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about today

∙ We are going through a lot today
∙ A lot of concepts and notation to be familiar with
∙ Requires some knowledge of statistics, linear algebra, and calculus
∙ It is not expected that you understand everything after today
∙ But this lecture should be sufficiently self-contained: with some work, you should be
able to

∙ Know how a classification neural network is built up from scratch
∙ Know why some things are as they are
∙ Know how to efficiently implement a vanilla classifier

∙ Concepts from todays lecture is the basis for the rest of the course
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introduction and motivation



deep learning context

Machine learning
∙ A set of methods and algorithms that solves a task by learning from experience on
observed data.

∙ Traditionally, requires preprocessing to generate feature representations of data
Representation learning

∙ The method itself extracts useful features (data representations)
∙ Requires little or no preprocessing of input data

Deep learning
∙ Multiple iterations of representation learning
∙ Hierarchical structure:

∙ Learn representation of input
∙ Learn representation of representation
∙ Learn representation of representation
∙ . . .

∙ From low level to high level features
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supervised learning

∙ Given a training set with input x and desired output y

Ωtrain = {(x(1), y(1)), . . . , (x(m), y(m))}

∙ Create a function f that “approximates” this mapping

f(x) ≈ y, ∀(x, y) ∈ Ωtrain

∙ Hope that this generalises well to unseen examples, such that

f(x) = ŷ ≈ y, ∀(x, y) ∈ Ωtest

where Ωtest is a set of relevant unseen examples.
∙ Hope that this is also true for all unseen relevant examples.
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what are we going to do today

1. Build a function f that maps input to output
∙ Input: Array of numbers.
∙ Output: Probability mass function conditional on observed input.

2. This function will have multiple layers, where each layer is a representation of the
previous.

3. Measure how well the output of the function is approximating the true output
4. Use information from the error to update the function
5. Repeat step 3 and 4 with multiple training examples
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representation of the network



base architecture
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nodes and layers
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what is happening in the hidden layer nodes

∙ a[l]k is the activation of node k in layer l

a
[l]
k = g

n[l−1]∑
j=1

w
[l]
jka

[l−1]
j + b

[l]
k


∙ w[l]

jk is the weight from node j in layer l − 1 to node k in layer l
∙ b[l]k is the bias of node k in layer l
∙ All above are scalars
∙ g is some non-linear function
∙ All w and b are “trainable”, and will be adjusted according to some optimization
routine

∙ By convention
∙ a

[0]
k = xk

∙ a
[L]
k = ŷk

∙ The network have L layers (we do not include the input layer in the count)
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notation — for reference

∙ Superscript with square brackets [l]:
layer l

∙ L: Number of layers in the network.
∙ n[l]: Number of nodes in layer l
∙ nx = n[0]: Input dimension
∙ ny = n[L]: Output dimension (number
of classes)

∙ x, X , X : Arrays representing input
∙ y, Y , Y : Arrays representing true output
∙ ỹ, Ỹ , Ỹ : Arrays representing one-hot
encoded true output.

∙ ŷ, Ŷ : Arrays representing predicted
output

∙ w, W : Edge weights
∙ b, B: Node bias
∙ z, Z : Linear combination of activation in
previous layer

∙ a[l], A[l]: Node activation in layer l.
∙ a[0] = x: Input vector
∙ a[L] = ŷ: Output vector
∙ Subscript j or jk: Element in vector, or
matrix

∙ Superscript with parenthesis (i): data
example (i)

∙ Ωdataset: A collection of examples
{(x(i), y(i))} constituting a dataset.

∙ m: Number of examples 11



activation in node 3 of layer 1

a
[1]
3 = g

 nx∑
j=1

w
[1]
j3xj + b

[1]
3


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activation in node 4 of layer 2

a
[2]
4 = g

n[1]∑
j=1

w
[2]
j4a

[1]
j + b

[2]
4


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all connections

a
[l]
k = g

n[l−1]∑
j=1

w
[l]
jka

[l−1]
j + b

[l]
k

 , k ∈ {1, 2, . . . , n[l]}, l ∈ {1, 2, . . . , L}
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forward propagation



network architecture overview
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input layer to first hidden layer

z
[1]
k =

nx∑
j=1

w
[1]
jkxj + b

[1]
k

=

n[0]∑
j=1

w
[1]
jka

[0]
j + b

[1]
k

a
[1]
k = g(z

[1]
k )

for

k = 1, . . . , n[1].
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between two hidden layers

z
[l]
k =

n[l−1]∑
j=1

w
[l]
jka

[l−1]
j + b

[l]
k

a
[l]
k = g(z

[l]
k )

for

k = 1, . . . , n[l],

l = 1, . . . , L− 1
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activation functions

∙ Functions that introduce non-linearity to our network
∙ Without it, our network just becomes a linear mapping from input to output
∙ Enables DNN to become universal function approximators
∙ Can in theory be any function that is

∙ Non-linear
∙ Differentiable (if you are using a gradient-based optimization)
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sigmoid activation

g(z) = σ(z)

=
1

1 + e−z

=
ez

ez + 1
.

∙ Stems from logistic regression,
and was used a lot historically

∙ Several problems
∙ Very flat slope except at z
close to zero

∙ This can result in slow learning
(vanishing gradient problem)

∙ Not centered around zero
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hyperbolic tangent activation

g(z) = tanh(z)

=
ez − e−z

ez + e−z
.

∙ Similar to the sigmoid
function, but centered around
zero

∙ Often performs a bit better
∙ Still suffers from vanishing
gradients
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rectified linear unit activation

g(z) = ReLU(z)

= max{0, z}.

∙ Currently the most popular
choice

∙ Faster convergence
∙ Not without problems: e.g.
“dead neurons”

∙ Extensions:
∙ Leaky ReLU
∙ ELU: Exponential linear unit
∙ SELU: Scaled exponential
linear unit
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output layer

z
[L]
k =

n[L−1]∑
j=1

w
[L]
jk a

[L−1]
j + b

[L]
k

a
[L]
k = s(z

[L]
k )

= ŷk

for

k = 1, . . . , ny,

= 1, . . . , n[L].

23



softmax function

s(z)k =
ezk∑n
i=1 e

zi

∙
∑

k s(z)k = 1, and the softmax can be
interpreted as a probability

∙ Using the softmax as our final
activation, we can interpret the output
of our network as

f(x; Θ)k = Pr(Y = k|X = x; Θ) (1)

∙ X is a random vector modeling our
input

∙ Y is a categorical random variable
modeling the true output

∙ Θ is the collection of parameters

Θ = {w[l]
jk, b

[l]
k }

for 
j = 1, . . . , n[l−1]

k = 1, . . . , n[l]

l = 1, . . . , L
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implementing the softmax function

∙ Numerical instability can be a problem, because of the exponential function, and
division.

∙ Two common “tricks” that can help this follows
∙ Shift exponential arguments to max zero

s(z)k =
ezk∑n
i=1 e

zi

=
ezk−max(z)∑n
i=1 e

zi−max(z)

∙ Take logarithm and exponentiate it to get rid of division

t(z)k = log s(z)k

= zk − log
n∑

i=1

ezi

s(z)k = et(z)k

∙ The above can be combined
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logits and predictions

In the output layer we have

z
[L]
k =

n[L−1]∑
j=1

w
[L]
jk a

[L−1]
j + b

[L]
k

a
[L]
k = s(z

[L]
k )

= ŷk

for

k = 1, . . . , ny,

= 1, . . . , n[L].

z[L] are called logits, and ŷ will be predicted output
probabilities.
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cross entropy cost function



choosing network parameters

∙ We have defined the network architecture
∙ Now, we need to select values for the parameters

Θ = {w[l]
jk, b

[l]
k : j ∈ {1, . . . , n[l−1]}, k ∈ {1, . . . , n[l]}, l ∈ {1, . . . , L}}

∙ Several possible ways of doing this
∙ Vanilla classification with deep learning with dense neural networks:
∙ Minimizing the cross entropy cost function using a stochastic gradient descent
optimizer

∙ Will first derive the cost function using a maximum likelihood estimation
∙ In the next part, we will discuss how to actually compute the estimator values
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maximum likelihood estimation

∙ Suppose we have a random variable X which distribution is described by pX(x; θ)

∙ We want to estimate the deterministic, but unknown parameter θ.
∙ The maximum likelihood estimator (MLE) θ̂ of θ is the parameter

θ̂ = arg max
θ

ℓ(θ;x) (2)

∙ The likelihood ℓ(θ;x) has the same form as pX(x; θ), except x is a fixed realization of
X , and θ is a variable.

∙ Interpreted as describing the probability of observing X = x for various values of θ
(and is therefore a function of θ)
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categorical distribution of output conditioned on input

∙ Let Y be a categorical random variable modeling our true class.
∙ Let X be a random vector modeling the corresponding input.
∙ Y can only take one of K values, and conditioned on X = x, is distributed according
to a categorical distribution

pY(y|X = x; Θ) =

K∏
k=1

Pr(Y = k|X = x; Θ)
[y=k] (3)

∙ [y = k] is the Iverson bracket

[y = k] =

{
1, if y = k

0, else

∙ We defined the probability in eq. (1)

Pr(Y = k|X = x; Θ) = ŷ(x; Θ)k
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distribution of a single network output

∙ It is common to represent the true output y as a so-called one-hot encoded vector ỹ
with elements

ỹk =

{
1, if y = k

0, else
(4)

∙ Inserting this, and eq. (1) into eq. (3) yields

pY(y|X = x; Θ) =

ny∏
k=1

ŷ(x; Θ)k
ỹk (5)
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distribution of multiple inputs

∙ We can extend eq. (5) to a case with m examples
∙ Let the random variables Yi and Xi model our output and input for examples
i = 1, . . . ,m

∙ The joint, conditional distribution for this collection is then

pY1,...,Ym
(y1, . . . , ym|X1 = x1, . . . ,Xm = xm; Θ)

i.i.d.
=

m∏
i=1

pYi
(yi|Xi = xi; Θ) (6)

∙ Here i.i.d. stands for independent and identically distributed
∙ This means that we assume that (Yi,Xi) is independent of (Yj ,Xj) when i ̸= j, but
follows the exact same distribution

∙ This can be shown using the so-called chain rule of conditional probability

p(y1, . . . , ym|x1, . . . , xm) =
p(y1, . . . , ym, x1, . . . , xm)

p(x1, . . . , xm)

i.i.d.
=

p(y1, x1)p(y2, x2) . . . p(ym, xm)

p(x1)p(x2) . . . p(xm)

= p(y1|x1)p(y2|x2) . . . p(ym|xm). 32



likelihood function

∙ In our case, the likelihood function becomes

ℓ(Θ;Ωy
train|Ω

x
train) =

m∏
i=1

ℓ(Θ; y(i)|x(i)),

=

m∏
i=1

ny∏
k=1

(
ŷ
(i)
k

)ỹ(i)
k

.

(7)

∙ Where Ωy
train is our training example outputs {y(1), . . . , y(m)} and Ωx

train is our
training example inputs {x(1), . . . , x(m)}
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maximum likelihood estimator

∙ We are interested in estimating Θ using the MLE Θ̂

Θ̂ = arg max
Θ
{ℓ(Θ;Ωy

train|Ω
x
train)} (8a)

= arg max
Θ
{log ℓ(Θ;Ωy

train|Ω
x
train)} (8b)

= arg min
Θ
{− log ℓ(Θ;Ωy

train|Ω
x
train)} (8c)

= arg min
Θ

{
− 1

m
ℓ(Θ;Ωy

train|Ω
x
train)

}
(8d)

∙ Eq. (8a): Definition of the maximum likelihood estimator.
∙ Eq. (8b): Maximizing the log-likelihood is more numerically stable.
∙ Eq. (8c): Minimizing the negative likelihood is equivalent.
∙ Eq. (8d): Makes it “ invariant” to the number of examples.
∙ Eq. (8c) and Eq. (8d): Necessary in order to connect it to information-theoretical
interpretation.

34



cross entropy cost function

∙ Using the operations in eqs. (8) on our likelihood, defined in eq. (7), we get

Θ̂ = arg min
Θ

{
− 1

m

m∑
i=1

ny∑
k=1

ỹ
(i)
k log ŷ(i)k

}
.

∙ Needs to be found with numerical optimization
∙ The optimization objective function will therefore be the cross entropy cost

C(Θ,Ωy
train,Ω

x
train) = −

1

m

m∑
i=1

ny∑
k=1

ỹ
(i)
k log ŷ(i)k . (9)

∙ Also common to term this as a loss function.
∙ We will distinguish between cost function and loss function
∙ We will reserve loss function to the discrepancy between the predicted and true
output for a single example

∙ Our cross entropy loss is then

L(y(i), ŷ(i)) = −
ny∑
k=1

ỹ
(i)
k log ŷ(i)k . (10)
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cross entropy from information theory

∙ We have derived the cross entropy loss from a probabilistic maximum likelihood
framework

∙ In information theory, the cross entropy metric is also known my the name relative
entropy

∙ We can also arrive to the cross entropy loss using a distance metric called the
Kullbach-Leibler divergence
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distance metric: kullback-leibler divergence

∙ The Kullback-Liebler divergence over a discrete random variable X

DKL(pX ||qX ) =
∑
x

pX (x) log pX (x)

qX (x)
(11)

∙ Measures the distance between two probability distributions pX and qX over the
same set of events, modeled with the random variable X .

∙ Expectation of logarithmic difference between p and q when expectation is taken
w.r.t. p.

∙ Measures the amount of information that is lost when using q to approximate p.
∙ It is non-negative
∙ Zero for p = q

∙ Increasing for “increasing difference” between p and q.
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cross entropy from kl divergence

∙ Let pmodel be the model distribution defined in eq. (1)
∙ Let pdata be the empirical data distribution defined by our data (using the one-hot
encoding from eq. (4)).

∙ The Kullback-Liebler divergence between the two is then

DKL(pmodel||pdata) =
∑
k

ỹk log ỹk
ŷk

= −
∑
k

ỹk log ŷk

which we recognise as the cross entropy loss.
∙ In the last step, we used that

∙ ỹk log ỹk → 0 when ỹk → 0 and therefore we set it to zero even though log 0 is undefined
∙ Also ỹk log ỹk = 0 when ỹk = 1.
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optimization



gradient descent with a single variable

θ ← θ − λ
∂J

∂θ
(θ) (12)

∙ Where
∙ J is some objective function that is to
be optimized

∙ θ is the parameter that is to be updated
∙ λ is the step length (often called
learning rate in machine learning
environments)

∙ ∂J
∂θ (θk) gives the direction (+ or −) of
steepest ascent at the point θk

∙ λ controls how long to move in that
direction

40



gradient descent with multiple variables

θ ← θ − λ∇θJ(θ) (13)

∙ The gradient of J w.r.t. a set of variables
θ = [θ1, . . . , θm]

∇θJ =

[
∂J

∂θ1
, . . . ,

∂J

∂θm

]
∙ ∇θJ(θk) gives the direction (+ or − of
every element in θ) of steepest ascent
at the point θk

∙ λ determines how long to move in that
direction
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gradient descent (steepest descent) optimization

∙ This is the simplest, most naive, gradient-based optimization method.
∙ Turns out to fit very well with deep learning

∙ Very fast per update
∙ Traverses the parameter space fairly well
∙ Not so dependent on initialisations

∙ Not completely understood why it works well (still trying to figure out the topology of
the solution space: saddle points vs. local minima, etc.)

∙ Traditional problems
∙ Oscillations around (local) minima
∙ Slow convergence
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our case

We want to find values for our weights and biases

w
[l]
jk ← w

[l]
jk − λ

∂C
∂w

[l]
jk

(14)

b
[l]
k ← b

[l]
k − λ

∂C
∂b

[l]
k

(15)

for all 
j = 1, . . . , n[l−1]

k = 1, . . . , n[l]

l = 1, . . . , L

This is done with the so-called backpropagation algorithm.
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stochastic learning

∙ Expencive to consider the full training set at each update
∙ Instead: consider only a randomly sampled subset; a mini-batch of size mb

∙ This is called stochastic gradient descent
∙ This approximates the actual step direction fairly well
∙ Size

∙ Too small: Poor approximation. Inneficient because of bad linalg library utilization
∙ Too large: Better approximation. Inneficient because of many samples.
∙ Recommended: Order of one to a couple of hundred (problem dependent)
∙ Usually a power of 2 (can be more efficient because of memory layout on computers)

Cb =
1

mb

mb∑
i=1

ny∑
k=1

ỹ
(i)
k log ŷ(i)k

θ ← θ − λ∇θCb
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backward propagation



overview

∙ We are going to update all w[l]
jk and b

[l]
k

∙ This is done by minimizing the cross entropy loss using a gradient descent optimizer
∙ Therefore, we need to compute all ∂C

∂w
[l]
jk

and ∂C
∂b

[l]
k

.

∙ This can be done with repeated recursive use of the chain rule
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chain rule

For a function f dependent on g which is
dependent on x

df
dx =

df
dg

dg
dx

For a function f dependent on multiple
g1, . . . , gn, all which are dependent on x

∂f

∂x
=

n∑
i=1

∂f

∂gi

∂gi
∂x
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plan of attack

∙ The cost is just an average over all losses, so we
are going to derive the partial derivatives from a
single example.

∙ We start from the output layer and move
backwards through the network

∙ First, we compute the derivative of the loss w.r.t.
the linear combinations

∂L
∂z

[l]
k

, k = 1, . . . , n[l], l = 1, . . . , L

∙ Then, we use this to derive all

∂L
∂w

[l]
jk

and ∂L
∂b

[l]
k

.
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derivative w.r.t. z — last layer

∙ We have the expression for the loss and the softmax

L(y, a[L]) = −
ny∑
k=1

ỹk log a[L]
k

a
[L]
k =

ezk∑n
i=1 e

zi
= ŷk

∙ As we see, every z[L]
k is involved in all a[L]

k , therefore we get

∂L
∂z

[L]
k

=

ny∑
j=1

∂L
∂a

[L]
j

∂a
[L]
j

∂z
[L]
k

. (16)

∙ The first factor is pretty straight forward

∂L
∂a

[L]
j

= − ỹj

a
[L]
j

. (17)
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derivative w.r.t. z — last layer

The second factor is a bit more involved. First we compute it when j = k

∂a
[L]
k

∂z
[L]
k

=

∂

∂z
[L]
k

(
ez

[L]
k

)(∑ny

i=1 e
z
[L]
i

)
− ez

[L]
k

∂

∂z
[L]
k

(∑ny

i=1 e
z
[L]
i

)
(∑ny

i=1 e
z
[L]
i

)2
=

ez
[L]
k

(∑ny

i=1 e
z
[L]
i

)
− ez

[L]
k ez

[L]
k(∑ny

i=1 e
z
[L]
i

)2
= a

[L]
k (1− a

[L]
k ).
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derivative w.r.t. z — last layer

When j ̸= k, we get

∂a
[L]
j

∂z
[L]
k

=

∂

∂z
[L]
k

(
ez

[L]
j

)(∑ny

i=1 e
z
[L]
i

)
− ez

[L]
j ∂

∂z
[L]
k

(∑ny

i=1 e
z
[L]
i

)
(∑ny

i=1 e
z
[L]
i

)2
=

−ez
[L]
j ez

[L]
k(∑ny

i=1 e
z
[L]
i

)2
= −a[L]

j a
[L]
k .

Combining the results from when j = k and when j ̸= k, we get, for all nodes a[L]
j

∂a
[L]
j

∂z
[L]
k

= a
[L]
j (δjk − a

[L]
k ). (18)

where δab =

{
1, if a = b

0, if a ̸= b
is the Kronecker delta.
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derivative w.r.t. z — last layer

Inserting eq. (17) and eq. (18) into eq. (16) yields

∂L
∂z

[L]
k

=

ny∑
j=1

∂L
∂a

[L]
j

∂a
[L]
j

∂z
[L]
k

=

ny∑
j=1

−ỹj
a
[L]
j

a
[L]
j (δjk − a

[L]
k )

=

ny∑
j=1

−ỹj(δjk − a
[L]
k )

= a
[L]
k

ny∑
j=1

δjk −
ny∑
j=1

ỹjδjk

= a
[L]
k − ỹk

= ŷk − ỹk

(19)
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derivative w.r.t. z — between hidden layers

The first use of the chain rule is straight forward. Since a
[l]
k is only dependent on a single

z
[l]
k

a
[l]
k = g(z

[l]
k )

we get
∂L
∂z

[l]
k

=
∂L
∂a

[l]
k

∂a
[l]
k

∂z
[l]
k

.

The second factor is dependent on the activation function g, and we will just write

∂a
[l]
k

∂z
[l]
k

= g′(z
[l]
k ). (20)
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intermezzo — activation function derivatives

Sigmoid function derivative

∂a
[l]
k

∂z
[l]
k

=
∂

∂z
[l]
k

(
ez

[l]
k

ez
[l]
k + 1

)

=
ez

[l]
k (ez

[l]
k + 1)− e2z

[l]
k(

ez
[l]
k + 1

)2
=

ez
[l]
k

ez
[l]
k + 1

−

(
ez

[l]
k

ez
[l]
k + 1

)2

= a
[l]
k (1− a

[l]
k ).

Rectified linear unit derivative

∂a
[l]
k

∂z
[l]
k

=
∂

∂z
[l]
k

(
max{0, z[l]k }

)

=


0, z < 0

1, z > 0

undefined, z = 0

.

In practice, we just use the Heaviside step function

H(z) =

{
0, z < 0

1, z ≥ 0
.

since we are implementing with floats that are rarely
exactly zero
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derivative w.r.t. z — between hidden layers

To derive the next factor, remember that a single activation in layer l, a[l]k is connected to
every node j in the next layer, by

z
[l+1]
j =

n[l]∑
i=1

w
[l+1]
ij a

[l]
i + b

[l+1]
j .

With this, using the multidimensional chain rule, we get

∂L
∂a

[l]
k

=

n[l+1]∑
j=1

∂L
∂z

[l+1]
j

∂z
[l+1]
j

∂a
[l]
k

=

n[l+1]∑
j=1

∂L
∂z

[l+1]
j

w
[l+1]
kj .

55



derivative w.r.t. z — between hidden layers

∙ Putting the last results together

∂L
∂z

[l]
k

= g′(z
[l]
k )

n[l+1]∑
j=1

∂L
∂z

[l+1]
j

w
[l+1]
kj .

∙ Note that this is dependent on the derivative in the next layer, which then again is
dependent on derivatives in the next layer.

∙ At the end, we reach the output layer, and then we can use eq. (19), which terminate
the recursion.

∙ Because of this, we often say that gradients propagate backwards from the ouptut
layer through the nodes in the network.

56



derivatives w.r.t. network parameters

∙ Remember

z
[l]
k =

n[l−1]∑
j=1

w
[l]
jka

[l−1]
j + b

[l]
k

∙ This is valid for all layers
l ∈ {1, 2, . . . , L}

∙ The weight derivatives becomes

∂L
∂w

[l]
jk

=
∂L
∂z

[l]
k

∂z
[l]
k

∂w
[l]
jk

=
∂L
∂z

[l]
k

a
[l−1]
j

∙ The bias derivatives becomes

∂L
∂b

[l]
k

=
∂L
∂z

[l]
k

∂z
[l]
k

∂b
[l]
k

=
∂L
∂z

[l]
k

∙ Note that a[0]j = xj , i.e. element j in the
input vector

∙ We already have defined ∂L
∂z

[l]
k

for all
layers l ∈ {1, 2, . . . , L}

∙ We have everything we need.
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backprop summary

∂L
∂w

[l]
jk

=
∂L
∂z

[l]
k

a
[l−1]
j , l = 1, . . . , L. (21a)

∂L
∂b

[l]
k

=
∂L
∂z

[l]
k

, l = 1, . . . , L. (21b)

∂L
∂z

[l]
k

= g′(z
[l]
k )

n[l+1]∑
j=1

∂L
∂z

[l+1]
j

w
[l+1]
kj , l = 1, . . . , L− 1 (21c)

∂L
∂z

[L]
k

= ŷk − ỹk. (21d)

Note that
∙ Eqs. (21a)— (21c) are generally applicable
∙ Eq. (21d) assumes that L is the cross-entropy loss, and that a[L] = s(z[L]) with s as
the softmax function.
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vectorisation



general

∙ We have all the equations we need, both forward propagation and backpropagation
∙ Implementing via for loops is slow (in python)
∙ Better to represent things as vectors and matrices, and utilise optimised linear
algebra libraries (numpy for python)

∙ We can vectorise over layers
∙ Can also vectorise over multiple input examples
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forward propagation — vectorise over a layer

∙ For node k of layer l, we had

z
[l]
k =

∑
j

w
[l]
jka

[l−1]
j + b

[l]
k

a
[l]
k = g(z

[l]
k ),

∙ Vectorising over the entire layer l yields

z[l] = W [l]⊺a[l−1] + b[l]

a[l] = g(z[l]),

where the activation function g is applied element wise
∙ The dimensions are as follows 

z[l] : n[l]

W [l] : n[l−1] × n[l]

a[l] : n[l]

b[l] : n[l]

.
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forward propagation — vectorise over multiple examples

∙ Let X = [x(1), . . . , x(m)] is a nx ×m matrix with m input column vectors.
∙ The forward propagation equations in a layer can be computed for all elements as

Z [l] = W [l]⊺A[l−1] +B[l]

A[l] = g(Z [l]),

∙ The dimensions are as follows 
Z [l] : n[l] ×m

W [l] : n[l−1] × n[l]

A[l] : n[l] ×m

B[l] : n[l] ×m

.

∙ A single element
∙ Z

[l]
ji : Linear combination for node j at layer l for input example i

∙ A
[l]
ji : Activation for node j at layer l for input example i

∙ B
[l]
ji : Bias value for node j at layer l for input example i. Note that B consist of m equal
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cost function

∙ Remember our cost function over m examples

C = − 1

m

m∑
i=1

ny∑
k=1

ỹ
(i)
k log ŷ(i)k .

∙ This can be vectorised as

C = − 1

m
1(ny)

⊺
(
Ỹ ◦ log Ŷ

)
1(m)

∙ Here
∙ Ŷ and Ỹ are ny ×m matrices with the predicted output, and one-hot encoded true
output, respectively, over m examples.

∙ 1(n) is a n-dimensional column vector with ones: [1, 1, . . . , 1]
∙ ◦ denotes the Hadamard product between two arrays of equal dimension

(A ◦B)ij = AijBij .

∙ The Hadamard product is also called element wise multiplication
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backward propagation

∙ We will derive the vectorised versions of eqs. (21a) — (21d), one at the time
∙ First, we introduce the gradient and Jacobian
∙ For a function f dependent on x = [x1, x2, . . . , xn], the gradient of f w.r.t. x is a
n-dimensional column vector with elements

(∇xf)i =
∂f

∂xi
.

∙ For m functions f = [f1, f2, . . . , fm], all dependent on x = [x1, x2, . . . , xn], the
Jacobian of f w.r.t. x is a n×m matrix with elements

(Jx(f))ij =
∂fj
∂xi

.
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backward propagation — weight parameters

∙ Restating eq. (21a)

∂L
∂w

[l]
jk

= a
[l−1]
j

∂L
∂z

[l]
k

∙ Over one layer, this can be written as

∇W [l]L = a[l−1]∇z[l]L⊺

∙ For multiple examples, the weight
derivative will just be the average over
all elements

∙ This can be seen from our cost function

C = 1

m

m∑
i=1

L(y(i), ŷ(i))

∙ For multiple examples, we end up with

∇W [l]C =
1

m
A[l−1]Jz[l](C)⊺

∙ As before, this is valid for all layers
l = 1, . . . , L

∙ Note that we have taken some
notational freedom, and defined

(∇W [l]P)ij =
∂P
∂w

[l]
ij

, for P ∈ {L, C}
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backward propagation — bias parameters

∙ We have from eq. (21b)
∂L
∂b

[l]
k

=
∂L
∂z

[l]
k

∙ Over one layer, with a single example

∇b[l]L = ∇z[l]L

∙ Over one layer, and multiple examples

∇b[l]C =
1

m
Jz[l](C)1(m)

∙ This is valid for layers l = 1, . . . , L
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backward propagation — linear combination in hidden layers

∙ We are going to vectorise eq. (21c)

∂L
∂z

[l]
k

= g′(z
[l]
k )

n[l+1]∑
j=1

w
[l+1]
kj

∂L
∂z

[l+1]
j

∙ Over one layer l, we get the gradient of the loss w.r.t. z

∇z[l]L = g′(z[l]) ◦
(
W [l+1]∇z[l+1]L

)
∙ Extending to multiple examples is quite straight forward

Jz[l](C) = g′(Z [l]) ◦
(
W [l+1]Jz[l+1](C)

)
∙ This is valid for layers l = 1, . . . , L− 1
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backward propagation — linear combination in output layer

∙ The equation that we are to vectorise is

∂L
∂z

[L]
k

= a
[L]
k − ỹk

= ŷk − ỹk

∙ For a single example, this becomes

∇z[L]L = ŷ − ỹ

∙ And for multiple examples, with a one-hot encoded collection of true outputs Ỹ

Jz[L](C) = Ŷ − Ỹ
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backward propagation vectorised summary — single example

∇W [l]L = a[l−1]∇z[l]L⊺ (22a)
∇b[l]L = ∇z[l]L (22b)

∇z[l]L = g′(z[l]) ◦
(
W [l+1]∇z[l+1]L

)
(22c)

∇z[L]L = ŷ − ỹ. (22d)
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bacward propagation vectorised summary — multiple example

∇W [l]C =
1

m
A[l−1]Jz[l](C)⊺ (23a)

∇b[l]C =
1

m
(Jz[l](C))1(m) (23b)

Jz[l](C) = g′(Z [l]) ◦
(
W [l+1]Jz[l+1](C)

)
(23c)

Jz[L](C) = Ŷ − Ỹ . (23d)
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Questions?
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