
From Mathematical Formula to
Scientific Software

From Mathematical Formula to Scientific Software – p.1/44

Outline of the lecture

• Introduction
• Mathematical formula⇒ complete algorithm⇒

working code
• Two types of programming languages
• Some software issues
• Project assignment

From Mathematical Formula to Scientific Software – p.2/44

Scientific computing

• Motivations
• Computer simulation of physical processes
• Physical process→ mathematical model→

software program→ simulation result
• Application of numerical algorithms

(discrete approximations of analytical solutions)
• Widely used

• Simulation of natural phenomena
• Applications in industry
• Applications in medicine
• Applications in finance

From Mathematical Formula to Scientific Software – p.3/44

Scientific software

• Desired properties
• Correct
• Efficient (speed, memory, storage)
• Easily maintainable
• Easily extendible

• Important skills
• Understanding numerics
• Designing data structures
• Using libraries and programming tools
• (Quick learning of new programming languages)

From Mathematical Formula to Scientific Software – p.4/44

A typical scientific computing code

• Starting point
• Numerical problem

• Pre-processing
• Data input and preparation
• Build-up of internal data structure

• Main computation
• Post-processing

• Result analysis
• Display, output and visualization

From Mathematical Formula to Scientific Software – p.5/44

Computational kernels

• Integration
• Differentiation
• Interpolation
• Discretization
• Systems of linear equations
• Systems of nonlinear equations
• Ordinary differential equations
• Partial differential equations

From Mathematical Formula to Scientific Software – p.6/44

Building blocks

• Variables
• Arrays
• Branches
• Loops
• User-defined functions/subroutines/methods
• New advanced data types (classes/structs/modules)

From Mathematical Formula to Scientific Software – p.7/44

Example: Euclidean norm of a vector

• Given a vector v = (v1,v2, . . . ,vn) ∈ R
n

• Euclidean norm: ‖v‖ def
=

√

n

∑
i=1

v2
i

• v as a one-dimensional array (syntax in Java)
double[] v;
v = new double[n];

• Computing the Euclidean norm by a for-loop:
double norm_v = 0.;
int i;
for (i=0; i<n; i++) {

norm_v += v[i]*v[i];
}
norm_v = Math.sqrt(norm_v);

From Mathematical Formula to Scientific Software – p.8/44

Example: matrix-vector product

• Given matrix A ∈ R
m,n, two vectors: w ∈ R

m and v ∈ R
n

• Matrix-vector product w = Av where

wi
def
=

n

∑
j=1

Ai, jv j for i = 1,2, . . . ,m

• A as a two-dimensional array
• v and w as one-dimensional arrays
• Main computation by a two-level for-loop:

for (i=0; i<m; i++) {
w[i] = 0.;
for (j=0; j<n; j++)

w[i] += A[i][j]*v[j];
}

From Mathematical Formula to Scientific Software – p.9/44

A two-step strategy

• Correct implementation of a complicated numerical
problem is a challenging task

• Divide the task into two steps:
• Express the numerical problem as a complete

algorithm
• Translate the algorithm into a computer code using

a specific programming language

From Mathematical Formula to Scientific Software – p.10/44

Advantages

• Small gap between the numerical method and the
complete algorithm (few software issues to consider)

• Easy translation from the complete algorithm to a
computer code (no numerical issues)

• An effective approach
• Easy to debug
• Easy to switch to another programming language

From Mathematical Formula to Scientific Software – p.11/44

Writing complete algorithms

• Complete algorithm = mathematical pseudo code:
programming language independent!

• Rewrite a compact mathematical formula as a set of
simple operations (e.g., replace ∑ with a for-loop or
do-loop in Fortran)

• Identify input and output
• Give names to mathematical entities and make them

variables/arrays
• Introduce intermediate variables (if necessary)

From Mathematical Formula to Scientific Software – p.12/44

Example: Trapezoidal integration

• Want to approximate
∫ b

a
f (x)dx

• Use n Trapezoids

∫ b

a
f (x)dx≈

h
2

f (a)+
h
2

f (b)+h
n−1

∑
i=1

f (a+ ih)

• h =
b−a

n

From Mathematical Formula to Scientific Software – p.13/44

A complete algorithm

trapezoidal (a,b, f ,n)
h = b−a

n
s = 0
for i = 1, . . . ,n−1

s← s+h f (a+ ih)
end for
s← s+ h

2 f (a)+ h
2 f (b)

return s

• Input: a,b, f ,n

• Output: s

• ∑ is expressed by a for-loop
• The symbol “←” means an update

From Mathematical Formula to Scientific Software – p.14/44

Comments

• Strictly speaking, the two-step strategy is not
necessary for this very simple example

• The purpose is for demonstrating the ideas
• For more complicated numerical problems, the

mathematical pseudo code is useful for developing and
checking a software code

From Mathematical Formula to Scientific Software – p.15/44

Efficiency improvement

trapezoidal (a,b, f ,n)
h = b−a

n
s = 0 x = a
for i = 1, . . . ,n−1

x← x+h
s← s+ f (x)

end for
s← s+0.5 · (f (a)+ f (b))
s← hs

return s

• Reduction of the number of arithmetic operations
• Factorization of the factor h
• Introduction of intermediate variable x

• Multiplication (0.5 · f (a)) instead of division (f (a)/2)
From Mathematical Formula to Scientific Software – p.16/44

Costly operations

• Evaluation of complicated mathematical functions
(e.g. f (x) = e−x2

)
• Divisions
• If-test inside loops
• Read from memory and write to memory

From Mathematical Formula to Scientific Software – p.17/44

Optimization; rule of thumb

• Adopt good programming habits
• Maintain the clear structure of the numerical method
• Avoid “premature optimization”
• Leave part of the optimization work to a compiler

From Mathematical Formula to Scientific Software – p.18/44

Example: Simpson’s rule

• Want to approximate
∫ b

a
f (x)dx

• Similar idea as Trapezoidal rule, better accuracy

∫ b

a
f (x)dx≈

h
6

n

∑
i=1

{

f (xi−1)+4 f (xi− 1
2
)+ f (xi)

}

• h =
b−a

n
, xi = a+ ih, xi− 1

2
= 1

2(xi−1+ xi)

From Mathematical Formula to Scientific Software – p.19/44

Complete algorithm (I)

simpson (a,b, f ,n)
h = b−a

n
s = 0
for i = 1, . . . ,n

x− = a+(i−1)h
x+ = a+ ih
x = 1

2(x
−+ x+)

s← s+ f (x−)+4 f (x)+ f (x+)
end for
s← h

6s
return s

• Input: a,b, f ,n

• Output: s

• Intermediate variables: x−, x, x+ From Mathematical Formula to Scientific Software – p.20/44

Efficiency consideration

• f (x+) in iteration i is the same as f (x−) in iteration i+1

f (x0)+4 f (x 1
2
)+ f (x1)+

f (x1)+4 f (x1+ 1
2
)+ f (x2)+

· · ·

f (xn−1)+4 f (xn− 1
2
)+ f (xn)

• Unnecessary function evaluations should be avoided
for efficiency!

• Rewrite Simpson’s rule

∫ b

a
f (x)dx≈

h
6

[

f (a)+ f (b)+2
n−1

∑
i=1

f (xi)+4
n

∑
i=1

f (xi− 1
2
)

]

From Mathematical Formula to Scientific Software – p.21/44

Complete algorithm (II)

simpson (a,b, f ,n)
h = b−a

n
s1 = 0 x = a
for i = 1, . . . ,n−1

x← x+h
s1← s1+ f (x)

end for
s2 = 0 x = a+0.5 ·h
for i = 1, . . . ,n

s2← s2+ f (x)
x← x+h

end for
s = h

6(f (a)+ f (b)+2s1+4s2)
return s

• New intermediate
variables s1 and s2

• Two for-loops (can
we combine them
into one loop?)

From Mathematical Formula to Scientific Software – p.22/44

Choosing a programming language

• Many programming languages exist
• We examine 7 languages: Fortran 77, C, C++, Java,

Maple, Matlab & Python
• Issues that influence the choice of a programming

language
• Static typing vs. dynamic typing
• Computational efficiency
• Built-in high-performance utilities
• Support for user-defined data types

From Mathematical Formula to Scientific Software – p.23/44

Static typing vs. dynamic typing

• Statically typed programming languages
• Each variable must be given a specific type

(int, char, float, double etc.)
• Compiler is able to detect obvious syntax errors
• Special rules for transformation between different

types
• Dynamically typed programming language

• No need to give a specific type to a variable
• Typing is dynamic and adjusts to the context
• Great flexibility and more “elegant” syntax
• Difficult to detect certain “typos”

From Mathematical Formula to Scientific Software – p.24/44

Computational efficiency

• Compiled languages run normally fast

• Program code
compilation & linking

−→ executable (machine
code)

• Interpreted languages run normally slow
• Statements are interpreted directly as function calls

in a library
• Translation takes place “on the fly”

• Different compiled languages may have different
efficiency

From Mathematical Formula to Scientific Software – p.25/44

Built-in utilities

• Compiled languages have very fast loop-instructions
• Plain loops in interpreted languages (Maple, Matlab &

Python) are very slow
• Important for interpreted languages to have built-in

numerical libraries
• Need to “break” a complicated numerical method into a

series of simple steps when using an interpreted
language

From Mathematical Formula to Scientific Software – p.26/44

User-defined data types

• Built-in primitive data types may not be enough for
complicated numerical programming

• Need to “group” primitive variables into a new data type
• struct in C (only data, no function)
• class in C++, Java & Python
• Class hierarchies⇒ powerful tool⇒

object-oriented programming

From Mathematical Formula to Scientific Software – p.27/44

Different programming languages

• Different syntax
• Similar structure for main computation
• Different ways for function transfer
• Different I/O
• Different ways for writing comments
• No need to learn all the details at once!
• Learn from the examples!

From Mathematical Formula to Scientific Software – p.28/44

Example implementations

• Trapezoidal rule for

f (x) = e−x2
log(1+ xsin(x)), a = 0, b = 2, n = 1000.

• Using six programming languages
• Treating C as a subset of C++

From Mathematical Formula to Scientific Software – p.29/44

Trapezoidal rule in Fortran 77 (I)

real*8 function trapezoidal (a, b, f, n)
real*8 a, b, f
external f
integer n

real*8 s, h, x
integer i
h = (b-a)/float(n)
s = 0
x = a
do i = 1, n-1

x = x + h
s = s + f(x)

end do
s = 0.5*(f(a) + f(b)) + s
trapezoidal = h*s
return
end

From Mathematical Formula to Scientific Software – p.30/44

Trapezoidal rule in Fortran 77 (II)

C test function to integrate:

real*8 function f1 (x)
real*8 x
f1 = exp(-x*x)*log(1+x*sin(x))
return
end

C main program:

program integration
integer n
real*8 a, b, result
external f1
a = 0
b = 2
n = 1000
result = trapezoidal (a, b, f1, n)
write (*,*) result
end

From Mathematical Formula to Scientific Software – p.31/44

Trapezoidal rule in C++ (I)

File: Trapezoidal.h
typedef double (*fptr) (double x);

double Trapezoidal (double a, double b, fptr f, int n)
{
double h = (b-a)/double(n);
double s = 0, x = a;
for (int i=1; i<=n-1; i++) {

x = x + h;
s = s + f(x);

}
s = 0.5*(f(a)+f(b)) + s;
return h*s;

}

From Mathematical Formula to Scientific Software – p.32/44

Trapezoidal rule in C++ (II)

#include "Trapezoidal.h"
#include <cmath>
#include <iostream>

double f1 (double x)
{
return exp(-x*x)*log(1.0+x*sin(x));

}

int main()
{
double a = 0, b = 2;
int n = 1000;
double result = Trapezoidal (a, b, f1, n);
std::cout << result << std::endl;

}

From Mathematical Formula to Scientific Software – p.33/44

Trapezoidal rule in Java (I)

interface Func { // base class for function f(x)
public double f (double x); // default empty implementation

}

class Trapezoidal {
public static double integrate (double a, double b,

Func f, int n)
{

double h = (b-a)/((double) n);
double s = 0, x = a;
int i;
for (i=1; i<=n-1; i++) {

x = x + h;
s = s + f.f(x);

}
s = 0.5*(f.f(a)+f.f(b)) + s;
return h*s;

}
}

From Mathematical Formula to Scientific Software – p.34/44

Trapezoidal rule in Java (II)

class f1 implements Func {
public double f (double x)
{ return Math.exp(-x*x)*Math.log(1.0+x*Math.sin(x)); }

}

class Demo {
public static void main (String argv[])
{

double a = 0, b = 2;
int n = 1000;
double result;
f1 my_func = new f1();
result = Trapezoidal.integrate(a, b, my_func, n);
System.out.println(result);

}
}

From Mathematical Formula to Scientific Software – p.35/44

Trapezoidal rule in Matlab (I)

File: Trapezoidal.m
function r = Trapezoidal(a, b, f, n)
%TRAPEZOIDAL Numerical integration from a to b using trapezoids

f = fcnchk(f);
h = (b-a)/n;
s = 0;
x = a;

for i = 1:n-1
x = x + h;
s = s + feval(f,x);

end
s = 0.5*(feval(f,a) + feval(f,b)) + s;
r = h*s;

From Mathematical Formula to Scientific Software – p.36/44

Trapezoidal rule in Matlab (II)

File: f1.m
function y = f1(x)
y = exp(-x*x)*log(1+x*sin(x));

File: main.m
a = 0;
b = 2;
n = 1000;
result = Trapezoidal(a, b, @f1, n);
disp(result);

unix> matlab
matlab> main

From Mathematical Formula to Scientific Software – p.37/44

Trapezoidal rule in Python

#!/usr/bin/env python
from math import *

def Trapezoidal(a, b, f, n):
h = (b-a)/float(n);
s = 0
x = a
for i in range(1,n,1):

x = x + h
s = s + f(x)

s = 0.5*(f(a) + f(b)) + s
return h*s

def f1(x):
f = exp(-x*x)*log(1+x*sin(x))
return f

a = 0; b = 2; n = 1000;
result = Trapezoidal(a, b, f1, n)
print result

From Mathematical Formula to Scientific Software – p.38/44

Trapezoidal rule in Maple

File: Trapezoidal.mpl
Trapezoidal := proc(a,b,f,n)
local h, s, x, i:
h := (b-a)/n:
s := 0: x := a:
for i from 1 to n-1 do
x := x + h:
s := s + f(x):

od:
s := s + 0.5*(f(a)+f(b)):
s := h*s:
s;
end:

unix> maple

> read "Trapezoidal.mpl";
> f1:=x->exp(-x*x)*log(1+x*sin(x));

2
f1 := x -> exp(-x) log(1 + x sin(x))

> q=Trapezoidal(0,2.0,f1,1000);

From Mathematical Formula to Scientific Software – p.39/44

Measuring CPU-time

• On Unix/Linux, command time can be used
• Easy to use
• Low timing resolution

• There are programming language dependent timing
functions
• High timing resolution
• No standard name or syntax

From Mathematical Formula to Scientific Software – p.40/44

Vectorization

• Loops are very slow in interpreted languages
• Should use built-in vector functionality when possible

trapezoidal_vec (a,b, f ,n)
h = b−a

n
x = (a,a+h, . . . ,b)
v = f (x)
s = h · (sum(v)−0.5 · (v1+ vn+1))

return s

From Mathematical Formula to Scientific Software – p.41/44

Guidelines on implementation

• Understand the numerics (make use of literature)
• Close resemblance between mathematical pseudo

code and numerical method
• Test the implementation on first problems with known

solutions
• No premature optimization before code verification
• During later optimization, refer to the “non-optimized”

code as reference for checking

From Mathematical Formula to Scientific Software – p.42/44

	Outline of the lecture
	Scientific computing
	Scientific software
	A typical scientific computing code
	Computational kernels
	Building blocks
	Example: Euclidean norm of a vector
	Example: matrix-vector product
	A two-step strategy
	Advantages
	Writing complete algorithms
	Example: Trapezoidal integration
	A complete algorithm
	Comments
	Efficiency improvement
	Costly operations
	Optimization; rule of thumb
	Example: Simpson's rule
	Complete algorithm (I)
	Efficiency consideration
	Complete algorithm (II)
	Choosing a programming language
	Static typing vs.~dynamic typing
	Computational efficiency
	Built-in utilities
	User-defined data types
	Different programming languages
	Example implementations
	Trapezoidal rule in Fortran 77 (I)
	Trapezoidal rule in Fortran 77 (II)
	Trapezoidal rule in C++ (I)
	Trapezoidal rule in C++ (II)
	Trapezoidal rule in Java (I)
	Trapezoidal rule in Java (II)
	Trapezoidal rule in Matlab (I)
	Trapezoidal rule in Matlab (II)
	Trapezoidal rule in Python
	Trapezoidal rule in Maple
	Measuring CPU-time
	Vectorization
	Guidelines on implementation

