get by
using the cdf of the binomial distribution (with 1459) that this time we could
have concluded that the null hypothesis is refuted at the p = 0.05-level.

What can we learn from this approximation? Maybe that we should
not conclude too much from the last decimals in comparing p to 0.05. The
number 0.05 itself is also chosen somewhat arbitrarily.

1.1.1 Proportions

We could have stated the same problem by instead talking of proportions.

The proportion of successes is p = Count of successes _ 1508 = 0.9125. We
sample size

can then ask how unlikely it is to get this proportion when we expect 0.9.
For the normal approximation we now use the distribution:

p(1 —p))

N(u,0) = N(p, = N(0.9,0.075)

We calculate the z-score from the observation:
p—p 09125-0.9 5
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We see that we get the same result as when we used normal approximation
to the binomial distribution.

2 Calculating a confidence interval

Let us now restate the problem. Say we have no reference parser to compare
to. All we have are the results from testing our own parser, i.e., 1460
successful parses out of 1600 test items. This gives a success rate of 0.9125.
We want to estimate the true accuracy with a confidence level of .95.

We will use the normal distribution approximation for this. First we
have to establish a zx such that the area C of the standard density curve
between —z* and z* is 0.95. Observe how this differs from the testing above.
It corresponds to a two-sided test. We use probability mass 0.025 below —zx
and the same above zx.

We know that the corresponding value is zx = 1.96. (If you don’t remem-
ber this number, you may use a table or software. In SciPy the command
is stats.norm.ppf(0.975) ).



We do not know the true standard deviation. We estimate it from our
sample and calculate the sample standard deviation (sometimes called the
standard error).

5(1— p 0.9125(1 — 0.9125
SE, = \/p( p) _ \/ (1600 ) _ 0.00706416
n

This yields the interval
[p — 2*SE;, p+ 2"SE;] = [0.8986545, 0.9263455]

3 Comparing two sample proportions

Let us now turn to the situation described in the exercise. We have two
parsers. We test each of them on 1600 sentences. Parser A parses 1440 of
them correctly. Parser B parses 1460 of them correctly. Can we conclude
that parser B is better than parser A? We formulate the null hypothesis and
the alternative hypothesis.

e Hj: Parser B’s accuracy < parser A’s accuracy.

e H j:Parser B’s accuracy > parser A’s accuracy.

A general method for comparing two different samples and see whether
they can come from the same population is the two-sample ¢t-test. It can be
used to compare the height of say Norwegian and Swedish men. We may
select M Norwegian men and N Swedish men and calculate the t-score

= LNo — LSw
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and then use a t-distribution to find the corresponding p-value. Observe
that M and N may be different. This method was used in exercise 1 of this
exercise set for comparing the sentence length across different genres.

(The rules for selecting which t(k)-distribution to use are not so easy to
get. More and McCabe e.g., recommends to use software or the smaller of
M — 1 and N — 1 for k, which is a conservative lower bound. The built in
test in SciPy, called stats.ttest_ind, seems to use M + N — 2 for k.)

Anyway, that is of less importance for us here since we will test for
proportions. The test then gets the form

L DB — DA
SEp

where we for SEp may use
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(There are alternative ways to estimate SEp which in some situations
give more accurate approximations, but that is not important here for our
modest purposes).

Working with proportions it is usual to use the normal distribution itself,
also called the z-distribution, and not any ¢-distribution. (Observe by the
way that for large n the t-distribution comes close to the z-distribution.)

Plugging inn pa = 0.9125, pp = 0.9, and nga = np = 1600 we get a
z-score of 1.2132358 and a p-value of 0.1125. Hence we cannot reject the
null hypothesis.

We could here have chosen to use the built in t-test of SciPy directly.

e A = [1 for i in range(1440)]+[0 for i in range(160)]
e B = [1 for i in range(1460)]+[0 for i in range(140)]
e stats.ttest_ind(A,B)

e which returns (-1.212856..., 0.22527...)

The first returned number is the ¢-score, the second number is the p-value.
The p-value is here for the two-sided test. As we see, the numbers aren’t
very different from what we get when using the z-distribution.

4 Pairwise comparison

Let us first consider an analogous example. Say we are to test out a new
drug for lowering the cholesterol level in the patients’ blood. We let a
sample of persons with high cholesterol take the drug for three months. We
will measure the cholesterol level at the beginning of the experiment and
after three months and compare. There are several ways one could proceed.

One possibility is to measure the cholesterol level of all the patients at
the beginning of the experiment and calculate the mean. And then do the
same after three months: find the mean of the cholesterol level of all the
patients. One can then measure the difference between the two means and
see whether the latter mean is significantly lower than the first mean. One
possible outcome is that the second mean is lower, but that the difference
is not statistically significant thanks to the large variance within the group.

Another approach would be to for each patient to measure the cholesterol
level at the beginning of the experiment and then again after three months
and take the difference. One may then consider the sample of the differences
for all the patients, take the mean and check whether that is significantly
below zero. We might get a statistically significant result with the second
procedure even if we don’t get it by the first procedure.

Also when comparing two classifiers, we may take two similarly different
approaches. The first is what we did in the last section, evaluating each of



the two classifiers on its own test set, taking the average and then compare
to the results for the other classifier. The other approach is to test the two
classifiers on the same test items and compare them item for item. If one of
the classifiers is correct on all items where the other is correct and on a few
more items, we might conclude that it is a better classifier, even though the
difference in measured accuracy is not large.

Let us see how the given example is doing. If we use 1 for success and 0
for failure, the variable X will take the value 1 for 45 items in the sample,
the value -1 for 25 items, and the value 0 for the remaining 1530 items.

We then have to formulate our hypotheses

.HD:YC’SO
e Hy: X >0

before we can carry out a one-sided the test.

When I did that I got a t-value of 2.3940 and a p-value of 0.00839. We
can then refute the null hypothesis not only on the 0.05 level, but even on
the 0.01 level.

4.1 The sign test

There is one problem with using the t-test, t-distribution or z-distribution
like this. They all assume a normal distribution of the data to be correct. If
the data is not normally distributed, these distributions are only more or less
accurate approximations. Tests which assume some particular distributions
are called parametric.

We cannot assume the variable X¢ to be normally or binomially dis-
tributed. It is considered more correct to use a so-called non-parametric
test which makes no such assumptions. The simplest such test is the sign
test. This test only considers the items where the two classifiers yield dif-
ferent results. It disregards all items where the two agree. It then counts
how many times one is better and how many times the other is better, here
45 and 25. The expectation is that if the two classifiers are equally good,
these numbers should be roughly equal. We therefore ask how likely it is
that parser B performs better than parser A on 45 or more out of 70 items?
A way to measure this is to use the binomial distribution for 70 items with
p=0.5 and ask how probable it is to get 45 or more successes. We can
calculate this using SciPy as follows.

e 1 - stats.binom(44, 70, 0.5)

The answer is 0.01123. The number is a little bigger than the one we got
using the t-test, but it more than suffices to conclude that parser B is better
than parser A at the 0.05 level.



4.2 Bootstrapping

Jurafsky and Martin, 3.ed, sec. 7.3 describes an alternative way for carrying
out nonparametric tests where they apply bootstrapping. Unfortunately,
the description in the book is to dense to understand what they are doing.
To explain it in an understandable way would take 3-5 pages. Therefore, we
forget about their procedure for the moment. We might return to it towards
the end of the semester, but don’t worry about it for the time being.



