We consider matrix norms on \((\mathbb{C}^{m,n}, \mathbb{C})\). All results holds for \((\mathbb{R}^{m,n}, \mathbb{R})\).

Definition 1 (Matrix Norms). A function \(\| \cdot \| : \mathbb{C}^{m,n} \rightarrow \mathbb{C}\) is called a **matrix norm** on \(\mathbb{C}^{m,n}\) if for all \(A, B \in \mathbb{C}^{m,n}\) and all \(\alpha \in \mathbb{C}\)

1. \(\| A \| \geq 0\) with equality if and only if \(A = 0\). \hspace{1cm} \text{(positivity)}
2. \(\| \alpha A \| = |\alpha| \| A \|\). \hspace{1cm} \text{(homogeneity)}
3. \(\| A + B \| \leq \| A \| + \| B \|\). \hspace{1cm} \text{(subadditivity)}

A matrix norm is simply a vector norm on the finite dimensional vector spaces \((\mathbb{C}^{m,n}, \mathbb{C})\) of \(m \times n\) matrices.
Equivalent norms

Adapting some general results on vector norms to matrix norms give

Theorem 2.

1. All matrix norms are equivalent. Thus, if $\| \cdot \|$ and $\| \cdot \|'$ are two matrix norms on $\mathbb{C}^{m,n}$ then there are positive constants μ and M such that $\mu \| A \| \leq \| A \|' \leq M \| A \|$ holds for all $A \in \mathbb{C}^{m,n}$.

2. A matrix norm is a continuous function $\| \cdot \| : \mathbb{C}^{m,n} \to \mathbb{R}$.
Submultiplicativity

For matrix norms we usually require that the norm of a product is bounded by the product of the norms. Thus for square matrices $A, B \in \mathbb{C}^{n,n}$ and a matrix norm we most often have the additional property

4. $\|AB\| \leq \|A\|\|B\|$ \hspace{1cm} \text{(submultiplicativity)}.

For a square matrix A and a submultiplicative matrix norm $\|\cdot\|$ we have

$$\|A^k\| \leq \|A\|^k \text{ for } k \in \mathbb{N}. \hspace{1cm} (1)$$
Consistent Matrix norms

When \(m \) and \(n \) vary we have a family of norms which are formally different for each \(m \) and \(n \) since they are defined in different spaces. However, the most common matrix norms are defined by the same formula for all \(m, n \) and we consider mainly such norms.

Definition 3 (Consistent Matrix Norms). A submultiplicative matrix norm which is defined for all \(m, n \in \mathbb{N} \), is said to be a consistent matrix norm.
The Frobenius Matrix Norm

For $A \in \mathbb{C}^{m,n}$ we define the Frobenius norm by

$$\|A\|_F := \left(\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2 \right)^{1/2}.$$

$$\|A\|_F = \sqrt{\sigma_1^2 + \cdots + \sigma_n^2} \quad \text{(singular values of } A \text{.)}$$

The Frobenius norm is a consistent matrix norm which is subordinate to the Euclidian vector norm.
Subordinate Matrix Norm

A matrix norm $\| \| \cdot \|_{\alpha}$ on $\mathbb{C}^{m,n}$ is **subordinate** to the vector norms $\| \cdot \|_{\alpha}$ on \mathbb{C}^{n} and $\| \cdot \|_{\beta}$ on \mathbb{C}^{m} if

$$\| A x \|_{\beta} \leq \| A \| \| x \|_{\alpha} \text{ for all } A \in \mathbb{C}^{m,n} \text{ and } x \in \mathbb{C}^{n}.$$
Definition 4. Suppose $m, n \in \mathbb{N}$ are given and let $\| \cdot \|_\alpha$ be a vector norm on \mathbb{C}^n and $\| \cdot \|_\beta$ a vector norm on \mathbb{C}^m. For $A \in \mathbb{C}^{m,n}$ we define

$$
\| A \| := \| A \|_{\alpha, \beta} := \max_{x \neq 0} \frac{\| Ax \|_\beta}{\| x \|_\alpha}.
$$

(2)

We call this the (α, β) operator norm, the (α, β)-norm, or simply the α-norm if $\alpha = \beta$.
Operator norm properties

The operator norm has the following properties:

- It is a **matrix norm**
- It is **subordinate** to the vector norms $\| \cdot \|_\alpha$ and $\| \cdot \|_\beta$.
- It is **consistent** if the vector norms $\| \cdot \|_\alpha = \| \cdot \|_\beta$ and they are defined for all m, n.
- There is some $x^* \in \mathbb{C}^n$ with $\| x^* \|_\alpha = 1$ such that

$$
\| A \| = \max_{\| x \|_\alpha = 1} \| Ax \|_\beta = \| A x^* \|_\beta.
$$
The p matrix norm

- The operator norms $\| \cdot \|_p$ defined from the p-vector norms are of special interest.

- We define

$$\| A \|_p := \max_{x \neq 0} \frac{\| Ax \|_p}{\| x \|_p} = \max_{\| y \|_p = 1} \| Ay \|_p.$$ \hspace{1cm} (3)

- The p-norms are consistent matrix norms which are subordinate to the p-vector norm.
Explicit expressions

For $A \in \mathbb{C}^{m,n}$ we have:

- $\|A\|_1 = \max_{1 \leq j \leq n} \sum_{k=1}^{m} |a_{k,j}|$
- $\|A\|_2 = \sigma_1$, the largest singular value of A
- $\|A\|_\infty = \max_{1 \leq k \leq m} \sum_{j=1}^{n} |a_{k,j}|$

If $A \in \mathbb{C}^{n,n}$ is nonsingular then $\|A^{-1}\|_2 = \frac{1}{\sigma_n}$, the smallest singular value of A.

Proof:
Unitary Transformations

An important property of the 2-norm is that it is invariant with respect to unitary transformations.

Let $k, m, n \in \mathbb{N}$, $V \in \mathbb{C}^{k,m}$, $U \in \mathbb{C}^{n,n}$, $A \in \mathbb{C}^{m,n}$, $V^HV = I$ and $U^HU = I$. Then

1. $\|VA\|_2 = \|A\|_2$ and $\|V\|_2 = 1$,
2. $\|AU\|_2 = \|A\|_2$.

Proof:
Example

- $A := \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
- $\|A\|_1 = 6$
- $\|A\|_2 = 5.465$
- $\|A\|_{\infty} = 7.$
- $\|A\|_F = 5.4772$
Perturbation of linear systems

Consider the system of two linear equations

\[\begin{align*}
x_1 + x_2 &= 20 \\
x_1 + 0.999x_2 &= 19.99
\end{align*} \]

The exact solution is \(x_1 = x_2 = 10 \).

Suppose we replace the second equation by

\[x_1 + 1.001x_2 = 19.99, \]

the exact solution changes to \(x_1 = 30, x_2 = -10 \).

A small change in one of the coefficients, from 0.999 to 1.001, changed the exact solution by a large amount.
Ill Conditioning

A mathematical problem in which the solution is very sensitive to changes in the data is called **ill-conditioned** or sometimes **ill-posed**.

Such problems are difficult to solve on a computer.

If at all possible, the mathematical model should be changed to obtain a more well-conditioned or properly-posed problem.
Perturbations

We consider what effect a small change (perturbation) in the data A, b has on the solution x of a linear system $Ax = b$.

Suppose y solves $(A + E)y = b + e$ where E is a (small) $n \times n$ matrix and e a (small) vector.

How large can $y - x$ be?

To measure this we use vector and matrix norms.
Conditions on the norms

\[\| \cdot \| \text{ will denote a vector norm on } \mathbb{C}^n \text{ and also a submultiplicative matrix norm on } \mathbb{C}^{n,n} \text{ which in addition is subordinate to the vector norm.} \]

Thus for any \(A, B \in \mathbb{C}^{n,n} \) and any \(x \in \mathbb{C}^n \) we have

\[\| AB \| \leq \| A \| \| B \| \text{ and } \| Ax \| \leq \| A \| \| x \|. \]

This is satisfied if the matrix norm is the operator norm corresponding to the given vector norm or the Frobenius norm.
Absolute and relative error

- The difference $\|y - x\|$ measures the absolute error in y as an approximation to x,

- $\|y - x\|/\|x\|$ or $\|y - x\|/\|y\|$ is a measure for the relative error.
Perturbation in the right hand side

Theorem 5. Suppose $A \in \mathbb{C}^{n,n}$ is invertible, $b, e \in \mathbb{C}^n$, $b \neq 0$ and $Ax = b$, $Ay = b + e$. Then

$$\frac{1}{K(A)} \frac{\|e\|}{\|b\|} \leq \frac{\|y - x\|}{\|x\|} \leq K(A) \frac{\|e\|}{\|b\|}, \quad K(A) = \|A\| \|A^{-1}\|. \quad (4)$$

Proof:

Consider (4). $\frac{\|e\|}{\|b\|}$ is a measure for the size of the perturbation e relative to the size of b. $\frac{\|y - x\|}{\|x\|}$ can in the worst case be

$$K(A) = \|A\| \|A^{-1}\|$$

times as large as $\frac{\|e\|}{\|b\|}$.
Condition number

$K(A)$ is called the **condition number with respect to inversion of a matrix**, or just the condition number, if it is clear from the context that we are talking about solving linear systems.

The condition number depends on the matrix A and on the norm used. If $K(A)$ is large, A is called **ill-conditioned** (with respect to inversion).

If $K(A)$ is small, A is called **well-conditioned** (with respect to inversion).
Condition number properties

Since \[\|A\| \|A^{-1}\| \geq \|AA^{-1}\| = \|I\| \geq 1 \] we always have \[K(A) \geq 1. \]

Since all matrix norms are equivalent, the dependence of \(K(A) \) on the norm chosen is less important than the dependence on \(A \).

Usually one chooses the spectral norm when discussing properties of the condition number, and the \(l_1 \) and \(l_\infty \) norm when one wishes to compute it or estimate it.
The 2-norm

Suppose A has singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n > 0$ and eigenvalues $|\lambda_1| \geq |\lambda_2| \geq \cdots \geq |\lambda_n|$ if A is square.

$$K_2(A) = \|A\|_2 \|A^{-1}\|_2 = \frac{\sigma_1}{\sigma_n}$$

$$K_2(A) = \|A\|_2 \|A^{-1}\|_2 = \frac{|\lambda_1|}{|\lambda_n|}, \quad A \text{ normal.}$$

It follows that A is ill-conditioned with respect to inversion if and only if σ_1/σ_n is large, or $|\lambda_1|/|\lambda_n|$ is large when A is normal.

$$K_2(A) = \|A\|_2 \|A^{-1}\|_2 = \frac{\lambda_1}{\lambda_n}, \quad A \text{ positive definite.}$$
Suppose we have computed an approximate solution \(y \) to \(Ax = b \). The vector \(r(y) = Ay - b \) is called the residual vector, or just the residual. We can bound \(x - y \) in terms of \(r(y) \).

Theorem 6. Suppose \(A \in \mathbb{C}^{n,n} \), \(b \in \mathbb{C}^{n} \), \(A \) is nonsingular and \(b \neq 0 \). Let \(r(y) = Ay - b \) for each \(y \in \mathbb{C}^{n} \). If \(Ax = b \) then

\[
\frac{1}{K(A)} \frac{\|r(y)\|}{\|b\|} \leq \frac{\|y - x\|}{\|x\|} \leq K(A) \frac{\|r(y)\|}{\|b\|}.
\] (5)
Discussion

- If A is well-conditioned, (5) says that
 \[\frac{\| y - x \|}{\| x \|} \approx \frac{\| r(y) \|}{\| b \|}. \]

 In other words, the accuracy in y is about the same order of magnitude as the residual as long as $\| b \| \approx 1$.

- If A is ill-conditioned, anything can happen.

- The solution can be inaccurate even if the residual is small.

- We can have an accurate solution even if the residual is large.
We consider next a perturbation in A.

Theorem 7. Suppose $A, E \in \mathbb{C}^{n,n}$, $b \in \mathbb{C}^n$ with A invertible and $b \neq 0$. If $\|A^{-1}E\| < 1$ for some operator norm then $A + E$ is invertible. If $Ax = b$ and $(A + E)y = b$ then

$$\frac{\|y - x\|}{\|x\|} \leq \frac{\|A^{-1}E\|}{1 - \|A^{-1}E\|} \leq \frac{K(A)}{1 - \|A^{-1}E\| \|A\|} \|E\|.$$ \hspace{1cm} \text{(6)}

- $\|E\|/\|A\|$ is a measure of the size of the perturbation E in A relative to the size of A.
- The condition number again plays a crucial role.
The Spectral Radius

- We define the **spectral radius** of a matrix $A \in \mathbb{C}^{n,n}$ as the maximum absolute values of the eigenvalues.

$$\rho(A) = \max_{\lambda \in \sigma(A)} |\lambda|.$$ \hfill (7)

- For any submultiplicative matrix norm $\|\cdot\|$ on $\mathbb{C}^{n,n}$ and any $A \in \mathbb{C}^{n,n}$ we have $\rho(A) \leq \|A\|$.

Proof:

- Let $A \in \mathbb{C}^{n,n}$ and $\epsilon > 0$ be given. There is a submultiplicative matrix norm $\|\cdot\|$ on $\mathbb{C}^{n,n}$ such that $\rho(A) \leq \|A\| \leq \rho(A) + \epsilon$.

Proof:
Limits

For any $A \in \mathbb{C}^{n,n}$ we have

$$\lim_{k \to \infty} A^k = 0 \iff \rho(A) < 1.$$

Convergence can be slow:

$$A = \begin{bmatrix} 0.99 & 1 & 0 \\ 0 & 0.99 & 1 \\ 0 & 0 & 0.99 \end{bmatrix}, \quad A^{100} = \begin{bmatrix} 0.4 & 9.37 & 1849 \\ 0 & 0.4 & 37 \\ 0 & 0 & 0.4 \end{bmatrix},$$

$$A^{2000} = \begin{bmatrix} 10^{-9} & \epsilon & 0.004 \\ 0 & 10^{-9} & \epsilon \\ 0 & 0 & 10^{-9} \end{bmatrix}.$$