Lecture 1 INF-MAT 4350 2008: Cubic Splines and Tridiagonal Systems

Tom Lyche

Centre of Mathematics for Applications,
Department of Informatics,
University of Oslo
August 22, 2008

Plan for the day

- Notation
- Piecewise Linear Interpolation $\left(C^{0}\right)$
- Cubic Hermite Interpolation (C^{1})
- Cubic Spline Interpolation (C^{2})
- The equations for C^{2}
- The spline matrices for different boundary conditions
- Non-singularity of the spline matrices
- LU-factorization of a tridiagonal matrix
- Strictly diagonally dominant matrices
- Existence of LU-factorization for the spline matrices

Notation

- The set of natural numbers, integers, rational numbers, real numbers, and complex numbers are denoted by $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$, respectively.
- $\mathbb{R}^{n}\left(\mathbb{C}^{n}\right)$ is the set of n-tuples of real(complex) numbers which we will represent as column vectors. Thus $\mathbf{x} \in \mathbb{R}^{n}$ means

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

where $x_{i} \in \mathbb{R}$ for $i=1, \ldots, n$. Row vectors are normally identified using the transpose operation. Thus if $\mathbf{x} \in \mathbb{R}^{n}$ then \mathbf{x} is a column vector and \mathbf{x}^{T} is a row vector.

Notation2

- $\mathbb{R}^{m, n}\left(\mathbb{C}^{m, n}\right)$ is the set of $m \times n$ matrices with real(complex) entries represented as

$$
\mathbf{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

The entry in the i th row and j th column of a matrix \mathbf{A} will be denoted by $a_{i, j}, a_{i j}, \mathbf{A}(i, j)$ or $(\mathbf{A})_{i, j}$.

The Interpolation Problem

- Given a non-negative integer m,
- $m+2 x$-values $\mathbf{x}=\left[x_{0}, \ldots, x_{m+1}\right]$ with $x_{i}=a+i h$ and $h=(b-a) /(m+1)$.
- $m+2$ real y-values $\mathbf{y}=\left[y_{0}, \ldots, y_{m+1}\right]$.
- Find a function $p:[a, b] \rightarrow \mathbb{R}$ such that $p\left(x_{j}\right)=y_{j}$, for $j=0, \ldots, m+1$.
- p can be a polynomial or a piecewise polynomial of low degree.

Piecewise Linear Interpolation (C^{0})

- The piecewise linear function $p:[a, b] \rightarrow \mathbb{R}$ given by

$$
p(x)=p_{i}(x)=y_{i}(1-t)+y_{i+1} t, t=\frac{x-x_{i}}{h}, x \in\left[x_{i}, x_{i+1}\right]
$$

satisfies $p\left(x_{i}\right)=y_{i}$ for $i=0, \ldots, m+1$.

- $p \in C[a, b]$ since $p_{i-1}\left(x_{i}\right)=p_{i}\left(x_{i}\right)=y_{i}$ at the knots.
- By the chain rule $\frac{d p_{i}}{d x}=\frac{d p_{i}}{d t} \frac{d t}{d x}=\frac{1}{h} \frac{d p_{i}}{d t}$
- $p^{\prime}\left(x_{i}\right)=\delta_{i}:=\left(y_{i+1}-y_{i}\right) / h$.
- Normally $\delta_{i-1} \neq \delta_{i}$ and the derivative has breaks at the break-points $\left(x_{i}, y_{i}\right)$.

Cubic Hermite Interpolation $\left(C^{1}\right)$

- Given in addition $m+2$ derivative values $\mathbf{s}=\left[s_{0}, \ldots, s_{m+1}\right]$.
- Theorem

Let $p:[a, b] \rightarrow \mathbb{R}$ be the piecewise cubic function given for $i=0, \ldots, m$ and $x \in\left[x_{i}, x_{i+1}\right]$ by

$$
\begin{equation*}
p(x)=p_{i}(x)=c_{0}(1-t)^{3}+c_{1} 3 t(1-t)^{2}+c_{2} 3 t^{2}(1-t)+c_{3} t^{3}, t=\frac{x-x_{i}}{h} . \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{0}=y_{i}, \quad c_{1}=y_{i}+\frac{h}{3} s_{i}, \quad c_{2}=y_{i+1}-\frac{h}{3} s_{i+1}, \quad c_{3}=y_{i+1} . \tag{2}
\end{equation*}
$$

Then $p\left(x_{j}\right)=y_{j}, p^{\prime}\left(x_{j}\right)=p_{j}$, for $j=0, \ldots, m+1$.

Example

Figure: A piecewise linear interpolant to $f(x)=x^{4}$ (left) and a cubic Hermite interpolant (right).

The C^{2} equation

- The cubic Hermite interpolant p is continuous and has a continuous derivative for all $x \in[a, b]$, i. e., $p \in C^{1}[a, b]$.
- Suppose that instead of specifying the derivative values \mathbf{s} we determine them so that the interpolant p has a continuous second derivative i. e., $p \in C^{2}[a, b]$.
- The continuity requirement $p_{i-1}^{\prime \prime}\left(x_{i}\right)=p_{i}^{\prime \prime}\left(x_{i}\right)$ for the 2 . derivative leads to

$$
s_{i-1}+4 s_{i}+s_{i+1}=3 \frac{y_{i+1}-y_{i-1}}{h}=: \beta_{i}, \quad i=1, \ldots, m
$$

Boundary Conditions

- $s_{i-1}+4 s_{i}+s_{i+1}=\beta_{i}, i=1, \ldots, m$
- m equations with $m+2$ unknowns s_{0}, \ldots, s_{m+1}
- need two boundary conditions
- Clamped (1. derivative) s_{0} and s_{m+1} given
- The second derivative $p^{\prime \prime}\left(x_{0}\right)=q_{0}$ and $p^{\prime \prime}\left(x_{m+1}\right)=q_{m+1}$
- Natural $q_{0}=q_{m+1}=0$.
- Not-a-knot $p_{0}=p_{1}$ and $p_{m-1}=p_{m}$.

Figure: A physical spline with ducks

The Clamped System

- $s_{i-1}+4 s_{i}+s_{i+1}=\beta_{i}, i=1, \ldots, m$

$$
\left[\begin{array}{ccccc}
4 & 1 & & & \\
1 & 4 & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & 1 & 4 & 1 \\
& & & 1 & 4
\end{array}\right]\left[\begin{array}{c}
s_{1} \\
s_{2} \\
\vdots \\
s_{m-1} \\
s_{m}
\end{array}\right]=\left[\begin{array}{c}
\beta_{1}-s_{0} \\
\beta_{2} \\
\vdots \\
\beta_{m-1} \\
\beta_{m}-s_{m+1}
\end{array}\right]
$$

- tridiagonal $m \times m$ system $\mathbf{N}_{1} \mathbf{s}=\mathbf{b}$.
- strictly diagonally dominant

The 2. derivative system

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
2 & 1 & & & \\
1 & 4 & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & 1 & 4 & 1 \\
& & & 1 & 2
\end{array}\right]\left[\begin{array}{c}
s_{0} \\
s_{1} \\
\vdots \\
s_{m} \\
s_{m+1}
\end{array}\right]=\left[\begin{array}{c}
\nu_{0} \\
\beta_{1} \\
\vdots \\
\beta_{m} \\
\nu_{m+1}
\end{array}\right],} \\
& \text { - } \nu_{0}=3 \delta_{0}-h q_{0} / 2, \quad \nu_{m+1}=3 \delta_{m}+h q_{m+1} / 2 . \\
& \text { tridiagonal }(m+2) \times(m+2) \text { system } \mathbf{N}_{2} \mathbf{s}=\mathbf{b} . \\
& \text { - strictly diagonally dominant }
\end{aligned}
$$

The not-a-knot system

$$
\left[\begin{array}{ccccc}
1 & 2 & & & \\
1 & 4 & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & 1 & 4 & 1 \\
& & & 2 & 1
\end{array}\right]\left[\begin{array}{c}
s_{0} \\
s_{1} \\
\vdots \\
s_{m} \\
s_{m+1}
\end{array}\right]=\left[\begin{array}{c}
\gamma_{0} \\
\beta_{1} \\
\vdots \\
\beta_{m} \\
\gamma_{m+1}
\end{array}\right]
$$

- $\gamma_{0}=\frac{5}{2} \delta_{0}+\frac{1}{2} \delta_{1}, \quad \gamma_{m+1}=\frac{1}{2} \delta_{m-1}+\frac{5}{2} \delta_{m}$.
- tridiagonal $(m+2) \times(m+2)$ system $\mathbf{N}_{3} \mathbf{s}=\mathbf{b}$.
- not strictly diagonally dominant

Figure: Cubic spline interpolation. Clamped (left) and not-a-knot (right). The break points are marked with circles

The tridiagonal matrix

$$
\mathbf{A}=\left[\begin{array}{ccccc}
d_{1} & c_{1} & & & \\
a_{2} & d_{2} & c_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & a_{n-1} & d_{n-1} & c_{n-1} \\
& & & a_{n} & d_{n}
\end{array}\right]
$$

- Non-singular?
- Gaussian elimination (LU-factorization) without row interchanges well defined?

Non-singular matrix

Definition

A square matrix \mathbf{A} is said to be non-singular if the only solution of the homogenous system $\mathbf{A x}=\mathbf{0}$ is $\mathbf{x}=\mathbf{0}$. The matrix is singular if it is not non-singular.

- Suppose \mathbf{A} is non-singular.
- The linear system $\mathbf{A x}=\mathbf{b}$ has a unique solution \mathbf{x} for any \mathbf{b}
- A has an inverse
- If $\mathbf{A}=\mathbf{B C}$ then \mathbf{B} and \mathbf{C} are non-singular.

Lemma

Suppose A is the block matrix

$$
\mathbf{A}=\left[\begin{array}{ccc}
\mathbf{A}_{11} & \mathbf{A}_{12} & \mathbf{0} \\
\mathbf{0} & \mathbf{A}_{22} & \mathbf{0} \\
\mathbf{0} & \mathbf{A}_{32} & \mathbf{A}_{33}
\end{array}\right]
$$

where each diagonal block $\mathbf{A}_{i i}$ is square and non-singular. Then \mathbf{A} is non-singular.

- Proof Let $\mathbf{A x}=\mathbf{0}$ and let $\mathbf{x}=\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right]^{T}$ be partitioned conformally with A.

$$
\mathbf{A x}=\left[\begin{array}{c}
\mathbf{A}_{11} \mathbf{x}_{1}+\mathbf{A}_{12} \mathbf{x}_{2} \\
\mathbf{A}_{22} \mathbf{x}_{2} \\
\mathbf{A}_{32} \mathbf{x}_{2}+\mathbf{A}_{33} \mathbf{x}_{3}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{0} \\
\mathbf{0} \\
\mathbf{0}
\end{array}\right] .
$$

- $\mathbf{x}_{2}=\mathbf{0}$ since $\mathbf{A}_{22} \mathbf{x}_{2}=\mathbf{0}$ and \mathbf{A}_{22} is non-singular.
- $\mathbf{x}_{1}=\mathbf{0}$ and $\mathbf{x}_{3}=\mathbf{0}$ since $\mathbf{A}_{11} \mathbf{x}_{1}=\mathbf{0}, \mathbf{A}_{33} \mathbf{x}_{3}=\mathbf{0}$ and these matrices are non-singular.
- Thus $\mathbf{x}=\mathbf{0}$ and \mathbf{A} is non-singular.

Strict diagonal dominance

- A matrix $\mathbf{A} \in \mathbb{C}^{n, n}$ is said to be strictly diagonally dominant if $\sigma_{i}:=\left|a_{i i}\right|-\sum_{j \neq i}\left|a_{i j}\right|>0$ for $i=1, \ldots, n$.
- The clamped- and 2. derivative spline matrices are strictly diagonally dominant, the not-a-knot is not.
- Lemma

A strictly diagonally dominant matrix $\mathbf{A} \in \mathbb{C}^{n, n}$ is non-singular.

- Proof
- Let \mathbf{x} be any solution of $\mathbf{A x}=\mathbf{b}=\mathbf{0}$
- let i be such that $\left|x_{i}\right|=\max _{j}\left|x_{j}\right|$.
- $0=\left|a_{i i} x_{i}+\sum_{j \neq i} a_{i j} x_{j}\right| \geq\left|a_{i i} x_{i}\right|-\sum_{j \neq i}\left|a_{i j} x_{j}\right| \geq\left|x_{i}\right| \sigma_{i}$.
- Since $\sigma_{i}>0$ it follows that $\left|x_{i}\right|=0$. But then $\mathbf{x}=\mathbf{0}$ and \mathbf{A} is non-singular.

Non-singularity of the spline matrices

- Theorem

The three spline matrices $\mathbf{N}_{1}, \mathbf{N}_{2}$, and \mathbf{N}_{3} are non-singular.

- Proof The matrices \mathbf{N}_{1} and \mathbf{N}_{2} are strictly diagonally dominant and therefore non-singular.
- Transform \mathbf{N}_{3} to block form with strictly diagonally dominant diagonal blocks. Consider $m=3$.

$$
\mathbf{B}=\left[\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right], \mathbf{A}:=\mathbf{B N}_{3}=\left[\begin{array}{l|lll|r}
1 & 2 & 0 & 0 & 0 \\
\hline 0 & 2 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & \\
0 & 0 & 1 & 2 & 0 \\
\hline 0 & 0 & 0 & 2 & 1
\end{array}\right] .
$$

- \mathbf{A} is non-singular by Lemma and therefore \mathbf{N}_{3} is non-singular.

Given a linear system $\mathbf{A x}=\mathbf{b}$, where $\mathbf{A}=\operatorname{tridiag}\left(a_{i}, d_{i}, c_{i}\right) \in \mathbb{R}^{n, n}$ is non-singular and tridiagonal. We try to construct triangular matrices \mathbf{L} and \mathbf{R} such that the product $\mathbf{A}=\mathbf{L R}$ has the form

$$
\left[\begin{array}{ccccc}
d_{1} & c_{1} & & & \tag{3}\\
a_{2} & d_{2} & c_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & a_{n-1} & d_{n-1} & c_{n-1} \\
& & & a_{n} & d_{n}
\end{array}\right]=\left[\begin{array}{cccc}
1 & & & \\
l_{2} & 1 & & \\
& \ddots & \ddots & \\
& & I_{n} & 1
\end{array}\right]\left[\begin{array}{cccc}
r_{1} & c_{1} & & \\
& \ddots & \ddots & \\
& & r_{n-1} & c_{n-1} \\
& & & r_{n}
\end{array}\right]
$$

Note that \mathbf{L} has ones on the diagonal, and that we can use the same c_{i} entries on the super-diagonals of \mathbf{A} and \mathbf{R}.

LU for $n=3$

$$
\left[\begin{array}{lll}
d_{1} & c_{1} & 0 \\
a_{2} & d_{2} & c_{2} \\
0 & a_{3} & d_{3}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
l_{2} & 1 & 0 \\
0 & l_{3} & 1
\end{array}\right]\left[\begin{array}{ccc}
r_{1} & c_{1} & 0 \\
0 & r_{2} & c_{2} \\
0 & 0 & r_{3}
\end{array}\right]
$$

- Given a_{i}, d_{i}, c_{i}. Find I_{i}, r_{i}. Compare (i, j) entries on both sides
- $(1,1): d_{1}=r_{1} \Rightarrow r_{1}=d_{1}$
- $(2,1): a_{2}=l_{2} r_{1} \Rightarrow l_{2}=a_{2} / r_{1}$
- $(2,2): d_{2}=l_{2} c_{1}+r_{2} \Rightarrow r_{2}=d_{2}-l_{2} c_{1}$
- $(2,3): a_{3}=l_{3} r_{2} \Rightarrow r_{3}=a_{3} / r_{2}$
- $(3,3): d_{3}=l_{3} c_{2}+r_{3} \Rightarrow r_{3}=d_{3}-l_{3} c_{2}$
- In general

$$
r_{1}=d_{1}, \quad I_{k}=\frac{a_{k}}{r_{k-1}}, \quad r_{k}=d_{k}-I_{k} c_{k-1}, \quad k=2,3, \ldots, n .
$$

Use LU to solve $\mathbf{A x}=\mathbf{b}$

- $\mathbf{A x}=\mathbf{L}(\mathbf{R x})=\mathbf{b}$
- $L y=b$
- $\mathrm{Rx}=\mathrm{y}$

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
l_{2} & 1 & 0 \\
0 & l_{3} & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

- $y_{1}=b_{1}, y_{2}=b_{2}-l_{2} y_{1}, y_{3}=b_{3}-l_{3} y_{2}$ (Forward substitution)

$$
\left[\begin{array}{ccc}
r_{1} & c_{1} & 0 \\
0 & r_{2} & c_{2} \\
0 & 0 & r_{3}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]
$$

- $x_{3}=y_{3} / r_{3}, x_{2}=\left(y_{2}-c_{2} x_{3}\right) / r_{2}, x_{1}=\left(y_{1}-c_{1} x_{2}\right) / r_{1}$ (Backward substitution)

The Algorithm

- $\mathbf{A}=\mathbf{L R}$ (LU-factorization)
- $\mathbf{L y}=\mathbf{b}$ (forward substitution)
- $\mathbf{R x}=\mathbf{y}$ (backward substituion)

$$
r_{1}=d_{1}, \quad I_{k}=\frac{a_{k}}{r_{k-1}}, \quad r_{k}=d_{k}-l_{k} c_{k-1}, \quad k=2,3, \ldots, n
$$

- $y_{1}=b_{1}, \quad y_{k}=b_{k}-I_{k} y_{k-1}, \quad k=2,3, \ldots, n$,
- $x_{n}=y_{n} / r_{n}, \quad x_{k}=\left(y_{k}-c_{k} x_{k+1}\right) / r_{k}, \quad k=n-1, \ldots, 2,1$.
- This process is well defined if $r_{k} \neq 0$ for all k
- The number of arithmetic operations (flops) is $8 n-7=O(n)$.

Enough that $r_{k} \neq 0$ for $k \leq n-1$

- If \mathbf{A} is non-singular and $r_{k} \neq 0$ for $k \leq n-1$ then also $r_{n} \neq 0$.
- For the LU-factorization exists and is unique if $r_{i} \neq 0$ for $i=0,1, \ldots, n-1$.
- Since \mathbf{A} is non-singular the matrices \mathbf{L} and \mathbf{R} are non-singular.
- We show next time that a triangular matrix is non-singular if and only if all diagonal entries are non-zero. It follows that r_{n} is non-zero.

$r_{j} \neq 0$ for $j \leq n-1 ?$

Theorem

Suppose A is strictly diagonally dominant and tridiagonal. Then A has a unique LU-factorization.

- Recall

$$
r_{1}=d_{1}, \quad I_{k}=\frac{a_{k}}{r_{k-1}}, \quad r_{k}=d_{k}-l_{k} c_{k-1}, \quad k=2,3, \ldots, n
$$

- We show that $\left|r_{k}\right|>\left|c_{k}\right|$ for $k=1,2, \ldots, n$.
- Using induction on k suppose for some $k \leq n$ that $\left|r_{k-1}\right|>\left|c_{k-1}\right|$. This holds for $k=2$.
$-\left|r_{k}\right|=\left|d_{k}-l_{k} c_{k-1}\right|=\left|d_{k}-\frac{a_{k} c_{k-1}}{r_{k-1}}\right| \geq\left|d_{k}\right|-\frac{\left|a_{k}\right|\left|c_{k-1}\right|}{\left|r_{k-1}\right|}>$ $\left|d_{k}\right|-\left|a_{k}\right|>\left|c_{k}\right|$.
- The uniqueness follows since any LU-factorization must satisfy the above equations.

Existence of LU for not-a-knot

$\mathbf{N}_{k}=\left[\begin{array}{ccccc}1 & 2 & & & \\ 1 & 4 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & 4 & 1 \\ & & & 2 & 1\end{array}\right]=\left[\begin{array}{ccccc}d_{1} & c_{1} & & & \\ a_{2} & d_{2} & c_{2} & & \\ & \ddots & \ddots & \ddots & \\ & & a_{n-1} & d_{n-1} & c_{n-1} \\ & & & a_{n} & d_{n}\end{array}\right]$

- $r_{1}=d_{1}, \quad I_{k}=\frac{a_{k}}{r_{k-1}}, \quad r_{k}=d_{k}-l_{k} c_{k-1}, \quad k=2,3, \ldots, n$.
- We need to show that $r_{k} \neq 0$ for $k=1, \ldots, n-1$.
- $r_{1}=d_{1}=1, l_{2}=\frac{a_{2}}{r_{1}}=1, r_{2}=d_{2}-l_{2} c_{1}=2$.
- Thus $\left|r_{2}\right|>1=\left|c_{2}\right|$.
- Suppose $\left|r_{k-1}\right|>\left|c_{k-1}\right|$ for some k with $3 \leq k \leq n-1$.
- Since $\left|d_{k}\right|>\left|a_{k}\right|+\left|c_{k}\right|$ the same calculation as for strict diagonally dominance shows that $\left|r_{k}\right|>\left|c_{k}\right|$. Since $r_{1} \neq 0$ we have shown that $r_{k} \neq 0$ for $k=1, \ldots, n-1$.

Summary

- Studied linear systems arising from cubic spline interpolation
- Each leads to a tridiagonal matrix
- Introduced the concepts of strict diagonal dominance
- studied non-singularity
- existence of LU-factorization for tridiagonal systems
- LU-factorization in $O(n)$ flops.

