UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Exam in INF5830 - Natural language processing
Day of exam: 8 December 2015
Exam hours: at 09:00-4 hours
This examination paper consists of 3 pages including this.
Appendices:
Statistical formulas - 1 page
Statistical table - 4 pages
Permitted materials: None

Make sure that your copy of this examination paper is complete before answering.

- You may answer in English, Norwegian, Danish or Swedish.
- You should answer all questions. The weight of the various questions are indicated.
- You should read through the whole set to see whether anything is unclear so that you can ask your questions to the teachers when they arrive.
- If you think some assumptions are missing, make your own and explain them!

1 Evaluation and significance (20\%)

(a) You are testing two classifiers for supervised relation extraction. You are testing them on 100 labeled test items. Classifier 1 classfies 60 of the items correctly, while classifier 2 classifies 50 of the items correctly. Would you from this observation conclude that classifier 1 is significantly better than classifier 2? State reasons for your answer.
(b) Suppose that you in addition for each of the 100 test items record the result of each of the two classifiers, and get the following numbers:

- Both classifiers are correct on 45 items.
- Both classfiers are incorrect on 35 items.
- Classifier 1 is correct and classifier 2 is incorrect on 15 items.
- Classifier 2 is correct and classifier 1 is incorrect on 5 items.

Would you from these observations conclude that classifier 1 is significantly better than classifier 2? State reasons for your answers. (In case you find the actual calculations hard, explain how you would proceed to solve the exercise if you had a computer or calculator available.)

2 Dependency syntax and parsing (30 \%)

(a) Draw the dependency graph for the sentence He takes his wash to the laundromat, here provided in the so-called CoNLL-format:

| 1 | He | he | PRP | PRP | -2 | SBJ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | takes | take | VBZ | VBZ | -0 | ROOT |
| 3 | his | his | PRP | PRP | -4 | NMOD |
| 4 | wash | wash | NN | NN | -2 | OBJ |
| 5 | to | to | TO | TO | -2 | DIR |
| 6 | the | the | DT | DT | -7 | NMOD |
| 7 | laundromat | laundromat | NN | NN | -5 | PMOD |

(b) Provide two examples of a formal condition on dependency graphs. Draw a version of the graph in a) that violates these conditions.
(c) Nivre's arg-eager algorithm is a commonly used algorithm for transitionbased dependency parsing. Describe the four transitions employed in Nivre's algorithm. Your description should make reference to the stack and queue data structures as well as the conditions that apply to the application of each transition.

3 Information extraction (30\%)

(a) What are the typical steps of an information extraction system? Explain what the goals are for each step. You do not have to explain how the actual steps are carried out.
(b) One of the steps in an information extraction system is relation extraction. There are several different methods for relation extraction. One method is to use hand-written patterns, another method is to apply supervised classification. Explain shortly the main principles of the two approaches. What are the bottlenecks of each approach?
(c) A third method is to use semi-supervised classfiers that are constructed by so-called bootstrapping. Explain how this method works.

4 Semantic role labeling (20 \%)

We want to construct a Semantic Role Labeling (SRL) system and need to consider several issues in order to do so, in particular we will be considering the available linguistic resources for this task and the architecture of our system.
(a) There are two main resources which include semantic role information for English: FrameNet and PropBank. Provide a short description of each of these and point to their main differences.
(b) In the following, the earlier sentence has been annotated with semantic roles in the (somewhat abbreviated) CoNLL08 format:

1	He	\cdots	-	2	SBJ	-	A0
2	takes	\cdots	-	0	ROOT	take.01	-
3	his	\cdots	-	4	NMOD	-	-
4	wash	\cdots	-	2	OBJ	-	A1
5	to	\cdots	-	2	DIR	-	AM-DIR
6	the	\cdots	-	7	NMOD	-	-
7	laundromat	\cdots	-	5	PMOD	-	-

(i) Extract the predicate and the semantic arguments along with their roles from the above example. Provide a short description for each of the roles.
(ii) How do these roles relate to Dowty's proto-roles?

END

INF5830, 2015, some statistical formulas

Z-score

Given a normal distribution with mean μ and standard deviation σ. The Z-score of a data point x

$$
Z=\frac{x-\mu}{\sigma}
$$

expresses the distance of x from μ in terms of standard deviations.
t-test
The t-statistics

$$
t=\frac{\bar{x}-\mu}{\sqrt{\frac{s^{2}}{n}}}
$$

where

- \bar{x} is the mean of a simple random sample
- n is the size of the sample
- s is the sample standard deviation

Two sample t-test

$$
t=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}
$$

Standard deviation of proportion

When p is a proportion $\frac{k}{n}$ (k successes out of n), the variance is

$$
p(1-p)
$$

STATISTICAL TABLES

Cumulative normal distribution

Critical values of the \boldsymbol{t} distribution
Critical values of the F distribution
Critical values of the chi-squared distribution

Table A. 1

Cumulative Standardized Normal Distribution

$A(z)$ is the integral of the standardized normal distribution from $-\infty$ to z (in other words, the area under the curve to the left of z). It gives the probability of a normal random variable not being more than z standard deviations above its mean. Values of z of particular importance:

z	$A(z)$	
1.645	0.9500	Lower limit of right 5\% tail
1.960	0.9750	Lower limit of right 2.5% tail
2.326	0.9900	Lower limit of right 1% tail
2.576	0.9950	Lower limit of right 0.5% tail
3.090	0.9990	Lower limit of right 0.1% tail
3.291	0.9995	Lower limit of right 0.05% tail

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999							

Table A. 2

\boldsymbol{t} Distribution: Critical Values of \boldsymbol{t}

Degrees of freedom	Two-tailed test: One-tailed test:	Significance level					
		$\begin{aligned} & 10 \% \\ & 5 \% \end{aligned}$	$\begin{aligned} & 5 \% \\ & 2.5 \% \end{aligned}$	$\begin{aligned} & 2 \% \\ & 1 \% \end{aligned}$	$\begin{aligned} & 1 \% \\ & 0.5 \% \end{aligned}$	$\begin{aligned} & 0.2 \% \\ & 0.1 \% \end{aligned}$	$\begin{aligned} & 0.1 \% \\ & 0.05 \% \end{aligned}$
1		6.314	12.706	31.821	63.657	318.309	636.619
2		2.920	4.303	6.965	9.925	22.327	31.599
3		2.353	3.182	4.541	5.841	10.215	12.924
4		2.132	2.776	3.747	4.604	7.173	8.610
5		2.015	2.571	3.365	4.032	5.893	6.869
6		1.943	2.447	3.143	3.707	5.208	5.959
7		1.894	2.365	2.998	3.499	4.785	5.408
8		1.860	2.306	2.896	3.355	4.501	5.041
9		1.833	2.262	2.821	3.250	4.297	4.781
10		1.812	2.228	2.764	3.169	4.144	4.587
11		1.796	2.201	2.718	3.106	4.025	4.437
12		1.782	2.179	2.681	3.055	3.930	4.318
13		1.771	2.160	2.650	3.012	3.852	4.221
14		1.761	2.145	2.624	2.977	3.787	4.140
15		1.753	2.131	2.602	2.947	3.733	4.073
16		1.746	2.120	2.583	2.921	3.686	4.015
17		1.740	2.110	2.567	2.898	3.646	3.965
18		1.734	2.101	2.552	2.878	3.610	3.922
19		1.729	2.093	2.539	2.861	3.579	3.883
20		1.725	2.086	2.528	2.845	3.552	3.850
21		1.721	2.080	2.518	2.831	3.527	3.819
22		1.717	2.074	2.508	2.819	3.505	3.792
23		1.714	2.069	2.500	2.807	3.485	3.768
24		1.711	2.064	2.492	2.797	3.467	3.745
25		1.708	2.060	2.485	2.787	3.450	3.725
26		1.706	2.056	2.479	2.779	3.435	3.707
27		1.703	2.052	2.473	2.771	3.421	3.690
28		1.701	2.048	2.467	2.763	3.408	3.674
29		1.699	2.045	2.462	2.756	3.396	3.659
30		1.697	2.042	2.457	2.750	3.385	3.646
32		1.694	2.037	2.449	2.738	3.365	3.622
34		1.691	2.032	2.441	2.728	3.348	3.601
36		1.688	2.028	2.434	2.719	3.333	3.582
38		1.686	2.024	2.429	2.712	3.319	3.566
40		1.684	2.021	2.423	2.704	3.307	3.551
42		1.682	2.018	2.418	2.698	3.296	3.538
44		1.680	2.015	2.414	2.692	3.286	3.526
46		1.679	2.013	2.410	2.687	3.277	3.515
48		1.677	2.011	2.407	2.682	3.269	3.505
50		1.676	2.009	2.403	2.678	3.261	3.496
60		1.671	2.000	2.390	2.660	3.232	3.460
70		1.667	1.994	2.381	2.648	3.211	3.435
80		1.664	1.990	2.374	2.639	3.195	3.416
90		1.662	1.987	2.368	2.632	3.183	3.402
100		1.660	1.984	2.364	2.626	3.174	3.390
120		1.658	1.980	2.358	2.617	3.160	3.373
150		1.655	1.976	2.351	2.609	3.145	3.357
200		1.653	1.972	2.345	2.601	3.131	3.340
300		1.650	1.968	2.339	2.592	3.118	3.323
400		1.649	1.966	2.336	2.588	3.111	3.315
500		1.648	1.965	2.334	2.586	3.107	3.310
600		1.647	1.964	2.333	2.584	3.104	3.307
∞		1.645	1.960	2.326	2.576	3.090	3.291

Table A. 4

χ^{2} (Chi-Squared) Distribution: Critical Values of χ^{2}

Significance level

Degrees of freedom	5%	1%	0.1%
$\mathbf{1}$	3.841	6.635	10.828
$\mathbf{2}$	5.991	9.210	13.816
$\mathbf{3}$	7.815	11.345	16.266
$\mathbf{4}$	9.488	13.277	18.467
$\mathbf{5}$	11.070	15.086	20.515
$\mathbf{6}$	12.592	16.812	22.458
$\mathbf{7}$	14.067	18.475	24.322
$\mathbf{8}$	15.507	20.090	26.124
$\mathbf{9}$	16.919	21.666	27.877
$\mathbf{1 0}$	18.307	23.209	29.588

