INF5830-2015 FALL NATURAL LANGUAGE PROCESSING

Jan Tore Lønning, Lecture 5, 14.9

Today - more statistics

\square Sampling distributions
\square Normal distributions
\square The effect of sample size
\square Hypothesis testing
\square Estimation
\square With known standard deviation
\square With unknown standard deviation

Sampling distribution

Utvalgsfordeling

Sampling - empirically

Goal:

\square make assertions about a whole population
\square from observations of a sample (utvalg)
\square A simple random sample (SRS) (tilfeldig utvalg):

1. Each individual has equal chance of being chosen (unbiased/forventningsrett)
2. Selection of the various individuals are independent

Sampling distributions - Example

- Height: X
- assume $N(180,6)$
- (Var=36)
- Randomly choose 100.
\square Add their heights:

$$
S=X_{1}+X_{2}+\ldots+X_{n}
$$

\square A new random variable (all such samples)
$\square \operatorname{Exp}(S)=n^{*} \mu=18000(\mathrm{~cm})$
$\square \operatorname{Var}(S)=100^{*} \operatorname{Var}(X)=3600$

- $\sigma_{S}=10 \times \sigma_{X}=60(\mathrm{~cm})$

Sampling distributions - Example

- Height: X
- assume $N(180,6)$
- (Var=36)
- Randomly choose 100.
\square Add their heights: $\mathrm{S}=\mathrm{X}_{1}+\mathrm{X}_{2}+\ldots+\mathrm{X}_{\mathrm{n}}$
\square A new random variable (all such samples)
- $\operatorname{Exp}(S)=n * \mu=18000(c m)$
- $\operatorname{Var}(\mathrm{S})=100 * \operatorname{Var}(\mathrm{X})=3600$
- $\sigma_{S}=10 \times \sigma_{X}=60(\mathrm{~cm})$
\square The mean of the samples:
$\square \overline{\mathrm{X}}=\mathrm{S} / \mathrm{n}$
- A new random variable (all such means of samples of 100)
$\square \operatorname{Exp}(\bar{X})=\mu=180(\mathrm{~cm})$
$\square \sigma_{\bar{X}}=\frac{1}{100} \times \sigma_{S}=0.6(\mathrm{~cm})$

Sampling distributions

Let

$\square X$ be a random variable for a population with exp: μ, std: σ
\square Let $S=X_{1}+X_{2}+\ldots+X_{n}$ i.e. each X_{i} equals X
\square Let: $\bar{X}=S / n$

Then:

$\square \operatorname{Exp}(S)=n^{*} \mu$
$\square \operatorname{Exp}(\bar{X})=\mu$
$\operatorname{Var}(S)=\sigma_{S}^{2}=n \times \operatorname{Var}(X)=n \times \sigma_{X}^{2}$
$\operatorname{Var}(\bar{X})=\sigma_{\bar{X}}^{2}=\frac{1}{n^{2}} \times \operatorname{Var}(S)=\frac{1}{n} \times \sigma_{X}^{2}$
ㅁ

$$
\sigma_{\bar{X}}=\frac{1}{\sqrt{n}} \times \sigma_{X}
$$

The form of the distribution

\square If the Xi -s are independent and normally distributed, then \bar{X} is normally distributed (as expected)
\square (More surprisingly) Even though the Xi -s themselves are not normally distributed: for large $n-s, \bar{X}$ is approximately normally distributed
$\square=$ Central Limit Theorem

Example: throwing the dice until a 6

Number of samples: 1000

$E(\bar{X})=E(X)=\mu=6$
$\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}}=\frac{\sqrt{6 \times 5}}{\sqrt{n}}$

4

Trivia question: How many dice throws,roughly?

So what?

\square This means that
\square Given a population P with
\square a known mean and
\square known standard deviation

- and we meet a set of objects S of some size,
\square We can say something about how likely/unlikely it is that this set S is a simple random sample from P

Normal distribution

\square We will take a closer look on the normal distribution for one individual before considering samples.

Example height (contd.)

\square Tallness of Norwegian young men (rough numbers):
\square Normal distribution
$\square \mu=180 \mathrm{~cm}$
$\square \sigma=6 \mathrm{~cm}$
\square How many are taller than 190cm?
\square First calculate the z-score
(how many standard deviations is this?)
$\square Z=\frac{x-\mu}{\sigma}=\frac{190-180}{6}=1.67$

\square Use software, calculator or table to find the corresponding probability

- Here 0.0475

68\%-95\%-99.7\%

Look up

\square Statistical table

- course.shufe.edu.cn/ipkc/irilx/ref/StaTable.pdf
\square SciPy
ㅁ >>>import scipy

- >>> from scipy import stats
- >>> stats.norm.cdf(10/6)
- 0.9522096477271853
- >>> 1-stats.norm.cdf(10/6)
- 0.047790352272814696
$\square \ggg$ stats.norm.cdf(190,180,6)
- 0.9522096477271853

Table

\square Given probability p , for which h is $\mathrm{P}(\mathrm{x}>\mathrm{h})<\mathrm{p}$?
\square Standardize, calculate the Z-score: $z=\frac{x-\mu}{\sigma}$
$\square P(x>h)=P\left(\frac{x-\mu}{\sigma}>\frac{h-\mu}{\sigma}\right)=P\left(z>\frac{h-\mu}{\sigma}\right)$
\square Use table or software to look up z
$\square \mathrm{h}=\sigma \mathrm{z}+\mu$

Probability p-value	Z-score	centimeters	height
0.1	1.28	7.68	187.68
0.05	1.645	9.87	189.87
0.01	2.326	14	194
0.001	3.091	18.5	198.5

Look up

\square Statistical table
口 course.shufe.edu.cn/ipkc/irilx/ref/StaTable.pdf
\square SciPy

- >>> stats.norm.ppf(.999)

- array(3.0902323061678132)

The effect of the sample size

Relationship h, n for $\mathrm{P}(\overline{\mathrm{x}}<\mathrm{h})<0.01$

sample size	$\sigma /$ sqri(n)	z-value	centimeters	height
1	6	-2.326	14	194
4	3		7	187
36	1		2.3	182.3
100	$6 / 10$		1.4	181.4
1000	0.19		0.42	180.42

Relationship h, p when $\mathrm{n}=100$

probability	z-value	centimeters	height
0.1	1.28	0.768	180.768
0.05	1.645	0.987	180.987
0.01	2.326	1.4	181.4
0.001	3.091	1.85	181.85

Hypothesis testing

\square A population P2
\square Could be:
■ Norw. males 50ys olds in 2007

- Norw. females $18 y s$ olds in 2007

■ Norw. males $18 y s$ olds in 1957

- Swe. males 18 ys olds in 2007
- Etc.
\square Are the individuals in P2 shorter than they in P?
\square Pick a random sample $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ from P2
\square Null hypothesis, $H_{0}: \mu_{\mathrm{P} 2}=\mu$
\square Hypothesis, $\mathrm{H}_{\mathrm{a}}: \mu_{\mathrm{P} 2}<\mu$
\square We formulate the question: What is the chance $\left\{x_{1}, x_{2}\right.$, $\left.\ldots, x_{n}\right\}$ could have been a s.r.s. from P ?
\square For example,
- If we take a SRS from P2 of $\mathrm{n}=100$ individuals,
\square and we find $\bar{x}=178.5$,
\square we can conclude there is less than 0.01 chance that $\left\{x_{1}, x_{2}\right.$, $\left.\ldots, x_{n}\right\}$ is a s.r.s. from P
\square In other words, if P and P2 had been equal (w.r.t. height), there is less than 1% chance that we would have chosen such a SRS

Conclusion, jargon

\square In other words, if P and P2 had been equal (w.r.t. height), there is less than 1% chance that we would have chosen such a SRS
\square The p -value is less than 0.01
\square The hypothesis H_{a} is significant at level 0.01
\square and 0.05
\square But not 0.001

Recipe

\square Formulate H_{a} and H_{0}
\square Sample an appropriate SRS and find its mean value, \bar{X}
\square Calculate the Z-score: $Z=\frac{x-\mu}{\sigma}$
$\square H_{a}: \mu_{\mathrm{P} 2}<\mu$ is $\mathrm{P}(\mathrm{X}<\mathrm{z})$
$\square>$ similarly:
$\square \mathrm{H}_{\mathrm{a}}: \mu_{\mathrm{P} 2}=/=\mu$ is $2 \times \mathrm{P}(\mathrm{X}>|\mathrm{z}|)$

Remarks

		Truth	
		H0	Ha
Decision	Not rejecting HO		Type II error
	Reject HO	Type I error Prob. p-value	

\square There is a chance of probability p that we erroneously reject HO (Type I error)
\square The test does not estimate type II error
\square Says nothing about how much the difference is between P2 and P
\square Many possible banana skins: E.g. is the sample really random?

Population estimation

\square With a known mean μ :
we consider $\mathrm{P}(\overline{\mathrm{x}}<\mu-\mathrm{e})$ for means of samples.
\square If we do not know the true mean μ, we see that
$\square \mathrm{P}(\mu>\overline{\mathrm{x}}+e)=\mathrm{P}(\bar{x}<\mu-e)$, and
$\square \mathrm{P}(\overline{\mathrm{x}}-\mathrm{e}<\mu<\overline{\mathrm{x}}+\mathrm{e})=\mathrm{P}(\mu-\mathrm{e}<\overline{\mathrm{x}}<\mu+\mathrm{e})$

Population estimation

\square We may estimate μ :
\square from a random sample $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
\square with a certain confidence level C, where $0 \leq C \leq 1$)
\square if we know the true standard deviation σ
\square Let
$\square z^{*}$ be such that the area under the standard normal curve between -z* and z^{*} is C
\square Then the level C confidence interval for μ is
$\square[\bar{x}-e, \bar{x}+e]$
\square where $e=z^{*} \frac{\sigma}{\sqrt{n}}$

- Normal distribution: Exact
-Always: approx. for large n

\square The blue intervals indicate $[\bar{x}-e, \bar{x}+e]$ for various samples
\square Some of them miss μ

Example

$\square 18$ ys old men from Finnmark
\square Pick a random sample of 100 men:

- $\bar{x}=177$
\square Estimate the average height for this population
- Choose confidence level 0.95

$$
\bar{x} \pm z^{*} \frac{\sigma}{\sqrt{n}}=177 \pm 1.96 \frac{6}{\sqrt{100}}=177 \pm 1.176
$$

\square The 95% confidence interval for μ : [175.8, 178.2]
\square This presupposes that we know σ !
\square Not normally the case

Estimation

\square How to estimate the true mean μ of a sample if the standard deviation σ of the population is unknown?
\square All we have is a sample $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
\square The sample mean \bar{x} is still the best estimate of the pop. mean μ
\square How good an estimate is this?

Estimation

\square To determine this, we try to estimate the true standard deviation of the population.
\square We use the standard deviation of the sample X,
$\square s^{2}=\left((x 1-\bar{x})^{2}+(x 2-\bar{x})^{2}+\ldots+(x n-\bar{x})^{2}\right) /(n-1)$
\square Observe ($n-1$) and not n
\square That is to compensate for using \bar{x} instead of μ in the formula
s is a random variable (like \bar{x}) over all s.r.samples of size n s is an unbiased estimator for $\sigma: \operatorname{Exp}(\mathrm{s})=\sigma$

Estimation

\square In addition we do not use the standard Zdistribution but the t -distribution for $\mathrm{n}-1$.
\square Then the level C confidence interval for μ is
$\square[\bar{x}-e, \bar{x}+e]$

- Where

$$
e=t * \frac{s}{\sqrt{n}}
$$

\square and t^{*} is the value from the $t(n-1)$ density curve for C

The t -distribution is similar to the z -distribution for large n . But is more picky when t is small

Example

\square Assume we do not know the st.dev. 18 ys old men from Finmark
\square Pick a random sample of 9 men:

- $\bar{x}=177, s=5$
\square Estimate the average height for this population
- Choose confidence level 0.95

Table, or
In [78]: stats.t.ppf(.025,8)
Out[79]: -2.3060041350333709

$$
\bar{x} \pm t * \frac{s}{\sqrt{n}}=177 \pm 2.306 \frac{5}{\sqrt{9}}=177 \pm 3.843
$$

\square The 95\% confidence interval for μ : [173.1, 180.9]
\square Exact for normal distribution
\square Approximation for large n otherwise

T-test

\square The z-significance test assumed that:
\square we know the true mean and st.dev for the population, μ and σ
\square If we know μ but not σ
\square we use the T -test for one sample
\square The difference is that we use
\square the sample standard deviation s
\square the $t(n-1)$-distribution instead of the normal distribution

Summary

	σ known	σ unknown

