
Course Script
Static analysis and all that
INF5906 / autum 2017

Martin Steffen

http://www.ifi.uio.no/~msteffen

ii Contents

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 General remarks . 1
1.2 Data flow analysis . 4

1.2.1 A simplistic while-language 4
1.2.2 Equational approach . 12
1.2.3 Constraint-based approach 15

1.3 Constraint-based analysis . 18
1.3.1 Control-flow analysis . 18

1.4 Type and effect systems . 24
1.4.1 Introduction . 24
1.4.2 Annotated type systems 30
1.4.3 Annotated type constructors 33
1.4.4 Effect systems . 34

1.5 Algorithms . 38
1.6 Conclusion . 40

2 Data flow analysis 41
2.1 Introduction . 42
2.2 Intraprocedural analysis . 42

2.2.1 Determining the control flow graph 42
2.2.2 Availabe expressions . 45
2.2.3 Reaching definitions . 49
2.2.4 Very busy expressions 52
2.2.5 Live variable analysis . 57

2.3 Theoretical properties and semantics 61
2.3.1 Semantics . 61
2.3.2 Intermezzo: Lattices . 65

2.4 Monotone frameworks . 71
2.5 Equation solving . 76
2.6 Interprocedural analysis . 79

2.6.1 Introduction . 79
2.6.2 Semantics . 80
2.6.3 Analysis . 83
2.6.4 Paths . 84
2.6.5 Context-sensitive analysis 88

2.7 Static single assignment . 100

3 Types and effect systems 110
3.1 Introduction . 110

Contents
Contents iii

3.2 Control flow analysis . 110
3.2.1 Control flow analysis . 114
3.2.2 Correctness . 118
3.2.3 Type inference . 121

4 References 127

1 Introduction 1

1
Introduction
Chapter

What
is it

about?
Learning Targets of this Chapter

Apart from a motivational
introduction, the chapter gives
a high-level overview over
larger topics covered in the
lecture. They are treated hear
just as a teaser and in less
depth compared to later but
there is already technical
content.

Contents

1.1 Motivation 1
1.1.1 General remarks 1

1.2 Data flow analysis . . . 4
1.2.1 A simplistic

while-language 4
1.2.2 Equational ap-

proach 12
1.2.3 Constraint-

based approach 15
1.3 Constraint-based anal-

ysis 18
1.3.1 Control-flow

analysis 18
1.4 Type and effect systems 24

1.4.1 Introduction . . 24
1.4.2 Annotated

type systems . 30
1.4.3 Annotated

type constructors 33
1.4.4 Effect systems . 34

1.5 Algorithms 38
1.6 Conclusion 40

1.1 Motivation

1.1.1 General remarks

Static analysis: why and what?

• what

2 1 Introduction
1.1 Motivation

– static: at “compile time”
– analysis: deduction of program properties

∗ automatic/decidable
∗ formally, based on semantics

• why
– error catching

• catching common “stupid” errors without bothering the user much
• spotting errors early
• certain similarities to model checking
• examples: type checking, uninitialized variables, potential nil-pointer deref’s,

unused code

• optimization: based on analysis, transform the “code”1, such the the
result is “better”

– examples: precalculation of results, optimized register allocation . . .

The nature of static analysis

• compiler with differerent phases
• corresponding to Chomsky’s hierarchy
• static = in principle: before run-time, but in praxis, “context-free”2

• since: run-time most often: undecidable
⇒ static analysis as approximation
• see also [8, Figure 1.1]

L3

L2

L1

L0

lexerparser sa exec.

1source code, intermediate code at various levels
2Playing with words, one could call full-scale (hand?) verification “static” analysis, and

likewise call lexical analysis a static analysis.

1 Introduction
1.1 Motivation 3

Phases

lexer

parser

tokens

SA opt.

AST

code gen. opt.

IR

IR

Static analysis as approximation

universe

exact
safe overapprox. safe underapprox.

unsafe

The figure is, of course, only an informal illustration. In general, program
behavior is (for any non-trivial programming language) undecidable. It’s a
general fact (“Rice’s theorem”) that all non-trivial, semantical properties of
programs are undecidable. Actually, there are exactly two properties which
qualify as being trivial. That’s the property “true” which holds for all progams,

https://en.wikipedia.org/wiki/Rice%27s_theorem

4 1 Introduction
1.2 Data flow analysis

and “false”, which holds for none. That means basically every single seman-
tical property about programs is undecidable up front. Semantical properties
are those that refer to the behavior of a programs, its semantics. Of course,
syntactical properties are decidable, even if they are non-trivial in the above
technical sense.

Optimal compiler?

Full employment theorem for compiler writers It’s a (mathematically proven!)
fact that for any compiler, there exists another one which beats it.

• slightly more than non-existance of optimal compiler or undecidability of
such a compiler

• theorem
– just states that there room for improvement is always guaranteed
– does not say how!. Finding a better one: undecidable

1.2 Data flow analysis

1.2.1 A simplistic while-language

While-language

• simple, prototypical imperative language
– “untyped”
– simple control structure: while, conditional, sequencing
– simple data (numerals, booleans)

• abstract syntax 6= concrete syntax
• disambiguation when needed: (. . .), or { . . . } or begin . . . end

Abstract syntax The given while-language here (and other languages later)
is rather simplististic. This fact of being simple is, however, not the reason why
we call the syntax here abstract (not like “it’s a very abstract language, it has
only 5 constructs”). Besides that: the language may have some restricted form
of syntax. Nonetheless, if we don’t assume an upper bound on the memory, it
is Turing complete.

In this lecture, we generally work with abstract syntax. That’s different from
concrete syntax. Remember from the phases of a compiler, that abstract syn-
tax trees are typically the result of the parsing phase and the input of the
static analysis phase (aka. semantical analysis). Since we are focusing here on
the semantic phase of a compiler, we assume that the lexer and parser have

1 Introduction
1.2 Data flow analysis 5

done their thing, and we start the considerations on abstract syntax. Abstract
syntax is specified by context-free grammars, which is a formalism to specify
structured trees. Thus we are completely not interested in parse trees (some-
times known as contrete syntax trees), or issues of precendece, associativity,
etc.

This program “written” in abstract syntax are thought of as trees. Since trees
are notationally not easy to write down, we don’t depict them as actual trees
(even if that would be accurate). Instead, we use textual notations and to
appeal to the understanding in which way that represents trees, and allow
ourselves groupong constructs like parentheses (..) to disambiguate the tree
structure, even if of course parentheses and similar constructs are general not
part of abstract syntax trees; they are just needed to help the human reader
here to understand the underlying tree structure.

Furthermore, and also as a general remark: the while language here (even in
its restricted syntactic capabilities) resembles a “high-level” language, at least
insofar that it supports “structured programming” in the form of while-loops,
as opposed to conditional jumps. Later we might extend it also with further
capabilites and programming abstractions, for instance, procedure calls. Any-
way, techniques similar to the ones we cover, can also be applied to lower-level
intermediate languages. not just abstract syntax of the source language. Also
in that case, in a more formal account, one might start fixing the abstract syn-
tax of the intermediate language for the programs one intends to analyze.

Types As mentioned, working directly with abstract syntax, we very much
ignore syntactical questions. Besides that, and in particular for the while-
language, we more or less ignore another issue, that of typing. Typing and
type checking is one very important form of static analysis and will be covered,
just not really in connection with the while-language and its derivatives. The
“type system” here is so impoverished, supporting basically only integers and
booleans, that it’s not much worth introducing a type system for doing that.
Instead, sidestepping the question, we deal with it “syntactically”. Arithmetic
expressions are represented by the nonterminal a, boolean expressions by b,
and, as it happens, we have only variables of arithmetic type. In that sense
the language is typed, only not very interestingly, and we assume the proper
types have somehow been figured out already, so we concetrate for the while
language on other things. For functional languages, resp. calculi (variations of
the λ-calculus), we will take care of type checking and extensions of traditional
type checking, as it becomes more challenging.

Labelling

• associate flow information

6 1 Introduction
1.2 Data flow analysis

⇒ labels
• elementary block = labelled item
• identify basic building blocks
• consistent/unique labelling

Abstract syntax

a ::= x | n | a opa a arithm. expressions
b ::= true | false | not b | b opb b | a opr a boolean expr.
S ::= x := a | skip | S1;S2 statements

if b thenS elseS | while b doS

Table 1.1: Abstract syntax

a ::= x | n | a opa a arithm. expressions
b ::= true | false | not b | b opb b | a opr a boolean expr.
S ::= [x := a]l | [skip]l | S1;S2 statements

if[b]l thenS elseS | while[b]l doS

Table 1.2: Labelled abstract syntax

Example factorial

y := x; z := 1; while y > 1 do(z := z ∗ y; y := y − 1); y := 0

• input variable: x
• output variable: z

[y := x]0;
[z := 1]1;
while[y > 1]2
do([z := z ∗ y]3; [y := y − 1]4);
[y := 0]5

(1.1)

1 Introduction
1.2 Data flow analysis 7

CFG factorial

y:=x

z:=1

y>1

z:=z*y

y:=y-1

y:=0

true

false

l0

l1

l2

l3

l4

l5

Control flow graph The factorial was used to illustrate the important con-
cept of control flow graphs. Later in the lecture we will have another look in
more detail how to actually calculate a control-flow graph, given a program
in abstract syntax (i.e., in the form of an abstract syntax tree). Actually, it’s
not very complex; basically, one has to traverse the tree, “label” the nodes
appropriately, which typically means, creating one new node of the graph for
each encountered basic construct. In the illustrations here, the nodes are iden-
tified by unique labels l0, l1, l2 . . . (in some way, the numbers serve themselves
as identification). The above “labelled” abstract syntax from above is a dif-
ferent notation to illustrate the nodes of the control flow graph + the basic
expression “contained in” or “associated with” the nodes (and the nodes of
the graph are the same as the labels in the syntax notation). Missing in the
labelled programm from equation (1.1) obviously are the edges of the graph,
but, as said, it’s not too hard to calculate them as well (while labelling the
statements and traversing the syntax tree).

For participants of the course compiler construction (INF5110): the definition
of the control flow graph was done there at a lower level, i.e., at some intermedi-
ate code (like three-address-code) without looping constructs, but conditional
jumps instead. That intermediate code can be seen as a kind of “machine-
independent machine language”, i.e., an intermediate language already rather
close to actual machine language, but not yet quite there. In any case, that
intermediate language language had officially labels that could be used for con-
ditional or unconditional jumps (which are like goto’s). In other words, that
intermediate language was “officially labelled” via a specific label-command
(which was counted among the so-called pseudo-instructions). Because of that,
that form of language almost immediately contains its control-flow graph, since

8 1 Introduction
1.2 Data flow analysis

the jumps corresponds obviously to the edges. More precisely, for conditional
jumps, one of the edges is goes from the conditional jump-statement to the
target label, the other edge is the “fall-through”.

A final remark on the nodes and the code contained therein. In the lecture here,
we make the assumption for the imperative language: “one node, one basic
statement”. In practice, it’s often the case that one groups together sequences
of statements like assignments together into larger block which contains no
branching or jumps into it. Those larger blocks are sometimes called basic
blocks and the grouping is done for efficiency. In the factorial example, l0
and l1 could be lumped together (as well as l3 and l4). While a good idea in
practice, we don’t care much here, as the principles of data flow would not
don’t change with this refinement.

Factorial: reaching definitions analysis

• “definition” of x: assignment to x: x := a
• better name: reaching assignment analysis
• first, simple example of data flow analysis

Reaching def’s An assignment (= “definition”) [x := a]l may reach a pro-
gram point, if there exists an execution where x was last assigned at l, when
the mentioned program point is reached.

Reaching definitions The reaching definitions is just one of a family of simi-
lar analyses the lecture covers (and which themselves are only a small selection
of many much more). It’s a typical data flow problem and the techniques to
solve this problem can be used analogously to a wide range of problem. This
class of problems is known as monotone framework and goes back to Kildall
[5].

The data which is imagined to “flow” through the program, resp. rather flow
through the control flow graphs as the current intermediate representation of
the program, is not so much the actual program data (i.e., here, the integer
values stored in the variables). It’s rather information about the data that
flows through the graph, which may be seen as an abstraction. Of course,
there may be different kinds of information one could be interested in, and the
choice determines the analysis. In case of the reaching definition analysis here,
we are interested in the places, where variables are “defined”, i.e., the nodes
or labels where variables are being assigned to.

1 Introduction
1.2 Data flow analysis 9

Factorial: reaching definitions

y:=x

z:=1

y>1

z:=z*y

y:=y-1

y:=0

true

false

l0

l1

l2

l3

l4

l5

8

• data of interest: tuples of variable × label (or node)
• note: distinguish between the entry and the exit of a node.

Factorial Note in particular, that the exit of the node l4 cannot be reached
by the assignment to y in the node l1, whereas the entry of that node l4 may
well be reached. That’s indicated by the dotted, resp. the solid arrows. Not
all points which are reachable via the choices (y, 1) are given in the figure, to
keep it readable.

It should be also noted: accepting that the analysis works on tuples (x, l),
we immediately see that the problem intuitively is decidable: there are only
finitely many variables and finitely many nodes (= labels) in the control flow
graph. One could analyze thereby the problem, by making some graph seach
for all combinations of variables with start nodes and end nodes. That would
be a very wasteful approach, and data flow analysis is about more efficient
techniques.

Factorial: reaching assignments

• “ points ” in the program: entry and exit to elementary blocks/labels
• ?: special label (not occurring otherwise), representing entry to the pro-

gram, i.e., (x, ?) represents initial (uninitialized) value of x
• full information: pair of “functions”

RD = (RDentry,RDexit) (1.2)

• tabular form (array): see next slide

10 1 Introduction
1.2 Data flow analysis

Factorial: reaching assignments table

l RDentry RDexit
0 (x, ?), (y, ?), (z, ?) (x, ?), (y, 0), (z, ?)
1 (x, ?), (y, 0), (z, ?) (x, ?), (y, 0), (z, 1)
2 (x, ?), (y, 0), (y, 4), (z, 1), (z, 3) (x, ?), (y, 0), (y, 4), (z, 1), (z, 3)
3 (x, ?), (y, 0), (y, 4), (z, 1), (z, 3) (x, ?), (y, 0), (y, 4), (z, 3)
4 (x, ?), (y, 0), (y, 4), (z, 3) (x, ?), (y, 4), (z, 3)
5 (x, ?), (y, 0), (y, 4), (z, 1), (z, 3) (x, ?), (y, 5), (z, 1), (z, 3)

Remarks The highlighted information in the table is not 100% consistently
done. The intention is to highlight the information which is generated new in
the correspond block. That can be seen in the blocks (the lines in the table)
corresponding to assignments (which are all except l = 2). At the exit of those
blocks, a pair containing the corresponding label and the assigned variable is
injected. That explains the highlights in the exit-column. Note that at label
3, whose block is side-effect free, the exit set corresponds to the entry set.

Now for the entry points: one needs to look at the graph, they are determined
by the inter-block relations, i.e., the edges. In the easiest case (for instance l =
1), the set just coincides with the post-set of the predecessor block. Interesting
is, of course, label l = 2, where the graph (interpreted forwardly) joins two
arrows, i.e., the block 2 has two predecessors, 1 and 4. The question then is:
is it the union or the intersection of the information. Intuitively: it must be
union. That’s due to the nature of the analysis here: the question is, may an
assignment reach a point in question.

Reaching assignments: remarks

• elementary blocks of the form
– [b]l: entry/exit information coincides
– [x := a]l: entry/exit information (in general) different

• at program exit: (x, ?), x is input variable
• table: “best” information = smallest sets:

– additional pairs in the table: still safe
– removing labels: unsafe

• note: still an approximation
– no real (= run time) data, no real execution, only data flow
– approximate since

∗ in concrete runs: at each point in that run, there is exactly one
last assignment, not a set

∗ label represents (potentially infinitely many) runs
– e.g.: at program exit in concrete run: either (z, 1) or else (z, 3)

1 Introduction
1.2 Data flow analysis 11

Input variable As a result of the analysis, variable x is marked as ?. That
can be interpreted as a sign that it’s not assigned to. More precisely, the
fact that there is the tuple (x, ?) at the program exist together with the fact
that there is no other tuple containing x indicates that x is never assigned to
(since we are dealing with “may” information”). That’s the reason why we
can interpret it as input variable: It is often a convention that input variables
are not assigned to inside the program, they are assumed to be given a value
up front (indicated by ?).

If one analyses a function body —each function conventionally is represented
by its own control flow graph capturing the control-flow of its body— the
formal parameters are given their initial value from “outside” via parameter
passing. It’s often considered as bad style, at least when passing parameters
by value, to assign to the formal parameters.

Of course, non-input variables which are not assigned to make no sense. Actu-
ally, if such variables occur, it may indicate a problem (unitialized variables)
which may lead to random results or errors like nil-pointer exceptions.

For participants of the course “compiler construction”: the situation about
unitialized variables may be compared to the analgous situation for liveness
analysis. There, the core analysis concentrated completely on analysing one
single node or basic block (there called local analysis). Some variables where
marked as liveness status unknown as they where locally not used, but concen-
trating on one local node only, one cannot determined whether from the global
perspective they are live or dead. A special information (like ? here) was used
to indicate that “locally unclear” situation. As a side remark: one difference
of the liveness analysis works compared to reaching definition analysis is that
it works backward. Liveness analysis will be covered also here later as one
instance of the mentioned monotone framework.

Optimal solution Currently it may not yet been completely clear in what
sense is the solution is minimal/optimal. Much of the underlying theory (cov-
ered later) is about assuring that such a minimal solution demonstratibly and
uniquely exists (it will be based on the notion of lattices). Intuitively, the
solution from the table is minimal (and thus best) in that we cannot remove
one single entry of the table, without making it wrong (unsound, unsafe).
Very intuitively, it can be compared also to the picture static analysis as ap-
proximation. An over-approximation is an area fully “covering” the actually,
irregularly shaped behavior. Restricting to a certain class of analysis (for
instance simple data flow, specifically say simple reaching definition) can be
visualize by allowed overapproximation only in the form of a circle, let’s say.
The optimal solution is then the smallest such covering circle (which still is
an opproximation). If one invests in a more detailed analysis, that might cor-
respond to having, lets say, ellipses or six-edged polygons as (illustration of)

12 1 Introduction
1.2 Data flow analysis

allowed results of the analysis. In that case, potentially better and more pre-
cise approximations may be doable (typically at higher computational costs).
It may also be the case, that no longer a single best solution exists in general.
For instance, there may be more two covering polygons, both of which cannot
be made smaller without becoming unsound, but on the other hand uncom-
parable (neither is contained in the other). In this lecture, we typically deal
with settings were optimal solution do exists, though.

Data flow analysis

• standard: representation of program as control flow graph (aka flow
graph)

– nodes: elementary blocks with labels (or basic block)
– edges: flow of control

• two approaches, both (especially here) quite similar
– equational approach
– constraint-based approach

1.2.2 Equational approach

From flow graphs to equations

• associate an equation system with the flow graph:
– describing the “flow of information”
– here:

∗ the information related to reaching assignments
∗ information imagined to flow forwards

• solutions of the equations
– describe safe approximations
– not unique, interest in the least (or largest) solution
– here: give back RD of equation (1.2) on slide 9

Equations for RD and factorial: intra-block

first type: local, intra-block”:

• flow through each individual block
• relating for each elementary block its exit with its entry

elementary block: [y := x]0

elementary block: [y > 1]2

1 Introduction
1.2 Data flow analysis 13

all equations with RDexit as “left-hand side”

RDexit(0) = RDentry(0) \{(y, l) | l ∈ Lab} ∪ {(y, 0)}
RDexit(1) = RDentry(1) \{(z, l) | l ∈ Lab} ∪ {(z, 1)}
RDexit(2) = RDentry(2)
RDexit(3) = RDentry(3) \{(z, l) | l ∈ Lab} ∪ {(z, 3)}
RDexit(4) = RDentry(4) \{(y, l) | l ∈ Lab} ∪ {(y, 4)}
RDexit(5) = RDentry(5) \{(y, l) | l ∈ Lab} ∪ {(y, 5)}

(1.3)

Inter-block flow

second type: global, inter-block

• flow between the elementary blocks, following the control-flow edges
• relating the entry of each block with the exits of other blocks, that are

connected via an edge (exception: the initial block has no uncoming edge)
• initial block: mark variables as uninitialized

RDentry(1) = RDexit(0)
RDentry(2) = RDexit(1) ∪ RDexit(4)
RDentry(3) = RDexit(2)
RDentry(4) = RDexit(3)
RDentry(5) = RDexit(2)

RDentry(0) = {(x, ?), (y, ?), (z, ?)}

(1.4)

There are 6 equations as there are 6 nodes. As far as the right-hand sides are
concened: there are 6 mentionings of RDexit(l). That indicates that the graph
has 6 edges (not counting the incoming edge into node l0 and the outgoing
edge at the exit).

The entry node has no internally incoming edge in this example (only one
that is shown in the picture to come from “outside” which is therefore not
part of the graph nor an edge, it’s just a conventional, graphical indication
of the initial node). This is not a coincidence, insofar that one generally
assumes that the control flow graph does not have such an initial loop. In
the unlikely event that the program would start immediately with a loop or
similar, the compiler would arrange it so that there is an extra “skip” entry
node (a sentinel). Alternatively, the generation of the control flow graph might
simply automatically add some extra sentinel, just in case.

Technically, nothing would go wrong allowing such initial loops, it’s just that
the technical representation later (and the algorithms) are slighly simpler.
Sure, not fundamentally simpler, only avoiding some extra corner cases, it just
gets a tiny bit more smooth.

14 1 Introduction
1.2 Data flow analysis

Later, we will encounter analyses, which work backwards, i.e., the flow will
follow the edges of the flow graph in reverse direction. Live variable analysis
is one prime example. In those cases, one tries to avoid “final loops” at the
exit of the program.

For participants of “compiler constructions” (INF5110): that’s reminiscent
of the treatment of context-free grammars for some constructions (like the
LR(0)-DFA construction). For some constructions, it was assumed that the
grammar’s start symbol, say S, does not show up on the right-hand side of
any production. That would correspond to an loop back to the “intitial state”
here. Since also there, one wanted to slightly simplify the treatment avoiding
that case, the standard construction routinely simply added “another” start
symbol S ′ and a production S ′ ::= S.

General scheme (for RD)

Intra • for assignments [x := a]l

RDexit(l) = RDentry(l) \{(x, l′) | l′ ∈ Lab} ∪ {(x, l)} (1.5)

• for other blocks [b]l (side-effect free)

RDexit(l) = RDentry(l) (1.6)

Inter

RDentry(l) =
⋃
l′→l

RDexit(l′) (1.7)

Initial l: label of the initial block (isolated entry)

RDentry(l) = {(x, ?) | x is a program variable} (1.8)

The equation system as fix point

• RD example: solution to the equation system = 12 sets

RDentry(0), . . . ,RDexit(5)

• i.e., the RDentry(l),RDexit(l) are the variables of the equation system, of
type: sets of pairs of the form (x, l)

• domain of the equation system:
• ~RD: the mentioned twelve-tuple of variables
⇒ equation system understood as function F

1 Introduction
1.2 Data flow analysis 15

Equations
~RD = F (~RD)

Fix point equation The above fixpoint equation on vectors of RD variables
may be broken down more explicitly 12 parts (the individual “equations”) like
for instance

F (~RD) = (Fentry(1)(~RD), Fexit(0)(~RD), . . . , Fexit(5)(~RD))

After solving the equation system, we for instance could get as part of a solu-
tion:

Fentry(2) = (. . . ,RDexit(1), . . . ,RDexit(4), . . .) = RDexit(1) ∪ RDexit(4)

The least solution

• Var∗ = variables “of interest” (i.e., occurring), Lab∗: labels of interest
• here Var∗ = {x, y, z}, Lab∗ = {?, 1, . . . , 6}

F : (2Var∗×Lab∗)12 → (2Var∗×Lab∗)12 (1.9)

• domain (2Var∗×Lab∗)12: partially ordered pointwise:

~RD v ~RD
′

iff ∀i. RDi ⊆ RD′i (1.10)

⇒ complete lattice

1.2.3 Constraint-based approach

This section is basically a rerun of the previous one: the constraint-based ap-
proach here is nothing much more than a variation of the equational approach.
As for terminology, the distinction between “equational” vs. “constaint-based”
here is slightly misleading. It’s misleading insofar, as also the equational ap-
proach is based on constraints, namely equational constraints. In contrast,
next we will use “inequations”. In the RD analysis we are currently focussing
on, the solutions are sets of pairs (x, l). Consequently, the inequations will be
subset constraints ⊆ on sets, instead of equality = on sets.

In the current setting, a basic data flow problem for an simplistic imperative
language, there’s not much difference between the two approaches. Not only is
it straightforward on the surface, to replace the = by⊆, and there you are. Also
on a deeper level here, there are technical reasons resulting in the following
fact: the best (here smallest) solution of the equational approach coincides
with the smallest solution of the constraint-based approach. That means, for

16 1 Introduction
1.2 Data flow analysis

the purpose of program analysis, which is after the best, safe approximation,
both approaches are the same!

The setting here with simple control flow graphs, however, is indeed simple.
In more complex setting (for instance functional languages with much more
flexible control flow) it’s not always the case that equational approaches and
constraint based approaches give the same (best) analysis result. In general,
the constraint based approach offers more flexibility (thus sometimes more
precise analysis) in more complex settings, but not here. In the context of
type and effect systems, we will encounter such more complex settings.

When stating that (here) the step from an equational to a constraint-based
approach amounts to a trivial reformulation of the equations leaves, however,
one question still to be answered:

should = be replaced by ⊆ or ⊇?

We will see that the answer to that question depends on the analysis we are do-
ing (basically whether we are interested in safe over-approximations or under-
approximation). In the case of the reaching definitions (“. . . may reach . . . ”),
a solution larger than a safe one is safe, as well. As a consequence, the “left-
hand sides” of the previous equations need to be ⊇-larger than the “right-hand
sides”.

A final remark: the fact that we move from equations to ⊇ allow allows for
a simple rerrangement of the constraints. Basically, instead of saying equa-
tionally s1 = s2 ∪ s3, reformulated to s1 ⊇ s2 ∪ s3, the inequation is split
into

s1 ⊇ s2
s1 ⊇ s3

Factorial program: intra-block constraints

elementary block: [y := x]0

elementary block: [y > 1]2

all equations with RDexit as left-hand side

1 Introduction
1.2 Data flow analysis 17

RDexit(0) ⊇ RDentry(0) \{(y, l) | l ∈ Lab}
RDexit(0) ⊇ {(y, 0)}
RDexit(1) ⊇ RDentry(1) \{(z, l) | l ∈ Lab}
RDexit(1) ⊇ {(z, 1)}
RDexit(2) ⊇ RDentry(2)
RDexit(3) ⊇ RDentry(3) \{(z, l) | l ∈ Lab}
RDexit(3) ⊇ {(z, 3)}
RDexit(4) ⊇ RDentry(4) \{(y, l) | l ∈ Lab}
RDexit(4) ⊇ {(y, 4)}
RDexit(5) ⊇ RDentry(5) \{(y, l) | l ∈ Lab}
RDexit(5) ⊇ {(y, 5)}

Factorial program: inter-block constraints

cf. slide 13 ff.: inter-block equations:

RDentry(1) = RDexit(0)
RDentry(2) = RDexit(1) ∪ RDexit(4)
RDentry(3) = RDexit(2)
RDentry(4) = RDexit(3)
RDentry(5) = RDexit(2)

RDentry(0) = {(x, ?), (y, ?), (z, ?)}

splitting of composed right-hand sides + using ⊇ instead of =:

RDentry(1) ⊇ RDexit(0)
RDentry(2) ⊇ RDexit(1)
RDentry(2) ⊇ RDexit(4)
RDentry(3) ⊇ RDexit(2)
RDentry(4) ⊇ RDexit(3)
RDentry(5) ⊇ RDexit(2)

RDentry(1) ⊇ {(x, ?), (y, ?), (z, ?)}

Least solution revisited

instead of F (~RD) = ~RD

• clear: solution to the equation system⇒ solution to the constraint system
• important: least solutions coincides!

18 1 Introduction
1.3 Constraint-based analysis

Pre-fixpoint
F (~RD) v ~RD (1.11)

1.3 Constraint-based analysis

1.3.1 Control-flow analysis

Control-flow analysis

Goal CFA which elem. blocks lead to which other elem. blocks

• for while-language: immediate (labelled elem. blocks, resp., graph)
• complex for: more advanced features, higher-order languages, oo lan-

guages . . .
• here: prototypical higher-order functional language λ-calculus
• formulated as constraint based analysis

Introduction

This section is called constraint based analysis, but it’s also mostly about
functional, higher-order languages (and complications that entails for static
analysis).

In the section about data-flow analysis, the analysis was building upon control-
flow graphs. Given the control-flow graph of a program, the problem was
turned into a set of data flow equations or data flow inequations (there called
constraints), which in turn then have to be solved. While it was stressed there
that the equatioan approach and the approach based in subset constraints
give the same result (in that the best solution coincides in both representa-
tions). The analysis therefore proceeds in two clearly separated stages: first
the control-flow graph is determined, and, based on that, the data flow is anal-
ized. We did not cover really the calculation of the control flow graph in first
stage as it’s rather simple.

For languages with higher-order functions, the dividing line between “data”
and “‘control” is blurred: a function on the one hand is “code”, but on the
other hand is also “data” in that funtctions can be passed as arguments to
other functions and returned as values from function. As a consequence, one
would expect static program analysis gets involved for higher-order functions.
That’s even true taking into account that the setting for data flow analysis
in the introduction so far was really simple in that we did no even consider
(non-higher-order) functions there. Adding those would complicate things —
later in the lecture we will cover that to some extent— but still the 2 stages

1 Introduction
1.3 Constraint-based analysis 19

of determining the control-flow graph first, and afterwards doing data flow
constraints are clearly discernible.

Here, determining the control flow is a problem in itself, unlike in the simpler
setting before, where determining the CFG was so simple that would not even
bother calling it control-flow analysis (even it it is). Here, we are facing a non-
trivial control flow analysis problem and we use a constraint-based approach
(not an equational) to tackle it.

Another way of seeing it is as follows: the control-flow problem here (which
is inseparable from data-flow aspects as functions are higher-order), will not
even result in a control-flow graph. For a non-higher order language, each
function body has its own CFG, all clearly separated, but such a depiction
makes no sense any longer. One the other hand: in the data flow section, we
slightly touched upon the close connection between control-flow graph and the
constraints (equational or otherwise). We did not explore it to the end, but
one can view each edge of a control-flow graph as constraints connecting (in a
forward analysis) the solutions of a target node dependent (via a constraint)
on the solution on the source nodes and the nodes (= labels) play the role
of variables in the constraint system. The connection is so close that a con-
straint systems in the form we covered in the data-flow section is nothing else
than some representation of the control-flow graph (together with constraints
connecting the nodes). As illustration, an inequation

x1 ⊇ f(x2, x3)
represents the dependence of (the solution for) x1 on the solutions of x2 and
x3 via some f , thereby representing two incoming edges in x1, starting from x2
resp. x3. In Section 1.2, this representation was not made explicit, and we did
not called the variables xi but RDi (and split between entries and exits), but
in general the connection is between variables of the constraint system and the
nodes of the control flow graph.

Now, in the more complex situation of higher-order functions, we operate
directly with constraints; since they are now more complicated, they can no
longer be visualized as expressing relations on values in some graph.

Simple example

l e t f = fn x => x 1 ;
g = fn y => y + 2 ;
h = fn z => z + 3 ;

in (f g) + (f h)

• higher-order function f

20 1 Introduction
1.3 Constraint-based analysis

• for simplicity: untyped
• local definitions via let-in
• interesting above: x 1

Goal (more specifically) For each function application, which function
may be applied.

Local definitions with let The above example uses let for local definition.
That slighty different than assignments. For once, it’s “single assignment”,
secondly it has a local scope associate with it. In later chapters, the functional
language may support that construct, for the introduction we ignore it.

Labelling

• more complex language ⇒ more complex labelling
• “elem. blocks” can be nested
• all syntactic constructs (expressions) are labelled
• consider:

Unlabelled abstract syntax

(fnx⇒ x) (fn y ⇒ y)

Full labelling
[[fnx⇒ [x]1]2 [fn y ⇒ [y]3]4]5

• functional language: side effect free
⇒ no need to distinguish entry and exit of labelled blocks.

Data of the analysis

Pairs (Ĉ, ρ̂) of mappings:

abstract cache: Ĉ(l): set of values/function abstractions, the subexpression
labelled l may evaluate to

abstract env.: ρ̂: values, x may be bound to

1 Introduction
1.3 Constraint-based analysis 21

The constraint system

• ignoring “let” here: three syntactic constructs ⇒ three kinds of con-
straints

• relating Ĉ, ρ̂, and the program in form of subset constraints (subsets,
order-relation)

3 syntactic classes

• function abstraction: [fnx⇒ x]l
• variables: [x]l
• application: [f g]l

Constraint system for the small example

Labelled example
[[fnx⇒ [x]1]2 [fn y ⇒ [y]3]4]5

• application: connecting function entry and (body) exit with the argument
but:

• also [fn y ⇒ [y]3]4 is a candidate at 2! (according to Ĉ(2))
• function abstractions
• variables (occurrences of use)

{fnx⇒ [x]1} ⊆ Ĉ(2)
{fn y ⇒ [y]3} ⊆ Ĉ(4)

ρ̂(x) ⊆ Ĉ(1)
ρ̂(y) ⊆ Ĉ(3)

{fnx⇒ [x]1} ⊆ Ĉ(2) ⇒ Ĉ(4) ⊆ ρ̂(x)
{fnx⇒ [x]1} ⊆ Ĉ(2) ⇒ Ĉ(1) ⊆ Ĉ(5)
{fn y ⇒ [y]3} ⊆ Ĉ(2) ⇒ Ĉ(4) ⊆ ρ̂(y)
{fn y ⇒ [y]3} ⊆ Ĉ(2) ⇒ Ĉ(3) ⊆ Ĉ(5)

Explanation of the constraint system The example is rather small, but
containts all constructs of the language (as we ignore let), therefore it illus-
trates how a label program gives rise to a constraint system, in this case for
control-flow analysis. It’s still a bit of an illustration only, as we don’t give the
general construction, we just show how it works in the given example.

The slides present the construction in 2 stages (for didactic reasons). The first
stage gives “standard”, unconditional constraints. The resulting system is find
in the sense that, all solutions to it are safe approximations of the problem.

22 1 Introduction
1.3 Constraint-based analysis

The second stage is an improvement in that it gives more precise solutions. It
is formulated with conditional constraints.

In general, there are 3 different classes of constraints, since there are three
classes of syntactial constructs. The classification is done according to the
top-level construct at the label being considerd. Remember that abstract
syntax represents trees, and now the labels indentify subtrees. The three cases
are the following:

1. One for abstractions (the easiest one), one for
2. variables, and one for
3. applications (the most complex).

They are shown in this order via overlays.

1. Abstractions
We have two abstractions, at label 2 and 4. The constraints in this cat-
egory are relevant for the Ĉ, only, as there are no variables “involved”
(only the bound variables inside the function definition). Therefore, the
abstract environment is not mentioned here. The inequations are easy.
They just state that the expression at the given label (which labels, as
said, an abstraction), at least evaluates to that abstraction. That’s pretty
obvious.

2. Variables
Variables are a bit more tricky, especially because the corresponding con-
straints relates the Ĉ and the abstract environment. Basically it relates
directly the Ĉ for the label with the ρ̂ variable carrying that label. The
only perhaps tricky question is: how do they relate, in which order is the
⊆. In the example, in the smallest solution, it’s =, anyway, in the end.
It’s the way that one “visualizes” the flow. Here we have a variable, and
the information flows from the variable to the label. We do not write to
the variable, but read from it and get the value from the variable into the
program (at the given label). Since we have a forward-may-analysis and
go for the smallest value, the “post-state” (at l) must be equal or larger
than the “pre-state” (at x).

3. Applications
Basically, we have one application (labelled 5). So we have to think of the
flow. One is that the argument “flows into” the variable which constitues
the formal argument of the function. The same reasoning (intuitive direc-
tion of the flow of information) determines the direction of the inequation.
The second flow is the output: what comes out of the body of the function
function comes {out of the application}. That relates the Ĉ of the cor-
responding labels. This explains the first two inequations (which are not
yet complete, there will be 2 steps to capture the flow (more precisely)).
The first step deals with the fact that we don’t really know which function

1 Introduction
1.3 Constraint-based analysis 23

a variable represents (higher-order). The second one is an optimization,
introducing conditional constraints.
However, that is not all for application. So far we have just looked
“intuitively” at the code, but we need to relate to the analysis/an al-
gorithm. This means, we should not just look at what function there
“/is/” according to our intuition at label 2 (the place for the function in
the application) but formally we need to think, what functions location
2 evaluates according to the analysis. In other words, we need to consult
Ĉ(2). We have only a lower bound for Ĉ(2) (some slides earlier), there-
fore, in principle all possible abstractions (there are 2) are candidates to
be at the applicator position in the application. I.e., the one missing is
[fn y ⇒ [y]3]4. This adds two more inequations, again one for input and
the other for output, this time for the second abstraction.
What we have so far (especially for category 3) would work (in category
3), in the sense of leading to a sound analysis. As mentioned before, we
can do better, however, in the category for applications. Namely that
we formulate the inequations conditionally making the information about
which function the l = 2 evaluates to more precise (in the end: smaller).
In the example, we will see that the analysis finds out that Ĉ(2) indeed
only contains one function, the obvious one. This additional precision
gives indeed a smaller solution.
The refinement can be explained as follows: it concerns the category for
applications (location 5). Each “instance” of an application leads to two
constraints “in” and “out” (for parameter passing and returning the data).
The question only is (as discussed): which function definition is it actually
where the data flows “in” and “out”. What we know is that the function,
whichever it is, is placed at location 2. Therefore the condition in the
conditional refinement of the constraints expresses the following

“if such-and-such function occurs at 2, then consider the “in”
constraint (and “out” constraint) for that function”

The least (= best) solution

Ĉ(1) = {fn y ⇒ [y]3}
Ĉ(2) = {fnx⇒ [x]1}
Ĉ(3) = ∅
Ĉ(4) = {fn y ⇒ [y]3}
Ĉ(5) = {fn y ⇒ [y]3}
ρ̂(x) = {fn y ⇒ [y]3}
ρ̂(y) = ∅

One interesting bit here in the solution is: ρ̂(y) = ∅: that means, the variable
y never evaluated, i.e., the function is not applied at all.

24 1 Introduction
1.4 Type and effect systems

1.4 Type and effect systems

1.4.1 Introduction

Standard type systems and others

In this section, we are mainly dealing with “non-standard” type systems, but
let’s have a look at standard type systems first.

Types and type systems are a well-established and central part of static anal-
ysis. Before continuing further: It should go without saying that, as far as
the lecture is concerned, we are dealing with static type systems. The typing
part of the semantic analysis phase is also kind of familiar as all programmers
are accustomed to in one form or the other, as they are often visible in the
programming language and the programmer has to learn to deal with them.
For languages being typed at run-time (for instance some scripting languages).
types may be less visible, even if they are still there (but dynamically typed
languages are out of scope for that lecture anyway). In any case, even novice
programmers are aware that somewhere under the hood, the compiler checks
whether the given program adheres to the language’s typing discipline; that’s
the task of the type checker.

The “standard” role of types is to describe “data values” and type checking
assures that meaningful use is made of the date. At the lowest level, it served
the compiler, for instance, also to know the “size” of data so as to allocate ad-
equate amount of memory for storing and accessing it. The lecture here covers
types mostly on a higher abstraction level, and types are seen as specifications
of allowed uses of data. For instance, the type system may allow to use the
logical operations and and or on boolean typed values, but not addition. On
that level, type and type systems are very rudimentary and potentially very
rigid (but still important). Modern (standard) type system are far more com-
plex, basically due to the wish to add flexibility (different forms of so-called
polymorphism) but still maintaining efficient, scalable, decidable static type
checking.

Type theory —the study of type systems, their expressiveness, efficiency etc.—
often deals with functional languages, one reason being that functional lan-
guages feature one particular expressive form of data, namely functions. There
are other reasons why type systems for functional languages have been widely
studied, but that’s perhaps outside the scope of the lecture and we leave it at
that.

At any rate, whether it’s the more down to earth “size-of-memory” basic types
for code generation, or advanced polymorphic type systems for some λ-calculus
or other, standard type systems are always concerned with specifying sets of
data values (with the purpose of regulating their usage).

1 Introduction
1.4 Type and effect systems 25

So far for standard type systems, what about non-standard ones? The latter
term here is used for all aspects different from describing values in a program-
ming language. A value of a program is “what comes out at the end”, that’s
why executing a program is sometimes called evaluation. . . Another name we
will encounter is reduction, the intuition being that the program is “reduced”
to its final value. Anyhow, non-standard type systems, in contrast, specify
aspects that are not related to the final value. For instance, data flow or con-
trol flow information is certainly something that typically is not covered by
type system. Effects, in particular, cover aspects that happen “during” the
execution. It’s not a coincidance that this is a very broad definition, as ba-
sically, everything that needs semantic analysis at compile time, which refers
to “what happens when the program runs” (as opposed to “what’s the final
value”) might be described by a effect system. Often, the desciption is com-
bined with a type system, in which case it’s called a type and effect system.
The lecture will probably cover different effects (excepctions, communication,
. . .).

For Haskell progammers, the separation between the “pure”, functional part
and all “the other aspects” should be familiar. Haskell goes to great lengths
to separate both aspects, encapsulating all impure effects in so-called monads.
So one might call standard types all that captures the pure (effect-free) core
of the language, and effects correspond to those covered by monads. The
connection between effects and monads can even be made formal (giving a
monadic interpretation to effects), but that’s beyond this lecture.

Effects: Intro

• type system: “classical” static analysis:

t : T

• judgment: “term or program phrase has type T”
• in general: context-sensitive judgments (remember Chomsky . . .)

Judgement :
Γ ` t : τ

• Γ: assumption or context
• here: “non-standard” type systems: effects and annotations
• natural setting: typed languages, here: trivial! setting (while-language)

Type system is a classical context sensitive analysis, following parsing, which
is the classical context-free analysis. It’s thus not a coincidence, that the com-
ponent Γ in the judgements is called “context”. In implementations, it directly

https://www.haskell.org/

26 1 Introduction
1.4 Type and effect systems

corresponds to the so-called symbol table. That’s a data structure, often real-
ized as hash table or similar, used to keep relevant information about syntactic
entities during the semantical phase (and also for code generation), in particu-
lar about variables or other “symbols”. One prominent piece of information is
about the types, and that’s what Γ contains. When coming to effect systems
and some non-standard types, also other kind of information may be stored in
the types, and therefore in Γ, as well.

For the participants for the compiler construction course (INF5110): informa-
tion attached to syntactic elements were there also called attributes. In that
parlance, a type is an attribute of a variable (or an expression etc.). Note
in passing, that also the labelling of expressions can well be seen as attribua-
tion.

Context-sensitive information assosciated with syntactic entities was called
attributes basically because in the static analysis part, the lecture was working
with so-called attribute grammars. In this lecture we don’t bother with that
general formalism. The type and effect systems will be represented in the
form of derivation systems, but in priciple that can be viewed as some special
notation for specific attribute grammars, as well.

“Trival” type system

• setting: while-language
• each statement maps: state to states
• Σ: type of states

judgement
` S : Σ→ Σ (1.12)

• specified as a derivation system
• note: partial correctness assertion

The “type system” here is trivial in a technical sense. Type systems are used
to distinguish well-typed programs from ill-typed ones, and reject the latter.
This is generally not a context-free task, and therefore cannot be done by the
parser alone, even though, for simple languages, type checking can be done
while parsing. Here, the “type system” (show below) accepts all programs, all
syntactically correct programs are already well-typed (remember that we are
dealing with abstract syntax, i.e., trees, which represent syntactically correct
programs). Since all programs are well-typed, there is actually no need for a
type system at all. It’s only used here to illustrate how to extend a (in this case
trivial) type system with extra information, leading to annotated type system
and effect type system, which then yield useful information. Note in passing
that the above judgment from equation (1.12) has no context Γ, reflecting the

1 Introduction
1.4 Type and effect systems 27

fact that it’s technically context-free and not context-sensitive, and thereby
trivial.

The typing judgment, as is the case in general for standard type system, is
intended to be a partial correctness assertion. The trivial type system here is
a bad illustation for that fact (being so trivial), but in general, the meaning of
a judgment e : τ is:

if the statement, expression or progam e terminates, then the result-
ing value conforms to the type τ .

Type systems typically don’t attempt have an opinion about termination, they
only guarantee that the data at the end is ok, provided the program terminates
thereby yielding said value. This restricted form of assertion is known as partial
correctness (as opposed to total correctness). Another word used for such
specifications is, that typing is conventionally concerned with safety properties
(as opposed to liveness properties).

This is not intended to say, that it’s impossible to devise type systems that
try to capture “total correctness” in that they would guarantee termination or
would warn against possible non-termination. In general, that would require
definitely “non-standard” augmented information.

Finally, as a side remark: there is a connection between termination and stan-
dard type system in the following way: for typed λ-calculi (without recursion),
well-typed programs guarantee termination, which requires non-trivial tech-
niques for proving that, and furthermore makes pure, typed λ-calculi (without
recursion) no real programming languages, as they are not Turing-complete.
The λ-calculus we will encounter later does have a recursion operator for that
reason.

28 1 Introduction
1.4 Type and effect systems

“Trival” type system: rules

` [x := a]l : Σ→ Σ Ass

[skip]l : Σ→ Σ Skip

` S1 : Σ→ Σ S2 : Σ→ Σ
Seq

` S1;S2 : Σ→ Σ
‘

` S : Σ→ Σ
While

` while[b]l doS : Σ→ Σ

` S1 : Σ→ Σ ` S2 : Σ→ Σ
Cond

` if[b]l thenS1 elseS2 : Σ→ Σ

As mentioned, the “type system” does not do anything useful. It shows, how-
ever, the general style of writing down type systems, namely in the form of
derivation rules. In the current version, there are five rules, one for each con-
struct. Each rule has a set of premises and one conclusion. In case, there are
no premises, a rule is also called axiom. That’s the case for Ass and Seq,
which are dealing with the basic constructs of the language. The compound
statement are treated by the rules with a non-empty set of premises, where
the premises deal with the sub-constructs.

The rules can be viewed a logical “implications”, reading them from top to
bottom: If S1 is well-typed and S2 is well-typed, then so is the sequential
S1;S2 composition (in rule Seq). A program S is well-typed, if there is a
derivation tree using the givem rules such that ` S : Σ → Σ is derivable, i.e.,
is the root of the tree (derivation trees have their roots at the bottom and
their leaves, corresponding to axioms, at the top. . .)

One can view the rules also as the specification of a recursive procedure: in
order to establish that S1;S2 is well-typed, one has to recursively check S1 and
S2 for well-typedness. It’s of course just a different angle on the same thing.
This “reading” of the rules is sometimes called “goal-directed”: in order to
establish the conclusion, establish the premises first.

Seen in this goal-directed manner, the rules directly can be seen as a recursive
procedure (corresponding to a tree-traversal of the abstract syntax tree). It’s
a very straight-forward divide and conquer strategy. Note in this context: the
language has 5 syntactic constructs (2 basic ones and 3 compound ones) and

1 Introduction
1.4 Type and effect systems 29

the derivation system has 5 rules (including 2 axioms), exactly one for each
contruct.

That entails that the top-level constuct of a subprogram determines which
rule to apply recursively (in the goal-directed reading of the rules). Further-
more, the premises always deals with proper subterms compared to the term or
statement in the conclusion, which in particular guarantees termination. Type
systems, or derivation systems in general with these “one-rule-per-construct”
and “in-the-premises-subterms-only” properties are called syntax directed. In
the terminology of attribute grammars: the types here correspond to inherited
attributes (in their simplest form). But keep in mind that the “type system”
here is trival to the point of being meaningless. More realistic type systems
do not correspond to inherited attributes, they are more complex.

Unfortunately, not all type systems are given in a syntax-directed manner.
That means, not all type system specifications can be immediately understood
as an algorithm. Sometimes, that is for fundamental reasons: the rules describe
a type system so complex that the question whether Γ ` e : τ is derivable
or not is undecidable. It won’t be much the case in this lecture. A more
common reason is: the rules of the type system are not a priori intended as
an algorithm, they are rather intended as specification of the typing discipline
and showing an algorithm would obscure that specification. A non-syntax
directed specification for instance will be used when dealing with subtyping or
other forms of polymorphism, resp. subeffecting. We will also touch upon the
question: given a non-syntax-directed type system as specification, how can
one turn it into a syntax-directed, thus algorithmic version. The algorithm, of
course, corresponds to the type checker.

Types, effects, and annotations

` S : Σ1 → Σ2 (1.13) ` S : Σ ϕ→ Σ (1.14)

type and effect system (TES)

• effect system + annotated type system
• borderline fuzzy
• annotated type system

– Σi: property of state (“Σi ⊆ Σ”)
– “abstract” properties: invariants, a variable is positive, etc.

• effect system
– “statement S maps state to state, with (potential . . .) effect ϕ”
– effect ϕ: e.g.: errors, exceptions, file/resource access, . . .

30 1 Introduction
1.4 Type and effect systems

1.4.2 Annotated type systems

Annotated type systems

• example again: reaching definitions for while-language
• 2 flavors

1. annotated base types: S : RD1 → RD2

2. annotated type constructors: S : Σ X−→
RD

Σ

Here we see that the border line between annotated type systems and effect
system is fuzzy. The first sub-flavor corresponds to the intuition we have
used so far: the states are restricted. The second one, if we think of it as
functional type, can be seen as if the “functional” type is annotated. However,
the annotation is like an effect (as we will see later).

RD with annotated base types

judgement
` S : RD1 → RD2 (1.15)

• RD ⊆ 2Var×Lab

• auxiliary functions
– note: every S has one “initial” elementary block, potentially more

than one “at the end”
– init(S): the (unique) label at the entry of S
– final(S): the set of labels at the exits of S

“meaning” of judgment ` S : RD1 → RD2 “RD1 is the set of var/label
reaching the entry of S and RD2 the corresponding set at the exit(s) of S”:

RD1 = RDentry(init(S))
RD2 = ⋃{RDexit(l) | l ∈ final(S)}

Concerning the “meaning” of the judgment: the formulation is not 100% cor-
rect, it’s too strict as we will see. The problem is the claim that RD is the set
of As in the data flow section, there is not just one single safe solution,
but many. There is (as before) exactly one minimal, i.e., best one. However,
the effect system is “lax” in that it specifies all safe ones. That is completely
in analogy to the previous constraint system approaches.

One may compare the sets RD to the analysis data used in the “original”
reaching definitions analysis (in the equational or constraint based approach,
it does not matter which). The “functional” type here expresses the pre-
and post-states. For elementary blocks, that corresponds to the entry and

1 Introduction
1.4 Type and effect systems 31

the exit point of the node or label. As one rule (coming next) treats one
block/statement (elementary or not) at a time, it’s not the 12-tuple, of course,
(taking the concrete factorial example) but just 2 generic slots of it: the pre-
and the post-state.

Concerning the auxiliary functions (initial and final): They calculate implicitly
the control flow graph.

Rules

` [x := a]l′ : RD → RD \{(x, l) | l ∈ Lab} ∪ {(x, l′)} ass

` [skip]l : RD → RD skip

` S1 : RD1 → RD2 ` S2 : RD2 → RD3
Seq

` S1;S2 : RD1 → RD3

` S1 : RD1 → RD2 ` S2 : RD1 → RD2
If

` if[b]l thenS1 elseS2 : RD1 → RD2

` S : RD → RD
While

` while[b]l doS : RD → RD

` S : RD′1 → RD′2 RD1 ⊆ RD′1 RD′2 ⊆ RD2
Sub

` S : RD1 → RD2

The rules may be compared with the constraint-based formulation of the
reaching definitions early, which was based on the control-flow graph. The
intra-block equations are covered by the axioms here, and the inter-block equa-
tions are the compositional part, the rules.

Worth mentioning is also the fact that in the annotated type system now,
we have 6 rules (for 5 syntactic constructs). So, there goes the syntax-
directedness. . . . As a consequence, the type system does not (directly) describe
an algorithm.

The culprit is rule Sub (for subsumption). We will encounter subsumption
many times (for subeffecting, and also subtyping), and it’s one classical reason
why type systems are not syntax directed. It breaks it in two ways: first,
for each construct, there are now two rules to choose from (if one thinks in a
goal-directed manner), as subsumption is always possible. as well. Secondly,
the core judgment in the premise does not assert well-typedness for a proper

32 1 Introduction
1.4 Type and effect systems

sub-term of S in the conclusion. So, going from conclusion to the premise, S
does not get “smaller”. Suddenly, termination of type checking may become a
non-trivial issue.

Meaning of annotated judgments

“Meaning” of judgment S : RD1 → RD2: “RD1 is the set of var/label
reaching the entry of S and RD2 the corresponding set at the exit(s) of S”:

RD1 = RDentry(init(S))
RD2 = ⋃{RDexitl | l ∈ final(S)}

• Be careful:

if[b]l thenS1 elseS2

• more concretely

if[b]l then [x := y]l1 else [y := x]l2

Derivation

[y := x]1 : RD0 → {?x, 1, ?z}

[z :=]4 : RDbody → {?x, 1, 5, 4,�2}
[y :=]5 : {?x, 1, 5, 4} → {?x, 5, 4}

fbody : RDbody → {?x, 5, 4}
Sub

fbody : RDbody → RDbody

fwhile : RDbody → RDbody
Sub

fwhile : {?x, 1, 2} → RDbody [y := 0]6 : RDbody → RDfinal

f3 : {?x, 1, 2} → RDfinal

f2 : {?x, 1, ?z} → RDfinal

f : RD0 → RDfinal

RD0 = {?x, ?y, ?z} RDfinal = {?x, 6, 2, 4}

• abbreviate f3 = while . . . ; [y := 0]6
• loop invariant

RDbody = {?x, 1, 5, 2, 4}

1 Introduction
1.4 Type and effect systems 33

1.4.3 Annotated type constructors

Annotated type constructors

• alternative approach of annotated type systems
• arrow constructor itself annotated
• annotion of →: flavor of effect system
• judgment

S : Σ X−→
RD

Σ

• annotation with RD (corresponding to the post-condition from above)
alone is not enough

• also needed: the variables “being” changed

Intended meaning “S maps states to states, where RD is the set of reaching
definitions, S may produce and X the set of var’s S must (= unavoidably)
assign.

In the previous formulation (with annotated base types), each judgment men-
tioned two versions of the RD information, the one before and the one after.
Now, there is only one RD information, which is interpreted as the reaching
definitions the statement of the rule may produce. That means, the generated
RD is considered very much like an effect of the statement.

RD is indeed the information we are interested in for this analysis. However,
to make the system technically work and fit together: It’s not enough to keep
track of “reaching definitions” which are generated per construct. If that were
the only information, we would never “remove” any tuples, just add them.
That can in particularly seen in the treatment of sequential composition S1;S2,
see rule Seq below.

In order to capture that, the sets X of assigned variables is kept track of, as
well. In the monotone frameworks later, the removal of flow information is
also called “killing” and, in many cases, the data flow equations and transfer
functions can be decscribed as a combination of “generating” and “killing”
data flow. It could also be noted: the RD here is “may” information, wheras
the X is “must” information.

34 1 Introduction
1.4 Type and effect systems

Rules

[x := a]l : Σ {x}
−→
{(x,l)}

Σ Ass [skip]l : Σ ∅−→
∅

Σ Skip

S1 : Σ X1−→
RD1

Σ S2 : Σ X2−→
RD2

Σ
Seq

S1;S2 : Σ X1∪X2−→
RD1 \X2∪RD2

Σ

S1 : Σ X−→
RD

Σ S2 : Σ X−→
RD

Σ
If

if[b]l thenS1 elseS2 : Σ X−→
RD

Σ

S : Σ X−→
RD

Σ
While

while[b]l doS : Σ ∅−→
RD

Σ

S : Σ X′−→
RD′

Σ X ⊆ X ′ RD′ ⊆ RD
Sub

S : Σ X−→
RD

Σ

In [8], the If rule is formulated more complex:

S1 : Σ X1−→
RD1

Σ S2 : Σ X2−→
RD2

Σ
If

if[b]l thenS1 elseS2 : Σ X1∩X2−→
RD1∪RD2

Σ

The formulations are, of course, equivalent. The one on the slides is a special
case of the more complex one. For the reverse direction, one can use subsump-
tion. In the presence of the more complex rule, one can remove subsumption!

Interesting is the While-rule, especially the fact that the set above the arrow
is ∅. That’s because the while-loop may not be taken at all, so that corresponds
to the intersection of X in the premise and ∅.

1.4.4 Effect systems

Effect systems

• this time: back to the functional language

1 Introduction
1.4 Type and effect systems 35

• starting point: simple type system
• judgment:

Γ ` e : τ

• Γ: type environment (or context), “mapping” from variable to types
• types: bool, int, and τ → τ

The “language” here basically is known as the simply typed λ-calculus. It is a
variant which is known as Curry-style formulation of the type system. That
refers to the fact that abstractions are written as λx.e instead of λx:τ.e. In
the latter case, it’s know as “Church style”. In the less explicit Curry-style,
one is facing a problem of so-called type inference, i.e., figuring out what the
(omitted) type of x should be. That in itself is an important and interesting
problem, which we might cover later, but in the introduction, we focus on the
effect part, not the typing.

As far as the syntax is concerned: The π-subscript of the abstraction is non-
standard as far as the typed λ-calculus and its typing is concerned. It’s added
for the purpose of the effect system, only.

In comparison to the earlier “type-system” we used a starting point for the
while language, now the system is non-trivial (even if completely standard).

Rules

Γ(x) = τ
Var

Γ ` x : τ

Γ, x:τ1 ` e : τ2
Abs

Γ ` fn πx⇒ e : τ1 → τ2

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1
App

Γ ` e1 e2 : τ2

As mentioned, the flavor of the (simply typed) λ-calculus here is Curry-style.
As before, an easy way to interpret the rules is as derivation rules, where the
premises imply the conclusion.

It may be also intructive, to look at them in a goal directed manner, as if it
where a recursive procedure: what is needed in order to derive a conclusion.

36 1 Introduction
1.4 Type and effect systems

But even more instructive is to think what such a recursive interpretation is
supposed to achieve. To be useful as conventional type checker, it’s not meant
as: check if the following is true

Γ ` e : τ? (1.16)

like confirming the user’s guess whether or not it’s true that e has type τ (given
the assumptions Γ). Instead, more useful is the interpretation

Γ ` e : ? (1.17)

i.e., an answer to the question: is e well-typed under the given assumption,
and if so, what’s its type? In other words, when interpreting the rules, one
useful reading is to see Γ and e as input of a recursive procedure, and τ as the
output.

With this interpretation in mind, especially rule Abs is interesting. Here,
in the Curry-style formulation, the formal parameter x is mentioned in the
conclusion without type. That means, that the “recusive call” corresponding
to the premise guesses a type τ1 for it. This guess may be right in that it leads
to a successful type check of the premise and thus a sucessful type check and
returning τ1 → τ2 for the abstraction in the conclusion. Or it may also fail.
The form of abstraction may determined that a recursive call according rule
App is in place, however, not information is given in the input Γ and λx.e
to determine the subesequent recusive call (as τ1 has to be guess). Note that
there are infinitely many types to choose from. . . . In other words, the rules
(in the interpretation given) do not really qualify as algorithm, and they would
not qualify as syntax-directed (if we interpret the rules as describing a problem
as in equation (1.17) and not as confirming the type as in equation (1.16).

Solving the “guessing problem” in a proper manner is known as type inference
or type reconstruction and we might return to it later. Also note: if the
abstraction would be of the form λx:τ.e, the guessing problem would go away
as well. This form is also known a Church-style typing (as opposed to Curry-
style).

Effects: Call tracking analysis

Call tracking analysis: Determine: for each subexpression: which function
abstractions may be applied, i.e., called, during the subexpression’s evalua-
tion.

⇒ set of function names

annotate: function type with latent effect

1 Introduction
1.4 Type and effect systems 37

⇒ annotated types: τ̂ : base types as before, arrow types:

τ̂1
ϕ→ τ̂2 (1.18)

• functions from τ1 to τ2, where in the execution, functions from set ϕ are
called.

Judgment
Γ̂ ` e : τ̂ :: ϕ (1.19)

It may be worthwhile to reflect what the connection is between the call-tracking
analysis here and the constraint-based analysis we had before. Both analyses
are not the same. In the constraint-based analysis from earlier, we wanted to
know at each point to which functions it evaluates to answer the question for
applications f a, which functions are actually called. Here, the perspective is
different: we take an expression and think of it as being evaluated and ask,
which functions are being called during evaluation. Both questions, however,
are related. Remember that the analysis earlier was not formulated as a type
system.

Later in the lecture, we may revisit the control-flow analysis in a type-based
formulation. This will be easier to compare to the call-tracking analysis from
here, basically because it’s formulated similarly, namely as an effect system
quite similar to the one here. This allows to see the differences and similarities
more clearly. The earlier control-flow analysis was not formalized as type
system, but with constraints. It’s not, however, meant to mean that constraint
based systems are fundamentally different from type and effect systems. After
all they may tackle the same problems. Again it’s more a stylistic question and
type systems as the one here can also be seen as a particular way (using logical
derivation rules as used for type system) so specify the contraint system.

Call tracking rules

Γ̂(x) = τ̂
Var

Γ̂ ` x : τ̂ :: ∅

Γ, x:τ̂1 ` e : τ̂2 :: ϕ
Abs

Γ ` fnπx⇒ e : τ̂1
ϕ∪{π}→ τ̂2 :: ∅

Γ̂ ` e1 : τ̂1
ϕ→ τ̂2 :: ϕ1 Γ̂ ` e2 : τ̂1 :: ϕ2

App
Γ̂ ` e1 e2 : τ̂2 :: ϕ ∪ ϕ1 ∪ ϕ2

38 1 Introduction
1.5 Algorithms

Call tracking: example

x:int
{Y }
→ int ` x:int

{Y }
→ int :: ∅

` (fnXx⇒ x) : (int
{Y }
→ int)

{X}
→ (int

{Y }
→ int) :: ∅ ` (fnY y ⇒ y) : int

{Y }
→ int :: ∅

` (fnXx⇒ x) (fnY y ⇒ y) : int
{Y }
→ int :: {X}

1.5 Algorithms

Introduction

This part is rather short. So far, we touched upon here and there on issues
how to algorithmically treat the problems we encountered. In particular in the
context of the type systems, some remarks tried to raise awareness under which
circumstances the derivation rules could straightforwardly be interpreted as a
recursive procedure, and when not (basically in all interesting cases). But we
never really tackled the issue, especially not for the “flow problems” (data flow,
effects etc.) in which we are specifically interested in.

In particular: we saw how data flow problems such as reaching definitions can
be described or specified as constraint systems (equational or otherwise). What
we did not do so far is giving hints of how to actually solve such constraint
system, i.e., how do do constraint solving.

The notion of “constraint system” is extremely broad and can capture all
sorts of problems. The lecture is mostly concerned with particular forms of
constraint systems which capture flow problems (or program analysis problem
in general). In addition, we discuss under which circumstances those kind
of constraint systems have solutions, in particular have unique best solutions.
This is a very welcome sitation and deserve a thorough treatment.

Here, we just hint at a very simple strategy (also only sketched on a very high-
level), which is non-deterministic. Being non-deterministic makes it not really
directly an implementation unless one wishes to make use of some random-
generator which helps to implement the non-determinism. There would in
practice no point in doing so, instead one would aim for deterministic solution,
perhaps realizing specific stratetgies or heuristic.

Why then bother with a non-deterministic description at all? Basically it’s
to separate the question of correctness of the algorithm from the question of
efficiency. As it turns out, the kind of constraints we are considering and the
solution domains have the very, very desirable property that

when facing a non-deterministic, choice, no matter how one resolve
it, the one never make a “wrong choice”.

1 Introduction
1.5 Algorithms 39

So the choice does not really matter except for how fast the algorithm termi-
nates, i.e., how efficient the algo runs. Even there are perhaps smarter and
less smart choices at each point, there are not real wrong ones. As a conse-
quence, there is no backtracking. And that’s crucial for being usable. As a
side remark: it’s well-known that many forms of constraints, even simple ones
as boolean constraints (“SAT-solving”) don’t have this favorable property and
there is basically no way around solving those by brute force combinatorial
exploration. Indeed, SAT (boolean satisfiability) one of the most famous NP
complete problems there is (and the first one for which that was proven).
Fortunately, for simple data flow equations, things look much brighter.

Chaotic iteration

• back to data flow/reaching def’s
• goal: solve

~RD = F (RD) or ~RD v F (~RD)

• F : monotone, finite domain

straightforward approach

init ~RD0 = F 0(∅)

iterate ~RDn+1 = F (~RDn) = F n+1(∅) until stabilization

• approach to implement that: chaotic iteration
• non-deterministic stategy
• abbreviate:
~RD = (RD1, . . . ,RD12)

Chaotic iteration (for RD)

Input : equat ions f o r reach ing d e f s
f o r the g iven program

Output : l e a s t s o l u t i o n : ~RD = (RD1, . . . ,RD12)
−−

I n i t i a l i z a t i o n :
RD1 := ∅; . . . ; RD12 := ∅

I t e r a t i o n :
whi l e RDj 6= Fj(RD1, . . . ,RD12) f o r some j
do

RDj := Fj(RD1, . . . ,RD12)

https://en.wikipedia.org/wiki/Boolean_satisfiability_problem

40 1 Introduction
1.6 Conclusion

1.6 Conclusion

The introductory part touched upon different topics. The approaches are also
related, i.e., it’s sometimes a bit of a matter of preference if one represents a
problem directly as flow equations, type systems etc. Things not covered in the
introduction (but probably later are complications in the while language, like
procedure calls or pointers). Also, there will be other analyses besides reaching
definitions (and a systematic common overview over similar analyses (knows
as monotone framework). Also we go into the underlying theory (lattices) as
well has considering in which way to establish that the various analysis are
actually a sound overapproximation of the program behavior (“soundness”,
“correctness”, “safe approximation”, all mean the same).

2 Data flow analysis 41

2
Data flow analysis
Chapter

What
is it

about?

Learning Targets of this Chapter
various DFAs
monotone frameworks
operational semantics
foundations
special topics (SSA,
context-sensitive analysis ...)

Contents

2.1 Introduction 42
2.2 Intraprocedural analysis 42

2.2.1 Determining
the control flow
graph 42

2.2.2 Availabe ex-
pressions 45

2.2.3 Reaching defi-
nitions 49

2.2.4 Very busy ex-
pressions 52

2.2.5 Live variable
analysis 57

2.3 Theoretical properties
and semantics 61
2.3.1 Semantics . . . 61
2.3.2 Intermezzo:

Lattices 65
2.4 Monotone frameworks 71
2.5 Equation solving . . . 76
2.6 Interprocedural analysis 79

2.6.1 Introduction . . 79
2.6.2 Semantics . . . 80
2.6.3 Analysis 83
2.6.4 Paths 84
2.6.5 Context-

sensitive analysis 88
2.7 Static single assignment 100

42 2 Data flow analysis
2.1 Introduction

2.1 Introduction

In this part we cover classical data flow analysis, first in a few special, specific
analyses, among other ones, more time reaching definitions. Besides that, also
different other well-known ones. Those analyses are based on very similar
common principles, which then lead to the notion of monotone framework. All
of this is done for the simple while language from the general introduction. We
also have a look at important extensions. One is the treatment of procedures.
Those will be first-order procedures, not higher-order procedures. Nonetheless,
they are already complicating the data flow problem (and its complexity),
leading to what is known as context-sensitive analysis. Another extension
deals with dynamically allocated memory on heaps. Analyses that deal with
that particular language feature are known as alias analysis, pointer analysis,
and shape analysis. Also we might cover SSA this time.

2.2 Intraprocedural analysis

2.2.1 Determining the control flow graph

While language and control flow graph

• starting point: while language from the intro
• labelled syntax (unique labels)
• labels = nodes of the cfg
• initial and final labels
• edges of a cfg: given by function flow

Determining the edges of the control-flow graph Given an program in
labelled (and abstract) syntax, the control-flow graph is easily calculated. The
nodes we have already (in the form of the labels), the edges are given by a
function flow. This function needs, as auxiliary functions, the functions init
and final

The latter 2 functions are of the following type:

init : Stmt→ Lab final : Stmt→ 2Lab (2.1)

Their definition is straightforward, by induction on the labelled syntax:

2 Data flow analysis
2.2 Intraprocedural analysis 43

init final
[x := a]l l {l}
[skip]l l {l}
S1;S2 init(S1) final(S2)

if[b]l thenS1 elseS2 l final(S1) ∪ final(S2)
while[b]l doS l {l}

(2.2)

The label init(S) is the entry node to the graph of S. The language is simple
and initial nodes are unique, but “exits” are not. Note that unique entry
is not the same as the notion of “isolated” entry (mentioned already in the
introduction). Isolated would mean: the entry is not the target of any edge.
That’s not the case, for instance for the while loop. In general, however, it
may be preferable to have an isolated entry, as well, and one can arrange easily
for that, adding one extra sentinel node.

Using those, determining the edges, by a function

flow : Stmt→ 2Lab×Lab

works as follows:

flow([x := a]l) = ∅
flow([skip]l) = ∅
flow(S1;S2) = flow(S1) ∪ flow(S2)

∪ {(l, init(S2)) | l ∈ final(S1)}
flow(if[b]l thenS1 elseS2) = flow(S1) ∪ flow(S2)

∪ {(l, init(S1)), (l, init(S2))}
flow(while[b]l doS) = flow(S1) ∪ {l, init(S)}

∪ {(l′, l) | l′ ∈ final(S)}

(2.3)

Two further helpful functions In the following, we make use of two further
(very easy) functions with the following types

labels : Stmt→ 2Lab and blocks : Stmt→ 2Stmt

They are defined straightforwardly as follows:

blocks([x := a]l) = [x := a]l
blocks([skip]l) = [skip]l
blocks(S1;S2) = blocks(S1) ∪ blocks(S2)

blocks(if[b]l thenS1 elseS2) = {[b]l} ∪ blocks(S1) ∪ blocks(S2)
blocks(while[b]l doS) = {[b]l} ∪ blocks(S)

(2.4)

44 2 Data flow analysis
2.2 Intraprocedural analysis

labels(S) = {l | [B]l ∈ blocks(S)} (2.5)

All the definitions and concepts are really straightforward and should be in-
tuitively clear almost without giving a definition at all. One point with those
definitions, though is the following: the given definitions are all “constructive”.
They are given by structural induction over the labelled syntax. That means,
they directly describe recurvise procedures on the syntax trees. It’s a leitmo-
tif of the lecture: we are dealing with static analysis, which is a phase of a
compiler, which means, all definitions and concepts need to be realized in the
form of algorithms and data structures: there must be a concrete control-flow
graph data structure and there must be a function that determines it.

Flow and reverse flow

labels(S) = init(S) ∪ {l | (l, l′) ∈ flow(S)} ∪ {l′ | (l, l′) ∈ flow(S)}

• data flow analysis can be forward (like RD) or backward
• flow: for forward analyses
• for backward analyses: reverse flow flowR, simply invert the edges

Program of interest

• S∗: program being analysed, top-level statement
• analogously Lab∗, Var∗, Blocks∗
• trivial expression: a single variable or constant
• AExp∗: non-trivial arithmetic sub-expr. of S∗, analogous for AExp(a)

and AExp(b).
• useful restrictions

– isolated entries: (l, init(S∗)) /∈ flow(S∗)
– isolated exits ∀l1 ∈ final(S∗). (l1, l2) /∈ flow(S∗)
– label consistency

[B1]l, [B2]l ∈ blocks(S) then B1 = B2

“l labels the block B”

• even better: unique labelling

Concerning label consistency: indeed, unique labelling is better . Otherwise
nodes of the graph are “overlaid”, i.e., there will be confusion wrt. predecessors
and successors. Unique labelling is an very natural condition. When labelling
the syntax (and building the control flow graph), one simply generate one label
or node after the other, then naturally the blocks are unqiuely labelled. Label

2 Data flow analysis
2.2 Intraprocedural analysis 45

consistency, but with non-unique labelling looks rather unnatural, at the first
sight.

See also the operational semantics later, which preserves label consistency but
not unique labelling (in the case of unrolling a while-construct). Actually,
the semantics would preserve a better property, it seems to me. Not only is
the labelling “consistent” in the sense defined here. But also the edges and
neighbors of a node remains comparable. But the book does not point that
out.

2.2.2 Availabe expressions

This is the first of a few classical data flow analyses we cover (like reaching
definitions as well). The analysis can be used for a so-called common subex-
pression elimination. CSE is a program transformation or optimization which
makes use of the available expression analysis. The idea is easy: if in a pro-
gram, the analysis finds out that an expression is computed twice, it may pay
off to store it the first time it’s computed, and in the second occurence, look
it up again.

Of course, it not just a syntactical problem, i.e., it’s not enough to find syn-
tactical occurrences of the same expression. In an imperative language and
for expression containing variable, the content of variables mentioned in such
expression may or may not have changed comparing different occurences of
the same expression, and that has to be figured out via a specific data flow
analysis, namely “available expressions” analysis.

Avoid recomputation: Available expressions

[x := a+ b]0; [y := a ∗ b]1; while [y > a+ b]2
do ([a := a+ 1]3; [x := a+ b]4)

Goal For each program point: which expressions must have already been
computed (and not later modified), on all paths to the program point.

• usage: avoid re-computation

One important aspect in the (informal) goal of the analysis is the use of the
word “must”. That’s different form what was done for reaching definitions.
There, it was about if a “definition” may reach a point in questions. It’s also
worthwhile to reflect about “approximation”. As always, exact information is
not possible, what’s why we content ourselves with “must” information (or
“may” in other case). In the case here (and related to it): if we have some
safe set of available expressions, then a smaller set it safe, too. Again, for the

46 2 Data flow analysis
2.2 Intraprocedural analysis

may-setting for reaching definition, enlarging sets was safe. The situation here
is therefore dual,

What obviously also different is the nature or type of the information of in-
terests. Here it’s sets of expressions, in the reaching definitions it was sets
containing pairs of locations and variables.

Available expressions: general

• given as flow equations (not constraints, but not too crucial, as we know
already)

• uniform representation of effect of basic blocks (= intra-block flow)

2 ingredients of intra-block flow

• kill: flow information “eliminated” passing through the basic blocks
• generate: flow information “generated new” passing through the basic

blocks

• later analyses: presented similarly
• different analyses ⇒ different kind of flow information + different kill-

and generate-functions

In the introduction, the reaching definition analysis was done without explicitly
mentioning kill and generate, but they where there implicitly anyway (for the
intra-block equations).

Available expressions: types

• interested in sets of expressions: 2AExp∗

• generation and killing:

killAE , genAE : Blocks∗ → 2AExp∗

• analysis: pair of functions

AEentry,AEexit : Lab∗ → 2AExp∗

Explanations AExp∗ can be taken as all arithmetic expressions occuring in
the program, including all their subsexpression. To be hyper-precise, one may
refine it in that trivial (sub-)expressions don’t count. Trivial expressions are
constants and single variables. Those trivial expressions are uninteresting from
the perspective of available expressions and therefore are left out. They are
likewise left out for the very busy expression analysis which will be discussed
soon.

2 Data flow analysis
2.2 Intraprocedural analysis 47

Intra-block flow specification: Kill and generate

killAE([x := a]l) = {a′ ∈ AExp∗ | x ∈ fv(a′)}
killAE([skip]l) = ∅

killAE([b]l) = ∅

genAE([x := a]l) = {a′ ∈ AExp(a) | x /∈ fv(a′)}
genAE([skip]l) = ∅

genAE([b]l) = AExp(b)

Explanation The interesting case is of course the one for assignments (for
generation, also the boolean equations are similar). An assignment kills all ex-
pressions, which contain the variable assigned to, and generates all (non-trivial)
sub-expressions of the expression on the right-hand side of the assignment.

For generation, we have, however, to be careful: those sub-expressions of a
which contain the variable x are of course not generated (because they are
no longer “valid” after the assignment); note (on the next slide): the flow in
a block is forward, and the flow at the exits depends on the in-flow in the
following order :

1. first kill, and
2. then generate.

Because of this order, we cannot generate sub-expressions which contain x. The
data flow analysis, at least those which are formulated with the help of kill
and generate function, use them in that order. One might as well use killing
and generating in the opposite order, but obviously, in that case, the exact
definition of the kill and generate functions needs to take that into account
and would have to be adapted to reflect that.

Flow equations: AE=

split into

nodes: intra-block equations, using kill and generate

edges: inter-block equations, using flow

48 2 Data flow analysis
2.2 Intraprocedural analysis

Flow equations for AE

AEentry(l) =
{
∅ l = init(S∗)⋂{AEexit(l′) | (l′, l) ∈ flow(S∗)} otherwise

AEexit(l) = AEentry(l) \ killAE(Bl) ∪ genAE(Bl)

where Bl ∈ blocks(S∗)

• note the “order” of kill and generate

Explanation Apart from the fact that before we did not make use of some
explicit kill and generate funnctions, the flow equations here are pretty sim-
ilar to the ones for available expressions. One conceptual difference is the
replacement of ⋂ (must) by ⋃ (may).

Note that the definition of the flow equations assume isolated entries, which
can be seen at the equation for AEentry(l), in the case where l is the initial
label (otherwise it would be a bit more complex). Note also: for AEentry,
we must make the case distinction of initial nodes (no incoming edges) and
others, otherwise: the empty intersection would be something like the “full
set” of expressions.

As subtle and perhaps not too relevant remark in that condition: that the
empty intersection corresponds to the “full set” is by definition (of ultimately
dealing with lattices). That sounds strange, but it’s ok due to the following
observation: the initial node is the only node in the control flow graph which
—being isolated— has no incoming edge. It’s straightforward to see that all
cfgs from the given syntax have that property. The one and only node without
incoming edge is of course init(S∗) (if we assume isolated entries), Having
an isolated entry is not guaranteed by the syntax, which means, we have to
additionally assume it resp. ensure it.

As mentioned: be aware of the order of kill and generate in the equation for
the exit: first, the killed ones are removed, then the generated ones are added.
Because of that order, one must make sure, that no expressions are generated
that contain the assigned variable.

Available expressions

• forward analysis (as RD)
• interest in largest solution (unlike RD)
⇒ must analysis (as opposed to may)
• expression is available: if no path kills it

2 Data flow analysis
2.2 Intraprocedural analysis 49

• remember: informal description of AE: expression available on all paths
(i.e., not killed on any)

• illustration

Example AE

[x := a+ b]0; [y := a ∗ b]1; while [y > a+ b]2
do ([a := a+ 1]3; [x := a+ b]4)

x:=a+b

y:=a*b

y > a+b

a:=a+1

x:=a+b

true

false

l0

l1

l2

l3

l4

Worthwhile is (for instance) the entry of node / block l2. At that point,
expression a + b is available. That’s despite the fact that a is changed inside
the body of the loop!

As a side remark: before we mentioned that available expressions analysis is
useful for common sub-expression elimination. The example shows that one
has to be careful with that, nonetheless.

2.2.3 Reaching definitions

Reaching definitions

• remember the intro
• here: the same analysis, but based on the new definitions: kill, generate,

flow . . .

[x := 5]0; [y := 1]1; while[x > 1]2 do([y := x ∗ y]3; [x := x− 1]4)

50 2 Data flow analysis
2.2 Intraprocedural analysis

x := 5

y := 1

x > 1

y := x*y

x := x-1

true

false

l0

l1

l2

l3

l4

Reaching definitions: types

• interest in sets of tuples of var’s and program points i.e., labels:

2Var∗×Lab?
∗ where Lab?

∗ = Lab∗ + {?}

• generation and killing:

killRD , genRD : Blocks∗ → 2Var∗×Lab?
∗

• analysis: pair of mappings

RDentry,RDexit : Lab∗ → 2Var∗×Lab?
∗

The information is the same as in the introduction (except here, we are explict
that it should be not just sets of variables, but that only the sets of variables
of the program are of interests, which here is denoted as Var∗. Similarly for
Lab∗). But that’s just a bit more precise (perhaps overly so).

Af ar as the mappings or functions RDentry and RDexit are concerned: In a
practical implementation, one might use arrays for that. If the implementation
identifies nodes by “numbers”, one can have an integer-indexed standard array,
which typically is fast way of prepresenting that information.

2 Data flow analysis
2.2 Intraprocedural analysis 51

Reaching defs: kill and generate

killRD([x := a]l) = {(x, ?)}∪⋃{(x, l′) | Bl′ is assgm. to x in S∗}
killRD([skip]l) = ∅

killRD([b]l) = ∅

genRD([x := a]l) = {(x, l)}
genRD([skip]l) = ∅

genRD([b]l) = ∅

Similar to the AE analysis: the interesting case is of course the one for assign-
ments. The generation and killing is indeed also quite similar to before. It is
the assignment to x which affects the flow, of course. Now, it eliminates all
pairs of similar assignments, in the AE-analysis, it invalidates all expressions,
which mention x. For the generation, the AE has been a bit more complex
than the analysis here: here, just the current pair of label and the variable is
added (actually, for unique labelling, even the label alone would suffice). For
AE, the relevant generated information is not drawn from x in an assignment
x := a, but from a (its non-trivial sub-expressions).

Flow equations: RD=

split into

• intra-block equations, using kill and generate
• inter-block equations, using flow

Flow equations for RD

RDentry(l) =
{
{(x, ?) | x ∈ fv(S∗)} l = init(S∗)⋃{RDexit(l′) | (l, l′) ∈ flow(S∗)} otherwise

RDexit(l) = RDentry(l) \ killRD(Bl) ∪ genRD(Bl)

where Bl ∈ blocks(S∗)

• same order of kill/generate

52 2 Data flow analysis
2.2 Intraprocedural analysis

2.2.4 Very busy expressions

Introduction

This is a another example of a classical data flow analysis. As for AE, one is
interested in expressions (not assignments). This time it’s about if an expres-
sion is “needed” in the future. Compared to AE, the perspective has changed.
It’s not about if an expression that has been evaluated in the past is still avail-
able as some given point. It the opposite: will an expression be of use in the
future.

This change of perspective also means, that VB is an example of a backward
analysis. The natural way of analysing very busy expressions is: at the place
where an expression is actually used, immediately in front of that place it’s
definitely very busy. And then from there, let the information flow backward:
in the previous location, it’s also very busy (unless relevant variables are change
which “destroy” the the “busy-ness”), then the continue the argument.

Being very busy also means an expression is used on all future paths, which
makes it a must analysis.

One can make use of very busy information as follow: if an expression is
very busy, it may pay off to calculate it already now, i.e., it can be used for a
program transformation, that moves the calculation of expression in an “eager”
fashion as early as posssible. Transformations like this are known as expression
“hoisting”.

This is may lead to shorter code of an expression, which is being calculated
in two branches of a conditional, for example, can be move earlier outside the
branching construct. Note that while that may be reduce the code size but
not really the run-time for executing the code.

Transformations like the one mentioned are often done (also) on low level
code (like machine-code or low-level intermediate reprentations which are al-
ready close to machine code, but still machine-independent). Executing one
command (“one line of machine code”) costs clock-cycle(s) already, since the
command itself needs to be loaded to the processor; on top of that comes costs
for loading the operands. So, shortening straight-line code may well improve
the execution time. However, hoisting an expression out from both branches
of a conditional and position it in front of the branch shorten the size of the
code without making it faster.

2 Data flow analysis
2.2 Intraprocedural analysis 53

Very busy expressions

if [a > b]1
then [x := b− a]2; [y := a− b]3
else [a := b− a]4; [x := a− b]5

Definition 2.2.1 (Very busy expression). An expression is very busy at the
exit of a label, if for all paths from that label, the expression is used before
any of its variables is “redefined” (= overwritten).

• usage: expression “hoisting”

Goal For each program point, which expressions are very busy at the exit of
that point.

Note that the definition and the goal are formulated in a subtle way. It’s about
information at the exits of the basic blocks, not the entry. In principle, and as
far as the equations or constraints are concerned, the formulation will mention
VBentry and VBentry (see later) in the same way as the equations for reaching
definitions, for example, mentioned RDentry and RDexit . So it seems to be, one
calculates exits and entries.

Nothing wrong with that, but looking carefully to the pseudo-code formulation
of the algorithms later, a refinement of the rather sketchy random iteration
of the introduction, we will see that what is given back is indeed only the
very busy information at the exits of the basic blocks. The reason why it’s
the exits (and not the entries) is because the very busy expression analysis
works backwards, for forward analyses it’s the corresponding information at
the entries of the blocks.

Why is that? Basically (in the case of the backward analysis), having the
solution at the exits allows to reconstruct immediately the solution values at
the entries per block (via the kill and generate function attached to the block,
something which will be called the transfer function of the block). The pseudo-
code will indeed work with “arrays” VBexit and VBentry, it’s only that what the
algo will give back VBexit , only. One can, however, implement basically the
same algorithm leaving out VBentry, storing only VBexit throughout the run.

Anyway, the reason why the goal is formulated like that is as (for backward
analysis) the exit information is the crucial one, if one has that, the entry
information follows by applying the transfer function (a combination of kill and
generate) to the exit communcation, so there is not need to store it seperately
in RDentry if one wants to do without a second array during the run.

54 2 Data flow analysis
2.2 Intraprocedural analysis

Very busy expressions: types

• interested in: sets of expressions: 2AExp∗

• generation and killing:

killVB , genVB : Blocks∗ → 2AExp∗

• analysis: pair of mappings

VBentry,VBexit : Lab∗ → 2AExp∗

Very busy expr.: kill and generate

core of the intra-block flow specification

killVB([x := a]l) = {a′ ∈ AExp∗ | x ∈ fv(a′)}
killVB([skip]l) = ∅

killVB([b]l) = ∅

genVB([x := a]l) = AExp(a)
genVB([skip]l) = ∅

genVB([b]l) = AExp(b)

A comparison with the kill and generate functions for AE might be interesting.
First of all, in both cases, the functions have the same types, i.e., operate on the
same domains. Of course, one difference is, that now the flow is backwards.
For the blocks without side effects, this does not matter, i.e., the generate
function is identical in both cases (the kill-function as well, of course). For
the assignment, there are obviously differences. Let’s first look at the kill-case.
Literally, the two definitions coincide, but they have a different intuition (back-
ward vs. forward). Here for VB we ask, because we are thinking backwards,
which expressions are very busy at the entry of that block. Of course, also
the killing works backwards: whatever was very busy at the exits of the block,
all expressions that contain x are modified and thus are not very busy at the
entry of the block (one could say, as there is no branching withing one block,
they are not even busy at all), and thus the kill-function removes those. The
reasoning for the AE case is similar, only working forward.

For the generation function, as we are working backwards, the assignment
generates a as very busy at the entry of the block. Unlike for AE, the free oc-
currence of x does not play a role. That’s because the order of the applications
of first kill and then generate

:BEAMERenv: againframe :BEAMERref: frame.AE.killgenerate

2 Data flow analysis
2.2 Intraprocedural analysis 55

Flow equations.: VB=

split into

• intra-block equations, using kill/generate
• inter-block equations, using flow

however: everything works backwards now

Flow equations: VB

VBexit(l) =
{
∅ l ∈ final(S∗)⋂{VBentry(l′) | (l′, l) ∈ flowR(S∗)} otherwise

VBentry(l) = VBexit(l) \ killVB(Bl) ∪ genVB(Bl)

where Bl ∈ blocks(S∗)

Note: Doing a backward analysis, the roles of entries and exits are now reversed.
The kill and generate functions now calculate the entry as function of the exit
point. Analogously, the inter-block flow equations (of the graph) calculate the
exit of a block as function of the entries of others.

Example

a>b

x:=b-a

y:a-b

y:=b-a

x:=a-b

false true

l0

l1

l2

l3

l4

56 2 Data flow analysis
2.2 Intraprocedural analysis

x>0

skip

x:=x+1

true

false

l0

l1

l2

Since the very busy expression analysis works backwards, the illustration show
the reversed control flow graph.

Besides that: The looping example is quite instructive. It illustrates a subtle
point which might not immediately clear from the informal formulation of what
“very busy” means. The example is a bit artificial, and the only expression
occuring at all is x+ 1 in node l2. Now the question is:

Is expression x+1 very busy at the beginning of the program or not?

Assuming that x > 0, there is obviously an infinite loop and the assignment
of l2 will never be executed. Consequently, the expression will not be needed
anyhow. That’s of course naive in that standard data flow analysis does not
try to figure out if a left-branch or a right branch is taken; in the case of the
example, whether the loop body is ignored or not.

On the other hand: it seems that the analysis could make the assumption that
there is actually a path on which the x + 1 is never, ever evaluated. That
seems to indicate that one should intuitively consider the expression x+ 1 not
very busy. If we don’t know how often the loop body is executed (if at all),
and since we cannot exclude that the body is taken infinitely (as in this case),
it seems plausible to say, there’s a chance that x + 1 may not executed and
therefor count it as not very busy.

Plausible as that argument is: it’s wrong and x+ 1 is indeed very busy!
Informally, the reason being that in a way, “infinite paths don’t count” (like the
one cycling infinitely many times through the skip-body). Formally, the fact
comes from fact that we are interest in the largest safe solution and the way
the largest fixpoint it defined (and then they way that the fixpoint iteration,
like the chaotic iteration calculates is).

Later, the same example will be used for live variable analysis. Like the one
here, it’s a backward analysis. Different from very busy expressions, it’s a may

2 Data flow analysis
2.2 Intraprocedural analysis 57

analysis (and consequently it’s about the smallest possible safe solution). Being
a may analysis will make use of ∪. Anyway, the variable x will be counted as
live and the beginning of the program, as there is a possibility that x is used
(in l2) and that possiblity does not involve making an argument about infinite
paths. Unlike the situation of the very busy expressions, this seems intuitively
plausible.

2.2.5 Live variable analysis

Introduction

This analysis focuses of variables again (not on expressions). If we use “dead”
for being not live, a variable is dead intuitively if its value is definitely (“must”)
not used in the future. This is very important information, in that the memory
bound to the variable can be “deallocated”.

That is in particular done at lower levels of the compiler. There, the compiler
attempts to generate code which make “optimal” use of avaible registers (ex-
cept that real optimality is out of reach, so it’s more like the compiler typically
makes a decent effort in making good use of registers (at least on average).
A register currently containing a dead variable can be recycled (to be very
precise: the register can be recycled if it contains only dead variables as in
some cases, a register can hold the content of more than one variable . . .). So
a variable is live if there is a potential use of it in the future (“may”).

Referring to the future use of variables entails that the question for liveness
of variables leads to a backward analysis, similar to the situation of very busy
expressions, which was also backwards.

For the participants of the compiler construction lecture (INF5110). That
lecture covered live variable analysis, as well, namely in a local variant for
elementary blocks of straight-line code. Additionally, a “global” live analysis
was sketched, which correspond to the one here.

When can var’s be “recycled”: Live variable analysis

[x := 2]0; [y := 4]1; [x := 1]2;
(if[y > x]3 then [z := y]4 else [z := y ∗ y]5); [x := z]6

Live variable A variable is live (at the exit of a label) if there exists a path
from the mentioned exit to the use of that variable which does not assign to
the variable (i.e., redefines its value)

58 2 Data flow analysis
2.2 Intraprocedural analysis

Goal therefore for each program point: which variables may be live at the
exit of that point.

• use: register allocation

Live variables are about: when is a variable still “needed”. If not needed, one
can free the space. In some sense and very generally, the question resembles
reaching definition in a superficial sense, at least, in that it’s again about
“variables” not expressions. In both cases we like to connect the assignment
(also called definition of a variabe to its use). The perspective here is different,
though. For RD, the question is: given an assignment, what locations can it
reach. For LV it’s the opposite: given a location, which assignments can have
reached me. This switch in perspective is the difference between forward and
backward analysis.

Unlike the informal definition of very busy expressions, here the word is may.
With the may-word, the intuition is, that making the solution larger is ok,
therefore we are interested in the smallest solution. This is consistent with
the fact of making use of live variable analysis for recycling variables. If we
estimate too many variables as live, we cannot reuse their memory, which
is safe, we only may loose efficiency. Making the opposite approximation,
marking an actually live variable erronously as non-live, may lead to errors
and is therefore unsafe.

Note again at the goal: “backward” corresponds to “we are interested at the
exit”.

Live variables: types

• interested in sets of variables 2Var∗

• generation and killing:

killLV , genLV : Blocks∗ → 2Var∗

• analysis: pair of functions

LVentry, LVexit : Lab∗ → 2Var∗

Live variables: kill and generate

killAE([x := a]l) = {x}
killLV([skip]l) = ∅

killLV([b]l) = ∅

genLV([x := a]l) = fv(a)
genLV([skip]l) = ∅

genLV([b]l) = fv(b)

2 Data flow analysis
2.2 Intraprocedural analysis 59

We need to remember that the calculation is backwards. As for kill: in the
only interesting case of assignment, the question is: given the live variables at
the end, which ones are live at the entry. Certainly, x is no longer live, as it is
not used (forward) before overwritten.

That also explains the generation: all free variables in a, resp. in b are live at
the beginning of a block that mentions the resp. expression. In particular, the
x does not play a role in the generation function for assignments, as we are
working backwards.

Flow equations LV=

split into

• important{intra}-block equations, using kill/generate
• inter-block equations, using flow

however: everything works backwards now

Flow equations LV

LVexit(l) =
{
∅ l ∈ final(S∗)⋃{LVentry(l′) | (l′, l) ∈ flowR(S∗)} otherwise

LVentry(l) = LVexit(l) \ killLV(Bl) ∪ genLV(Bl)

where Bl ∈ blocks(S∗)

The example, why one is this time interested in the smallest solution is the
same program as for the VB: a simple recursive equation (induced by a trivial
while-loop). This time the loop contains a ∪. We can make the solution as
large as possible (but not as small as possible, the empty set is not a solution).
However, the smallest set is the most informative one. That can be guessed
from the words “may be live” already. Also the intended use of freeing/re-using
“non-live” variables makes clear that it’s “larger is less precise”.

Example

(while [x > 1]l0 do [skip]l1); [x := x+ 1]l2

As one can see in the flow equations, especially the case dealing with the
final nodes, variables are considered dead at the end. One may also have the
intuition, the variables (or some) are returned to somewhere, in which case
they are still needed “after” the final node (for being returned) and hence they

60 2 Data flow analysis
2.2 Intraprocedural analysis

are marked live. In the latter initution, it would probably be clearer to have
an explicit return statement (after which the variables are really dead).

For the participants of the compiler construction course (INF5110). The course
presented a local live variable analysis, which concentrated on straight line code.
The code was so-called three-address code and had two types of variables:
normal ones and so-called “temporaries” (temporary variables). The standard
variables were assumed live at the end of the straight-line code. The reason
being that the SLC is code contained inside one basic block. Since the end if
the block is not necessarily the end of the program, the analysis had to assume
conservatively that chances are, that variables may by used by any potentially
following block, and thus they variables were assumed live. Temporaries, on
the other hand, were treated as dead at the end, which was justfied by the fact
that the code never used temporaries from a previous block. That, of course,
depended on the knowledge how this code was actually generated. The general
point is that of course the formulation of the live variable analysis (or others)
must go hand in hand with what is actually going on, i.e., the semantics of
the language and the assumptions about how the program is used (“will the
content of the variables be returned to a caller after the program code or not”,
“might there by a block after the code being analyzed or not, and if so, will it
make use of temporaries resp. variables or not”).

Looping example

x>0

skip

x:=x+1

true

false

l0

l1

l2

2 Data flow analysis
2.3 Theoretical properties and semantics 61

2.3 Theoretical properties and semantics

2.3.1 Semantics

Introduction

So far we have formulated a number of analyses (using flow equations or con-
straints). We also stressed the importance that the analyses are safe (or cor-
rect or sound), meaning that the information given back from the analysis says
something “true” about the program, more precisely about the program’s be-
havior. So far, that is an empty claim as we have not fixed what the behavior
actually is. Doing so may look superfluous, in particular as the while language
we are currently dealing with is so simple that its semantics seems pretty
“obvious” for most. That, however, may no longer be the case when dealing
with more advanced or novel features or non-standard syntax etc. Being clear
about what the semantics is supposed to be also pays off when implementing a
language, after all, the ultimately running program is expecteed to implement
exactly the specified semantics, down to the actual machine code on a particu-
lar platform. Leaving the semantics up-to the implementation or the platform
is not considered a very dignified engineering approach (“the semantics of a
program is what happens if you run it, you’ll see.”).

In this section we will precisely define the semantics of the while-language.
The semantics is defined on a rather high-level, on the level of the abstract
syntax, and the task of the compiler would be to preserve exactly the syntax
through all its phases. The task of the static analyses is to soundly approximate
this semantics. If optimizations and transformations are done, for example
based on some static analyses, it’s the task of the optmization to preserve the
semantics, as well. So the semantics is the yardstick which all further actions
of the compiler are measured against.

The semantics of a programming language can be specified in different styles or
flavors. We make use of operational semantics, a style of semantics described
the steps a program does. In particular, we make use of strucutural operational
semantics (SOS), which refers to the fact that the steps are described making
inductive use of the structure of the program (i.e., it’s abstract syntax).

That’s arguably a straightforward way for fixing the semantics. It basically
descibes the semantics as steps tranforming an abstract syntax tree step by
step and can be seen as an formal description of an interpreter.

There is, however, also not one unique way how such an operational semantics
is defined, even there different flavors and styles exists. Perhaps later, for the
more complex functional languages, the lecture covers some variations.

62 2 Data flow analysis
2.3 Theoretical properties and semantics

Relating programs with analyses

• analyses
– intended as (static) abstraction or overapprox. of real program be-

havior
– so far: without real connection to programs

• soundness of the analysis: safe analysis
• but: behavior or semantics of programs not yet defined
• here: “easiest” semantics: operational
• more precisely: small-step SOS (structural operational semantics)

States, configs, and transitions

fixing some data types

• state σ : State = Var→ Z
• configuration: pair of statement × state or (terminal) just a state

Transitions
〈S, σ〉 → σ́ or 〈S, σ〉 → 〈Ś, σ́〉

Semantics of expressions

[[]]A : AExp→ (State→ Z)
[[]]B : BExp→ (State→ B)

simplifying assumption: no errors

[[x]]Aσ = σ(x)
[[n]]Aσ = N (n)

[[a1 opa a2]]Aσ = [[a1]]Aσ opa [[a2]]Aσ

[[not b]]Bσ = ¬[[b]]Bσ
[[b1 opb b2]]Bσ = [[b1]]Bσ opb [[b2]]Bσ
[[a1 opr a2]]Bσ = [[a1]]Aσ opr [[a2]]Aσ

clearly:
∀x ∈ fv(a). σ1(x) = σ2(x) then [[a]]Aσ1 = [[a]]Aσ2

In the intro, we mentioned that we will do some specific form of semantics,
namely an operational semantics. That’s not 100% true. For dealing with the
control-flow structure of the while language, we will indeed formulate opera-
tional rules to describe the transitions. We must, however, also give meaning

2 Data flow analysis
2.3 Theoretical properties and semantics 63

to expressions a and b. To do that operationally would be possible, but per-
haps an overkill. More straightforward is a inductive definition in the way
given. That style corresponds more to a denotational semantics. It should be
noted that expressions in the while language are side-effect free. So things like
x := 5 * y++ which can be found in for example C-like languages, where
the right-hand side of the assignment is at the same time an expression as well
as having a side effect, are not welcome here. Without such side effects, the
denotation-style semantics for expressions is just the easiest way of specifying
their meaning. That way we can focus on the part that is more interesting for
us, the steps or transitions of the operational semantics.

It would be possible to also specify it meaning of expressions in an opera-
tional, step-wise manner. In this way there would me more transitions explic-
itly mentioned in the semantics (maybe distinguising the transitions between
configurations and “micro-transitions” evaluating the expressions).

For participants of the compiler construction course (INF5110): an opera-
tional semantics for the expressions showed up in some way in the lecture,
when translating expression into three address code. Since there is no recur-
sion and deeply nested expressions in three-address code (which is used in
the definition of [[a]]Aσ), the expression has to be “expanded” into sequences of
non-nested expression together with temporary variables (“temporaries”) to
hold intermediate results of subexpressions. That in a way corresponds to an
explicit, step-by-step execution of a compound expression. It’s not the same
as an operational semantics, as it does not specify “transitions”, but it’s “code
generation”, but each single three-address-code instruction would correspond
to one transition.

SOS

〈[x := a]l, σ〉 → σ[x 7→[[a]]Aσ] Ass 〈[skip]l, σ〉 → σ skip

〈S1, σ〉 → 〈Ś1, σ́〉
Seq1

〈S1;S2, σ〉 → 〈Ś1;S2, σ́〉

〈S1, σ〉 → σ́
Seq2

〈S1;S2, σ〉 → 〈S2, σ́〉

[[b]]Bσ = >
If1

〈if[b]l thenS1 elseS2, σ〉 → 〈S1, σ〉

[[b]]Bσ = >
While1

〈while[b]l doS, σ〉 → 〈S; while[b]l doS, σ〉

[[b]]Bσ = ⊥
While2

〈while[b]l doS, σ〉 → σ

64 2 Data flow analysis
2.3 Theoretical properties and semantics

Derivation sequences

• derivation sequence: “completed” execution:
– finite sequence: 〈S1, σ1〉, . . . , 〈Sn, σn〉, σn+1
– infinite sequence: 〈S1, σ1〉, . . . , 〈Si, σi〉, . . .

• note: labels do not influence the semantics
• CFG for the “rest” of the program only gets “smaller” when running:

Lemma 2.3.1.

1. 〈S, σ〉 → σ′, then final(S) = {init(S)}
2. Assume 〈S, σ〉 → 〈Ś, σ́〉, then

a) final(S) ⊇ {final(Ś)}
b) flow(S) ⊇ {flow(Ś)}
c) blocks(S) ⊇ blocks(Ś); if S is label consistent, then so is Ś

Correctness of live analysis

• LV as example
• given as constraint system (not as equational system)

LV constraint system

LVexit(l) ⊇
{
∅ l ∈ final(S∗)⋃{LVentry(l′) | (l′, l) ∈ flowR(S∗)} otherwise

LVentry(l) ⊇ LVexit(l) \ killLV(Bl) ∪ genLV(Bl)

liveentry, liveexit : Lab∗ → 2Var∗

“live solves constraint system LV⊆(S)”

live |= LV⊆(S)

(analogously for equations LV=(S))

Equational vs. constraint analysis

Lemma 2.3.2. 1. If live |= LV=, then live |= LV⊆
2. The least solutions of live |= LV= and live |= LV⊆ coincide.

2 Data flow analysis
2.3 Theoretical properties and semantics 65

2.3.2 Intermezzo: Lattices

Intermezzo: orders, lattices. etc.

as a reminder:

• partial order (L,v)
• upper bound l of Y ⊆ L:
• least upper bound (lub): ⊔

Y (or join)
• dually: lower bounds and greatest lower bounds:

d
Y (or meet

• complete lattice L = (L,v) = (L,v,
d
,
⊔
,⊥,>): a partially ordered

set where meets and joins exist for all subsets, furthermore > =
d
∅ and

⊥ = ⊔ ∅.
Here we are working with a specific form of lattice, called complete lattice. It’s a
very nicely behaved lattice, which makes it useful for the monotone framework.
The important condition, which makes the lattice actually complete is rather
hidden in the above definition. It’s that meets and joins exists for all subsets.
If we drop the “completeness”, then one would still requires joins or “least
upper bounds” a t b and or “greatest lower bounds” a u b to exists. The
difference here is we speak about binary such operations. To be complete,
it’s also required the meets and joins exists also for infinite sets. A priori a
lattice is not required to be finite (and many interesting ones are not). For
those situations, the existance of binary meets and joins implies the existance
of finite meets and joins (those can always be expressed by a number of binary
ones). What is not guaranteed it the existance of arbitrary meets and joins,
including infinite ones. But that’s required for a lattice to be complete.

There are also other forms of lattices, for instance, if one only needs joints,
but not meets, one can get away with a semi-lattice, and there are many more
variations. For the lecture, we generally simply assume complete lattices and
the montone framework is happy. In particular, if we are dealing with finite
lattices, which is an important case, we don’t need to consider infinite sets,
and “standard” lattices with binary meets and joins (and least and largest
elements) are complete already.

Fixpoints

given complete lattice L and monotone f : L→ L.

• fixpoint: f(l) = l

Fix(f) = {l | f(l) = l}

• f reductive at l, l is a pre-fixpoint of f : f(l) v l:

66 2 Data flow analysis
2.3 Theoretical properties and semantics

Red(f) = {l | f(l) v l}

• f extensive at l, l is a post-fixpoint of f : f(l) w l:

Ext(f) = {l | f(l) w l}

Define “lfp” / “gfp”

lfp(f) ,
l

Fix(f) and gfp(f) ,
⊔

Fix(f)

The last display just gives the names to the two elements of the lattice de-
fined by the corresponding right-hand sides. We know tha those elements are
existing thanks to the fact that L is a complete lattice (and it’s very easy to
see that meets and joins are unique, that means the lfp(f) and gfpf are well-
defined elements of the lattice. The chosen names somehow suggest that the
two thusly defined elements are the least fixpoint, resp. the greatest fixpoint
of the monotone function f .

But, so far lfp and gfp is just a suggestive choice of name. It requires an
separate argument that the elements are actually fixpoints, and the least, resp.
the largest fixpoint as that as well. Finally, if we take it really serious, an
argument should be found that allows to speaking of the least fixpoint. If
there is more than one least fixpoint, one should avoid talking about “the least
fixpoint” (same for the largest fixpoint). The argument for uniquess of least
fixpoints (or for greatest fixpoint) is very simple though, similar to arguing for
the uniqueness of “the least upper bound” etc.

If one would carry out the argument, i.e., the proof, that all fits together
in the sense that the lfp(f) and gfp(f) defined above are actually the least
fixpoint and the largest fixpoint, and if one would carefully keep track of what
is actually needed to make the proof go through step by step, then one would
see that every single condition for being a complete lattice is needed (plus
the fact that f is monotone). If one removes one condition, the argument
fails! Conversely that means the following: We are interested in uniquely
“best approximations” (least or greatest fixpoints depending in whether it’s a
may or a must analysis),

and, having a monotone f , a complete lattices is exactly what
guarantees that those fixpoints exists. Exactly that, nothing
less and nothing more, If your framework has monotone functions
and is based on a complete lattice, it works. If not, it does not work,
very simple.

2 Data flow analysis
2.3 Theoretical properties and semantics 67

That explains the importance of lattices and monotone function. Also, I would
guess that historically, the need to assure existance of fixpoints has led Tarski
(the mathematician whose concepts we are currently covering) exactly to the
definition of lattice, not the other way around (“oh, someone defined some
lattice, let’s see what I can find out about them, perhaps I could define some
lfp(f) like above and see if I could prove something iteresting about it, perhaps
it’s a fixpoint?”. But as said, that is speculation.

Having stressed the importance of complete lattices, for fairness sake it should
be said that there’s also a place for analyses which fail to meet those conditions.
In that case, one might not have a (unique) best solution. Perhaps even
worse (and related to that), one might need combinatorial techniques (like
backtracking), i.e., checking all possible solutions to find an acceptable one. If
that happens, the cost of the analysis may explode. To avoid that one may
give up to look for a “best solution” and settle for a “good enough” one and
heuristics that hopefully find an acceptable one efficiently, or even throw the
towel and give up “soundness”. Anyway and fortunately, plenty of important
analyses fit well into the monotone framework with its lattices, its unique best
solution and —perhaps best of all– its efficient solving techniques. Therefore
this lecture will cover only those here. Those are called classical data flow
analyses.

Tarski’s theorem

Core Perhaps core insight of the whole lattice/fixpoint business: not only
does the

d
of all pre-fixpoints uniquely exist (that’s what the lattice is for), but

—and that’s the trick— it’s a pre-fixpoint itself (ultimately due to montonicity
of f).

Theorem 2.3.3. L: complete lattice, f : L→ L monotone.

lfp(f) ,
d

Red(f) ∈ Fix(f)
gfp(f) ,

⊔ Ext(f) ∈ Fix(f)
(2.6)

• Note: lfp (despite the name) is defined as glb of all pre-fixpoints
• The theorem (more or less directly) implies lfp is the least fixpoint

Fixpoint iteration

• often: iterate, approximate least fixed point from below (fn(⊥))n:

⊥ v f(⊥) v f 2(⊥) v . . .

• not assured that we “reach” the fixpoint (“within” ω)

68 2 Data flow analysis
2.3 Theoretical properties and semantics

⊥ v fn(⊥) v ⊔
n f

n(⊥) v lfp(f)
gfp(f) v

d
n f

n(>) v fn(>) v (>)

• additional requirement: continuity on f for all ascending chains (ln)n

f(
⊔
n

(ln)) =
⊔

(f(ln))

• ascending chain condition (“stabilization”): fn(⊥) = fn+1(⊥), i.e., lfp(f) =
fn(⊥)

• descending chain condition: dually

Basic preservation results

Lemma 2.3.4 (“Smaller” graph→ less constraints). Assume live |= LV⊆(S1).
If flow(S1) ⊇ flow(S2) and blocks(S1) ⊇ blocks(S2), then live |= LV⊆(S2).

Corollary 2.3.5 (“subject reduction”). If live |= LV⊆(S) and 〈S, σ〉 → 〈Ś, σ́〉,
then live |= LV⊆(Ś)

Lemma 2.3.6 (Flow). Assume live |= LV⊆(S). If l →flow l′, then liveexit(l) ⊇
liveentry(l′).

The three mentioned results are actually pretty straightforward, resp. express
properties of the live variable analysis which should be (after some reflec-
tion) pretty obvious. Analgous results would hold for other data flow analysis.
Lemma 2.3.4 compares the analyses results for two programs S1 and S2, where
S2 has a “smaller” control-flow graph (less edges and/or less blocks). Since the
control flow graph directly corresponds to sets of constraints, removing parts
of the graph means removing constraints. That means, more solutions are
possible, which is expressed by the lemma (live |= LV⊆(S) means that live (an
assignment of liveness information to all variables of the constraint system)
satisfies the constraint system of the program S.

It’s probably obvious: the variables of the type system are (of course) not the
program variables of the live variable analysis. The constraint variables are
the (entry and exit points of the) nodes of the graph (which in turn correspond
to the labels in the labelled abstract syntax).

The Corollary 2.3.5 is a direct consequence of that. In general, that’s what
the term “corollary” means: an immediate interesting follow-up of a preceding
lemma or theorem etc.

However, the result is not without subtelty. It has to do with the step 〈S, σ〉 →
〈Ś, σ́〉, resp, what this step does to the (labelled) program S. The interesting
case for that is step covered by one of the rules dealing with the while-loop,
namely While1. It’s interesting insofar as that it duplicates the body of the

2 Data flow analysis
2.3 Theoretical properties and semantics 69

loop. That leads to a program what is no longer uniquely labelled (even
if S had been)! It’s however still label consistent.

The last lemma is a direct consequence of the construction (backward may
analysis).

These lemmas as such are not interesting in themselves.

Correctness relation

• basic intuitition: only live variables influence the program
• proof by induction
⇒

Correctness relation on states: Given V = set of variables:

σ1 ∼V σ2 iff ∀x ∈ V.σ1(x) = σ2(x) (2.7)

〈S, σ1〉 〈S ′, σ′1〉 . . . 〈S ′′, σ′′1〉 σ′′′1

〈S, σ2〉 〈S ′, σ′2〉 . . . 〈S ′′, σ′′2〉 σ′′′2

∼V ∼V ′ ∼V ′′ ∼X(l)

Notation: N(l) = liveentry(l), X(l) = liveexit(l)

In the definition of∼V above, V is an arbitrary set of “variables”. The intention
(in the overall argument) will be, that the V ’s are those variable that are live
(resp. variables that the analysis has marked as live). Of course, the set of
variables being determined as live changes during execution.

In the figure above, the “control-part” of the component, i.e., the code S, S ′
etc., are identical step by step for both versions. Both program execute the
very same steps.

As a side remark; while language is deterministic, meaning a program code
S and a state σ determines the successor configuration (if we are not yet at
the final configuration). Note also: the intra-block (and backward) definition
of liveness directly gives that for an assignment x := a, the free variables in
a are live right in front of the assignment. Likewise, variables in a boolean
condition b are live right in front of a conditinal or loop, to which b belongs.
Those variables therefore are contained in the V-set directly before a step
for the two variants of the system. Consequently, both system do exactly the
same next step. And then the next step is the same again, and then the next

70 2 Data flow analysis
2.3 Theoretical properties and semantics

. . . . I.e., by induction both systems behave the same, which is exactly what
we want to establish (“dead variables don’t matter”).

Correctness (1)

Lemma 2.3.7 (Preservation inter-block flow). Assume live |= LV⊆. If σ1 ∼X(l)
σ2 and l→flow l

′, then σ1 ∼N(l′) σ2.

Correctness

Theorem 2.3.8 (Correctness). Assume live |= LV⊆(S).

• If 〈S, σ1〉 → 〈Ś, σ́1〉 and σ1 ∼N(init(S)) σ2, then there exists σ́2 s.t. 〈S, σ2〉 →
〈Ś, σ́2〉 and σ́1 ∼N(init(Ś)) σ́2.

• If 〈S, σ1〉 → σ́1 and σ1 ∼N(init(S)) σ2, then there exists σ́2 s.t. 〈S, σ2〉 → σ́2
and σ́1 ∼X(init(S)) σ́2.

〈S, σ1〉 〈Ś, σ́1〉

〈S, σ2〉 〈Ś, σ́2〉

∼N(init(S)) ∼N(init(Ś))

〈S, σ1〉 σ́1

〈S, σ2〉 σ́2

∼N(init(S)) ∼X(init(S))

The picture are drawn in a “specific” manner to capture the formulation of
the theorem. In particular see the use of “solid” arrows and lines vs. “dotted”
ones. That a diagrammatic way to indicate the “for all such . . . ” (solid)
and “. . . there exists some . . . ” (dotted). This notation is rather standard,
and allows to express such properties in a short diagrammatic but still precise
manner.

Correctness (many steps)

Assume live |= LV⊆(S)

• If 〈S, σ1〉 →∗ 〈Ś, σ́1〉 and σ1 ∼N(init(S)) σ2, then there exists σ́2 s.t. 〈S, σ2〉 →∗

〈Ś, σ́2〉 and σ́1 ∼N(init(Ś)) σ́2.
• If 〈S, σ1〉 →∗ σ́1 and σ1 ∼N(init(S)) σ2, then there exists σ́2 s.t. 〈S, σ2〉 →∗
σ́2 and σ́1 ∼X(l) σ́2 for some l ∈ final(S).

2 Data flow analysis
2.4 Monotone frameworks 71

2.4 Monotone frameworks

We have seen 4 different classical analyses, which all shared some similarities.
In this section, those analyses will be systematically put into a larger context,
which is known as monotone framework. As unifying principle, this was first
formulated by Kildall [5] and constitutes in a way the common orthodox and
completely standardized understanding of what classical data flow analysis
is.

Besides that it capture many known analyses, it’s also a “recipe” for designing
other data flow analyses, starting from the program given in the form of a
control flow graph. Indeed, the 4 analyses we have seen are only (important)
representatives of the 4 classes of analyses that can be formulated as monotone
framework. The analysis can be forward or backward, and it can be “may” or
“must”. That’s about it, and that gives 4 different classes.

Besides that, the monotone framework concept lays down exactly what needs
to be assumed about the structure of the information that is given back from
the analysis. All four analyses somehow dealt with sets, like “sets of variables
such that this and that” or “sets of expressions such that this or that”. Dealing
with sets reflected the fact that, being static, the analysis does not exactly
knows what the program does and has to approximate. Dealing with sets of
pieces of flow information also allows to enlarge or shrink the information via
taking the subset or the superset. Which direction is safe in a given analysis
depends on whether on whether it’s a “may” or a “must” analysis. At any rate,
sets and the subset relations is a special case of the notion of the more general
notion of lattice, which is exactly the notion needed to make the monotone
framework work.

Even if the monotone framework is based on the general notion of lattice
for good reason, the special case of sets und subsets is an important one.
Not only is it conceptually simple, it also allows efficient implementations.
Finite sets over a given domain may be implemented as bit vectors and union
and intersection, two crucial operations for “may” resp. “must” analyses can
efficiently be implement via logical bitwise “or” resp. “and” on bitvectors.

Monotone framework: general pattern

Analysis◦(l) =
{
ι if l ∈ E⊔{Analysis•(l′) | (l′, l) ∈ F} otherwise

Analysis•(l) = fl(Analysis◦(l))

(2.8)

• ⊔: either ⋃ or ⋂
• F : either flow(S∗) or flowR(S∗).
• E: either {init(S∗)} or final(S∗)

72 2 Data flow analysis
2.4 Monotone frameworks

• ι: either the initial or final information
• fl: transfer function for [B]l ∈ blocks(S∗).

The definition is “generic” as it leaves open the alternatives “may” vs. “must”
as well as “forward” vs. “backard”. Also the domain flow information of in-
terest is not fixed, neither is the special case of what the information at initial
node resp. the final node is supposed to be. As we have discussed especially in
connection with live variable analysis, this has to be decided an a case-by-case
consideration, depending one specific conditions of the intended analysis and
the language. One final ingredient is the transfer function. We have encoun-
tered that implicitly for the intra-block data flow. It’s only that we did not
explicitly called it transfer function, instead the concept was formulated mak-
ing use of kill and generate function. It turns out that many transfer functions
can be formulated as we did via kill and transfer function (as many analysis
domain are sets of information of interest), but not all. The general monotone
framework simply requires a function that transform flow information on one
end of a basic block to flow information at the other end. For a forward analy-
sis, the flow information at the exit of a basic block is expressed as a function
on the entry of the block, and for backward information, it’s the other way
around.

Monotone frameworks

direction of flow:

• forward analysis:
– F = flow(S∗)
– Analysis◦ for entry and Analysis• for exits
– assumption: isolated entries

• backward analysis: dually
– F = flowR(S∗)
– Analysis◦ for exit and Analysis• for entry
– assumption: isolated exits

sort of solution

• may analysis
– properties for some path
– smallest solution

• must analysis
– properties of /all paths
– greatest solution

2 Data flow analysis
2.4 Monotone frameworks 73

Into which of the four categories a concrete analysis falls need to be thought
through on a case-by-basis of course. However, it may not be a clean cut
as it seems, resp. it may also be a matter of perspective. For example, live
variable analysis. That one is a may (and a backward) analysis. We can
switch perspective from concentrating on live variables to “dead” variables
(those wich are not live), still with the same purpose of recylcing memory of
variables with are not live = dead. If the data flow analysis streams sets of
deads variables throught its equations instead of live variables, the analysis
will be a must analysis instead. After all, a variable is dead if it’s not used in
the future on all paths (which is the dual of being live, which refers to usage on
some path). Consequently, one would be interested in the largest safe solution
of dead variables.

In a way, both are the “same” analysis, or rather, dual to each other but
ultimately equivalent. It’s only that convetionally, it’s referred to as “live
variable analysis” and not as the more morbid dual one.

This switching to the dual perspective is easily possible if we are dealing with
finite domains in the analysis, as we often do. Like in live variable analysis,
there are only finitely many sets of variables.

Analysis◦(l) = ιlE t
⊔{Analysis•(l′) | (l′, l) ∈ F}

where ιlE =
{

ι if l ∈ E
⊥ if l /∈ E

Analysis•(l) = fl(Analysis◦(l))

(2.9)

where l t ⊥ = l

Explanation

Let’s compare it to equation (2.8), where we did it for isolated entries: First
remember that E (“extremal”) is an initial block (or a final one). Remember
also that isolated entries does not mean that the is only one intial/final block,
only that there is no loop-back. Let’s consider the forward case. In this case,
equation (2.8) makes sense. The distinguishing case is the one for inter-block
flow, which says something for the entry of a block (in the forward case). And
there are exactly two separate cases: if l refers to the initial block, then there
is only the initial information ι. Note that this does not mean that there is
only one initial label. Otherwise, if it is a non-initial label, then the intial
flow is not mentioned in the equation/constraint. Note that it seems possible,
that a non-initial block has no inflowing arc. Probably for the while-language
that is not the case, however, the definitions seem to allow it. In this case
the ⊔ as ⋃ gives the empty set, which probably makes sense. Obviously, (2.8)
makes no sense without isolated entries, because for initial labels, the equations
overlooks the flowing-back information. The new equation (2.9) repairs that in

74 2 Data flow analysis
2.4 Monotone frameworks

that it adds to the initial labels also the combined information from the posts
of the connected nodes. However, it must of course not inject ι into non-initial
nodes, hence the definition of ιlE.}

Basic definitions: property space

• property space L, often complete lattice
• combination operator: ⊔ : 2L → L, t: binary case
• ⊥ = ⊔ ∅
• often: ascending chain condition (stabilization)

The property space (here called L) captures the “information of interest” (sets
of variables . . .). Technically, it needs to be some form of lattice (see the
corresponding section later). In good approximation, the lattices and its laws
resemble closely the situation with sets of information (with ∪, ∩, ⊆, ⊇, ∅
. . .). Indeed, the power set of some set is a special case of a lattice (and an
important one in the context of the lecture).

Transfer functions

fl : L→ L

with l ∈ Lab∗
• associated with the blocks
• requirement: monotone
• F : monotone functions over L:

– containing all transfer functions
– containing identity
– closed under composition

The transfer functions, as defined above, are attached to the elementary blocks
(which here contain one single statement or expression, but in general may con-
tain staight-line code). In other accounts, the control flow graphs and/or the
transfer functions may be differently represented, without changing anything
relevant. For instance, here, the nodes of the CFG contain assigmments and
expression (i.e., relevant pieces of abstract syntax). Also the transfer functions
are attached to the nodes. One can see it like the transfer function is the
semantics of the corresponding piece of syntax. Not the “real” semantics, but
on the chosen abstraction level of the analysis, i.e., on the level of the property
space L.

Some authors prefer to attach the pieces of syntax and/or the transfer functions
to edges of a control-flow graph (which therefore is of a slighty different format
than the one we operate with). But it’s only a different reprentation of the
same principles.

2 Data flow analysis
2.4 Monotone frameworks 75

Summary

• complete lattice L, ascending chain condition
• F monotone functions, closed as stated
• distributive framework

f(l1 t l2) = f(l1) t f(l2)

Instead of the above condition, one might require

f(l1 t l2) v f(l1) t f(l2) .

This weaker condition is enough as the other way around f(l1 t l2) w f(l1) t
f(l2) follows by monotonicity of f and the fact that t is the least upper
bound.

The 4 classical examples

• for a label consistent program S∗, all are instances of a monotone, dis-
tributive, framework:

• conditions:
– lattice of properties: immediate (subset/superset)
– ascending chain condition: finite set of syntactic entities
– closure conditions on F

∗ monotone
∗ closure under identity and composition

– distributivity: assured by using the kill- and generate-formulation

Overview over the 4 examples

avail. epxr. reach. def’s very busy expr. live var’s
L 2AExp∗ 2Var∗×Lab?

∗ 2AExp∗ 2Var∗

v ⊇ ⊆ ⊇ ⊆⊔ ⋂ ⋃ ⋂ ⋃
⊥ AExp∗ ∅ AExp∗ ∅
ι ∅ {(x, ?) | x ∈ fv(S∗)} ∅ ∅
E {init(S∗)} {init(S∗)} final(S∗) final(S∗)
F flow(S∗) flow(S∗) flowR(S∗) flowR(S∗)
F {f : L→ L | ∃lk, lg. f(l) = (l \ lk) ∪ lg}
fl fl(l) = (l \ kill([B]l) ∪ gen([B]l)) where [B]l ∈ blocks(S∗)

76 2 Data flow analysis
2.5 Equation solving

2.5 Equation solving

Solving the analyses

• given: set of equations (or constraints) over finite sets of variables
• domain of variables: complete lattices + ascending chain condition
• 2 solutions for the monotone frameworks

– MFP: “maximal fix point”
– MOP: “meet over all paths”

Remarks Finally, we come to to how to solve the equations. We have seen two
glimpses to the problem. One was at the introduction, the chaotic iteration, the
other one was the “theory” related to the fixpoints. We will shortly revisit the
chaotic iteration. What was lacking there was the concrete (=deterministic)
realization.

MFP

• terminology: historically “MFP” stands for maximal fix point (not mini-
mal)

• iterative worklist algorithm:
– central data structure: worklist
– list (or container/set) of pairs

• related to chaotic iteration

Chaotic iteration

Input : equat ions f o r reach ing d e f s
f o r the g iven program

Output : l e a s t s o l u t i o n : ~RD = (RD1, . . . ,RD12)
−−

I n i t i a l i z a t i o n :
RD1 := ∅; . . . ; RD12 := ∅

I t e r a t i o n :
whi l e RDj 6= Fj(RD1, . . . ,RD12) f o r some j
do

RDj := Fj(RD1, . . . ,RD12)

2 Data flow analysis
2.5 Equation solving 77

Worklist algorithms

• fixpoint iteration algorithm
• general kind of algorithms, for DFA, CFA, . . .
• same for equational and /constraint systems
• “specialization” i.e., determinization of chaotic iteration
⇒ worklist: central data structure, “container” containing “the work still

to be done”
• for more details (different traversal strategies): see Chap. 6 from [8]

WL-algo for DFA

• WL-algo for monotone frameworks
⇒ input: instance of monotone framework
• two central data structures

– worklist: /flow-edges yet to be (re-)considered:
1. removed when effect of transfer function has been taken care of
2. (re-)added, when point 1 endangers satisfaction of (in-)equations

– array to store the “current state” of Analysis◦
• one central control structure (after initialization): loop until worklist

empty

Remember that the result of the analysis is a mapping from the entry and the
exit points for each block. Here, only the entry blocks are stored. An array is
of course a good representation of a finite function.

Why do we need only the ”entry” of the blocks (assuming forward)? In the
chaotic iteration we clearly see pre- and post-states. First we have to remember
the chaotic iteration. There, an RDi depends via F on all RDj. Of course,
in reality that’s not the case, and moreover, we should distinguish between
entry and exit points. For the exit points, of course, they only depend on the
entry-point and nothing else. The worklist algorithm actually considers only
the relation from the post--condition to the predondition, more precisely one
pre-condition. That means, that only the inter-flow is actually checked. So, in
some sense, the post-conditions are represented, but only implicitely in that
they are calculated on the fly from the given pre-condition, when needed. That
can be seen also in step 3.

78 2 Data flow analysis
2.5 Equation solving

Code

ML Code

l e t rec s o l v e (wl1 : edge l i s t) : un i t =
match wl1 with
| [] −> () (∗ wl done ∗)
| (l , l ') : : wl ' −>

l e t ana pre : var l i s t = lookx (ana , l) (∗ ex t ra c t `` s t a t e s ∗)
and ana post : var l i s t = lookx (ana , l ')
in l e t ana ex i tp r e : var l i s t = f t r a n s (ana pre , l)
in
i f not (subset (ana ex i tpre , ana post))
then

(ente r (ana , l ' , union (ana post , ana ex i tp r e)) ;
l e t (new edges : edge l i s t) =

(l e t (preds : node l i s t) = Flow . Graph . pred (l ')
in L i s t .map (fun n −> (l ' , n)) preds)

in s o l v e (new edges @ wl ')
)

e l s e (∗ Nothing to do here . ∗)
(s o l v e (wl '))

in
s o l v e w l i n i t ;
fun (x : node) −> lookx (ana , x)

; ;

MFP: properties

Lemma 2.5.1. The algo

• terminates and
• calculates the least solution

Proof. • termination: ascending chain condition & loop is enlarging
• least FP:

– invariant: array always below Analysis◦
– at loop exit: array “solves” (in-)equations

2 Data flow analysis
2.6 Interprocedural analysis 79

Time complexity

• estimation of upper bound of number basic steps
– at most b different labels in E
– at most e ≥ b pairs in the flow F
– height of the lattice: at most h
– non-loop steps: O(b+ e)
– loop: at most h times addition to the WL

⇒

O(e · h) (2.10)

or ≤ O(b2h)

2.6 Interprocedural analysis

2.6.1 Introduction

Adding procedures

• so far: very simplified language:
– minimalistic imperative language
– reading and writing to variables plus
– simple controlflow, given as flow graph

• now: procedures: interprocedural analysis
• complications:

– calls/return (control flow)
– parameter passing (call-by-value vs. call-by-reference)
– scopes
– potential aliasing (with call-by-reference)
– higher-order functions/procedures

• here: top-level procedures, mutual recursion, call-by-value parameter +
call-by-result

Syntax

• beginD∗ S∗ end

D ::= proc p(valx, res y)
ln
isS

lx
end | D D

• procedure names p

80 2 Data flow analysis
2.6 Interprocedural analysis

• statements

S ::= . . . [call p(a, z)]lclr
• note: call statement with 2 labels
• statically scoped language, CBV parameter passing (1st parameter), and

CBN for second
• mutual recursion possible
• assumption: unique labelling, only declared procedures are called, all

procedures have different names.

Example: Fibonacci

2.6.2 Semantics

begin proc fib(val z, u, res v) is1

if [z < 3]2
then [v := u+ 1]3
else [call fib(z − 1, u, v)]45;

[call fib(z − 2, v, v)]67
end8;
[call fib(x, 0, y)]910

end

Explanation Next comes the adaptation of the definition of the flow graph.
To do so, we need to adapt and extend the definitions of flow, block, etc. The
new part deals, obviously, with the procedures. The basic trick is that we
introduce new kinds of edges to deal with the procedures. The definition/p-
resentation proceeds (in the slides) in two steps, first the call sites, afterwards
the procedures themselves.

Block, labels, etc.

init([call p(a, z)]lclr) = lc
final([call p(a, z)]lclr) = {lr}

blocks([call p(a, z)]lclr) = {[call p(a, z)]lclr}
labels([call p(a, z)]lclr) = {lc, lr}

flow([call p(a, z)]lclr) = {(lc; ln), (lx; lr)}

where proc p(valx, res y) isln S endlx is in D∗.

• two new kinds of flows (written slightly different(!)): calling and returning
• static dispatch only

2 Data flow analysis
2.6 Interprocedural analysis 81

For procedure declaration

init(p) = ln
final(p) = {lx}

blocks(p) = {isln , endlx} ∪ blocks(S)
labels(p) = {ln, lx} ∪ labels(S)

flow(p) = {(ln, init(S))} ∪ flow(S) ∪ {(l, lx) | l ∈ final(S)}

“Standard” flow of complete program

not yet interprocedural flow (IF)

init∗ = init(S∗)
final∗ = final(S∗)

blocks∗ = ⋃{blocks(p) | proc p(valx, res y) isln S endlx ∈ D∗}
∪blocks(S∗)

labels∗ = ⋃{labels(p) | proc p(valx, res y) isln S endlx ∈ D∗}
∪labels(S∗)

flow∗ = ⋃{flow(p) | proc p(valx, res y) isln S endlx ∈ D∗}
∪flow(S∗)

side remark: S∗: notation for complete program “of interest”

New kind of edges: Interprocedural flow (IF)

• inter-procedural: from call-site to procedure, and back: (lc; ln) and (lx; lr).
• more precise (= better) capture of flow
• abbreviation: IF for inter-flow∗ or inter-flowR

∗

IF

inter -flow∗ = {(lc, ln, lx, lr) | P∗ contains [call p(a, z)]lclr and
proc(valx, res y) isln S endlx

}

82 2 Data flow analysis
2.6 Interprocedural analysis

Example: fibonacci flow

Semantics: stores, locations,. . .

• not only new syntax
• new semantical concept: local data!

– different “incarnations” of a variable ⇒ locations
– remember: σ ∈ State = Var∗ → Z

Representation of “memory”

ξ ∈ Loc locations
ρ ∈ Env = Var∗ → Loc environment
ς ∈ Store = Loc→fin Z store

• σ = ς ◦ ρ : total ⇒ ran(ρ) ⊆ dom(ς)
• top-level environment: ρ∗: all var’s are mapped to unique locations (no

aliasing !!!!)

Explanations →fin represents finite partial functions.

SOS steps

• steps relative to environment ρ

2 Data flow analysis
2.6 Interprocedural analysis 83

ρ `∗ 〈S, ς〉 → 〈Ś, ς́〉

or

ρ `∗ 〈S, ς〉 → ς́

• old rules needs to be adapted
• “global” environment ρ∗

Call-rule

ξ1, ξ2 /∈ dom(ς) v ∈ Z

proc p(valx, res y) isln S endlx ∈ D∗
ς́ = ς[ξ1 7→[[a]]Aς◦ρ][ξ2 7→ v]

Call
ρ `∗ 〈[call p(a, z)]lclr , ς〉 → 〈bind ρ∗[x 7→ ξ1][y 7→ ξ2] inS then z := y, ς́〉

Bind-construct

ρ́ `∗ 〈S, ς〉 → 〈Ś, ς́〉
Bind1

ρ `∗ 〈bind ρ́ inS then z := y, ς〉 → 〈bind ρ́ in Ś then z := y, ς́〉

ρ́ `∗ 〈S, ς〉 → ς́
Bind2

ρ `∗ 〈bind ρ́ inS then z := y, ς〉 → ς́[ρ(z) 7→ ς́(ρ́(y))]

• bind-syntax: “runtime syntax”
⇒ formulation of correctness must be adapted, too (Chap. 3)1

2.6.3 Analysis

Transfer function: Naive formulation

• first attempt
• assumptions:

– for each proc. call: 2 transfer functions: flc (call) and flr (return)
1Not covered in the lecture.

84 2 Data flow analysis
2.6 Interprocedural analysis

– for each proc. definition: 2 transfer functions: fln (enter) and flx
(exit)

• given: mon. framework (L,F , F, E, ι, f)

Naive

• treat IF edges (lc; ln) and (lx; lr) as ordinary flow edges (l1, l2)
• ignore parameter passing: transfer functions for proc. calls and proc

definitions are identity

Equation system (“naive” version”)

A•(l) = fl(A◦(l))
A◦(l) = ⊔{A•(l′) | (l′, l) ∈ F or (l′; l) ∈ F} t ιlE

with

ιlE =
{
ι if l ∈ E
⊥ if l /∈ E

• analysis: safe
• unnecessarily imprecise, too abstract

The equational system here is / without/ the assumption of isolated entries/ex-
its. That corresponds to page 64 in the book.

2.6.4 Paths

Paths

• remember: “MFP”
• historically: MOP stands for meet over all paths
• here: dually mosty joins
• 2 “versions” of a path:

– path to entry of a block: blocks traversed from the “extremal block”
of the program, but not including it

– path to exit of a block

Paths
path◦(l) = {[l1, . . . ln−1] | li →flow li+1 ∧ ln = l ∧ l1 ∈ E}
path•(l) = {[l1, . . . ln] | li →flow li+1 ∧ ln = l ∧ l1 ∈ E}

• transfer function for paths ~l

f~l = fln ◦ . . . fl1 ◦ id

2 Data flow analysis
2.6 Interprocedural analysis 85

Meet over all paths

• paths:
– forward: paths from init block to entry of a block
– backwards: paths from exits of a block to a final block

• two versions for the MOP solution (for given l):
– up-to but not including l
– up-to including l

MOP
MOP◦(l) = ⊔{f~l(ι) | ~l ∈ path◦(l)}
MOP•(l) = ⊔{f~l(ι) | ~l ∈ path•(l)}

MOP vs. MFP

• MOP: can be undecidable
– MFP approximates MOP (“MFP w MOP”)

Lemma 2.6.1.

MFP◦ w MOP◦ and MFP• w MOP• (2.11)

In case of a distributive framework

MFP◦ = MOP◦ and MFP• = MOP• (2.12)

If the transfer function is given by kill and generate as shown, the analysis is
distributive.

MVP

• take calls and returns (IF) serious
• restrict attention to valid (“possible”) paths
⇒ capture the nesting structure
• from MOP to MVP: “meet over all valid paths”
• complete path:

– appropriate call-nesting
– all calls are answered

86 2 Data flow analysis
2.6 Interprocedural analysis

Complete paths

• given P∗ = beginD∗ S∗ end
• CP l1,l2 : complete paths from l1 to l2
• generated by the following productions (l’s are the terminals) (we assume

forward analysis here)
• basically a context-free grammar

CP l,l −→ l

(l1, l2) ∈ F

CP l1,l3 −→ l1,CP l2,l3

(lc, ln, lx, lr) ∈ IF

CP lc,l −→ lc,CP ln,lx ,CP lr,l

The notion of complete path is rather straightforward. It informally says that
each call is answered by one corresponding return, and also that each return is
matched by one corresponding call. It directly corresponds to the prototypical
context-free parenthetic languages, except that we have an arbitrary number
of different “parentheses” namely the different calls. The calls are not being
identified by the name of the function being called, but by the call-sites and
the identity of the function being called, more precisely by the two labels at
the call site plus the two labels of the entry and the exit of the procedure.
That is visible in the third rule.

The definition is given in a rule-like manner. They are not really like derivation
rule, though. It’s more like a family of grammar productions, namely for each
label (first rule), for pairs of labels (second rule), resp. quadupel of labels
(last rule). As the premises of the last two rules show, not for all tuples or
all quadruples, of course, only those as given by the control flow graph, in
particular taking care of the inter-procedural flow in the last rule.

The interpretation is as follows. There is only one complete path from a label
to itself, that’s the trivial path. The second rule just splits off one label on the
left (one could do also differently). Also in the third rule, there is a split-off of
the first step. A terminating execution will have a complete path. There are
only a finite number of productions.

As a side remark: being a complete path, in some way, is not a safety property,
whereas being a valid path, is.

2 Data flow analysis
2.6 Interprocedural analysis 87

Example: Fibonacci

• concrete grammar for fibonacci program:

CP9,10 −→ 9,CP1,8,CP10,10
CP10,10 −→ 10

CP1,8 −→ 1,CP2,8
CP2,8 −→ 2,CP3,8
CP2,8 −→ 2,CP4,8
CP3,8 −→ 3,CP8,8
CP8,8 −→ 8
CP4,8 −→ 4,CP1,8,CP5,8
CP5,8 −→ 5,CP6,8
CP6,8 −→ 6,CP1,8,CP7,8
CP7,8 −→ 7,CP8,8

Valid paths (context-free grammar)

Valid path (generated from non-terminal VP∗):

• start at extremal node (E),
• all proc exits have matching entries

l1 ∈ E l2 ∈ Lab∗
VP∗ −→ VP l1,l2

VP l,l −→ l

(l1, l2) ∈ F

VP l1,l3 −→ l1,VP l2,l3

(lc, ln, lx, lr) ∈ IF

VP lc,l −→ lc,CP ln,lx ,VP lr,l

(lc, ln, lx, lr) ∈ IF

VP lc,l −→ lc,VP ln,l

The grammar for valid paths is slightly more complex than the one for complete
paths. There is an easy explanation what a valid path is: a valid path is a
prefix of a complete path. One could leave it at that. The definition shows,
basically, that also that property is a context-free property (namely by giving
the corresponding (family of) productions.

88 2 Data flow analysis
2.6 Interprocedural analysis

MVP

• adapt the definition of paths

vpath◦(l) = {[l1, . . . ln−1] | ln = l ∧ [l1, . . . , ln] valid}
vpath•(l) = {[l1, . . . ln] | ln = l ∧ [l1, . . . , ln] valid}

• MVP solution:

MVP◦(l) = ⊔{f~l(ι) | ~l ∈ vpath◦(l)}
MVP•(l) = ⊔{f~l(ι) | ~l ∈ vpath•(l)}

• but still: “meets over paths” is impractical

Fixpoint calculations next: how to reconcile the path approach with MFP

2.6.5 Context-sensitive analysis

Contexts

• MVP/MOP /undecidable(but more precise than basic MFP
⇒ instead of MVP: “embellish” MFP

δ ∈ ∆ (2.13)

• δ: context information
• for instance: representing/recording of the path taken
⇒ “embellishment”: adding contexts

embellished monotone framework

(L̂, F̂ , F, E, ι̂, f̂)

• intra-procedural (no change of embellishment ∆)
• inter-procedural

Embellishment, notationally, is indicated by a ĥat on top. The following will
proceed in two stages. The intra-procedural part and the interprocedural part.
The first part is (or course) simpler. One might ask, why we need to consider
the first part at all? Well, we change the framework slightly by embellishing it
(indicated by the hatted syntax). That will involve a change in the lattice and
other concomitant changes. Consequently, also the intraprocedual part needs
to be adapted, basically taking care of the embellishement, i.e., taking care of
the contexts. Taking care basically is rather trivial and consists of “ignoring”

2 Data flow analysis
2.6 Interprocedural analysis 89

the context: as long as one deals with data-flow within one function body, the
context remains the same. Nonetheless, the additional context-component
has to be mentioned as being unchanged when dealing with the embelished
transfer functions and other parts of the definition of the monotone framework.
But the keyword is: the intra-procedural part is “basically unchanged”.

Intra-procedural: basically unchanged

• this part: “independent” of ∆
– property lattice L̂ = ∆→ L
– mononote functions F̂
– transfer functions: pointwise

f̂l(l̂)(δ) = fl(l̂(δ)) (2.14)

• flow equations: “unchanged” for intra-proc. part

A•(l) = f̂l(A◦(l))
A◦(l) = ⊔{A•(l′) | (l′, l) ∈ F or (l′; l) ∈ F)} t ι̂lE

(2.15)

• in equation for A•: except for labels l for proc. calls (i.e., not lc and lr)

There is an unfortunate notational collision: Lattice L with its elements on
the one hand and labels/nodes in the CFG l from Lab∗

Apart from that: The above definitions define L̂ as a function of type ∆→ L.
That gives raise to some “higher-order” explanations of what the embellished
framework means (see already equation (2.14). That is a clean explanation of
what is going on, but one may also see it as follows.

Remember that in the unembellished framework, a solution of a problem is a
mapping from the nodes of the cfg to elements of the lattice. Let’s use N for
the nodes or labels (not L . . .). To be very precise, we are interested not in
a mapping from nodes to the lattice but from the entries and the exits of the
nodes to the lattice, but let’s ignore that for now.

That means, that an unembelished solution is of the type N → L, whereas
now, the solution is of type

N → ∆→ L .

That is the same as
(N ×∆)→ L .

Seen like that, the context is simply “paired” with the location or node in the
control-flow graph and represents relevant information of the call-site where
the function was called.

90 2 Data flow analysis
2.6 Interprocedural analysis

Sign analysis (unembellished)

• Sign = {−, 0,+}, Lsign = 2Var∗→Sign

• abstract states σsign ∈ Lsign
• for expressions: [[]]Asign : AExp→ (Var∗ → Sign)→ 2Sign

Transfer function for [x := a]l

f sign
l (Y) =

⋃
{φsign

l (σsign) | σsign ∈ Y } (2.16)

where Y ⊆ Var∗ → Sign and

φsign
l (σsign) = {σsign[x 7→ s] | s ∈ [[a]]Asign

σsign } (2.17)

We start with the unembellished part, i.e., without even considering contexts.
For that basic setting, the lattice we start with is a set of functions; we can
think of it as a set of states.

As a side remark: for what is called sign-analysis, that’s not the only possible
choice. An alternative to Lsign would be to use a function Var → 2Sign. It
would be a “state with abstract values” (where an abstract value is a set of
concrete values) as opposed to an “abstract state” consististing of a set of
concrete states. The alternative interpretation would be “weaker”, i.e., more
abstract.

Anyway: The above definition proceeds in 3 steps: At the core is the semantic
function [[]]. This function is for expressions, and is already non-deterministic.
Eq. (2.17) reflects the effect of an assignment for one abstract state and (2.16)
is the transfer function (lifted pointwise).

Why does [[]]Asign give back a set? Clearly, because of the non-determinism due
to abstraction.

The sign-analysis is not yet embellished here (embellished = adding context).
This means, there is not even a mentioning of ∆ here. The real work is done
in φ: the overall input to that function is Y , which is a set of states, and φsign

l

just applies it pointwise, interpreting the expression on the right-hand side of
the assignment and updating the state accordingly.

On the next slides, we will embellish the analysis, but since we are not yet
in the inter-procedural part, the embellishment is not very interesting, just a
“lifting” to the embellished setting.

Sign analysis: embellished

L̂sign = ∆→ Lsign
= ∆→ 2Var∗→Sign ' 2∆×(Var∗→Sign)

(2.18)

2 Data flow analysis
2.6 Interprocedural analysis 91

Transfer function for [x := a]l

f̂ sign
l (Z) =

⋃
{{δ} × φsign

l (σsign) | (δ, σsign) ∈ Z} (2.19)

The unembellished one so far was a simple instance of the monotone frame-
work. The transfer function just “joins” all possible outcomes, where it is
assumed that we have as function that calculates the set of signs for expres-
sion. That was completely standard. Now, it does not get really more complex:
equation (2.19) just does nothing with the δ, since we are still within a single
process. In the following we go to the inter-procedural fragment and there
things get more complex, since for dealing with calls and returns we have to
connect the contexts of the caller and the callee. It’s a bit like parameter
passing.

Inter-procedural

• procedure definition proc(valx, res y) isln S endlx :

f̂ln , f̂lx : (∆→ L)→ (∆→ L) = id

• procedure call: (lc, ln, lx, lr) ∈ IF
• here: forward analysis
• call: 2 transfer functions/2 sets of equations, i.e., for all (lc, ln, lx, lr) ∈ IF

2 transfer functions

1. for calls: f̂ 1
lc : (∆→ L)→ (∆→ L)

A•(lc) = f̂ 1
lc(A◦(lc)) (2.20)

1. for returns: f̂ 2
lc,lr : (∆→ L)× (∆→ L)→ (∆→ L)

A•(lr) = f̂ 2
lc,lr(A◦(lc), A◦(lr))) (2.21)

92 2 Data flow analysis
2.6 Interprocedural analysis

Procedure call

Note again the unfortunate notational collision: l̂: element of embellished
lattice (abstract value), lc etc: nodes/labels in the control flow graph. The
situation may become even more confusing for analyses like RD: there labels
(which are nodes in the control-flow graph) are part of the values of interest
and thus also elements of the lattice.

Next come two different simplifications for f 2. However, one way to understand
the 2 arguments for the return is that often one wants to match the return
with the call (via the context).

Ignoring the call context

f̂ 2
lc,lr(l̂, l̂′) = f̂ 2

lr(l̂′)

2 Data flow analysis
2.6 Interprocedural analysis 93

Merging call contexts

f̂ 2
lc,lr(l̂, l̂′) = f̂ 2A

lc,lr(l̂) t f̂ 2B
lc,lr(l̂′)

Context sensitivity

• IF-edges: allow to relate returns to matching calls
• context insensitive: proc-body analysed combining flow information

from all call-sites.
• contexts: used to distinguish different call-sites
⇒ context sensitive analysis ⇒ more precision + more effort

In the following: 2 specializations:

1. control (“call strings”)

94 2 Data flow analysis
2.6 Interprocedural analysis

2. data

(combinations of course possible) Combinations of the two approaches are
not covered in the lecture. The call-strings corresponds more or less to the
previously sketched MVP approach.

Call strings

• context = path
• call-string = sequence of currently “active” calls
• concentrating on calls: flow-edges (lc, ln), where just lc is recorded

∆ = Lab∗ call strings

• extremal value (from L̂ = ∆→ L)

ι̂(δ) =
{
ι if δ = ε
⊥ otherwise

The definition of ι̂ should be clear: at the beginning of the program, there
are no calls, and that is what we recording, hence the call string must be
empty. Note again the higher-order approach. The ι̂ is somehow defined again
point-wise. The initial value, an element from the lattice ∆ → L, which here
contains those functions.

Fibonacci flow

2 Data flow analysis
2.6 Interprocedural analysis 95

Fibonacci call strings

some call strings:

ε, [9], [9, 4], [9, 6], [9, 4, 4], [9, 4, 6], [9, 6, 4], [9, 6, 6], . . .

similar, but not same as valid paths

Explanations The call strings is not the same as the valid paths. It’s related,
though. The difference is the treatment of the returns. In the valid (or com-
plete) path description, the returns are part of the paths, and the paths “never
forget”, they only grow longer. Here, when dealing with a return, the path
does not get longer, it gets shorter be removing the the previous call. The call
string only tracks the currently open calls. It corresponds to the current depth
in the call-stack. That is also the way to match the contexts of the callee and
the caller.

Note that if a function body calls another function 2 times, then the two call
sites may still be confused!

Transfer functions for call strings

• here: forward analysis
• 2 cases: define f̂ 1

lc and f̂ 2
lc,lr

Transfer functions

• calls (basically: check that the path ends with lc):

f̂ 1
lc(l̂)([δ, lc]) = f 1

lc(l̂(δ))
f̂ 1
lc() = ⊥

(2.22)

• returns (basically: match return with the call)

f̂ 2
lc,lr(l̂, l̂′)(δ) = f 2

lc,lr(l̂(δ), l̂′([δ, lc])) (2.23)

• rather “higher-order” way of connecting the flows, using the call-strings
as contexts

• connection between the arguments (via δ) of flc,lr
• given: underlying f 1

lc and f 2
lc,lr .

• Notation: [δ, lc]: concatenation of calls string
• l′: at procedure exit.

96 2 Data flow analysis
2.6 Interprocedural analysis

Sign analysis (continued)

• so far: “unconcrete”, i.e.,
• given some underlying analysis: how to make it context-sensitive
• call-strings as context
• now: apply to some simple case: signs
• remember: L̂ ' 2∆×(Var∗→Sign) (see Eq. (2.18))
• before: standard embellished f̂Sign

l (with the help of φSign
l)

• now: inter-procedural

Sign analysis: aux. functions φ

still unembellished

calls: abstract parameter-passing

φsign1
lc

(σsign) = {σsign [x 7→ s][y 7→ s′] | s ∈ [[a]]Asign
σsign , s

′ ∈ {−, 0,+}}

returns (analogously)

φsign2
lc,lr

(σsign
1 , σsign

2) = {σsign
2 [x, y, z 7→σsign

1 (x), σsign
1 (y), σsign

2 (y)]}

(formal params: x, y, where y is the result parameter, call-site return variable z)

• non-det “assignment” to y
• remember: operational semantics,

Sign analysis

calls: abstract parameter-passing + glueing calls-returns

f̂ sign1
lc

(Z) = ⋃
{{δ′} × φsign1

lc
(σsign) | (δ′, σsign) ∈ Z, δ′ = [δ, lc])}

Returns: analogously

f̂ sign2
lc,lr

(Z,Z ′) = ⋃
{{δ} × φsign2

lc,lr
(σsign

1 , σsign
2) | (δ, σsign

1) ∈ Z
(δ′, σsign

2) ∈ Z ′
δ′ = [δ, lc]

}

(formal params: x, y, call-site return variable z)

The sign analysis was introduced before. The start was unembellished, just the
context-non-sensitive case. There, the φ was done, as a pre-step for the unembel-
lished transfer functions. The underlying lattice was not a mapping from variables
to sets of signs (which would have been possible) but the more precise ets of such

2 Data flow analysis
2.6 Interprocedural analysis 97

mappings. Those were called abstract states. A that point we had already the em-
bellished transfer function, but only for the non-procedure case. Note also: in this
particular setting: the embellished lattice, in general, is a mapping from contexts to
the old lattice. Here, the lattice is isomorphic to sets of pairs (see equation (2.18)
for that).

How does this work? It works as before, i.e., as for the intra-procedural analysis.
The auxiliary function φ (for signs) in (2.17) when the example sign-example was
introduced which was already used in the unembellished setting to define the (un-
embellished) f sign

l . In the embellished setting in the old intra-procedural part, the
φ is also not used for touching the paths δ.

Here we now see, that the auxiliary φsign
l is split into 2 functions φsign1

lc
and φsign2

lc,lr
.

This is done analogous to the splitting of the transfer functions (the φ’s are just
auxiliary constructions to it anyway). As before, the φ’s have nothing to do with
the paths. But they have to be different, because of the parameter passing (for
x and y e.g., in the call). Note that the value for y is set arbitrarily.

The interesting coupling is in δ and δ′ (resp. Z and Z ′)!

The definition can be best understood into two states, both for calls and for returns.
As before, we assume that the abstract denotational semantics for expression is given
(which is already non-deterministic and not repeated here). The two stages are 1)
defined “f” for one abstract state (resp. for a pair, in case of the return) and then
2) lift it to sets of such.

1. that one is for parameter passing on the abstract level. The s′ is just because
of the call-by-result semantics for the result parameter, it’s just the same as in
the semantics (remember the SOS).

2. The second stage, the real transfer function, lifts it to sets. Cf. also the
unembellished lifting function (for signs) in equation (2.17). The important
change is that now we have the contexts (as call strings) δ in the lattice

Call strings of bounded length

• recursion ⇒ call-strings of unbounded length
⇒ restrict the length

∆ = Lab≤k for some k ≥ 0

• for k = 0 context-insensitive (∆ = {ε})

Assumption sets

• alternative to call strings
• not tracking the path, but assumption about the state
• assume here: lattice

L = 2D

98 2 Data flow analysis
2.6 Interprocedural analysis

⇒ L̂ = ∆→ L ' 2∆×D

restrict to only the last call

dependency on data only ⇒

∆ = 2D

• ι̂ = {({ι}, ι)} extremal value

Transfer functions

• calls

f̂1
lc

(Z) = ⋃
{{δ′} × φ1

lc
(d) | (δ, d) ∈ Z∧

δ′ = {d′′ | (δ, d′′) ∈ Z}
}

where φ1
lc

: D → 2D

• note: new context δ′ for the procedure body
• “caller-callee” connection via the context (= data) δ
• return

f̂2
lc,lr

(Z,Z ′) = ⋃
{{δ} × φ2

lc,lr
(d, d′) | (δ, d) ∈ Z∧

(δ′, d′) ∈ Z ′∧
δ′ = {d′′ | (δ, d′′) ∈ Z}

}

Small assumption sets

• throw away even more information.

∆ = D

• instead of 2D ×D: now only D ×D.
• transfer functions simplified

– call

f̂1
lc

(Z) = ⋃
{{δ} × φ1

lc
(d) | (δ, d) ∈ Z }

• return

f̂2
lc,lr

(Z,Z ′) = ⋃
{{δ} × φ2

lc,lr
(d, d′) | (δ, d) ∈ Z∧

(δ, d′) ∈ Z ′
}

2 Data flow analysis
2.6 Interprocedural analysis 99

Flow-(in-)sensitivity

• “execution order” influences result of the analysis:

S1;S2 vs. S2;S1

• flow in-sensitivity: order is irrelevant
• less precise (but “cheaper”)
• for instance: kill is empty
• sometimes useful in combination with inter-proc. analysis

Set of assigned variables

• for procedure p: determine

IAV(p)

global variables that may be assigned to (also indirectly) when p is called

• two aux. definitions (straightforwardly defined, obviously flow-insensitive)
– AV(S): assigned variables in S
– CP(S): called procedures in S

IAV(p) = (AV(S) \{x}) ∪
⋃
{IAV(p′) | p′ ∈ CP (S)} (2.24)

where proc p(valx, res y) isln S endlx ∈ D∗

• CP ⇒ procedure call graph (which procedure calls which one; see example)

Example

begin proc fib(val z) is
if [z < 3]
then [call add(a)]
else [call fib(z − 1)];

[call fib(z − 2)]
end;
proc add(valu) is(y := y + 1;u := 0)
end
y := 0; [call fib(x)]

end

100 2 Data flow analysis
2.7 Static single assignment

Example

add

fib

main∗

IAV(fib) = (∅ \{z}) ∪ IAV(fib) ∪ IAV(add)
IAV(add) = {y, u} \{u}

⇒ smallest solution
IAV(fib) = {y}

2.7 Static single assignment

Introduction

This section is not covered by the book Nielson et al. [8]. It’s added this year as it’s
an interesting and important angle on data flow analysis. The book covers so-called
definition-use or use-definition chains (aka du- and ud-chains), which are left out
instead this time. Only so much: du- and du-chains are basically a generalization of
reaching definitions, one version working forward (like rd) one backward. And SSA
can be seen as a generalization, in turn.

More than one ever wants to know can about SSA can be found in [6].

Origins Early citations are Rosen et al. [11] Alpern et al. [1], and Cytron et al.
[4]. So also historically, it’s connected to value numbering.

Intro

• improvement on def-use chains, connecting “definitions” of variables to their
uses

• important intermediate representation
• used in many compilers (gcc, go, swift, llvm, . . .)
• referential transparency

http://www.go-lang.org
https://swift.org/
https://llvm.org/

2 Data flow analysis
2.7 Static single assignment 101

SSA A program is in SSA form if each variable is a target of exactly one assignment
in the program text.

Referential transparency refers to a in generally welcome property of expressions (in
this case variables). It means that a value of an expression (or here a variable) is
independent of where the expression appears.

The statement should perhaps be qualified in that the value of a variable is always the
same (unless there is no value, i.e., the variable is undefined). If we ignore the “being
undefined” as special status, then a referentially transparent value means indeed the
value of the variable is “always the same” (and that means the value is immutable
and the variable is single assignment, and there might be other characterizations as
well). It’s also related to functional or declarative programming, If one deals with
referentially transparent variables, many things become more easy, the concept of
variable becomes more logical. Variables in imperative programming languages have
the flavor of being names to memory addresses, whereas variables in mathematical
text books, equations, or in logical formulas do not give that feeling. The reason
being that expressions and variables are intuitvely understood as being referentially
transparent (not that any math text would ever point that out, it simply does not
cross anybody’s mind what a variable has to do with a mutable memory cell . . .)
Also in the lecture, we carefully try to separate assigmnents x := e from equations
x = e, the latter being understood as referentially transparent (or declarative . . .).
The opposite of referentially transpatent is also known as referentially opaque.

Anyway, one way of understanding the general motivation of SSA is that it’s a
format that is referentially transparent. One nice property is, that if one has a
unique assignment x:=e;S which is referentially transparent. which we might also
write x=e;S or actually let x = e in S. The semantics of the construct is, that
first, e is evaluated to some value, then that value is stored in x, and finally, the
rest S is evaluated. Now, in a single-assignment setting, once x has gotten its
value (say v), then that value of x won’t change any more. As a consequence,
the variable and the value are “synonymous”, x “is” v. That captures the most
fundamental property what it means to be “equal”, the standard mathematical,
logical (referentially transparent, declarative . . .) meaning of equality:

two things being equal can be used interchangably.

After evaluating e to v, the letx = v inS can be explained as S[v/x], replacing
or substituting x by v in S. Obviously, such a substitution explanation does not
work for general (non-single) assignments x := v;S (but for single-assignments it
holds).

What relevance does that have for static analysis? Basically, static analysis in
the form of this lecture is an automatic logical analysis of (abstract) properties of
programs (like variables being live, etc.). The cleaner the program, the easier the
analysis, and if the variables of the program behave like logical variables, that may
help in a correct analysis. Note that ultimately, of course, the “logical, single-
assignment variables” must be mapped to mutable memory cells of a standard von-
Neuman architecture or variations thereof. Nonetheless, during the semantic phase,
the analysis may profit from a logically clean intermediate representation.

102 2 Data flow analysis
2.7 Static single assignment

All that may be a bit philosophical. More down to earth is SSA as intermediate
representation: it’s a format which has some data flow analysis already “built in”.
If there is only one assignment to each variable, then when using a variable, it’s
already clear by the identity of the variable “where it comes from”, where it was
“defined”. Because of that, SSA can be seen as a generalization of so-called def-
use chains. Since this valuable piece of data flow information is already built into
the variables of the SSA, it’s a good general starting point for all kinds of more
specialized, subsequent analyses. For instance, reaching definitions.

Example in SLC

3AC
a := x + y
b := a − 1
a := y + b
b := x ∗ 4
a := a + b

3AC in SSA

• x and y: input variables, “read only”
• assigned to via initialization, “before” the program

a1 := x + y
b1 := a1 − 1
a2 := y + b2
b2 := x ∗ 4
a3 := a2 + b2

The transformation for straight-line code is straightforward. Appel [2] states that
it’s a form of value numbering.

Basis idea (for SLC)

• later more complex
• for straight line code: simple “rename” the variables, like: use different ver-

sions x1, x2, x3 for x on the left-hand side.

• some easy data flow analysis needed to get a fitting “versioning” for left-hand
sides

2 Data flow analysis
2.7 Static single assignment 103

Compare: 3AC (here for expressions)

2*a+(b-3)

+

*

2 a

-

b 3

Three-address code
t1 = 2 ∗ a
t2 = b − 3
t3 = t1 + t2

Compare to 3AC and temporaries

• code generation of 3AC for straight-line code
• three-address code: linear IR, close to machine code
• restricted right-hand sides
• temporaries: to store intermediate results
• often

– temporaries = abstract form of register
– unboundedly many asssumed
⇒ each one assigned to only once

For the participants of the compiler construction course (INF5110), this comparison
with the generation of 3AC should be familiar. But also without having participated,
the idea is simple. Complex expressions are not supported by standard 3AC (as it’s
supposed to be close to machine code). That means they need to be broken into
pieces and intermediate results need to be stored somewhere. For that purpose the
compiler (at that stage) introduces “special” variables, special at least in the sense,
that they don’t show up in the source code. Otherwise, they are not too special
anyway.

Since the compile can generate a new temporary when needed and since no upper
bound on their number is assumed, that leads to a code in static single assignment
form, at least as far as assignment to temporaries is concerned.

Static single assignment just pushes that idea a bit further and makes sure that also
ordinary variable are assigned to once, only (at least “statically”).

If we were sticking to straight-line code, without conditional jumps, conditionals,
loops etc., everything would be rather simplistic and straightforward. The problem
starts with conditionals. That will be treated next, and leads to the introduction of
so-called Φ-functions.

104 2 Data flow analysis
2.7 Static single assignment

Join points and phony functions

• simple illustration: two “definitions” of x

y := f(x)y := f(???)
x3 := Φ(x1, x2)
y := x3

x:=1x:=1x1:=1 x:=1x2:=2

l0

l1 l2

1. Phony functions Φ Assignments using functions like Φ(x1, x2) placed judi-
ciously at (join) nodes to assure SSA format.

SSA in a nutshell

Transformation to SSA

• SSA = Φ + variable (re)naming scheme

Phony functions

• “non-standard” function
• encodes “control flow”: value depends on if program “came from the left or

from the right” in the last step
• Φ

– “virtual”, for purpose of analysis only, or
– ultimately “real”, i.e., code for Φ’s will be generated

2 phase algorithm(s), in this order

1. strategical placement of Φ-functions
2. renaming of variables

• main challenge: placement of Φ

Brainless SSA form

• place Φ “everywhere”

2 Data flow analysis
2.7 Static single assignment 105

Maximal SSA recipe

Placement: For all variables, at the beginning of each join block add

x← Φ(x, . . . , x) ,

where number of x’s is the number of predecessors of the node ≥ 2

Renaming: rename variables consistently (making use of reaching definition analy-
sis)

• note: over-generous placement
– guarantees single-assignment format
– is sound

Room for improvements

• phony functions everywhere: sound but wasteful and generally undesirable
– costly extra computations
– subsequent analyses may suffer loss of precision

• phony function unnessessary
– result not live
– no real choice: xi ← Φ(xj , xj)

• in the following: efficient general algo for Φ-placement based on

dominance

Improvement

Core idea Assume assignment x := e in n1. If all paths from n0 to n2 must
go through n1, then n1’s assignment to x does not need to be covered by a phony
function for x at n2.

Rest

106 2 Data flow analysis
2.7 Static single assignment

8

n0

n1

n2

Domination

• CFG: directed graph with 1 entry (and 1 exit)
• “content” of the nodes / basic blocks irrelevant right now

Domination Node n1 dominates n2, if all paths from entry n0 to n2 must pass
through n1.

• dom(n): dominators of n (“n being dominated”)
• dom(n): determined by a simple data flow analysis (must and forward)
• also: strict dominance

Dominance frontier

• we know, where not to put Φ for a given assignment at n = all nodes being
dominated by n

• danger zone: “undominated”, but where to put there?
• solution: as “early” as possible in the danger zone (thinking backwards)

Dominance frontier The dominance frontier df (n) of a node is the collection of
m s.t.:

1. n dominates a predecessor of m (q _ m and q ∈ dom(n)), and
2. n does not strictly dominate m.

• “strict” (non-)dominance condition & loops
• dominance frontier contains join nodes only

2 Data flow analysis
2.7 Static single assignment 107

Dominator trees

• n’s dominators: dom(n)
• n’s immediate dominator idom(n) (the dominator closest to n, if exists)

n0

n1

n2 n5

n6 n8

n7

n3

n4

n0

n1

n2 n5

n6 n8

n7

n3

n4

Dominance frontier

f o r a l l nodes n in the CFG
DF (n) := ∅

f o r a l l nodes n
i f n has mu l t ip l e p r e d e c e s s o r s
then f o r a l l p r e d e c e s s o r s p o f n

runner := p
whi le runner 6= idom(n)
do DF(runner) := DF(runner) ∪ {n}

runner := idom (runner)

108 2 Data flow analysis
2.7 Static single assignment

The algo calculates, for each node, the dominance frontier df (n). A node dominating
another is a node “in the past”, but the dominance frontier works forwardly, “to the
future”, calculating for each node, those other in _∗ that are being dominated, or
at least almost so. So, the nodes of df (n) are not being dominated by n, i.e., it’s not
n2 ∈ df (n1), then n1 dominates n2, it’s that n1 does not dominate n2, but almost
does, in that its (immediate) predecessor is being dominated. So, the dominator
front describes some form of “front” for n but just one step beyond the front into
the undominated territory. Remember that being dominated is the “safe” zone in
that it does not need Φ-functions, whereas the undominated territory is the “danger
zone” where Φ functions are necessary (for join nodes). And the frontier, one step
beyond the border, is the place of the earliest convenience, where to put the Φ.

Now to the algorithm. The frontier is calculated for all nodes which have more than
one predecessor (Φ-functions are needed for join-nodes only). The nodes are treated
one by one.

The algo is simple enough, and needs both the original graph as well as the immediate
domintor tree. First one takes all predecessors in the CFG of the chosen node (and
there has to be more than one, as we concentrate on join nodes). From each of
those predecessors, we walk up the dominator tree. That walk is “deterministic”,
as we use the dominator tree upwards. Note that we are not only following the tree
upwards, it’s also like following the original graph backwards, only not step by step,
but one dominator-edge may correspond to _+. In case of a loop in the program,
the predecessor of n used as a starting point is, of course, both a predecessor as
well as a successor of n (that’s what makes it a loop). Therefore, following the
dominator tree upwards ends up where the runner is immediatedly domminated
by n (that’s the while-loops exit condition). In that loop-situation, runner is a
successor of n as well as a predecessor to n. Then we add n to all the “runners”
(not the other way around). Note also that we climb up the tree until the runner
equals the immidate dominator. In case of a loop, that will lead to the situation that
the entry-point of a loop dominates itself (which is consistent with the definition,
in particular the second part which mentions strict dominance. That may be seen
in the algo applied to n1. Note again that applying the inner loop of the algo to
a node do not contribute by calculating the dominator front for n, but rather the
other way around: adding n to other nodes (represented by runner).

Example

n0 n1 n2 n3 n4 n5 n6 n7 n8
DF ∅ {n1} {n3} {n1} ∅ {n3} {n7} {n3} {n7}

Further improvement

• left out here:
– how to actually place the Φ
– how to then rename the variables

• Basically: problem solved: place it at the dominance frontier

2 Data flow analysis
2.7 Static single assignment 109

• we forgot: adding xi ← Φ(xj , xj) is another assignment . . .
• further improvements possible (liveness: focus on “global” names)

Renaming

rename (b)
for each Φ−function ``x← Φ(. . .) in b

r e w r i t e x as newname(x)

for each opera t ion x← y ⊕ z
r e w r i t e y with s u b s c r i p t top (s tack [y])
r e w r i t e z with s u b s c r i p t top (s tack [z])
r e w r i t e x as newname(x)

for each s u c c e s s o r of b in the CFG
f u l l in Φ−function parameters

for each s u c c e s s o r s of b in the dominator t r e e
rename s

for each opera t ion ``x← y ⊕ z ' ' in b
and each Φ−function ``x← Φ(. . .) ' '

pop (s tack [x])

110 3 Types and effect systems

3
Types and effect systems
Chapter

What
is it

about? Learning Targets of this Chapter
type systems
effects
functional languages
type inference and unification

Contents

3.1 Introduction 110
3.2 Control flow analysis . 110

3.2.1 Control flow
analysis 114

3.2.2 Correctness . . 118
3.2.3 Type inference 121

3.1 Introduction

In this part, we cover various type systems, but focussing clearly on the effects parts.
In the introduction, we used the while-language to illustrate type and effect systems
or annotated type systems in a very simple setting, where the typing part was trivial.
In this section, we deal mainly with functional languages, i.e., λ-calculi.

in 2107, we only came up-to the standard type inference part.

3.2 Control flow analysis

Syntax

e ::= c | x | fnπx⇒ e | funπf x⇒ e | e e terms
| if e then e else e | letx = e in e | e op e

Table 3.1: Abstract syntax

3 Types and effect systems
3.2 Control flow analysis 111

π ∈ Pnt program points
e ∈ Expr expressions
c ∈ Const constants

op ∈ Op operators
f, x ∈ Var variables

The syntax is a a variation of an (untyped) λ-calculus, the prototypical “functional
language”. Instead of “λ” as symbol for functional abstraction, the language here
uses fn and fun. The language distinguishes syntactivally between the “standard”
abstraction fn and abstraction for recursive functions. Standard representations
of the untyped λ-calculus would not bother to make that distinction: the untyped
λ-calculus is Turing complete and therefore expressive enough to encode recursion.
Likewise it could encode conditionals etc. However, the lecture uses the more elab-
orate syntax for two reasons. We are interested in illustrating program analysis,
where control flow constructs like conditionals are most likely to be part of the ab-
stract syntax. Even if conditional would be encodable in a more basic syntax, that
will obscure the analysis (and make it less “realistic”). Likewise, recursion will pose
specific problems, the treatment of which would be obscured if relying on an encod-
ing. Finally, we do make use of typed versions of the language, and for the typed
λ-calculus, things change: without adding recursion explicitly, the calculus is not
Turing complete (which make it hard to argue that it’s a simple form of a standard
functional programming language).

What does not belong to the standard calculus are the labels. Those are needed
(as before) for the intended analysis. It’s worthwile to remember the CFA from the
introduction, where the functional calculus was labelled, as well. Unlike here, the
labelling in the introduction was for all constructs whereas here, we label only the
two forms abstractions. The difference are motivated by the fact that here we are
interested in a slightly different analysis.

Examples

Example 3.2.1 (Application).

(fnX x⇒ x) (fnY y ⇒ y)

Example 3.2.2.
let g = (funF f x⇒ f(fnY y ⇒ y))
in g (fnZ x⇒ x)

It’s worthwile to think about the latter example and especially the role of fun (the
“recursive” function abstraction). Its

Types

• Curry-style typing

112 3 Types and effect systems
3.2 Control flow analysis

τ ∈ Type types
Γ ∈ TEnv type environment

Types
τ ::= int | bool | τ → τ

• base types:
– bool and int
– standard constants and operators assumed (true, 5,+,≤, . . .)
– each constant has a base type τc

• type environments (finite mappings)

Γ ::= [] | Γ, x:τ

“Curry-style” means that abstractions like fnx.e don’t mention a type for the for-
mal parameter. The alternative with a syntax like fnx:τ.e is called “Church style”.
Both variants exist in real programming languages. Also, leaving it up to a user
whether mentioning a type or leaving it out on a case by case basis is possible.
Some programmers may prefer to add types for being more explicit and document-
ing the type of expected arguments and prefer to leave it out, for compactness or
convenience In Curry-style typing, it’s a problem to figure out what the type of an
argument actually is (if any). The process of figuring that out is commonly known
as type inference; some people prefer the word type reconstruction for it. Some other
interpretations of the terminology of “type inference” also exists, but they are not
so common. In case giving the types is optional, the problem is called partial type
inference (or partial type reconstruction).

The base types won’t play a prominent role in the development, the calculus simply
picks some common ones, where Booleans are needed for the conditionals. There
is one restriction for the constants here, namely they are typed by one of the base
types. That means there are no functional constants. More precisely: the operators
can be seen as built-in functional constants, but their arguments are base types,
which means, the operators are not higher-order. That may well be different in real
languages, and is done to simplify the representation here.

As for type environments Γ. They play the role of “contexts” (also in the technical
sense of dealing with context-sensitive analyses). It is assumed that they work as
finite mappings, basically as a representation of the symbol table. Three fundamental
things one can do with such a “table” is: creating an empty one, adding a new
binding (“enter”), and looking up an entry (“lookup”). The first two operations are
part of the definition from above, for the lookup of x in Γ we write Γ(x). We may
also write Γ[x 7→ τ], and use dom(Γ). Γ in general acts like a stack.

3 Types and effect systems
3.2 Control flow analysis 113

Judgments and derivation system

Type judgments
Γ `UL e : τ (3.1)

• derivation system:
– Curry-style formulation
⇒ non-deterministic
– nonetheless: monomorphic let

• type reconstruction/type inference

The remark about monomorphic let is relevent at that point only for the ones who
know, that a very famous contribution in type inference is the treatment of the so-
called “polymorphic let”. Polymorphism and monymorphim relate to the character
of the type system for a language. A language is monomorphic if each program
has (at most) one type. It’s at most and not exactly one as a program may fail
to be well-typed. Alternatively can can say, a language is monomorphic, if every
well-typed program has exactly one type. A language is polymorphic, if it’s not the
case, i.e., if it’s not monomorphic.

There are various forms of polymorphism, according to a classical classification by
Cardelli and Wegner [3], there are 4 main variants. Arguably the two most impor-
tant or most interesting are parametric polymorphism and inclusion polymorphism
(both together called in [3] also as universal polymorphism). Inclusion polymor-
phism is also known as subtype polymorphism (as made popular by object-oriented
languages).

Let-polymoprhism is of the parametric kind, and we might encounter it later. But
as said: not right now. Subtype or inclusion polymorphism will probably not be
covered in this lecture, at least not as far as the underlying type system is concerned.
On the other hand: when dealing with the “non-standard” part of the type system
(the annotations, the effects etc.) then there will be “inclusion polymorphism”.
That is related to the “lattice treatment” for instance when dealing with data flow
information as in the monotone frameworks (except that it was not formulated
making use of type-theoretic notions).

Underlying type system (1) (Curry style)

Γ ` c : τc Con Γ(x) = τ
Var

Γ ` x : τ

Γ ` e1 : τ1
op Γ ` e2 : τ2

op Op
Γ ` e1 op e2 : τop

114 3 Types and effect systems
3.2 Control flow analysis

Underlying type system (2) (Curry style)

Γ, x:τ1 ` e : τ2
Fn

Γ ` fnπx⇒ e : τ1 → τ2

Γ, x:τ1, f :τ1 → τ2 ` e : τ2
Fun

Γ ` funπx⇒ e : τ1 → τ2

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1
App

Γ ` e1 e2 : τ2

Γ ` e0 : bool Γ ` e1 : τ Γ ` e2 : τ
If

Γ ` if e0 then e1 else e2 : τ

Γ ` e1 : τ1 Γ, x:τ1 ` e2 : τ2
Let

Γ ` letx = e1 in e2 : τ2

3.2.1 Control flow analysis

Intro

This part was not covered in the lecture 2017. We directly jumped to the unification
and standard type inference part. A flavor of similar analysis, though, was covered
in the introduction.

Control flow analysis

• remember introduction: CFA touched 2 times
– constraint analysis
– as effect-system (”call-tracking”)

• goal CFA (general): “which functions may be applied in an application” more
precisely:

CFA to which function abstractions may an expression evaluate to

• augment or annotate the type system with effects
• note: data “=” control here

It is worthwhile to compare the control flow analysis presented next with the treat-
ments in the introduction. Also in the simple while-language, to determine the edges
of the control-flow graph, we called a simple form of control flow analysis, but nor-
mally, no-one calls it like that, as it’s so simple and it does not require any complex
techniques.

3 Types and effect systems
3.2 Control flow analysis 115

More seriously, control flow analysis in the introduction was touched upon 2 times
in the context of a functional langauge. At one point, the problem of control flow
analysis (in the section about constaint based analysis) was defined as the question
“for each function application, which functions are potentially applied”. That’s of
course related to the formulation of CFA from above.

The second time an analysis related to control-flow analysis was touched upon in
the introduction was the call-tracking analysis. There the question was for each
expression “which function abstraction may be applied during execution”. That was
formulated as effect analysis. It’s worthwhile to compare the rules presented next to
the ones from earlier. They are quite similar, as call tracking analysis is not much
different to the cfa problem here. Note, however, the analysis here is not an effect
system, we are not interested what happens during evaluation, as is done for the
call-tracking analysis.

Annotations

labelled abstraction fnπ and funπ

annotations: set of function names,

ϕ ∈ Ann annotations
τ̂ ∈ ˆType annotated types
Γ̂ ∈ ˆTEnv ann. type environments

ϕ ::= {π} | ϕ ∪ ϕ | ∅

τ̂ ::= int | bool | τ̂ ϕ→ τ̂

Γ̂ ::= [] | Γ̂, x:τ̂

Erasure to underlying type system:

bτ̂c bΓ̂c

As for the call-tracking analysis in the introduction, the functions, i.e., the abstrac-
tions, get labelled or annotated to make them identifiable and the analysis will deal
with sets ϕ of such labels. The arrow types are annotated accordingly (as was the
case for the call tracking analysis from before).

So, both the call tracking analysis and the control flow analysis here are operating
with annotated types of the form

τ̂1
ϕ→ τ̂2 .

The interpretation, however, of these types are different! Here, the ϕ on the arrow
constructor approximates the set of functions that the corresponding expression can
evaluate to. That refers to the values at the end. For the call tracking analysis,
ϕ on the arrow type was called latent effect and approximated the set of functions

116 3 Types and effect systems
3.2 Control flow analysis

potentially being called during an evaluations of that function. The judgments of
the call-tracking analysis where more complex as well, as they contained also an
effect component (the “typing part” being of the form τ̂ :: ϕ). The analysis here is
not an effect analysis.

One may compare the rule for applications in both analyses.

Annotated type system

Γ̂ ` c : τc Con Γ̂(x) = τ̂
Var

Γ̂ ` x : τ̂

Γ̂ ` e1 : τ1
op Γ̂ ` e2 : τ2

op Op
Γ̂ ` e1 op e2 : τop

Γ̂ ` e0 : bool Γ̂ ` e1 : τ̂ Γ̂ ` e2 : τ̂
If

Γ ` if e0 then e1 else e2 : τ̂

Γ̂ ` e1 : τ̂1 Γ, x:τ̂1 ` e2 : τ̂2
Let

Γ̂ ` letx = e1 in e2 : τ̂2

Γ̂, x:τ̂1 ` e : τ̂2
Fn

Γ̂ ` fnπx⇒ e : τ̂1
{π}∪ϕ→ τ̂2

Γ, x:τ̂1, f :τ̂1
{π}∪ϕ→ τ̂2 ` e : τ̂2 Fun

Γ ` funπx⇒ e : τ̂1
{π}∪ϕ→ τ̂2

Γ̂ ` e1 : τ̂1
ϕ→ τ̂2 Γ̂ ` e2 : τ̂1

App
Γ̂ ` e1 e2 : τ̂2

The interesting rules are the ones for functions, i.e., for dealing with the two forms
of abstractions and with function application.

For Fn, for instance: the rule involves “guessing”, insofar that in the premise an
arbitrary ϕ is mentioned! As a consquence, the rules are not interpretable as a
straightforward as algorithm. Another aspect which makes the rules non-algorithmic
has to do with the fact that the abstractions don’t mention the type τ̂1 of the
formal parameter (as we are dealing with a Curry-type formulation). This has
nothing directly to do with the control-flow analysis, but was already the case for
the underlying type system (without annotations).

Anyway, the rules of this (and similar) systems cannot be seen as type checking
algorithm, but rather as specification of the analysis. How to algorithmically check
and analyse a given program is a separate question.

3 Types and effect systems
3.2 Control flow analysis 117

Example

x:τ̂Y ` x:τ̂Y
`(fnX x⇒x):τ̂Y

{X}
→ τ̂Y

y:int ` y : int

`(fnY y⇒y):τ̂Y

`(fnX x⇒x) (fnY y⇒y): τ̂Y

with
τ̂Y = int {Y }→ int

Equivalence of annotations

• annotations ϕ are considered as sets
• one could axiomatise this (UCAI)
• i.e., one could import equality on sets into equality on types:

τ̂1 = τ̂ ′1 τ̂2 = τ̂ ′2 ϕ = ϕ′

τ̂1
ϕ→ τ̂2 = τ̂ ′1

ϕ′→ τ̂ ′2

• types (and Γ̂’s) are considered only modulo this equality

Equivalences seems like a minor or obvious point, but: it can give serious tech-
nical headaches when we go for an algorithm (type reconstruction or inference)

The discussion around the treatment of ϕ seems slightly obscure. The ϕs are in-
tended as finite sets and it seems clear enough, when two sets are equal (namely
when they have the same elements), end of story.

That would be indeed ok, especially for now. Later, however, we will deal with
techniques to algorithmically do type checking resp. type inference and also do type
inference in combination with annotated types. One core technique there will in-
volve unification. That works straightforward if one unifies “terms” (the standard
unification is understood as “term unification”). However, if one wants to use uni-
fication on things that are more complex than terms, things can get hairy. Sets are
more complex as non-trivial equivalences hold, like {1, 2} = {2, 1}. Sets are still
comparatively simple (a few well-understood, simple equivalences: commutativity,
associativity, identity, unit), so that unification still works fine (“unification modulo
set equivalences”), it even has a name: UCAI-unification. But as said, the sets as
the information of interest is quite simple, if one tries to figure out more complex
stuff in the analysis, corresponding unification may no longer work (one may even
end up with an undecidable problem).

118 3 Types and effect systems
3.2 Control flow analysis

Therefore, the book follows a slightly different route (later), not relying on unification
modulo some equivalences.

Underlying vs. annotated type system

• desired relationship between the original type system and the annotated one:
⇒ The annotation does not “disturb” the original one
• conservative extension
• note:

– type systems reject programs
– flow analysis and similar: typically don’t reject, just analyse

Fact

• if Γ̂ `CFA: e : τ̂ then bΓ̂c `UL e : bτ̂c
• if Γ `UL e : τ , then Γ̂ `CFA e : τ̂ for some Γ̂ and τ̂ s.t. τ = bτ̂c and Γ = bΓ̂c.

3.2.2 Correctness

Also this section is left out 2017, at least the technicalities. But it’s good to have
a feeling of what guarantees a typing judgment Γ ` e : τ is intended to mean (i.e.,
what type safety means).

Semantic correctness

• as always: the analysis as (over)approximation
• correctness formulated here as subject reduction
• assume : typing for op is properly given

Theorem 3.2.3. If [] `CFA e : τ̂ and ` e −→ v, then [] `CFA v : τ̂

The name “subject reduction” is often used for this kind of results (in type systems).
There is a (historical?) reason why such results are called subject reduction, but it
does not matter for us and the word does not provide much inside.

A better term for the theorem would be preservation of well-typedness under
reduction. Indeed, sometimes the result is also called like that, or just preser-
vation. Anyway, it’s a very central lemma, basically justifying the term “static
typing”. Why is that? The initial the state of a program is well-typed by defini-
tion, as the compiler allows only well-typed programs to run. If one has “subject
reduction” it means, well-typedness is preserved when doing one step (well, in our
case it’s a “big step”). Both facts together immediately imply that all configurations
reachable from the initial one are well-typed.

3 Types and effect systems
3.2 Control flow analysis 119

Since, once established at the beginning, well-typedness is preserved, there’s no need
to check it over and over again when running the program. In other word: there is
no need for run-time type checking! Hence the word static typing.

While being central for static type systems, subject reduction in isolation does not
guarantee “correctness” or that in general the type system does anything meaning-
full. For illustration, a trivial analysis, where all programs are well-typed (the type
would correspond to the logical “true”) would enjoy subject reduction. The same
holds for the type system that rejects all programs (corresponding to “false”). The
latter one lead to the fact that the initial program is ill-typed as well, therefore the
“base case” for all reachable configurations is not met. Anyway, both are cases of
rather useless type systems that do enjoy subject reduction.

The missing piece that make a type system “meaningfull” wrt. to a semantics is to
connected it to the absence of the errors one intends to target (or the things one
wishes to analyse). Informally speaking the connection between the type system
and the freedom-of-error is something like “a well-typed program does not exhibit
an error right now”. Now if all reachable programs are indeed well-typed, then
obviously the program is error-free.

The “right-now” could mean, the next step does not raise an error (resp., if there
is non-determinism: none of the possible next steps raise an error) or alternatively:
the current configuration is not “erroneous”.

By speaking of error-freeness, of course we don’t mean the program is absolutely
error free. Free of errors refers only to the errors the type system is designed to
catch. For standard type systems (not effects, or other fancy stuff), the type system
refers to values at the end of a computation, and consequently, errors are of the kind
“wrong data value” (like a string where an int is expected etc.)

In some contexts and for traditional reasons mostly: the absence-of-error-now result
is sometimes called progress. The intuition being the following: The operational
semantics describes error-free behavior, there are no rules describing what happens if
there are run-time type errors (or other errors). So, one way of dealing with “errors”
would be simple not to put in a rule that describes what happens in that case. The
operational semantics simply concentrates on the “positive” side of things. As an
example, the rules don’t describe what happens of we apply an integer to a boolean
value:

5 true

In reality, probably some run-time error would occur (hopefully at least, that would
be better than some random behavior). However, there is not SOS rule applying to
that situation, which means the above application is stuck (there is no “progress”).
Of course, values are “stuck” in that sense too, but legitimately so: values are
those expressions which are intended to be the end of a computation. The above
application is not a value, and lack of progress there is an indication of an error. So,
connecting the type system to the intended absence of errors would be something
like: “a well-typed expression is either a value or can done one more step (progress)”.
In the type system, it is immediately clear 5 true is ill-typed (“now”). Less clear
is wether an well-typed expression can ever reach such an ill-typed (and stuck)

120 3 Types and effect systems
3.2 Control flow analysis

expression, so it refers to a future error, not an error now. For that, one needs
subject reduction.

That describes in some detail the connection between (absence of) errors and the
type system for standard type systems. For the non-standard type system here (i.e.,
the annotation part dealing with control-flow information), the question we want to
ask is: given ` e : τ̂1

ϕ→ τ̂2 and e reduces to an abstraction, then it is immediate to
see that the label of the abstraction must be in ϕ.

One key lemma for subject reduction is preservation under substitution.

Lemma 3.2.4 (Substitution). Assume [] `CFA e0 : τ̂0 and Γ̂[x 7→ τ̂0] `CFA e : τ̂ .
Then Γ̂ `CFA e[x 7→ e0]:τ̂

Semantics correctness & subject reduction

• subject reduction: standard name for key to correctess (aka type safety) in
static type systems (here type and effects)

Goal (“Milner’s dictum”) A well-typed program cannot go wrong.

• goal a bit more technically: no “erroneous” state is reachable, starting from
a/the initial state

• erroneous state: a state where a run-time type error “manifests” itself
– wrong arguments to a function
– data stored in variable not declared/dimensioned to hold that kind of data
– “method not supported” error
– . . .

Type safety

Type safety: 3 easy pieces

• Induction: all reachable “states” are well-typed

base case initial state is well-typed

induction step Well-typedness is preserved under doing a step (= subject
reduction)

• a well-typed state is not erroneous at that point

• base case trivial/by assumption: only well-typed programs are run
• since well-typing is preserved: no run-time type checks needed (efficiency,

static typing)
• with effects: subject reduction = simulation (however: CFA here no effects

yet)

3 Types and effect systems
3.2 Control flow analysis 121

As mentioned earlier, the key to correctness of a type system, i.e., type safety, is
subject reduction. Type safety is a statement over all reachable states of a program,
no matter whereto the program runs, nothing bad will happen. That leads to an
inductive proof, where the induction step is known as subject reduction (or with a
more understandable word preservation of well-typedness under reduction.

Complete lattice of annotated types

• to assure existence of solutions

(Ann,v) (' (2Pnt,⊆))

• write ˆType(τ): set of τ̂ ’s s.t. bτ̂c = τ

τ̂ v τ̂
τ̂1 v τ̂ ′1 τ̂2 v τ̂ ′2 ϕ v ϕ′

τ̂1
ϕ→ τ̂2 v τ̂ ′1

ϕ′→ τ̂ ′2
⇒

(ˆType(τ),v) is complete lattice

3.2.3 Type inference

That was one of the sections covered 2017. Basically, we left out all effect or flow
parts, and covered only the basics here: type inference or reconstruction and the
role unification plays in that.

Inference algorithms

• take care of terminology
• so far: no algorithm! (price of laxness)
• foresight needed
• guessing wrong ⇒ backtracking (and we seriously don’t want that)
⇒ required: mechanism to make

– tentative guesses
– refine guesses

• we start first: with the underlying system

Next we tackle what is called type inference. The terminology of type inference is
standard (it goes back to Milner etc), but not all like it. The point why it’s not the
best name is: the type systems we are dealing with are given in the form of inference
systems i.e. with the help of inference rules. Therefore the word “type inference”
may be confusing. Consequently, the word type reconstruction is used sometimes.

No matter how it’s called, it’s here about algorithms. The type system so far did not
correspond directly to any algorithm for type checking (or flow or effect analysis)
. . .

122 3 Types and effect systems
3.2 Control flow analysis

It is useful here to revisit the previous rules of the “Curry-style” type system and
reflect on why those rules are not directly an algorithm. The basic culprit is the rule
for abstraction FN. In the formulation here, where we have also a rule for recusive
function abstraction, also that rule is not “algorithmic” (rule Fun). Concentrating
here on Fn: the culprit is the fact that the premise of the rule has to guess type
τ1. What is the status of τ1? Well, τ1 is a symbol we use to represent types (a
non-terminal in the grammar for types). It’s not a type itself. Another terminology
is that it’s a meta-variable representing types. That τ is a meta-variable for types
means, we use that symbol to “speak about” the type system, but it’s of course not
itself a type. Especially it’s not a variable in or of the type system.

Another way of seeing it is: assuming that the type rules where an inmpementation
in the sense of a (non-deterministic) recursive procecure. The conclusion would be
a call to a function, say tcheck (for do-a-type-check), with input a context, an
expression, and a type) and a boolean return. That’s a simplifying assumption,
as we typically want to have the context Γ and expression e as input, and the
type as output, but let’s use the simpler “boolean” yes/no problem for illustration.
That would mean, the type-check procedure could look like (in some unspecified
programming language):

tcheck(gamma : Context, exp : Exp, type : Type) =
if exp = app (exp1 exp2)

Now, type is a variable in the unspecified programming language, the formal pa-
rameter of the procedure, and is of type Type, which, one the one hand, is some
concrete type in that said programming language and, on the other hand, is used
to implement the types of the language whose type system we intend to implement.
At any rate, type is a variable, but not of the language we are implementing, but
of the language we use to implement it. Thus it’s a meta variable, a variable of
the language use to implement the target language (or the language used to “speak
about” the target language).

One core “enabler” to make type inference work is to internalize the notion of
“variable” from the meta-level to the level of the language we are dealing with. That
means that the concept of types needs to be extended to include type variables. That
will be called augmented types.

Augmented types

fancy name for: “we have added type variables”

τ ∈ AType augmented types
α ∈ TVar type variables

τ ::= int | bool | τ → τ | α
α ::= ′a | ′b | . . .

3 Types and effect systems
3.2 Control flow analysis 123

Substitutions

Substitution (in general) mapping from variables to “terms”

• “syntactic mapping” here:
– “terms” are (augmented) types
– variables: type variables

θ : TVar→fin AType

• considered as finite functions: we write dom(θ).
• ground substitution: mapping to ordinary types (no variables)
• substitutions: lifted to types in the standard manner
• composition of substitutions: θ1 ◦ θ2 (or just θ2θ1)

Substitutions will play an important role in the following (and are an important
concept in general). They are called “syntactic mapping” above, since terms (here
types) are considered syntax (as opposed to values or similar, which is considered
“semantics”). So, a state as a mapping from variables to values is considered a
semantic thing and different from a substitution. Terms normally contains variables
(otherwise there would be no point of substitutions anyhow . . .) and terms without
variables are generally called ground terms. Consequently, a substitution where the
result does not contain variables is called a ground substitution.

By lifting, one simply means; if one knows the effect of a substitution on variables,
then it’s straightforward to use the substitution also as a mapping from terms to
terms (here types to types), simply by replacing all the variables inside a term one
by one. It’s a simple recursive algorithm.

Above we defined substitutions as finite functions, i.e., function with a finite do-
main of variables. Sometimes, θ’s are also considered as total functions (over “all”
variables), setting θ(α) = α when α /∈ dom(θ).

Algorithm: basic idea

• instead of guessing type /now/ ⇒ postpone the decision
⇒ use of *type variables*

replace:

Γ, x:τ1 ` e : τ2
Fn

Γ ` fnπx⇒ e : τ1 → τ2

by

124 3 Types and effect systems
3.2 Control flow analysis

Γ, x:α ` e : τ2
Fn

Γ ` fnπx⇒ e : α→ τ2

• x:α when α is fresh (otherwise unused) means: type of x is completely arbitrary.
• syntax-directed now?
• τ1: meta-variable for concrete types
• α: (still meta variable for) type variables

α’s completely arbitrary?

Consider body
e = x g

for fnπx⇒ e

⇒

• a function type: α = β → γ
• fit together with type of g ⇒ condition or constraint on β

• judments “give back” not just the type, but also “restrictions” on type variables.
• represented as substitutions1

• ⇒
Γ ` e : (τ, θ)

Under the assumptions Γ (which might “assign” to (program) vari-
ables: type variables), program e possesses type τ (again poten-
tially containing type variables) and imposes the restrictions ”em-
bodied” by θ on the type variables.

Γ, x:α ` e0 : (τ0, θ0)
Fn

Γ ` fnπx⇒ e : ((θ0α)→ τ0, θ0)

1One could also collect the constraints/restrictions as a set of equations and solve them at
the very end.

3 Types and effect systems
3.2 Control flow analysis 125

Unification

T-Const
Γ ` c : (τc, id)

T-Var
Γ ` x : (Γ(x), id)

α fresh Γ, x:α ` e0 : (τ0, θ0)
T-Fn

Γ ` fnπx⇒ e0 : (θ0α→ τ0, θ0)

α, α0 fresh Γ, f :α→ α0, x:α ` e0 : (τ0, θ0) θ1 = U(τ0, θ0α0)
T-Fun

Γ ` funπf x⇒ e0 : (θ1θ0α→ θ1(τ0), θ1 ◦ θ0)

Γ ` e1 : (τ1, θ1) θ1Γ ` e2 : (τ2, θ2) α fresh θ3 = U(θ2τ1, τ2 → α)
T-App

Γ ` e1 e2 : (θ3α, θ3θ2θ1)

Γ ` e0 : (τ0, θ0) θ0Γ ` e1 : (τ1, θ1) θ1θ0Γ ` e2 : (τ2, θ2)
θ3 = U(θ2θ0τ1, bool) θ4 = U(θ3τ2, θ3θ2τ1)

If
Γ ` if e0 then e1 else e2 : (θ4θ3τ2, θ4θ3θ2θ1θ0)

Γ ` e1 : (τ1, θ1) θ1Γ, x:τ1 ` e2 : (τ2, θ2)
Let

Γ ` letx = e1 in e2 : (τ2, θ2θ1)

Γ ` e1 : (τ1, θ1) θ2Γ ` e2 : (τ2, θ2)
θ3 = U(θ2τ1, τ

1
op) θ3 = U(θ3τ2, τ

2
op)

Op
Γ ` e1 op e2 : (τop, θ4θ3θ2θ1)

Remarks Note again: we do not have the full famous Damas Milner type system
with let-polymorphism. To do that we would need to add type schemes (see later).

Unification

• “classical” algorithm ([10])
• many applications (theorem proving, Prolog etc.)
• unifier of two types τ1 and τ2: a substitution θ such that

θ(τ1) = θ(τ2)

• unfication problem given τ1 and τ2, determine a unifier for them, if it exists
• better formulation of unfication problem: given τ1 and τ2, determine the

best = most general unifier for them (if they are unifiable).

Remarks in other areas: formulas, terms . . .

126 3 Types and effect systems
3.2 Control flow analysis

Unification algorithm for underlying types

U(int, int)) = id
U(bool, bool)) = id

U(τ1 → τ2, τ
′
1 → τ ′2) = let θ1 = U(τ1, τ

′
1)

θ2 = U(θ1τ2, θ1τ
′
2)

in θ2 ◦ θ1

U(τ, α) =

[α 7→ τ] if α does not occur in τ

or if α = τ
fail else

U(α, τ) = symmetrically
U(τ1, τ2) = fail in all other cases

Type inference algorithm

• formulated here as rule system
• immediate correspondence to a recursive function:

W(Γ, e) = (τ, θ)

instead of
Γ ` e : (τ, θ)

“Classic” type inference

• we did not look at the full well-known Hindley-Damas-Milner type inference
algorithm

• missing here: polymorphic let
• monomoprhic let: “almost useless” polymorphism
• Note the fine line

– polymorphic let: yes
– polymorphic functions as function arguments: no!

the classical type “inference” algo

• higher-order functions,
• polymorphic functions,
• but no “higher-order polymorphic functions”

• dropping the last restriction: type inference undecidable
• no type variables in the underlying type system (the “specification”), the type

inference algo does
• types (with variables) and type schemes ∀α.τ

4 References 127

4
References
Chapter

128 Bibliography
Bibliography

Bibliography
[1] Alpern, B., Wegman, M. N., and Zadeck, F. K. (1988). Detecting equalities of

variables in programs. In [9], pages 1–11.

[2] Appel, A. W. (1998). Modern Compiler Implementation in ML. Cambridge
University Press.

[3] Cardelli, L. and Wegner, P. (1985). On understanding types, data abstraction
and polymorphism. Computing Surveys, 17(4):471–522.

[4] Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck, F. K. (1991).
Efficiently computing static single assignment form and the control dependence
graph. ACM Transactions on Programming Languages and Systems, 13(4):451–
490.

[5] Kildall, G. (1973). A unified approach to global program optimization. In Pro-
ceedings of POPL ’73, pages 194–206. ACM.

[6] Lots of authors (2015). SSA book. http://ssabook.gforge.inria.fr/
latest/book.pdf. The book is available online and under work.

[7] Louden, K. (1997). Compiler Construction, Principles and Practice. PWS Pub-
lishing.

[8] Nielson, F., Nielson, H.-R., and Hankin, C. L. (1999). Principles of Program
Analysis. Springer Verlag.

[9] POPL’88 (1988). Fifteenth Symposium on Principles of Programming Languages
(POPL). ACM.

[10] Robinson, J. A. (1965). A machine-oriented logic based on the resolution prin-
ciple. Journal of the ACM, 12:23–41.

[11] Rosen, B. K., Wegman, M. N., and Zadeck, F. K. (1988). Global value numbers
and redundant computations. In [9], pages 12–27.

http://ssabook.gforge.inria.fr/latest/book.pdf
http://ssabook.gforge.inria.fr/latest/book.pdf

Index
Index 129

Index
λ-calculus, 5, 111

typed, 27
Γ ` t : τ , 25

abstract cache, 20
abstract environment, 20
abstract syntax, 4
algorithms, 38
ascending chain condition, 74
attribute, 26
attribute grammar, 26
augmented type, 122
available expressions, 46
axiom, 28

call tracking analysis, 36
call-tracking analysis, 115
chaotic iteration, 39
Church-style typing, 36
code generation, 103
common subexpression elimination., 45
complete lattice, 74
constaint system, 38
constraint solving, 38
context-sensitive, 26
control flow analysis, 110
control flow graph, 7
control-flow, 18
control-flow analysis, 18
Curry-style typing, 36

derivation rule, 28
derivation sequence, 64

effect, 25
effect system, 29
evaluation, 24

ground substitution, 123

Haskell, 25
higher-order function, 18
hoisting, 52

IF, 81
input variable, 10

judgment, 25

labelling, 20

lattice
complete, 15, 74

monad, 25
monomoprhism, 113

partial correctness, 27
polymoprhism, 113
program transformation, 52
property space, 74

reaching definitions, 8, 49
recursion, 111
referential transparency, 101

simulation, 121
stabilization, 74
static typing, 119, 121
subject reduction, 119–121
substitution

ground, 123
subsumption, 31
symbol table, 26

term unification, 117
total correctness, 27
type

augmented, 122
type and effect system, 29
type system, 24, 28

static, 24

UCAI, 117
unification, 117

value, 24
very busy, 52

while-language, 4

	Contents
	Introduction
	Motivation
	Data flow analysis
	Constraint-based analysis
	Type and effect systems
	Algorithms
	Conclusion

	Data flow analysis
	Introduction
	Intraprocedural analysis
	Theoretical properties and semantics
	Monotone frameworks
	Equation solving
	Interprocedural analysis
	Static single assignment

	Types and effect systems
	Introduction
	Control flow analysis

	References

