INF5830
Introduction to Semantic Role Labeling

Andrey Kutuzov

University of Oslo
Language Technology Group
With thanks to Lilja Øvrelid, Martha Palmer and Dan Jurafsky
Semantic Role Labeling
Semantic Role Labeling

The police officer detained the suspect at the scene of the crime.

Agent Predicate Theme Location
Contents

Introduction

Semantic roles in general

PropBank: Proto-roles

FrameNet: Frame Semantics

Summary
Semantics

- Study of meaning, expressed in language;
Semantics

- Study of meaning, expressed in language;
- Morphemes, words, phrases, sentences;
Semantics

- Study of meaning, expressed in language;
- Morphemes, words, phrases, sentences;
- Lexical semantics;
Semantics

- Study of meaning, expressed in language;
- Morphemes, words, phrases, sentences;
- Lexical semantics;
- Sentence semantics;

(Pragmatics: how the context affects meaning)
Semantics

- Study of meaning, expressed in language;
- Morphemes, words, phrases, sentences;
- Lexical semantics;
- Sentence semantics;
- (Pragmatics: how the context affects meaning).
Semantics

- Linguistic knowledge: meaning
Semantics

- Linguistic knowledge: meaning
 - Meaningful or not:
 - Word – *flick* vs *blick*
 - Sentence – *John swims* vs *John metaphorically every*
 - Several meanings (WSD):
 - Word – *fish*
 - Sentence – *John saw the man with the binoculars*
 - Same meaning (semantic similarity):
 - Word – *sofa* vs *couch*
 - Sentence – *John gave Hannah a gift* vs *John gave a gift to Hannah*
 - Truth conditions:
 - *All kings are male*
 - *Molybdenum conducts electricity*
 - Entailment:
 - *Alfred murdered the librarian*
 - *The librarian is dead*
 - Participant roles:
 - John is the ‘giver’, Hannah is the ‘receiver’
Semantics

▶ Linguistic knowledge: meaning
 ▶ Meaningful or not:
 ▶ Word – *flick* vs *blick*
 ▶ Sentence – *John swims* vs *John metaphorically every*
 ▶ Several meanings (WSD):
 ▶ Words – *fish*
 ▶ Sentence – *John saw the man with the binoculars*
Semantics

- Linguistic knowledge: *meaning*
 - Meaningful or not:
 - Word – *flick* vs *blick*
 - Sentence – *John swims* vs *John metaphorically every*
 - Several meanings (WSD):
 - Words – *fish*
 - Sentence – *John saw the man with the binoculars*
 - Same meaning (semantic similarity):
 - Word – *sofa* vs *couch*
 - Sentence – *John gave Hannah a gift* vs *John gave a gift to Hannah*
Semantics

- Linguistic knowledge: meaning
 - Meaningful or not:
 - Word – *flick* vs *blick*
 - Sentence – *John swims* vs *John metaphorically every*
 - Several meanings (WSD):
 - Words – *fish*
 - Sentence – *John saw the man with the binoculars*
 - Same meaning (semantic similarity):
 - Word – *sofa* vs *couch*
 - Sentence – *John gave Hannah a gift* vs *John gave a gift to Hannah*
 - Truth conditions:
 - *All kings are male*
 - *Molybdenum conducts electricity*
Semantics

- Linguistic knowledge: meaning
 - Meaningful or not:
 - Word – flick vs blick
 - Sentence – John swims vs John metaphorically every
 - Several meanings (WSD):
 - Words – fish
 - Sentence – John saw the man with the binoculars
 - Same meaning (semantic similarity):
 - Word – sofa vs couch
 - Sentence – John gave Hannah a gift vs John gave a gift to Hannah
 - Truth conditions:
 - All kings are male
 - Molybdenum conducts electricity
 - Entailment:
 - Alfred murdered the librarian
 - The librarian is dead
 - Participant roles: John is the ‘giver’, Hannah is the ‘receiver’
Semantics

▶ Linguistic knowledge: meaning
 ▶ Meaningful or not:
 ▶ Word – *flick* vs *blick*
 ▶ Sentence – *John swims* vs *John metaphorically every*
 ▶ Several meanings (WSD):
 ▶ Words – *fish*
 ▶ Sentence – *John saw the man with the binoculars*
 ▶ Same meaning (semantic similarity):
 ▶ Word – *sofa* vs *couch*
 ▶ Sentence – *John gave Hannah a gift* vs *John gave a gift to Hannah*
 ▶ Truth conditions:
 ▶ *All kings are male*
 ▶ *Molybdenum conducts electricity*
 ▶ Entailment:
 ▶ *Alfred murdered the librarian*
 ▶ *The librarian is dead*
 ▶ Participant roles: *John* is the ‘giver’, *Hannah* is the ‘receiver’
Representing events

- We want to understand the event described by these sentences:
 1. IBM bought Spark
 2. IBM acquired Spark
 3. Spark was acquired by IBM
 4. The owners of Spark sold it to IBM
Representing events

We want to understand the event described by these sentences:
1. *IBM bought Spark*
2. *IBM acquired Spark*
3. *Spark was acquired by IBM*
4. *The owners of Spark sold it to IBM*

Dependency parsing is insufficient. *UDPipe* will give us simple relations between verbs and arguments:
Representing events

- We want to understand the event described by these sentences:
 1. *IBM bought Spark*
 2. *IBM acquired Spark*
 3. *Spark was acquired by IBM*
 4. *The owners of Spark sold it to IBM*

- Dependency parsing is insufficient. *UDPipe* will give us simple relations between verbs and arguments:
 1. (buy, *nsubj*, IBM), (buy, *obj*, Spark)
Representing events

- We want to understand the event described by these sentences:
 1. *IBM bought Spark*
 2. *IBM acquired Spark*
 3. *Spark was acquired by IBM*
 4. *The owners of Spark sold it to IBM*

- Dependency parsing is insufficient. *UDPipe* will give us simple relations between verbs and arguments:
 1. (buy, *nsubj*, IBM), (buy, *obj*, Spark)
 2. (acquire, *nsubj*, IBM), (acquire, *obj*, Spark)
Representing events

- We want to understand the event described by these sentences:
 1. IBM bought Spark
 2. IBM acquired Spark
 3. Spark was acquired by IBM
 4. The owners of Spark sold it to IBM

- Dependency parsing is insufficient. UDPipe will give us simple relations between verbs and arguments:
 1. (buy, nsubj, IBM), (buy, obj, Spark)
 2. (acquire, nsubj, IBM), (acquire, obj, Spark)
 3. (acquire, nsubj:pass, Spark), (acquire, obl, IBM)
Representing events

- We want to understand the event described by these sentences:
 1. IBM bought Spark
 2. IBM acquired Spark
 3. Spark was acquired by IBM
 4. The owners of Spark sold it to IBM

- Dependency parsing is insufficient. *UDPipe* will give us simple relations between verbs and arguments:
 1. (buy, nsubj, IBM), (buy, obj, Spark)
 2. (acquire, nsubj, IBM), (acquire, obj, Spark)
 3. (acquire, nsubj:pass, Spark), (acquire, obl, IBM)
 4. (sold, nsubj, owners), (sold, obj, it), (sold, obl, IBM), (owners, nmod, Spark), ...
Representing events

- We want to understand the event described by these sentences:
 1. IBM bought Spark
 2. IBM acquired Spark
 3. Spark was acquired by IBM
 4. The owners of Spark sold it to IBM

- Dependency parsing is insufficient. UDPipe will give us simple relations between verbs and arguments:
 1. (buy, nsubj, IBM), (buy, obj, Spark)
 2. (acquire, nsubj, IBM), (acquire, obj, Spark)
 3. (acquire, nsubj:pass, Spark), (acquire, obl, IBM)
 4. (sold, nsubj, owners), (sold, obj, it), (sold, obl, IBM), (owners, nmod, Spark), ...

- For dialogue agents, question-answering system, machine translation etc. we often need deeper representations.
Semantic roles

- Semantic roles: alternative sentence-level representation of semantic content.
- Generalization over different surface forms of predicate arguments.
- Who did what to whom, where when and how?
- Intermediate between parsing and full semantics.
- Predicate of a clause determines the main event, e.g., 'eat', 'break', 'kiss'.
- Semantic roles describe participants in the event.
- AGENT (who eats?)
- PATIENT (what is broken?)
- etc.
- Semantic role labeling is the task of assigning these roles to sentence parts (for example, words).
- Often preceded by parsing.
Semantic roles

- Semantic roles: alternative sentence-level representation of semantic content.
- Generalization over different surface forms of predicate arguments.

- Agent (who eats?)
- Patient (what is broken?)
- etc.

Semantic role labeling is the task of assigning these roles to sentence parts (for example, words).

Often preceded by parsing.
Semantic roles

- Semantic roles: alternative sentence-level representation of semantic content.
- Generalization over different surface forms of predicate arguments.
- *Who did what to whom, where when and how?*
Semantic roles

- Semantic roles: alternative sentence-level representation of semantic content.
- Generalization over different surface forms of predicate arguments.
- *Who did what to whom, where when and how?*
- Intermediate between parsing and full semantics.
Semantic roles

- Semantic roles: alternative sentence-level representation of semantic content.
- Generalization over different surface forms of predicate arguments.
- *Who did what to whom, where when and how?*
- Intermediate between parsing and full semantics.
- Predicate of a clause determines the main event, e.g. ‘*eat*’, ‘*break*’, ‘*kiss*’.
Semantic roles

- Semantic roles: alternative sentence-level representation of semantic content.
- Generalization over different surface forms of predicate arguments.
- *Who did what to whom, where when and how?*
- Intermediate between parsing and full semantics.
- Predicate of a clause determines the main event, e.g. ‘eat’, ‘break’, ‘kiss’.
- Semantic roles describe participants in the event.
Semantic roles

- Semantic roles: alternative sentence-level representation of semantic content.
- Generalization over different surface forms of predicate arguments.
- Who did what to whom, where when and how?
- Intermediate between parsing and full semantics.
- Predicate of a clause determines the main event, e.g. ‘eat’, ‘break’, ‘kiss’.
- Semantic roles describe participants in the event.
 - AGENT (who eats?)
Semantic roles

- Semantic roles: alternative sentence-level representation of semantic content.
- Generalization over different surface forms of predicate arguments.
- *Who did what to whom, where when and how?*
- Intermediate between parsing and full semantics.
- Predicate of a clause determines the main event, e.g. ‘eat’, ‘break’, ‘kiss’.
- Semantic roles describe participants in the event.
 - AGENT (*who* eats?)
 - PATIENT (*what* is broken?)
 - etc.
Semantic roles

- Semantic roles: alternative sentence-level representation of semantic content.
- Generalization over different surface forms of predicate arguments.
- *Who did what to whom, where when and how?*
- Intermediate between parsing and full semantics.
- Predicate of a clause determines the main event, e.g. ‘eat’, ‘break’, ‘kiss’.
- Semantic roles describe participants in the event.
 - AGENT *(who eats?)*
 - PATIENT *(what is broken?)*
 - etc.
- Semantic role labeling is the task of assigning these roles to sentence parts (for example, words).
Semantic roles

- Semantic roles: alternative sentence-level representation of semantic content.
- Generalization over different surface forms of predicate arguments.
- *Who did what to whom, where when and how?*
- Intermediate between parsing and full semantics.
- Predicate of a clause determines the main event, e.g. ‘eat’, ‘break’, ‘kiss’.
- Semantic roles describe participants in the event.
 - AGENT (*who* eats?)
 - PATIENT (*what* is broken?)
 - etc.
- Semantic role labeling is the task of assigning these roles to sentence parts (for example, words).
- Often preceded by parsing.
Argument structure

- Verbs differ in their argument structure: number and types of arguments they can take:
 - *find, hit, chase* (how many arguments?)
Argument structure

Verbs differ in their argument structure: number and types of arguments they can take:

- *find, hit, chase* (how many arguments?)
- *dance, sleep* (how many arguments?)
Argument structure

- Verbs differ in their argument structure: number and types of arguments they can take:
 - *find, hit, chase* (how many arguments?)
 - *dance, sleep* (how many arguments?)
- Argument structure of a verb (thematic grid) is part of its meaning.
Argument structure

- Verbs differ in their argument structure: number and types of arguments they can take:
 - *find, hit, chase* (how many arguments?)
 - *dance, sleep* (how many arguments?)
- Argument structure of a verb (*thematic grid*) is part of its meaning.
- Verbs also limit semantic properties of arguments (*selectional restrictions*)
 - *Colorless green ideas sleep furiously*
Argument structure

Components of verb meaning influence the choice of arguments

- John threw/tossed/kicked/flung the boy the ball
- *John pushed/pulled/lifted/hauled the boy the ball
Argument structure

- Components of verb meaning influence the choice of arguments
 - *John threw/tossed/kicked/flung the boy the ball*
 - *John pushed/pulled/lifted/hauled the boy the ball*
 - *Mary faxed/radioed/emailed/phoned Helen the news*
 - *Mary murmured/mumbled/muttered/shrieked Helen the news*
Argument structure

- Components of verb meaning influence the choice of arguments
 - John threw/tossed/kicked/flung the boy the ball
 - *John pushed/pulled/lifted/hauled the boy the ball
 - Mary faxed/radioed/emailed/phoned Helen the news
 - *Mary murmured/mumbled/muttered/shrieked Helen the news

- verbs of motion: single quick motion vs. extended use of force
Introduction

Argument structure

- Components of verb meaning influence the choice of arguments
 - John threw/tossed/kicked/flung the boy the ball
 - *John pushed/pulled/lifted/hailed the boy the ball
 - Mary faxed/radioed/emailed/phoned Helen the news
 - *Mary murmured/mumbled/muttered/shrieked Helen the news

- verbs of motion: single quick motion vs. extended use of force
- verbs of communications: external apparatus vs. type of voice
Mismatches between syntax and semantics

- Semantic structure does not directly mirror syntactic structure.
Mismatches between syntax and semantics

- Semantic structure does not directly mirror syntactic structure.
- Many phenomena affect mapping of syntactic to semantic arguments.
Mismatches between syntax and semantics

- Semantic structure does not directly mirror syntactic structure.
- Many phenomena affect mapping of syntactic to semantic arguments.
 - Passive
 - *The dog chased the cat*
Mismatches between syntax and semantics

- Semantic structure does not directly mirror syntactic structure.
- Many phenomena affect mapping of syntactic to semantic arguments.
 - Passive
 - *The dog chased the cat*
 - *The cat was chased by the dog*
Mismatches between syntax and semantics

- **Semantic structure** does not directly mirror syntactic structure.
- Many phenomena affect mapping of syntactic to semantic arguments.
 - Passive
 - *The dog chased the cat*
 - *The cat was chased by the dog*
 - *The cat was chased*
Mismatches between syntax and semantics

- **Semantic structure** does not directly mirror **syntactic structure**.
- Many phenomena affect mapping of syntactic to semantic arguments.
 - **Passive**
 - *The dog chased the cat*
 - *The cat was chased by the dog*
 - *The cat was chased*
 - **Impersonal passives**

Det ble danset hele natta (Norwegian)

Íî ñâèñòíóòî î÷åíü ñðåäíå (Russian)
Mismatches between syntax and semantics

- **Semantic structure** does not directly mirror syntactic structure.
- Many phenomena affect mapping of syntactic to semantic arguments.
 - Passive
 - *The dog chased the cat*
 - *The cat was chased by the dog*
 - *The cat was chased*
 - Impersonal passives
 - *Det ble danset hele natta* (Norwegian)
 - Но свистнуто очень средне (Russian)
Mismatches between syntax and semantics

- **Semantic structure** does not directly mirror **syntactic structure**.
- Many phenomena affect mapping of syntactic to semantic arguments.
 - Passive
 - *The dog chased the cat*
 - *The cat was chased by the dog*
 - *The cat was chased*
 - Impersonal passives
 - *Det ble danset hele natta* (Norwegian)
 - Но свистнуто очень средне (Russian)
 - Dative shift
 - *John gave the book to Mary*
Mismatches between syntax and semantics

- **Semantic structure** does not directly mirror syntactic structure.
- Many phenomena affect mapping of syntactic to semantic arguments.
 - Passive
 - *The dog chased the cat*
 - *The cat was chased by the dog*
 - *The cat was chased*
 - Impersonal passives
 - *Det ble danset hele natta* (Norwegian)
 - Но свистнуто очень средне (Russian)
 - Dative shift
 - *John gave the book to Mary*
 - *John gave Mary the book*
 - ...
Mismatches between syntax and semantics

- Goal: to compute the meaning of a sentence.
Mismatches between syntax and semantics

- Goal: to compute the meaning of a sentence.
- There are regularities in mapping between syntax and semantics...
Mismatches between syntax and semantics

- Goal: to compute the meaning of a sentence.
- There are regularities in mapping between syntax and semantics...
- ...but not a one-to-one correspondence between syntactic and semantic arguments.
Mismatches between syntax and semantics

- Goal: to compute the meaning of a sentence.
- There are regularities in mapping between syntax and semantics...
- ...but not a one-to-one correspondence between syntactic and semantic arguments.
- So what are these semantic arguments?
Contents

Introduction

Semantic roles in general

PropBank: Proto-roles

FrameNet: Frame Semantics

Summary
Semantic (thematic) roles

- Introduced in generative grammar mid-1960s and early 70s
 [Fillmore 1968, Jackendoff 1972].
Semantic (thematic) roles

- Introduced in generative grammar mid-1960s and early 70s [Fillmore 1968, Jackendoff 1972].
- Classify arguments of predicates into a set of participant types.
Semantic (thematic) roles

- Introduced in generative grammar mid-1960s and early 70s [Fillmore 1968, Jackendoff 1972].
- Classify arguments of predicates into a set of participant types.
- Describe the semantic relation between the arguments of the verb and the situation described by the verb:
Semantic roles in general

Semantic (thematic) roles

- Introduced in generative grammar mid-1960s and early 70s [Fillmore 1968, Jackendoff 1972].
- Classify arguments of predicates into a set of participant types.
- Describe the semantic relation between the arguments of the verb and the situation described by the verb:
 - *The boy threw the red ball to the girl*
Semantic (thematic) roles

- Introduced in generative grammar mid-1960s and early 70s [Fillmore 1968, Jackendoff 1972].
- Classify arguments of predicates into a set of participant types.
- Describe the semantic relation between the arguments of the verb and the situation described by the verb:
 - *The boy threw the red ball to the girl*
 - The boy – the participant responsible for the action, the ‘doer’
Semantic (thematic) roles

- Introduced in generative grammar mid-1960s and early 70s [Fillmore 1968, Jackendoff 1972].
- Classify arguments of predicates into a set of participant types.
- Describe the semantic relation between the arguments of the verb and the situation described by the verb:
 - *The boy threw the red ball to the girl*
 - The boy – the participant responsible for the action, the ‘*doer*’
 - the red ball – the affected entity, ‘*undergoer*’
Semantic (thematic) roles

- Introduced in generative grammar mid-1960s and early 70s [Fillmore 1968, Jackendoff 1972].
- Classify arguments of predicates into a set of participant types.
- Describe the semantic relation between the arguments of the verb and the situation described by the verb:
 - *The boy threw the red ball to the girl*
 - The boy – the participant responsible for the action, the ‘*doer*’
 - the red ball – the affected entity, ‘*undergoer*’
 - the girl – endpoint in a change of location.
Role types

- AGENT: the participant that initiates the action, capable of acting with ‘volition’
 - *David cooked the meat*
 - *The fox jumped out of the ditch*
Role types

- **AGENT**: the participant that initiates the action, capable of acting with ‘volition’
 - *David cooked the meat*
 - *The fox jumped out of the ditch*

- **PATIENT**: the entity undergoing the effect of some action
 - *Edna cut back these bushes*
 - *The sun melted the ice*
Role types

- **AGENT**: the participant that initiates the action, capable of acting with ‘volition’
 - *David cooked the meat*
 - *The fox jumped out of the ditch*

- **PATIENT**: the entity undergoing the effect of some action
 - *Edna cut back these bushes*
 - *The sun melted the ice*

- **THEME**: the (inanimate) entity which is moved by an action, or whose location is described
 - *David passed the ball wide*
 - *The book is in the library*
Role types

- **AGENT**: the participant that initiates the action, capable of acting with ‘volition’
 - *David cooked the meat*
 - *The fox jumped out of the ditch*

- **PATIENT**: the entity undergoing the effect of some action
 - *Edna cut back these bushes*
 - *The sun melted the ice*

- **THEME**: the (inanimate) entity which is moved by an action, or whose location is described
 - *David passed the ball wide*
 - *The book is in the library*

- **EXPERIENCER**: the entity which is aware of the action or state described by predicate, but which is not in control
 - *Edna felt ill*
 - *David saw the smoke*
Role types (continued)

- BENEFICIARY: the entity for whose benefit the action was performed
 - David filled in the form for his grandmother
 - Jane baked me a cake
Role types (continued)

- **BENEFICIARY**: the entity for whose benefit the action was performed
 - *David filled in the form for his grandmother*
 - *Jane baked me a cake*

- **INSTRUMENT**: the means by which an action is performed or something comes about
 - *She cleaned the wound with an antiseptic wipe*
 - *They signed the treaty with the same pen*
Role types (continued)

- **BENEFICIARY**: the entity for whose benefit the action was performed
 - *David filled in the form for his grandmother*
 - *Jane baked me a cake*

- **INSTRUMENT**: the means by which an action is performed or something comes about
 - *She cleaned the wound with an antiseptic wipe*
 - *They signed the treaty with the same pen*

- **GOAL**: the entity towards which something moves
 - *Edna handed her licence to the policeman*
 - *Fia told the joke to her friends*
Role types (continued)

- **BENEFICIARY**: the entity for whose benefit the action was performed
 - *David filled in the form for his grandmother*
 - *Jane baked me a cake*

- **INSTRUMENT**: the means by which an action is performed or something comes about
 - *She cleaned the wound with an antiseptic wipe*
 - *They signed the treaty with the same pen*

- **GOAL**: the entity towards which something moves
 - *Edna handed her licence to the policeman*
 - *Fia told the joke to her friends*

- **SOURCE**: the entity from which something moves
 - *The plane came back from Kinshasa*
 - *We got the idea from a magazine*
Semantic (thematic) roles

▶ The initial example:

\textit{The boy threw the red ball to the girl}

AGENT THEME GOAL
Semantic (thematic) roles

- The initial example:
 \textit{The boy threw the red ball to the girl}
 \begin{itemize}
 \item AGENT
 \item THEME
 \item GOAL
 \end{itemize}

- Tests for semantic roles
 - AGENT: add \textit{on purpose}
 - \textit{Jon took the book on purpose}
 - THEME/PATIENT
 - \textit{What happened to Y was . . .}
 - \textit{What X did to Y was . . .}
Quiz

▶ https://b.socrative.com/login/student/
▶ Room name: 'KUTUZOV'
Problems for semantic roles

Assumptions:
- Small, fixed set of roles;
Problems for semantic roles

Assumptions:

- Small, fixed set of roles;
- Semantic roles are atomic;
Problems for semantic roles

Assumptions:
- Small, fixed set of roles;
- Semantic roles are atomic;
- Every argument position is assigned exactly one role;
Problems for semantic roles

Assumptions:
- Small, fixed set of roles;
- Semantic roles are atomic;
- Every argument position is assigned exactly one role;
- Every semantic role is assigned to at most one argument.
Problems for semantic roles

- Assumptions:
 - Small, fixed set of roles;
 - Semantic roles are atomic;
 - Every argument position is assigned exactly one role;
 - Every semantic role is assigned to at most one argument

- Every assumption has been contested at some point.
Problems for semantic roles

- No real consensus about role inventory.
Problems for semantic roles

- No real consensus about role inventory.
- Difficult to formulate formal definitions of role types.
Problems for semantic roles

- No real consensus about role inventory.
- Difficult to formulate formal definitions of role types.
- But we need semantic roles to do inference for practical tasks!
Problems for semantic roles

- No real consensus about role inventory.
- Difficult to formulate formal definitions of role types.
- But we need semantic roles to do inference for practical tasks!

Two ‘responses’

1. \(\Rightarrow\) more generalized semantic roles [Dowty 1991]
 - PROTO-AGENT, PROTO-PATIENT
Problems for semantic roles

- No real consensus about role inventory.
- Difficult to formulate formal definitions of role types.
- But we need semantic roles to do inference for practical tasks!

Two ‘responses’

1. ⇒ more generalized semantic roles [Dowty 1991]
 - PROTO-AGENT, PROTO-PATIENT
 - PropBank lexical database project.
Problems for semantic roles

- No real consensus about role inventory.
- Difficult to formulate formal definitions of role types.
- But we need semantic roles to do inference for practical tasks!

Two ‘responses’

1. ⇒ more generalized semantic roles [Dowty 1991]
 - PROTO-AGENT, PROTO-PATIENT
 - PropBank lexical database project.

2. ⇒ more fine-grained semantic roles, specific to particular verbs [Fillmore 1968, Fillmore 1977]
 - FrameNet lexical database project.
Semantic roles in general

Problems for semantic roles

- No real consensus about role inventory.
- Difficult to formulate formal definitions of role types.
- But we need semantic roles to do inference for practical tasks!

Two ‘responses’

1. ⇒ more generalized semantic roles [Dowty 1991]
 - PROTO-AGENT, PROTO-PATIENT
 - PropBank lexical database project.

2. ⇒ more fine-grained semantic roles, specific to particular verbs [Fillmore 1968, Fillmore 1977]
 - FrameNet lexical database project.

Let’s describe these two approaches (and resources) in more detail.
Contents

Introduction

Semantic roles in general

PropBank: Proto-roles

FrameNet: Frame Semantics

Summary
Dowty’s Proto-roles

▶ An influential theoretical approach.

Semantic role: ‘set of entailments of a group of predicates with respect to one of the arguments of each’ [Dowty 1991]

- x murders y, x nominates y, x interrogates y

→ x does a volitional act (¬ ‘kills’)

→ x intends it to be this kind of act (¬ ‘convince’)

→ x causes an event involving y (¬ ‘looks at’)

→ x moves or changes externally (¬ ‘understands’)

[PropBank: Proto-roles]
Dowty’s Proto-roles

▶ An influential theoretical approach.
▶ Semantic role: ‘set of entailments of a group of predicates with respect to one of the arguments of each’ [Dowty 1991]
Dowty’s Proto-roles

- An influential theoretical approach.
- Semantic role: ‘set of entailments of a group of predicates with respect to one of the arguments of each’ [Dowty 1991]
 - \(x\) murders \(y\), \(x\) nominates \(y\), \(x\) interrogates \(y\)
Dowty’s Proto-roles

▶ An influential theoretical approach.
▶ Semantic role: ‘set of entailments of a group of predicates with respect to one of the arguments of each’ [Dowty 1991]
 ▶ x murders y, x nominates y, x interrogates y
 ▶ → x does a volitional act (¬ ‘kills’)
Dowty’s Proto-roles

▶ An influential theoretical approach.
▶ Semantic role: ‘set of entailments of a group of predicates with respect to one of the arguments of each’ [Dowty 1991]
 ▶ \(x\) murders \(y\), \(x\) nominates \(y\), \(x\) interrogates \(y\)
 ▶ \(\rightarrow x\) does a volitional act (\(\neg\) ‘\(kills\)’)
 ▶ \(\rightarrow x\) intends it to be this kind of act (\(\neg\) ‘\(convince\)’)

[PropBank: Proto-roles]
Dowty’s Proto-roles

▶ An influential theoretical approach.
▶ Semantic role: ‘set of entailments of a group of predicates with respect to one of the arguments of each’ [Dowty 1991]
 ▶ \(x \) murders \(y \), \(x \) nominates \(y \), \(x \) interrogates \(y \)
 ▶ \(\rightarrow x \) does a volitional act (\(~\) ‘kills’)
 ▶ \(\rightarrow x \) intends it to be this kind of act (\(~\) ‘convince’)
 ▶ \(\rightarrow x \) causes an event involving \(y \) (\(~\) ‘looks at’)
Dowty’s Proto-roles

- An influential theoretical approach.
- Semantic role: ‘set of entailments of a group of predicates with respect to one of the arguments of each’ [Dowty 1991]
 - x murders y, x nominates y, x interrogates y
 - $\rightarrow x$ does a volitional act (\neg ‘kills’)
 - $\rightarrow x$ intends it to be this kind of act (\neg ‘convince’)
 - $\rightarrow x$ causes an event involving y (\neg ‘looks at’)
 - $\rightarrow x$ moves or changes externally (\neg ‘understands’)
Dowty’s Proto-roles

- Only two ‘thematic-role-like concepts’ for verbal predicates:
 1. proto-agent role (Arg0)
 2. proto-patient role (Arg1).
Dowty’s Proto-roles

- Only two ‘thematic-role-like concepts’ for verbal predicates:
 1. proto-agent role (Arg0)
 2. proto-patient role (Arg1).
- Individual arguments have different ‘degrees of membership’ in PROTO-AGENT and PROTO-PATIENT
- Proto-roles are cluster-concepts determined for each predicate:
Dowty’s Proto-roles

- Only two ‘thematic-role-like concepts’ for verbal predicates:
 1. proto-agent role (Arg0)
 2. proto-patient role (Arg1).
- Individual arguments have different ‘degrees of membership’ in PROTO-AGENT and PROTO-PATIENT.
- Proto-roles are cluster-concepts determined for each predicate:
 - Properties (entailments) of Proto-agent:
 - volition;
 - sentience (and/or perception);
 - causes event;
 - movement.
Dowty’s Proto-roles

- Only two ‘thematic-role-like concepts’ for verbal predicates:
 1. proto-agent role (Arg0)
 2. proto-patient role (Arg1).
- Individual arguments have different ‘degrees of membership’ in PROTO-AGENT and PROTO-PATIENT
- Proto-roles are cluster-concepts determined for each predicate:

 - Properties (entailments) of Proto-agent:
 - volition;
 - sentience (and/or perception);
 - causes event;
 - movement.
 - Properties (entailments) of Proto-patient:
 - change of state;
 - incremental theme;
 - causally affected by event;
 - stationary (relative to movement by agent).
Proto-roles and linking

- Argument Selection Principle (ASP)

- The argument with the most PROTO-AGENT properties becomes subject (Arg0);
- The argument with the most PROTO-PATIENT properties becomes object (Arg1).

- If two compete, both will be possible (psychological verbs, for example):
 - Experiencer is sentient/perceiving;
 - Stimulus causes emotional reaction.

- Example:
 - x likes y / y pleases x
 - x fears y / y frightens x
Proto-roles and linking

- Argument Selection Principle (ASP)
 - The argument with the most PROTO-AGENT properties becomes subject (Arg0);
Proto-roles and linking

- Argument Selection Principle (ASP)
 - The argument with the most PROTO-AGENT properties becomes subject (Arg0);
 - The argument with the most PROTO-PATIENT properties becomes object (Arg1).

- If two compete, both will be possible (psychological verbs, for example):
 - Experiencer is sentient/perceiving;
 - Stimulus causes emotional reaction.
 - x likes y / y pleases x
 - x fears y / y frightens x
Proto-roles and linking

- **Argument Selection Principle (ASP)**
 - The argument with the most **PROTO-AGENT** properties becomes subject (Arg0);
 - The argument with the most **PROTO-PATIENT** properties becomes object (Arg1).

- If two compete, both will be possible (psychological verbs, for example):
 - Experiencer is sentient/perceiving;
 - Stimulus causes emotional reaction.

Example:
- x likes y
- x fears y
Proto-roles and linking

- **Argument Selection Principle (ASP)**
 - The argument with the most PROTO-AGENT properties becomes subject (Arg0);
 - The argument with the most PROTO-PATIENT properties becomes object (Arg1).

- If two compete, both will be possible (psychological verbs, for example):
 - Experiencer is sentient/perceiving;
 - Stimulus causes emotional reaction.

 - \(x \) likes \(y \) / \(y \) pleases \(x \)
 - \(x \) fears \(y \) / \(y \) frightens \(x \)
PropBank: Proto-roles

Argument structure for ‘break’:

▷ Frameset break.01 ‘break, cause to not be whole’:
PropBank: Proto-roles

Argument structure for ‘break’:

- Frameset break.01 ‘break, cause to not be whole’:
 - Arg0: breaker
 - Arg1: thing broken
 - Arg2: instrument
 - Arg3: pieces
PropBank: semantic propositions corpus

- Sentences annotated with semantic roles [Bonial et al. 2014]

PropBank is now developed in close conjunction with Abstract Meaning Representation (AMR) [Banarescu et al. 2013] and OntoNotes projects.
PropBank: semantic propositions corpus

- Sentences annotated with semantic roles [Bonial et al. 2014]
- Freely available at https://propbank.github.io/
PropBank: semantic propositions corpus

- Sentences annotated with semantic roles [Bonial et al. 2014]
- Freely available at https://propbank.github.io/
- Focuses on verbs, closely related to VerbNet [Kipper et al. 2000]
PropBank: semantic propositions corpus

- Sentences annotated with semantic roles [Bonial et al. 2014]
- Freely available at https://propbank.github.io/
- Focuses on verbs, closely related to VerbNet [Kipper et al. 2000]
- Accessible with NLTK:
PropBank: semantic propositions corpus

- Sentences annotated with semantic roles [Bonial et al. 2014]
- Freely available at https://propbank.github.io/
- Focuses on verbs, closely related to VerbNet [Kipper et al. 2000]
- Accessible with NLTK:
 - `python3 -m nltk.downloader 'propbank'`
 - `from nltk.corpus import propbank`
 - `propbank.verbs()`
 - `instance = propbank.instances(100)`
 - `instance.roleset`
 - `reach.01`

PropBank is now developed in close conjunction with Abstract Meaning Representation (AMR) [Banarescu et al. 2013] and OntoNotes projects.
PropBank: semantic propositions corpus

- Sentences annotated with semantic roles [Bonial et al. 2014]
- Freely available at https://propbank.github.io/
- Focuses on verbs, closely related to VerbNet [Kipper et al. 2000]
- Accessible with NLTK:
 - `python3 -m nltk.downloader 'propbank'`
 - `from nltk.corpus import propbank`
 - `propbank.verbs()`
 - `instance = propbank.instances(100)`
 - `instance.roleset`
 - `reach.01`
PropBank: semantic propositions corpus

- Sentences annotated with semantic roles [Bonial et al. 2014]
- Freely available at https://propbank.github.io/
- Focuses on verbs, closely related to VerbNet [Kipper et al. 2000]
- Accessible with NLTK:
 - `python3 -m nltk.downloader 'propbank'`
 - `from nltk.corpus import propbank`
 - `propbank.verbs()`
 - `instance = propbank.instances(100)`
 - `instance.roleset`
 - `reach.01`
- PropBank is now developed in close conjunction with Abstract Meaning Representation (AMR) [Banarescu et al. 2013] and OntoNotes projects.
PropBank: Proto-roles

SemLink project tries to integrate PropBank and FrameNet (and Wordnet):
http://verbs.colorado.edu/semlink/
SemLink project tries to integrate PropBank and FrameNet (and Wordnet):

http://verbs.colorado.edu/semlink/
Contents

Introduction

Semantic roles in general

PropBank: Proto-roles

FrameNet: Frame Semantics

Summary
Frame Semantics

The frame approach is motivated by the work of Charles Fillmore

► ‘Meanings are relative to scenes’
Frame Semantics

The frame approach is motivated by the work of Charles Fillmore

- ‘Meanings are relative to scenes’
- ‘The study of meaning is the study of cognitive scenes that are created or activated by utterances’
Frame Semantics

The frame approach is motivated by the work of Charles Fillmore

- ‘Meanings are relative to scenes’
- ‘The study of meaning is the study of cognitive scenes that are created or activated by utterances’
- ‘whenever we understand a linguistic expression of whatever sort, we have simultaneously a background scene and a perspective on that scene’

[Fillmore 1977]
Historical roots (60s)

- Fillmore’s case grammar
 - Fillmore was inspired by the works of Lucien Tesniere, the father of the contemporary dependency grammar.
Historical roots (60s)

▶ Fillmore’s case grammar

▶ Fillmore was inspired by the works of Lucien Tesniere, the father of the contemporary dependency grammar.
▶ case frame: small abstract scene identifying the participants of the scene and thus the arguments of predicates and sentences describing the scene;
Historical roots (60s)

- Fillmore’s case grammar
 - Fillmore was inspired by the works of Lucien Tesniere, the father of the contemporary dependency grammar.
 - case frame: small abstract scene identifying the participants of the scene and thus the arguments of predicates and sentences describing the scene;
 - frame can be described by different verbs describing the same situation.
Historical roots (60s)

- Fillmore’s case grammar
 - Fillmore was inspired by the works of Lucien Tesniere, the father of the contemporary dependency grammar.
 - *case frame*: small abstract scene identifying the participants of the scene and thus the arguments of predicates and sentences describing the scene;
 - frame can be described by different verbs describing the same situation.

- Artificial Intelligence research (Minsky and others)
 - frame-based knowledge representations;
 - can be called *models* or *scripts* or *schemata*;
 - collection of information about objects and events.
Historical roots (60s)

▶ Fillmore’s case grammar
 ▶ Fillmore was inspired by the works of Lucien Tesniere, the father of the contemporary dependency grammar.
 ▶ case frame: small abstract scene identifying the participants of the scene and thus the arguments of predicates and sentences describing the scene;
 ▶ frame can be described by different verbs describing the same situation.

▶ Artificial Intelligence research (Minsky and others)
 ▶ frame-based knowledge representations;
 ▶ can be called models or scripts or schemata;
 ▶ collection of information about objects and events.

▶ Words evoke frames.
Historical roots (60s)

- Fillmore’s case grammar
 - Fillmore was inspired by the works of Lucien Tesniere, the father of the contemporary dependency grammar.
 - case frame: small abstract scene identifying the participants of the scene and thus the arguments of predicates and sentences describing the scene;
 - frame can be described by different verbs describing the same situation.

- Artificial Intelligence research (Minsky and others)
 - frame-based knowledge representations;
 - can be called models or scripts or schemata;
 - collection of information about objects and events.

- Words evoke frames.
- Semantic roles (actants, cases) are assigned to participants of the frame.
Frame Semantics

- Roles are relative to a frame.
Frame Semantics

- Roles are relative to a frame.
- Meaning of a verb can be modeled by reference to its frame.
Frame Semantics

- Roles are relative to a frame.
- Meaning of a verb can be modeled by reference to its frame.
- Arguments of a verb can be described by reference to relevant participants and objects.
 - frame elements = semantic roles;
 - NB! these deep semantic roles are frame-specific.
Frame Semantics

▶ Roles are relative to a frame.
▶ Meaning of a verb can be modeled by reference to its frame.
▶ Arguments of a verb can be described by reference to relevant participants and objects.
 ▶ frame elements = semantic roles;
 ▶ NB! these deep semantic roles are frame-specific.
▶ Example
 ▶ commercial event (frame):
 ▶ frame elements (core semantic roles): (buyer, seller, money, goods)
Frame Semantics

- Roles are relative to a frame.
- Meaning of a verb can be modeled by reference to its frame.
- Arguments of a verb can be described by reference to relevant participants and objects.
 - frame elements = semantic roles;
 - NB! these deep semantic roles are frame-specific.

- Example
 - commercial event (frame):
 - frame elements (core semantic roles): (buyer, seller, money, goods)
 - Their relations:
 - buyer, goods: sell
Frame Semantics

- Roles are relative to a frame.
- Meaning of a verb can be modeled by reference to its frame.
- Arguments of a verb can be described by reference to relevant participants and objects.
 - frame elements = semantic roles;
 - NB! these deep semantic roles are frame-specific.
- Example
 - commercial event (frame):
 - frame elements (core semantic roles): (buyer, seller, money, goods)
 - Their relations:
 - buyer, goods: sell
 - buyer, money: spend
Frame Semantics

- Roles are relative to a frame.
- Meaning of a verb can be modeled by reference to its frame.
- Arguments of a verb can be described by reference to relevant participants and objects.
 - frame elements = semantic roles;
 - NB! these deep semantic roles are frame-specific.

- Example
 - commercial event (frame):
 - frame elements (core semantic roles): (buyer, seller, money, goods)
 - Their relations:
 - buyer, goods: sell
 - buyer, money: spend
 - etc.
Commercial event frame (partial)

<table>
<thead>
<tr>
<th>BUYER</th>
<th>buy</th>
<th>GOODS</th>
<th>(SELLER)</th>
<th>(PRICE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>subject</td>
<td></td>
<td>object</td>
<td>from</td>
<td>for</td>
</tr>
<tr>
<td>Alfred</td>
<td>bought</td>
<td>the book</td>
<td>from Olivia</td>
<td>for 10 dollars</td>
</tr>
<tr>
<td>Alfred</td>
<td>bought</td>
<td>them</td>
<td></td>
<td>for 1 dollar</td>
</tr>
<tr>
<td>Alfred</td>
<td>bought</td>
<td>a bicycle</td>
<td>from Sarah</td>
<td></td>
</tr>
</tbody>
</table>
Commercial event frame (partial)

<table>
<thead>
<tr>
<th>VERB</th>
<th>BUYER</th>
<th>GOODS</th>
<th>SELLER</th>
<th>MONEY</th>
<th>PLACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>buy</td>
<td>subject</td>
<td>object</td>
<td>from</td>
<td>for</td>
<td>at</td>
</tr>
<tr>
<td>sell</td>
<td>to</td>
<td>object</td>
<td>subject</td>
<td>for</td>
<td>at</td>
</tr>
<tr>
<td>cost</td>
<td>ind.obj</td>
<td>subject</td>
<td></td>
<td>object</td>
<td>at</td>
</tr>
<tr>
<td>spend</td>
<td>subject</td>
<td>on</td>
<td></td>
<td>object</td>
<td>at</td>
</tr>
</tbody>
</table>
FrameNet lexical database

- 1224 manually described frame descriptions.
FrameNet lexical database

- 1224 manually described frame descriptions.
- Freely available (for several languages) at https://framenet.icsi.berkeley.edu

FrameNet lexical database

- 1224 manually described frame descriptions.
- Freely available (for several languages) at https://framenet.icsi.berkeley.edu
- Accessible with NLTK:
 - `python3 -m nltk.downloader 'framenet_v17'`
 - `from nltk.corpus import framenet as fn`
 - `fn.frames()`
 - `fn.frame(200).name`
 - `fn.frame(200).definition`
 - `fn.frame(200).FE`

FrameNet lexical database

- 1224 manually described frame descriptions.
- Freely available (for several languages) at https://framenet.icsi.berkeley.edu
- Accessible with NLTK:
 - `python3 -m nltk.downloader 'framenet_v17'
 - `from nltk.corpus import framenet as fn
 - `fn.frames()
 - `fn.frame(200).name
 - `fn.frame(200).definition
 - `fn.frame(200).FE
Example of a text annotated in the FrameNet paradigm.
FrameNet lexical database

Killing

Definition:
A Killer or Cause causes the death of the Victim.
John DROWNED Martha.

FEs:

Core:

Cause []
Excludes: Killer

Instrument [Instr]
Semantic Type: Physical_entity
Excludes: Cause
Killer [Kill]
Excludes: Cause
Means []
Semantic Type: State_of_affairs
Excludes: Cause
Victim []
Semantic Type: Sentient

An inanimate entity or process that causes the death of the Victim.
The rockslide KILLED nearly half of the climbers.

The device used by the Killer to bring about the death of the Victim.
It's difficult to SUICIDE with only a pocketknife.

The person or sentient entity that causes the death of the Victim.
The method or action that the Killer or Cause performs resulting in the death of the Victim.
The flood EXTERMINATED the rats by cutting off access to food.

The living entity that dies as a result of the killing.
Quiz

- https://b.socrative.com/login/student/
- Room name: 'KUTUZOV'
Contents

Introduction

Semantic roles in general

PropBank: Proto-roles

FrameNet: Frame Semantics

Summary
Semantic roles are the roles which arguments play in the event described by the predicate.
Summary

▶ Semantic roles are the roles which arguments play in the event described by the predicate.
▶ PropBank uses a small number of numbered argument labels (PROTO-AGENT, PROTO-PATIENT) as semantic roles.
Summary

- Semantic roles are the roles which *arguments* play in the *event* described by the *predicate*.
- *PropBank* uses a small number of numbered argument labels (PROTO-AGENT, PROTO-PATIENT) as semantic roles.
- *FrameNet* uses many frame-specific elements as semantic roles.
Summary

- Semantic roles are the roles which arguments play in the event described by the predicate.
- *PropBank* uses a small number of numbered argument labels (PROTO-AGENT, PROTO-PATIENT) as semantic roles.
- *FrameNet* uses many frame-specific elements as semantic roles.
- These resources are complementary.
Summary

▶ Semantic roles are the roles which arguments play in the event described by the predicate.
▶ PropBank uses a small number of numbered argument labels (PROTO-AGENT, PROTO-PATIENT) as semantic roles.
▶ FrameNet uses many frame-specific elements as semantic roles.
▶ These resources are complementary.
▶ Automatic semantic role labeling (SRL) using machine learning: the next lecture.
What’s next in the class?

▶ Introduction to Semantic Role Labeling (today);

▶ Modern approaches to Semantic Role Labeling (Nov 14)

▶ Obligatory assignment 4 (Project B) released later this week;

▶ Project B written report due Nov 24.

▶ Group sessions:
 ▶ Exercises with semantic role labeling (Nov 13)
 ▶ Discussing and working on Project B (November 20).
What’s next in the class?

- Introduction to Semantic Role Labeling (today);
- Modern approaches to Semantic Role Labeling (Nov 14)
What’s next in the class?

- Introduction to Semantic Role Labeling (today);
- Modern approaches to Semantic Role Labeling (Nov 14)
- Obligatory assignment 4 (Project B) released later this week;
What’s next in the class?

- Introduction to Semantic Role Labeling (today);
- Modern approaches to Semantic Role Labeling (Nov 14)
- Obligatory assignment 4 (Project B) released later this week;
- Project B written report due Nov 24.
What's next in the class?

- Introduction to Semantic Role Labeling (today);
- Modern approaches to Semantic Role Labeling (Nov 14);
- Obligatory assignment 4 (*Project B*) released later this week;
- *Project B* written report **due Nov 24.**
- Group sessions:
What’s next in the class?

- Introduction to Semantic Role Labeling (today);
- Modern approaches to Semantic Role Labeling (Nov 14)
- Obligatory assignment 4 (*Project B*) released later this week;
- *Project B* written report **due Nov 24**.
- Group sessions:
 - Exercises with semantic role labeling (Nov 13)
What’s next in the class?

- Introduction to Semantic Role Labeling (today);
- Modern approaches to Semantic Role Labeling (Nov 14)
- Obligatory assignment 4 \((Project \ B) \) released later this week;
- \(Project \ B \) written report due Nov 24.
- Group sessions:
 - Exercises with semantic role labeling (Nov 13)
 - Discussing and working on \(Project \ B \) (November 20).
References

References II

