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Plan for the day

I Notation

I Piecewise Linear Interpolation (C 0)

I Cubic Hermite Interpolation (C 1)

I Cubic Spline Interpolation (C 2)

I The equations for C 2

I The spline matrices for different boundary conditions

I Non-singularity of the spline matrices

I LU-factorization of a tridiagonal matrix

I Strictly diagonally dominant matrices

I Existence of LU-factorization for the spline matrices



Notation

I The set of natural numbers, integers, rational numbers, real
numbers, and complex numbers are denoted by N,Z,Q,R,C,
respectively.

I Rn(Cn) is the set of n-tuples of real(complex) numbers which
we will represent as column vectors. Thus x ∈ Rn means

x =


x1

x2
...
xn

 ,
where xi ∈ R for i = 1, . . . , n. Row vectors are normally
identified using the transpose operation. Thus if x ∈ Rn then
x is a column vector and xT is a row vector.



Notation2

I Rm,n(Cm,n) is the set of m × n matrices with real(complex)
entries represented as

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 .
The entry in the ith row and jth column of a matrix A will be
denoted by ai ,j , aij , A(i , j) or (A)i ,j .



The Interpolation Problem

I Given a non-negative integer m,

I m + 2 x-values x = [x0, . . . , xm+1] with xi = a + ih and
h = (b − a)/(m + 1).

I m + 2 real y -values y = [y0, . . . , ym+1].

I Find a function p : [a, b]→ R such that
p(xj) = yj , for j = 0, . . . ,m + 1.

I p can be a polynomial or a piecewise polynomial of low degree.



Piecewise Linear Interpolation (C 0)

I The piecewise linear function p : [a, b]→ R given by

p(x) = pi (x) = yi (1− t) + yi+1t, t =
x − xi

h
, x ∈ [xi , xi+1],

satisfies p(xi ) = yi for i = 0, . . . ,m + 1.

I p ∈ C [a, b] since pi−1(xi ) = pi (xi ) = yi at the knots.

I By the chain rule dpi
dx = dpi

dt
dt
dx = 1

h
dpi
dt

I p′(xi ) = δi := (yi+1 − yi )/h .

I Normally δi−1 6= δi and the derivative has breaks at the
break-points (xi , yi ).



Cubic Hermite Interpolation (C 1)

I Given in addition m + 2 derivative values s = [s0, . . . , sm+1].

I Theorem
Let p : [a, b]→ R be the piecewise cubic function given for
i = 0, . . . ,m and x ∈ [xi , xi+1] by

p(x) = pi (x) = c0(1−t)3+c13t(1−t)2+c23t2(1−t)+c3t
3, t =

x − xi

h
.

(1)
where

c0 = yi , c1 = yi +
h

3
si , c2 = yi+1 −

h

3
si+1, c3 = yi+1. (2)

Then p(xj) = yj , p′(xj) = pj , for j = 0, . . . ,m + 1.



Example
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Figure: A piecewise linear interpolant to f (x) = x4 (left) and a cubic
Hermite interpolant (right).



The C 2 equation

I The cubic Hermite interpolant p is continuous and has a
continuous derivative for all x ∈ [a, b], i. e., p ∈ C 1[a, b].

I Suppose that instead of specifying the derivative values s we
determine them so that the interpolant p has a continuous
second derivative i. e., p ∈ C 2[a, b].

I The continuity requirement p′′i−1(xi ) = p′′i (xi ) for the 2.
derivative leads to

I

si−1 + 4si + si+1 = 3
yi+1 − yi−1

h
=: βi , i = 1, . . . ,m,



Boundary Conditions

I si−1 + 4si + si+1 = βi , i = 1, . . . ,m

I m equations with m + 2 unknowns s0, . . . , sm+1

I need two boundary conditions

I Clamped (1. derivative) s0 and sm+1 given

I The second derivative p′′(x0) = q0 and p′′(xm+1) = qm+1

I Natural q0 = qm+1 = 0.

I Not-a-knot p0 = p1 and pm−1 = pm.



Figure: A physical spline with ducks



The Clamped System

I si−1 + 4si + si+1 = βi , i = 1, . . . ,m

I 
4 1
1 4 1

. . .
. . .

. . .

1 4 1
1 4




s1
s2
...

sm−1

sm

 =


β1 − s0
β2
...

βm−1

βm − sm+1

 .
I tridiagonal m ×m system N1s = b.

I strictly diagonally dominant



The 2. derivative system

I 
2 1
1 4 1

. . .
. . .

. . .

1 4 1
1 2




s0
s1
...

sm
sm+1

 =


ν0

β1
...
βm

νm+1

 ,
I ν0 = 3δ0 − hq0/2, νm+1 = 3δm + hqm+1/2.

I tridiagonal (m + 2)× (m + 2) system N2s = b.

I strictly diagonally dominant



The not-a-knot system

I 
1 2
1 4 1

. . .
. . .

. . .

1 4 1
2 1




s0
s1
...

sm
sm+1

 =


γ0

β1
...
βm

γm+1

 ,
I γ0 = 5

2δ0 + 1
2δ1, γm+1 = 1

2δm−1 + 5
2δm.

I tridiagonal (m + 2)× (m + 2) system N3s = b.

I not strictly diagonally dominant
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Figure: Cubic spline interpolation. Clamped (left) and not-a-knot (right).
The break points are marked with circles



The tridiagonal matrix

I

A =


d1 c1

a2 d2 c2

. . .
. . .

. . .

an−1 dn−1 cn−1

an dn


I Non-singular?

I Gaussian elimination (LU-factorization) without row
interchanges well defined?



Non-singular matrix

Definition
A square matrix A is said to be non-singular if the only solution
of the homogenous system Ax = 0 is x = 0. The matrix is
singular if it is not non-singular.

I Suppose A is non-singular.

I The linear system Ax = b has a unique solution x for any b

I A has an inverse

I If A = BC then B and C are non-singular.



Lemma
Suppose A is the block matrix

A =

A11 A12 0
0 A22 0
0 A32 A33

 ,
where each diagonal block Aii is square and non-singular. Then A
is non-singular.

I Proof Let Ax = 0 and let x = [x1, x2, x3]T be partitioned
conformally with A.

I

Ax =

A11x1 + A12x2

A22x2

A32x2 + A33x3

 =

0
0
0

 .
I x2 = 0 since A22x2 = 0 and A22 is non-singular.
I x1 = 0 and x3 = 0 since A11x1 = 0, A33x3 = 0 and these

matrices are non-singular.
I Thus x = 0 and A is non-singular.



Strict diagonal dominance

I A matrix A ∈ Cn,n is said to be strictly diagonally dominant
if σi := |aii | −

∑
j 6=i |aij | > 0 for i = 1, . . . , n.

I The clamped- and 2. derivative spline matrices are strictly
diagonally dominant, the not-a-knot is not.

I Lemma
A strictly diagonally dominant matrix A ∈ Cn,n is non-singular.

I Proof

I Let x be any solution of Ax = b = 0

I let i be such that |xi | = maxj |xj |.
I 0 = |aiixi +

∑
j 6=i aijxj | ≥ |aiixi | −

∑
j 6=i |aijxj | ≥ |xi |σi .

I Since σi > 0 it follows that |xi | = 0. But then x = 0 and A is
non-singular.



Non-singularity of the spline matrices

I Theorem
The three spline matrices N1, N2, and N3 are non-singular.

I Proof The matrices N1 and N2 are strictly diagonally
dominant and therefore non-singular.

I Transform N3 to block form with strictly diagonally dominant
diagonal blocks. Consider m = 3.

I

B =


1 0 0 0 0
−1 1 0 0 0

0 0 1 0 0
0 0 0 1 −1
0 0 0 0 1

 , A := BN3 =


1 2 0 0 0

0 2 1 0 0
0 1 2 0
0 0 1 2 0

0 0 0 2 1

 .
I A is non-singular by Lemma and therefore N3 is non-singular.



Given a linear system Ax = b, where A = tridiag(ai , di , ci ) ∈ Rn,n

is non-singular and tridiagonal. We try to construct triangular
matrices L and R such that the product A = LR has the form


d1 c1

a2 d2 c2

. . .
. . .

. . .

an−1 dn−1 cn−1

an dn

 =


1
l2 1

. . .
. . .

ln 1




r1 c1

. . .
. . .

rn−1 cn−1

rn

 .

(3)

Note that L has ones on the diagonal, and that we can use the
same ci entries on the super-diagonals of A and R.



LU for n = 3

d1 c1 0
a2 d2 c2

0 a3 d3

 =

1 0 0
l2 1 0
0 l3 1

 r1 c1 0
0 r2 c2

0 0 r3


I Given ai , di , ci . Find li , ri . Compare (i , j) entries on both sides

I (1, 1) : d1 = r1 ⇒ r1 = d1

I (2, 1) : a2 = l2r1 ⇒ l2 = a2/r1
I (2, 2) : d2 = l2c1 + r2 ⇒ r2 = d2 − l2c1

I (2, 3) : a3 = l3r2 ⇒ l3 = a3/r2
I (3, 3) : d3 = l3c2 + r3 ⇒ r3 = d3 − l3c2

I In general

r1 = d1, lk =
ak

rk−1
, rk = dk − lkck−1, k = 2, 3, . . . , n.



Use LU to solve Ax = b

I Ax = L(Rx) = b

I Ly = b

I Rx = y

I 1 0 0
l2 1 0
0 l3 1

 y1

y2

y3

 =

b1

b2

b3


I y1 = b1, y2 = b2− l2y1, y3 = b3− l3y2 (Forward substitution)

I r1 c1 0
0 r2 c2

0 0 r3

 x1

x2

x3

 =

y1

y2

y3


I x3 = y3/r3, x2 = (y2 − c2x3)/r2, x1 = (y1 − c1x2)/r1

(Backward substitution)



The Algorithm

I A = LR (LU-factorization)

I Ly = b (forward substitution)

I Rx = y (backward substituion)

I

r1 = d1, lk =
ak

rk−1
, rk = dk − lkck−1, k = 2, 3, . . . , n.

I y1 = b1, yk = bk − lkyk−1, k = 2, 3, . . . , n,

I xn = yn/rn, xk = (yk − ckxk+1)/rk , k = n − 1, . . . , 2, 1.

I This process is well defined if rk 6= 0 for all k

I The number of arithmetic operations (flops) is 8n− 7 = O(n).



Enough that rk 6= 0 for k ≤ n − 1

I If A is non-singular and rk 6= 0 for k ≤ n− 1 then also rn 6= 0.

I For the LU-factorization exists and is unique if ri 6= 0 for
i = 0, 1, . . . , n − 1.

I Since A is non-singular the matrices L and R are non-singular.

I We show next time that a triangular matrix is non-singular if
and only if all diagonal entries are non-zero. It follows that rn
is non-zero.



rj 6= 0 for j ≤ n − 1?

Theorem
Suppose A is strictly diagonally dominant and tridiagonal. Then A
has a unique LU-factorization.

I Recall
r1 = d1, lk = ak

rk−1
, rk = dk − lkck−1, k = 2, 3, . . . , n.

I We show that |rk | > |ck | for k = 1, 2, . . . , n.

I Using induction on k suppose for some k ≤ n that
|rk−1| > |ck−1|. This holds for k = 2.

I |rk | = |dk − lkck−1| = |dk − akck−1

rk−1
| ≥ |dk | − |ak ||ck−1|

|rk−1| >

|dk | − |ak | > |ck |.
I The uniqueness follows since any LU-factorization must satisfy

the above equations.



Existence of LU for not-a-knot

Nk =


1 2
1 4 1

. . .
. . .

. . .

1 4 1
2 1

 =


d1 c1

a2 d2 c2

. . .
. . .

. . .

an−1 dn−1 cn−1

an dn


I r1 = d1, lk = ak

rk−1
, rk = dk − lkck−1, k = 2, 3, . . . , n.

I We need to show that rk 6= 0 for k = 1, . . . , n − 1.

I r1 = d1 = 1, l2 = a2
r1

= 1, r2 = d2 − l2c1 = 2.

I Thus |r2| > 1 = |c2|.
I Suppose |rk−1| > |ck−1| for some k with 3 ≤ k ≤ n − 1.

I Since |dk | > |ak |+ |ck | the same calculation as for strict
diagonally dominance shows that |rk | > |ck |. Since r1 6= 0 we
have shown that rk 6= 0 for k = 1, . . . , n − 1.



Summary

I Studied linear systems arising from cubic spline interpolation

I Each leads to a tridiagonal matrix

I Introduced the concepts of strict diagonal dominance

I studied non-singularity

I existence of LU-factorization for tridiagonal systems

I LU-factorization in O(n) flops.


