
1

INF5830, 2015, Obligatory assignment 1
Deadline: Sept. 18, 18.00
To be delivered in devilry

Exercise 1 – Probabilities and Python
When we apply probabilities and statistics we will mainly use packages with built-in functions. But to
get a better understanding of what we are doing, it is good training to implement some of it
ourselves. We will in this exercise use basic Python and not packages like math, numpy or scipy. We
will then later on compare our implementations with these packages.

a) Implement a function factor(n) which returns the factorial of n when n is an integer >0. (i.e.
f(n) = n! = 1*2*…*n, and f(0)=1.)

b) Implement a function binom(m, n) which to two integers where n > m > 0 returns �𝑛𝑚�.
c) Implement a function binom_pmf(k, n, p) where k and n are integers, where n > k > 0, and p

is a real 1 > p > 0. The function returns the probability mass function at k for the binomial
distribution of n individuals with probability p.

d) Implement a function binom_cdf(k, n, p) with the same arguments which returns the value of
the cumulative distribution function at k.

e) Fix n=8 and p=1/2 and calculate the pmf and cdf for k=0, 1, 2, …, 8. Report the numbers in a
table. This corresponds to flipping a fair coin 8 times.

f) Repeat similarly for n=5 and p=1/6. This corresponds to throwing a fair dice and counting 6s
as success.

Observe that 1/6 in python will return 0. You might either use 1.0/6 or
from __future__ import division
before you start

Exercise 2 – Python library: math
Python comes with a standard library with several useful modules. One such module is math which
contains a collection of useful mathematical functions, e.g. the factorial function

a) Try
• import math
• math.factorial(13)

See that you get the same results as with your own
• factor(n)

Use math.<tab> to get an impression of which functions are available in math. We will in
particular later on make use of exp and the log-functions.
(No delivery at this point.)

2

Exercise 3 – Python library: random
Computers are deterministic. They do not act randomly. However, they can simulate randomness
and act so-called pseudo randomly. There is a module random in the standard library with several
useful functions.

a. In particular, the function random.random() returns a real number between 0 and 1. We can
use this e.g. as follows.

def bernoulli(p):
 if random.random() < p:
 return 1
 else:
 return 0

What does this function simulate? Run bernoulli(0.5) 10 times and record the results.

b. We will then see what happens when we perform n Bernoulli trials (flip the coin or throw the

dice n times). Make a function bin_exper(n, p) which performs n random Bernoulli
experiments with probability p and return the number of successes. Run bin_exper(10, 0.5)
ten times and report the results.

c. We will inspect the effect of running an experiment many times and taking the averages.
Make a function bin_freqs(m, n, p) which runs bin_exper(n, p) m many times and returns the
relative frequencies of k successes for k = 0, 1, …, n.

d. Fix p=0.5 and n=8 and see what happens when m varies. Run bin_freqs for m= 4, 10, 100,
1000, 10000. Report the results in a (6*9) table where you also include the values for the
theoretical distribution binom_pmf(k, n, p) from exercise (1)

e. To familiarize yourself a little more with random try the following
>>> a = range(100)
>>> random.choice(a)
>>> random.choice(a)
>>> random.sample(a,10)
>>> random.sample(a,10)
>>> random.shuffle(a)
>>> a

Make sure you understand the commands. (No deliveries at this point).

Exercise 4 – Conditional frequency distributions
The NLTK book, chapter 2, has an example in section 2.1 in the paragraph Brown Corpus where they
compare the use of modals across different genres. We will conduct a similar experiment, but we will
instead inspect the differences in gender. We are in particular interested in to which degree the
different genres use the masculine pronouns (he, him) or the feminine pronouns (she, her).

a. Conduct a similar experiment as the one mentioned above with the genres: news, religion,
government, fiction, romance as conditions, and the words: he, she, her, him. Make a table
and deliver code and table.

3

b. Do you see any interesting differences between genres?
c. The experiment reveals not only differences between the genders but also between the

cases, where he, she have subjective case, and him, her have objective case. We will explore
this further. We will consider the whole Brown corpus. We will check how case varies with
gender. We will do this by constructing a conditional frequency distribution where we use
gender as condition and for each gender count the occurrences of subjective and objective
case. Report the results in a two by two table. Deliver table and code.
(Help: You may read more about conditional frequency distributions in section 2.2 of the
NLTK book.)

d. Answer in 5-10 lines: What does this experiment reveal about language and culture?

Exercise 5 – Downloading texts and Zipf’s law
In this exercise we will consider Zipf’s law which is explained in exercise 23 in NLTK chapter 2. You
may also consult Wikipedia. We will use the text Tom Sawyer as that is also used in the book
Foundations of Statistical Natural Language Processing for studying Zipf’s law.

a. First you need to get hold of the text. It can be downloaded from project Gutenberg as
explained in section 3.1 in the NLTK book.

b. Then you have to do some clean up. For example, there might be additional headers in the
text which are not part of the text itself.

c. You can then extract the words. Explain the steps you take here and in point (b) above.
(You may use nltk.word_tokenize().)

d. Use the nltk.FreqDist() to count the words. Report the 20 most frequent words in a table
with their absolute frequencies.
(Observe that in the NLTK book first ed. FreqDist.keys() are sorted by frequencies. Not
anymore. Use FreqDist.most_common()).

e. Consider the frequencies of frequencies. How many words occur only 1 time? How many
words occur n times, etc. for n = 1, 2, …, 10; how many words have between 11 and 50
occurrences; how many have 51-100 occurrences; and how many have more than 100
occurrences? Report in a table!

f. Let r be the frequency rank for each word and n its frequency. According to Zipf’s law r*n
should be nearly constant. Calculate r*n for the 20 most frequent words and report in a
table? How well does this fit Zipf’s law?

The end

	INF5830, 2015, Obligatory assignment 1
	Exercise 1 – Probabilities and Python
	Exercise 2 – Python library: math
	Exercise 3 – Python library: random
	Exercise 4 – Conditional frequency distributions
	Exercise 5 – Downloading texts and Zipf’s law

