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Introduction

• Machine learning (ML) algorithms are 
now used in virtually any NLP system

• This talk will focus on the question of the 
representation used by these algorithms

• I’ll describe a family of learning algorithms 
specifically designed for domains 
exhibiting complex, relational structures
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Motivation

• My favourite AI textbook: 
Russell & Norvig’s AIMA

• Quick look at table of contents, 
in terms of representations:

chap 3-7: atomic 
& factored models

chap 8-12: logic-based 
reasoning

chap 13-18: probabilistic models

combination of the two?
4
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Motivation

• The goal of ML algorithms is to learn a 
«good» function F:I →O

• I is the space of possible inputs for the task

• O is the space of possible outputs

• This function is learned from collected data, 
that can take various forms

• Labelled or unlabelled data, reward signals, etc.

• What defines a «good» function depends on 
the performance metric we try to optimise
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Motivation

• Key question: how do we represent 
the inputs and outputs of our problem?

• Typically, inputs are encoded as feature 
vectors, based on a fixed list of features

• Both the features and their range are predefined

• Similarly, outputs are defined in terms of 
output classes or numerical range

6
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Motivation

• Feature vectors are fine for many problems...

• But their expressivity is quite limited

• Formal expressivity = propositional logic

• Many domains have a relational structure that 
cannot be easily encoded by feature vectors

• Need to encode objects and relations between them

• Need to express generic facts about these objects
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Motivation

• Capturing relational structures requires a 
higher level of expressivity

• First-order logic gives us a language to 
describe such relational structures in a 
clear, concise fashion

• Terms denote the entities of our domain

• Predicates denote the attributes and relations of our 
domain, e.g. isGreen(x) or leftOf(x,y)
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Domain example

• Assume you have a database of people, 
where for each person p, you know:

• whether he/she smokes: smokes(p)

• his/her group of friends: {q : friends(p,q)}

• You would like to determine for each 
person p the probability of cancer(p) 

• Complex network of dependencies 
between friends, their smoking habits, 
and correlated cancer
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Domain example

• Assume some prior domain knowledge 
written with first-order formulae:

∀x : smokes(x) ⇒ cancer(x)

∀x, y : friends(x, y) ∧ smokes(y) ⇒ cancer(x)

∀x : ¬(∃y : friends(x, y)) ⇒ smokes(x)

∀x, y : friends(x, y) ⇒ (smokes(x) ⇔ smokes(y))

∀x, y, z : (friends(x, y) ∧ friends(y, z) ∧ x �= z) ⇒ friends(x, z)

→ Problem: logic can only express hard 
constraints («all-or-nothing»)
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Domain example

• Alternatively, you could try to estimate a 
classical statistical model

• Solves the problem of soft correlations

• But a standard statistical model cannot 
capture generic constraints such as 
«friends of friends are also friends»

• set of random variables is fixed and finite, and each 
variable has a fixed domain of alternative values
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Statistical relational learning

• Statistical relational learning (SRL):

• Research subfield within AI / machine learning

• deals with domains which exhibit both uncertainty and 
a complex relational structure

• Alternative names: first-order probabilistic models, 
relational probabilistic models, etc.

• Also related to structured prediction problems

• Issues of representation, inference, and learning
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SRL for NLP

• Why is statistical relational learning 
important for NLP?

• Because language is full of relational structures, and 
learning algorithms should be able to exploit them

• Because statistical relational learning allows us to 
compactly incorporate our prior domain knowledge

• Because SRL has recently achieved state-of-the-art 
results in important NLP tasks such as reference 
resolution, information extraction and semantic parsing
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SRL approaches

• Many frameworks!

• Bayesian Logic, Markov Logic Networks, 
Probabilistic Relational Models, Relational 
Bayesian Networks, Stochastic Logic, etc.

• Two main «strategies»: 

• Extensions of logic-based formalisms 
(e.g. inductive logic programming) to 
handle probabilities

• Extensions of statistical models to 
capture relational structures

[L. Getoor and B. Taskar (2007). «Introduction to Statistical Relational Learning»]
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SRL approaches

• I’ll focus here on Markov Logic 
Networks (MLNs)

• framework that combines first-order logic and 
(undirected) graphical models

• Quite popular in NLP applications

• Tries to «unify» many previous SRL approaches

• Practical software toolkits are available

15

[M. Richardson and P. Domingos (2006). «Markov logic networks». Machine Learning]

[P. Domingos and Daniel Lowd (2009), «Markov Logic: 
An Interface Layer for Artificial Intelligence»]
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Logic?

[M. Steedman. (2005) «The Productions of Time: Temporality and Causality in Linguistic Semantics»]

«... My friend Kit Fine has compared the position of the linguist or artificial 
intelligencer who turns to logic for this purpose to that of a man in need of 
trousers who goes to a tailor, only to be told that tailors only make jackets, and 
that in fact only jackets are necessary, for it is easy to show that jackets are 
topologically equivalent to trousers. Such is the authority of logicians that many 
otherwise decorous persons have found themselves in the position of trying to 
use jackets as trousers. When they have complained that jackets don’t seem to 
work very well for the purpose [...], the response has often been impatient.

Sometimes the users have been led to give up on logic entirely and to go off 
and invent their own knowledge representations. [...] 

This is a shame, because in the end one’s trousers are best made by tailors, and 
logicians are (or ought to be) the right people to make knowledge representations.»
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Markov Logic Networks

• Key idea: add weights to first-order formulae!

• The weight expresses the strength of the formula

• Infinite weight = hard constraint (cannot be violated)

• A Markov Logic Network is a set of pairs (Fi,wi)

• Fi is a first-order formula, and wi is its weight

• Example:

8.2 ∀x : smokes(x) ⇒ cancer(x)

1.7 ∀x, y : friends(x, y) ⇒ (smokes(x) ⇔ smokes(y))

F1

F2

w1

w2
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Reasoning with MLNs

• A Markov Logic Network can be thought as 
a template for a (ground) Markov Network

• Markov Network = undirected graphical model 

• Given a MLN and a set of constants (like Alice or 
Robert), an equivalent Markov Network can be 
constructed, and used for inference

• This ground Markov Network can then be 
used for practical inference tasks

• I.e. to compute the probability of cancer(Alice)
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Markov Networks in a nutshell

• A Markov Network defines a joint 
probability distribution over a set 
of variables X = X1...Xn

• Network has a node for each variable

• The nodes can be grouped into cliques (fully 
connected subgraph)

• The joint distribution can then be factorised:

where k is a clique, ϕk its potential function
and Z a normalisation factor

P (X = x) =
1

Z

�

k

φk(x{k})

20

tirsdag 23. oktober 2012



Markov Networks in a nutshell

• The potential function ϕk can be rewritten as an 
exponentiated weighted sum over feature functions

• The distribution then becomes a log-linear model:

P (X = x) =
1

Z
exp

�

j

wjfj(x)

Value of feature j for the 
variable assignment x

Weight of 
feature j

Partition function 
(for normalisation)

Joint probability 
distribution for 

the variable 
assignment x
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Ground Markov Network

• Assume a Markov Logic Network L together 
with a set of constants C={c1...cn}

• We can then construct the ground Markov 
network ML,C as follows:

• For each predicate grounding over C, there is a node in 
ML,C, with values true/false

• For each formula Fi, there is a feature fi(x) for each possible 
grounding of Fi over C.  The value of fi(x) is1 if Fi is true in 
x, and false otherwise.  The weight associated with fi(x) 
corresponds to the weight wi of the formula
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Construction example

• Two constants: Alice and Robert 

• L = 8.2 ∀x : smokes(x) ⇒ cancer(x)

1.7 ∀x, y : friends(x, y) ⇒ (smokes(x) ⇔ smokes(y))

Smokes(Alice) Smokes(Robert)

Friends(Alice,Robert)

Friends(Robert,Alice)

Friends(Alice,Alice) Friends(Robert,Robert)

Cancer(Alice) Cancer(Robert)
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Construction example

• Two constants: Alice and Robert 

• L = 8.2 ∀x : smokes(x) ⇒ cancer(x)

1.7 ∀x, y : friends(x, y) ⇒ (smokes(x) ⇔ smokes(y))

Smokes(Alice) Smokes(Robert)

Friends(Alice,Robert)

Friends(Robert,Alice)

Friends(Alice,Alice) Friends(Robert,Robert)

Cancer(Alice) Cancer(Robert)

First formula has 2 possible groundings

Second formula has 4 possible groundings
model has 
6 features
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Construction example

• Two constants: Alice and Robert 

• L = 8.2 ∀x : smokes(x) ⇒ cancer(x)

1.7 ∀x, y : friends(x, y) ⇒ (smokes(x) ⇔ smokes(y))

First formula has 2 possible groundings

Second formula has 4 possible groundings
model has 
6 features

f1(x) = 1 if smokes(A) ⇒ cancer(A), 0 otherwise
f2(x) = 1 if smokes(R) ⇒ cancer(R), 0 otherwise
f3(x) = 1 if friends(A,R)⇒(smokes(A)⇔smokes(R)), 0 otherwise
f4(x) = 1 if friends(A,A)⇒(smokes(A)⇔smokes(A)), 0 otherwise
f5(x) = 1 if friends(R,A)⇒(smokes(R)⇔smokes(A)), 0 otherwise
f6(x) = 1 if friends(R,R)⇒(smokes(R)⇔smokes(R)), 0 otherwise

w1= 8.2 ⇒
w2= 8.2 ⇒
w3= 1.7 ⇒
w4= 1.7 ⇒
w5= 1.7 ⇒
w6= 1.7 ⇒
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Probabilistic inference

• Once the ground Markov Network is 
constructed, it can be directly used for 
inference given some evidence

• For instance, compute the probability:

• Exact inference is intractable for all but 
the smallest domains

P(cancer(R)|¬smokes(R), friends(R,A), smokes(A))

26
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Probabilistic inference

• Fortunately, several algorithms for 
approximate inference are available for MLNs

• Often extensions of existing algorithms

• Weighted version of MaxSAT, modified MCMC, etc.

• Most algorithms perform ground inference, 
but lifted reference is also possible

• Akin to resolution in first-order logic

[P.Singla and P.Domingos (2008), «Lifted first-order belief propagation», AAAI]
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Learning in MLNs

• Markov Logic Networks can be learned 
from data

• parameter learning: assume the formulae are given, but 
not the weights

• structure learning: try to learn both the formulae and 
the weights (much harder)

• MLNs have been successfully applied to 
both supervised and unsupervised learning

28
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Learning in MLNs

• The easiest form of learn is to estimate 
the weights of known formulae

• Generative weight learning seeks to maximise the 
pseudo-log-likelihood of the dataset

• Discriminative weight learning seeks to maximise the 
conditional log-likelihood

• Typically done via some kind of gradient 
descent on the weights
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Learning in MLNs

• It is also possible to do structure learning, 
where the algorithm tries to learn both 
the formulae and their weights

• Akin to Inductive Logic Programming

• Finally, MLNs have also been applied to 
unsupervised learning, notably for 
reference resolution
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Expressive power of MLNs

• Markov Logic Networks subsumes:

• First-order logic

• Probabilistic Graphical Models, either directed (Bayesian 
Networks) or undirected (Markov Networks)

• Hidden Markov Models

• Logistic regression (MaxEnt)

• Probabilistic Context-Free Grammars

• But modelling not always trivial

31
[D. Jain (2011), «Knowledge Engineering with Markov Logic Networks: A Review», in DKB]
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Extensions of MLNs

• Encoding of continuous variables and 
infinite domains with MLNs

•  Relational decision theory: Adding utility 
values to certain predicates

• Recursive Random fields

[Daniel Lowd and Pedro Domingos (2007), «Recursive Random Fields», IJCAI’07]

[P. Singla and P. Domingos (2007). «Markov logic in infinite domains», UAI]
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Live demonstration

• Live demonstration of Alchemy, an open 
source for inference and learning with 
Markov Logic Networks

http://alchemy.cs.washington.edu

(other toolkits are also available)
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Applications of MLNs

• In Natural Language Processing:

• Information extraction

• Semantic parsing

• Coreference resolution

• Outside NLP:

• Social network analysis

• Cognitive robotics

• Bioinformatics

35

tirsdag 23. oktober 2012

Text classification

36

If topics mutually exclusive:  Topic(page,topic!)

page = {1, ..., max}
word = { ... }
topic = { ... }

Topic(page,topic)
HasWord(page,word)

Topic(p,t)
HasWord(p,+w) => Topic(p,+t)

Term 
declaration

Predicate 
declaration

Rules with 
weights to 
estimate 
from data
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Unsupervised reference resolution

37

Head(mention, string)
Type(mention, type)
MentionOf(mention, entity)
Apposition(mention,mention)
 

MentionOf(+m,+e)
Type(+m,+t)
Head(+m,+h) ^ MentionOf(+m,+e)

MentionOf(a,e) ^ MentionOf(b,e) 
=> (Type(a,t) <=> Type(b,t))

Apposition(a,b) 
=> (MentionOf(a,e) <=> MentionOf(b,e))

enforce 
agreement

appositions are more likely to co-refer

[H. Poon and P. Domingos 
(2008). «Joint unsupervised 

coreference resolution with 
Markov logic»., EMNLP]
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Conclusions

• We have also seen that Statistical Relational 
Learning allows us to capture domains 
which are both complex and uncertain

• Unification of logic and probability theory

• Various algorithms for efficient inference & 
learning with MLNs

• Important applications for NLP
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