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NATURAL LANGUAGE PROCESSING 

Jan Tore Lønning, Lecture 5, 14.9 



Today – more statistics 

 Sampling distributions 
 Normal distributions 
 The effect of sample size 
 Hypothesis testing 
 Estimation 

 With known standard deviation 
 With unknown standard deviation 



Sampling distribution 

Utvalgsfordeling 



Sampling - empirically 

Goal:  
 make assertions about a whole population 
 from observations of a sample (utvalg) 

 A simple random sample (SRS) (tilfeldig utvalg): 
1. Each individual has equal chance of being chosen 

(unbiased/forventningsrett) 
2. Selection of the various individuals are independent 



Sampling distributions – Example  

 Height: X 
 assume N(180, 6) 

 (Var=36) 

 Randomly choose 100. 

 Add their heights:  
S = X1+ X2+…+ Xn 

 A new random variable  
(all such samples) 
 Exp(S) = n*µ= 18000 (cm) 

 Var(S) = 100*Var(X) = 3600 

 𝜎𝑆 = 10 × 𝜎𝑋 = 60 (𝑐𝑐) 

 

 

 

 

 

 

 

Source: Wikipedia 



Sampling distributions – Example  

 Height: X 
 assume N(180, 6) 

 (Var=36) 

 Randomly choose 100. 

 Add their heights:  
S = X1+ X2+…+ Xn 

 A new random variable  
(all such samples) 
 Exp(S) = n*µ= 18000 (cm) 

 Var(S) = 100*Var(X) = 3600 

 𝜎𝑆 = 10 × 𝜎𝑋 = 60 (𝑐𝑐) 

 

 

 

 

 

 

 

 The mean of the samples:  
 X̄ =S/n 

 A new random variable  
(all such means of samples of 
100) 

 Exp(X̄) = µ= 180 (cm) 

 𝜎𝑋� = 1
100

× 𝜎𝑆 = 0.6 (𝑐𝑐) 

 



Sampling distributions  

 Let  
 X be a random variable for a population with exp: µ, std: σ 
 Let S = X1+ X2+…+ Xn, i.e. each Xi equals X 
 Let : X̄ =S/n 
 

 Then: 
 Exp(S) = n*µ 
 Exp(X̄) = µ 
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The form of the distribution 

 If the Xi-s are independent and normally 
distributed, then X̄ is normally distributed (as 
expected) 

 (More surprisingly) Even though the Xi-s themselves 
are not normally distributed: for large n-s,  X̄ is 
approximately normally distributed 

 = Central Limit Theorem 



Example: throwing the dice until a 6 

Sample size 

1 

4 

10 

100 

Number of samples: 1000 

𝐸 𝑋� = 𝐸 𝑋 = 𝜇 = 6 

𝜎𝑋� =
𝜎
𝑛

=
6 × 5
𝑛

 

Trivia question: How many dice throws,roughly? 



So what? 

 This means that 
 Given a population P with  
 a known mean and  
 known standard deviation 
 and we meet a set of objects S of some size, 

 We can say something about how likely/unlikely it is 
that this set S is a simple random sample from P 



Normal distribution 



Normal distribution 

 We will take a closer look on the normal distribution 
for one individual before considering samples.  



Example height (contd.) 

 Tallness of Norwegian young men (rough numbers): 
 Normal distribution 
 µ = 180 cm 
 σ = 6cm 

 
 How many are taller than 190cm? 

 First calculate the z-score  
 (how many standard deviations is this?) 

 𝑧 = 𝑥−𝜇
𝜎

=  190−180
6

= 1.67 

 Use software, calculator or table to find the corresponding 
probability 

 Here 0.0475  
 



68% - 95% - 99.7% 



Look up 

 Statistical table 
 course.shufe.edu.cn/jpkc/jrjlx/ref/StaTable.pdf 
 

 SciPy 
  >>>import scipy 
  >>> from scipy import stats 

 
  >>> stats.norm.cdf(10/6) 
 0.9522096477271853 
 >>> 1-stats.norm.cdf(10/6) 
 0.047790352272814696 

 
 >>> stats.norm.cdf(190,180,6) 
 0.9522096477271853 

 
 

http://course.shufe.edu.cn/jpkc/jrjlx/ref/StaTable.pdf


Table 

 Given probability p, for which h is P(x>h) < p? 
 Standardize,  calculate the Z-score: 𝑧 = 𝑥−𝜇

𝜎
 

 𝑃 𝑥 > ℎ = 𝑃(𝑥−𝜇
𝜎

> ℎ−𝜇
𝜎

) = 𝑃(𝑧 > ℎ−𝜇
𝜎

) 

 Use table or software to look up z 
 h = σ z+µ 

 
 
 

Probability 
p-value 

z-score centimeters height 

0.1 1.28 7.68 187.68 

0.05 1.645 9.87 189.87 

0.01 2.326 14 194 

0.001 3.091 18.5 198.5 



Look up 

 Statistical table 
 course.shufe.edu.cn/jpkc/jrjlx/ref/StaTable.pdf 
 

 SciPy 
 >>> stats.norm.ppf(.999) 
 array(3.0902323061678132) 
 

http://course.shufe.edu.cn/jpkc/jrjlx/ref/StaTable.pdf


The effect of the sample size 



Relationship h, n for P(x̄ < h) < 0.01 

sample size σ/sqrt(n) z-value centimeters height 

1 6 -2.326 14 194 
4 3 7 187 
36 1 2.3 182.3 
100 6/10 1.4 181.4 
1000 0.19 0.42 180.42 



Relationship h, p when n=100 

probability z-value centimeters height 

0.1 1.28 0.768 180.768 
0.05 1.645 0.987 180.987 
0.01 2.326 1.4 181.4 
0.001 3.091 1.85 181.85 



Hypothesis testing 



Hypothesis testing 

 A population P2 
 Could be: 
 Norw. males 50ys olds in 2007 
 Norw. females 18ys olds in 2007 
 Norw. males 18ys olds in 1957 
 Swe. males 18 ys olds in 2007 
 Etc. 

 Are the individuals in P2 shorter than they in P? 
 Pick a random sample {x1, x2, …, xn} from P2 

 Null hypothesis, H0 : µP2 = µ 
 Hypothesis, Ha : µP2 < µ 

 



 We formulate the question: What is the chance {x1, x2, 
…, xn} could have been a s.r.s. from P? 

 For example,  
 If we take a SRS from P2 of n=100 individuals, 
 and we find x̄ = 178.5, 
 we can conclude there is less than 0.01 chance that {x1, x2, 

…, xn} is a s.r.s. from P 

 In other words, if P and P2 had been equal (w.r.t. 
height), there is less than 1% chance that we would 
have chosen such a SRS 



Conclusion, jargon 

 In other words, if P and P2 had been equal (w.r.t. 
height), there is less than 1% chance that we would 
have chosen such a SRS 

 The p-value is less than 0.01 
 The hypothesis Ha is significant at level 0.01  

 and 0.05 
 But not 0.001 



Recipe 

 Formulate Ha and H0 
 Sample an appropriate SRS and find its mean value, 𝑋� 
 Calculate the Z-score: 𝑧 = 𝑥−𝜇

𝜎
 

 
 Ha: µP2 < µ is P(X < z) 
 > similarly:  
 Ha: µP2 =/= µ is 2×P(X > |z|) 

 
 



Remarks 

Truth 

H0 Ha 

 
Decision 

Not rejecting 
H0 

Type II error 

Reject H0 Type I error 
Prob. p-value 

 There is a chance of probability p that we erroneously reject 
H0 (Type I error) 

 The test does not estimate type II error 
 Says nothing about how much the difference is between P2 

and P 
 Many possible banana skins: E.g. is the sample really random? 



Estimation 



Population estimation 

 With a known mean µ: 
we consider P(x̄ < µ - e) for means of samples. 

 If we do not know the true mean µ, we see that 
 P( µ >  x̄ + e) = P(x̄ < µ - e), and  
 P(x̄ – e < µ <  x̄ + e) = P( µ - e < x̄ < µ + e) 



Population estimation 

 We may estimate µ: 
 from a random sample {x1, x2, …, xn}  
 with a certain confidence level C, where 0<C<1) 
 if we know the true standard deviation σ 

 Let 
 z* be such that the area under the standard normal 

curve between -z* and z* is C 
 Then the level C confidence interval for µ is 

 [x̄ - e,  x̄ + e]  
 where 

 n
ze σ*= •Normal distribution: Exact  

•Always: approx. for large n 



 The blue intervals indicate [x̄ - e,  x̄ + e] for various samples 
 Some of them miss µ 



Example 

 18 ys old men from Finnmark 
 Pick a random sample of 100 men: 

  x̄  = 177 
 Estimate the average height for this population 

 Choose confidence level 0.95 
 
 

 The 95% confidence interval for µ: [175.8, 178.2] 
 This presupposes that we know σ! 

 Not normally the case 
 
 

176.1177
100
696.1177* ±=±=±

n
zx σ



Unknown standard deviation 



Estimation 

 How to estimate the true mean µ of a sample if the 
standard deviation σ of the population is unknown? 

 All we have is a sample X= {x1, x2, …, xn} 
 The sample mean x̄ is still the best estimate of the 

pop. mean µ  
 How good an estimate is this? 



Estimation 

 To determine this, we try to estimate the true 
standard deviation of the population. 

 We use the standard deviation of the sample X,  
 s2 = ((x1 – x̄)2 + (x2 – x̄)2 + …+ (xn  – x̄)2 )/(n – 1) 
 Observe (n-1) and not n 
 That is to compensate for using x̄ instead of µ in the 

formula 

s is a random variable (like x̄) over all s.r.samples of size n 
s is an unbiased estimator for σ: Exp(s)= σ 



Estimation 

 In addition we do not use the standard Z-
distribution but the t-distribution for n-1. 

 Then the level C confidence interval for µ is 
 [x̄ - e,  x̄ + e]  
 Where 

 
 and t* is the value from the t(n-1) density curve for C 
 

n
ste *=

The t-distribution is similar to the z-distribution for large n. 
But is more picky when t is small 



Example 

 Assume we do not know the st.dev. 18 ys old men from Finmark 
 Pick a random sample of 9 men: 

  x̄  = 177, s = 5 
 Estimate the average height for this population 

 Choose confidence level 0.95 
 
 
 
 

 
 The 95% confidence interval for µ: [173.1, 180.9] 
 Exact for normal distribution 
 Approximation for large n otherwise 

 

Table, or 

843.3177
9

5306.2177* ±=±=±
n
stx

In   [78]: stats.t.ppf(.025,8) 
Out[79]: -2.3060041350333709 



T-test 

 The z-significance test assumed that: 
 we know the true mean and st.dev for the population, µ 

and σ 

 If we know µ but not σ 
 we use the T-test for one sample 

 The difference is that we use 
 the sample standard deviation s 
 the t(n-1)-distribution instead of the normal distribution 



Summary 

σ known σ unknown 

Estimation: 
Choose confidence level, 
e.g. 95% or 99% (C=0.99) 

Find z-value z* (value for 
standard norm. distr) s.t. 
P(x|-z*<x<z*)=C 
Confidence interval: 
 
 

Find t-value t* at the  
t(n-1)- curve s.t. 
P(x|-t*<x<t*)=C 
Confidence interval: 
 

Test of significance: 
{x1, x2, … xn} a S.R.S 
from a population with 
unknown µ, is µ<µ0? 

Calculate 
 
P-value: P=P(x<z)  

Calculate 
 
at the t(n-1)- curve 
P-value: P=P(x<t)  

Is µ≠µ0? P-value: P=2P(x<|z|) P-value: P=2P(x<|t|) 

The hypothesis  µ<µ0 is 
significant at level α, if 
P<α 
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