Lecture 1 INF-MAT 4350 2008: Cubic Splines and Tridiagonal Systems

Tom Lyche

Centre of Mathematics for Applications, Department of Informatics, University of Oslo

August 22, 2008

Plan for the day

- Notation
- Piecewise Linear Interpolation (C⁰)
- ► Cubic Hermite Interpolation (C¹)
- ► Cubic Spline Interpolation (C²)
- ▶ The equations for C²
- ▶ The spline matrices for different boundary conditions
- Non-singularity of the spline matrices
- ► LU-factorization of a tridiagonal matrix
- Strictly diagonally dominant matrices
- ► Existence of LU-factorization for the spline matrices

Notation

- ▶ The set of natural numbers, integers, rational numbers, real numbers, and complex numbers are denoted by $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$, respectively.
- ▶ $\mathbb{R}^n(\mathbb{C}^n)$ is the set of *n*-tuples of real(complex) numbers which we will represent as column vectors. Thus $\mathbf{x} \in \mathbb{R}^n$ means

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix},$$

where $x_i \in \mathbb{R}$ for i = 1, ..., n. Row vectors are normally identified using the transpose operation. Thus if $\mathbf{x} \in \mathbb{R}^n$ then \mathbf{x} is a column vector and \mathbf{x}^T is a row vector.

Notation2

▶ $\mathbb{R}^{m,n}(\mathbb{C}^{m,n})$ is the set of $m \times n$ matrices with real(complex) entries represented as

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$$

The entry in the *i*th row and *j*th column of a matrix **A** will be denoted by $a_{i,j}$, a_{ij} , $\mathbf{A}(i,j)$ or $(\mathbf{A})_{i,j}$.

The Interpolation Problem

- ▶ Given a non-negative integer m,
- ▶ m + 2 x-values $\mathbf{x} = [x_0, ..., x_{m+1}]$ with $x_i = a + ih$ and h = (b a)/(m + 1).
- ▶ m + 2 real y-values $y = [y_0, ..., y_{m+1}]$.
- ► Find a function $p:[a,b] \to \mathbb{R}$ such that $p(x_i) = y_i$, for j = 0, ..., m+1.
- ▶ p can be a polynomial or a piecewise polynomial of low degree.

Piecewise Linear Interpolation (C^0)

▶ The piecewise linear function $p : [a, b] \rightarrow \mathbb{R}$ given by

$$p(x) = p_i(x) = y_i(1-t) + y_{i+1}t, \ t = \frac{x-x_i}{h}, \ x \in [x_i, x_{i+1}],$$

satisfies $p(x_i) = y_i$ for $i = 0, ..., m+1$.

- $p \in C[a, b]$ since $p_{i-1}(x_i) = p_i(x_i) = y_i$ at the knots.
- ▶ By the chain rule $\frac{dp_i}{dx} = \frac{dp_i}{dt} \frac{dt}{dx} = \frac{1}{h} \frac{dp_i}{dt}$
- $ightharpoonup p'(x_i) = \delta_i := (y_{i+1} y_i)/h$.
- Normally $\delta_{i-1} \neq \delta_i$ and the derivative has breaks at the break-points (x_i, y_i) .

Cubic Hermite Interpolation (C^1)

- ▶ Given in addition m + 2 derivative values $\mathbf{s} = [s_0, \dots, s_{m+1}]$.
- ▶ Theorem

Let $p:[a,b]\to\mathbb{R}$ be the piecewise cubic function given for $i=0,\ldots,m$ and $x\in[x_i,x_{i+1}]$ by

$$p(x) = p_i(x) = c_0(1-t)^3 + c_1 3t(1-t)^2 + c_2 3t^2(1-t) + c_3 t^3, \ t = \frac{x - x_i}{h}.$$

where

$$c_0 = y_i, \quad c_1 = y_i + \frac{h}{3}s_i, \quad c_2 = y_{i+1} - \frac{h}{3}s_{i+1}, \quad c_3 = y_{i+1}.$$
 (2)

Then
$$p(x_j) = y_j$$
, $p'(x_j) = p_j$, for $j = 0, ..., m + 1$.

Example

Figure: A piecewise linear interpolant to $f(x) = x^4$ (left) and a cubic Hermite interpolant (right).

The C^2 equation

- ▶ The cubic Hermite interpolant p is continuous and has a continuous derivative for all $x \in [a, b]$, i. e., $p \in C^1[a, b]$.
- ▶ Suppose that instead of specifying the derivative values **s** we determine them so that the interpolant p has a continuous second derivative i.e., $p \in C^2[a, b]$.
- ▶ The continuity requirement $p_{i-1}''(x_i) = p_i''(x_i)$ for the 2. derivative leads to

$$s_{i-1} + 4s_i + s_{i+1} = 3\frac{y_{i+1} - y_{i-1}}{h} =: \beta_i, \quad i = 1, \dots, m,$$

Boundary Conditions

- $ightharpoonup s_{i-1} + 4s_i + s_{i+1} = \beta_i, i = 1, \dots, m$
- ▶ m equations with m + 2 unknowns s_0, \ldots, s_{m+1}
- need two boundary conditions
- ▶ Clamped (1. derivative) s_0 and s_{m+1} given
- ▶ The second derivative $p''(x_0) = q_0$ and $p''(x_{m+1}) = q_{m+1}$
- ▶ Natural $q_0 = q_{m+1} = 0$.
- Not-a-knot $p_0 = p_1$ and $p_{m-1} = p_m$.

Figure: A physical spline with ducks

The Clamped System

$$ightharpoonup s_{i-1} + 4s_i + s_{i+1} = \beta_i, i = 1, \dots, m$$

$$\begin{bmatrix} 4 & 1 & & & & \\ 1 & 4 & 1 & & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & 4 & 1 \\ & & & 1 & 4 \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_{m-1} \\ s_m \end{bmatrix} = \begin{bmatrix} \beta_1 - s_0 \\ \beta_2 \\ \vdots \\ \beta_{m-1} \\ \beta_m - s_{m+1} \end{bmatrix}.$$

- tridiagonal $m \times m$ system $\mathbf{N}_1 \mathbf{s} = \mathbf{b}$.
- strictly diagonally dominant

The 2. derivative system

$$egin{bmatrix} 2 & 1 & & & & \ 1 & 4 & 1 & & & \ & \ddots & \ddots & \ddots & & \ & & 1 & 4 & 1 \ & & & 1 & 2 \ \end{bmatrix} egin{bmatrix} s_0 \ s_1 \ dots \ s_m \ s_{m+1} \ \end{bmatrix} = egin{bmatrix}
u_0 \ eta_1 \ dots \ eta_1 \ dots \ eta_m \
u_{m+1} \ \end{bmatrix},$$

- $\nu_0 = 3\delta_0 hq_0/2, \quad \nu_{m+1} = 3\delta_m + hq_{m+1}/2.$
- ▶ tridiagonal $(m+2) \times (m+2)$ system $\mathbf{N}_2 \mathbf{s} = \mathbf{b}$.
- strictly diagonally dominant

The not-a-knot system

$$\begin{bmatrix} 1 & 2 & & & & \\ 1 & 4 & 1 & & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & 4 & 1 \\ & & & 2 & 1 \end{bmatrix} \begin{bmatrix} s_0 \\ s_1 \\ \vdots \\ s_m \\ s_{m+1} \end{bmatrix} = \begin{bmatrix} \gamma_0 \\ \beta_1 \\ \vdots \\ \beta_m \\ \gamma_{m+1} \end{bmatrix},$$

- $ightharpoonup \gamma_0 = \frac{5}{2}\delta_0 + \frac{1}{2}\delta_1, \quad \gamma_{m+1} = \frac{1}{2}\delta_{m-1} + \frac{5}{2}\delta_m.$
- ▶ tridiagonal $(m+2) \times (m+2)$ system $\mathbf{N}_3 \mathbf{s} = \mathbf{b}$.
- not strictly diagonally dominant

Figure: Cubic spline interpolation. Clamped (left) and not-a-knot (right). The break points are marked with circles

The tridiagonal matrix

$$\mathbf{A} = \begin{bmatrix} d_1 & c_1 & & & & \\ a_2 & d_2 & c_2 & & & \\ & \ddots & \ddots & \ddots & \\ & & a_{n-1} & d_{n-1} & c_{n-1} \\ & & & a_n & d_n \end{bmatrix}$$

- Non-singular?
- Gaussian elimination (LU-factorization) without row interchanges well defined?

Non-singular matrix

Definition

A square matrix $\bf A$ is said to be **non-singular** if the only solution of the homogenous system $\bf Ax=0$ is $\bf x=0$. The matrix is **singular** if it is not non-singular.

- Suppose A is non-singular.
- ▶ The linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a unique solution \mathbf{x} for any \mathbf{b}
- A has an inverse
- ▶ If **A** = **BC** then **B** and **C** are non-singular.

Lemma

Suppose A is the block matrix

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_{22} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_{32} & \mathbf{A}_{33} \end{bmatrix},$$

where each diagonal block \mathbf{A}_{ii} is square and non-singular. Then \mathbf{A} is non-singular.

▶ **Proof** Let $\mathbf{A}\mathbf{x} = \mathbf{0}$ and let $\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3]^T$ be partitioned conformally with \mathbf{A} .

$$\mathbf{A} \mathbf{x} = \begin{bmatrix} \mathbf{A}_{11} \mathbf{x}_1 + \mathbf{A}_{12} \mathbf{x}_2 \\ \mathbf{A}_{22} \mathbf{x}_2 \\ \mathbf{A}_{32} \mathbf{x}_2 + \mathbf{A}_{33} \mathbf{x}_3 \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}.$$

- $\mathbf{x}_2 = \mathbf{0}$ since $\mathbf{A}_{22}\mathbf{x}_2 = \mathbf{0}$ and \mathbf{A}_{22} is non-singular.
- ▶ $\mathbf{x}_1 = \mathbf{0}$ and $\mathbf{x}_3 = \mathbf{0}$ since $\mathbf{A}_{11}\mathbf{x}_1 = \mathbf{0}$, $\mathbf{A}_{33}\mathbf{x}_3 = \mathbf{0}$ and these matrices are non-singular.
- ▶ Thus x = 0 and **A** is non-singular.

Strict diagonal dominance

- ▶ A matrix $\mathbf{A} \in \mathbb{C}^{n,n}$ is said to be **strictly diagonally dominant** if $\sigma_i := |a_{ii}| \sum_{i \neq i} |a_{ij}| > 0$ for i = 1, ..., n.
- ► The clamped- and 2. derivative spline matrices are strictly diagonally dominant, the not-a-knot is not.

▶ Lemma

A strictly diagonally dominant matrix $\mathbf{A} \in \mathbb{C}^{n,n}$ is non-singular.

- ► Proof
- ▶ Let **x** be any solution of $\mathbf{A}\mathbf{x} = \mathbf{b} = \mathbf{0}$
- ▶ let *i* be such that $|x_i| = \max_j |x_j|$.
- $\blacktriangleright 0 = |a_{ii}x_i + \sum_{j \neq i} a_{ij}x_j| \ge |a_{ii}x_i| \sum_{j \neq i} |a_{ij}x_j| \ge |x_i|\sigma_i.$
- ▶ Since $\sigma_i > 0$ it follows that $|x_i| = 0$. But then $\mathbf{x} = \mathbf{0}$ and \mathbf{A} is non-singular.

Non-singularity of the spline matrices

▶ Theorem

The three spline matrices N_1 , N_2 , and N_3 are non-singular.

- ▶ **Proof** The matrices N_1 and N_2 are strictly diagonally dominant and therefore non-singular.
- ▶ Transform N_3 to block form with strictly diagonally dominant diagonal blocks. Consider m = 3.

$$\mathbf{B} = \left[\begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 \end{array} \right], \; \mathbf{A} := \mathbf{B} \mathbf{N}_3 = \left[\begin{array}{c|cccc} 1 & 2 & 0 & 0 & 0 \\ \hline 0 & 2 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ \hline 0 & 0 & 1 & 2 & 0 \\ \hline 0 & 0 & 0 & 2 & 1 \end{array} \right].$$

ightharpoonup A is non-singular by Lemma and therefore ightharpoonup is non-singular.

Given a linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$, where $\mathbf{A} = \text{tridiag}(a_i, d_i, c_i) \in \mathbb{R}^{n,n}$ is non-singular and tridiagonal. We try to construct triangular matrices \mathbf{L} and \mathbf{R} such that the product $\mathbf{A} = \mathbf{L}\mathbf{R}$ has the form

$$\begin{bmatrix} d_1 & c_1 & & & & & & \\ a_2 & d_2 & c_2 & & & & & \\ & \ddots & \ddots & \ddots & & & \\ & & a_{n-1} & d_{n-1} & c_{n-1} \\ & & & a_n & d_n \end{bmatrix} = \begin{bmatrix} 1 & & & & & \\ l_2 & 1 & & & & \\ & \ddots & \ddots & & & \\ & & & l_n & 1 \end{bmatrix} \begin{bmatrix} r_1 & c_1 & & & & \\ & \ddots & \ddots & & & \\ & & r_{n-1} & c_{n-1} \\ & & & & r_n \end{bmatrix}.$$

Note that **L** has ones on the diagonal, and that we can use the same c_i entries on the super-diagonals of **A** and **R**.

LU for n = 3

$$\begin{bmatrix} d_1 & c_1 & 0 \\ a_2 & d_2 & c_2 \\ 0 & a_3 & d_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ l_2 & 1 & 0 \\ 0 & l_3 & 1 \end{bmatrix} \begin{bmatrix} r_1 & c_1 & 0 \\ 0 & r_2 & c_2 \\ 0 & 0 & r_3 \end{bmatrix}$$

- ▶ Given a_i, d_i, c_i . Find l_i, r_i . Compare (i, j) entries on both sides
- $ightharpoonup (1,1): d_1 = r_1 \Rightarrow r_1 = d_1$
- $ightharpoonup (2,1): a_2 = l_2 r_1 \Rightarrow l_2 = a_2/r_1$
- $(2,2): d_2 = l_2c_1 + r_2 \Rightarrow r_2 = d_2 l_2c_1$
- \triangleright (2,3): $a_3 = l_3 r_2 \Rightarrow l_3 = a_3/r_2$
- $(3,3): d_3 = l_3c_2 + r_3 \Rightarrow r_3 = d_3 l_3c_2$
- In general

$$r_1 = d_1, \quad l_k = \frac{a_k}{r_{k-1}}, \quad r_k = d_k - l_k c_{k-1}, \quad k = 2, 3, \dots, n.$$

Use LU to solve $\mathbf{A}\mathbf{x} = \mathbf{b}$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_2 & 1 & 0 \\ 0 & l_3 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

 $y_1 = b_1$, $y_2 = b_2 - l_2 y_1$, $y_3 = b_3 - l_3 y_2$ (Forward substitution)

•

$$\begin{bmatrix} r_1 & c_1 & 0 \\ 0 & r_2 & c_2 \\ 0 & 0 & r_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

 $x_3 = y_3/r_3$, $x_2 = (y_2 - c_2x_3)/r_2$, $x_1 = (y_1 - c_1x_2)/r_1$ (Backward substitution)

The Algorithm

- ▶ A = LR (LU-factorization)
- **▶ Ly** = **b** (forward substitution)
- Rx = y (backward substituion)

$$r_1 = d_1, \quad l_k = \frac{a_k}{r_{k-1}}, \quad r_k = d_k - l_k c_{k-1}, \quad k = 2, 3, \dots, n.$$

- $y_1 = b_1,$ $y_k = b_k l_k y_{k-1},$ k = 2, 3, ..., n,
- $x_n = y_n/r_n, \quad x_k = (y_k c_k x_{k+1})/r_k, \quad k = n-1, \ldots, 2, 1.$
- ▶ This process is well defined if $r_k \neq 0$ for all k
- ▶ The number of arithmetic operations (flops) is 8n 7 = O(n).

Enough that $r_k \neq 0$ for $k \leq n-1$

- ▶ If **A** is non-singular and $r_k \neq 0$ for $k \leq n-1$ then also $r_n \neq 0$.
- ▶ For the LU-factorization exists and is unique if $r_i \neq 0$ for i = 0, 1, ..., n 1.
- ► Since **A** is non-singular the matrices **L** and **R** are non-singular.
- ▶ We show next time that a triangular matrix is non-singular if and only if all diagonal entries are non-zero. It follows that r_n is non-zero.

$$r_j \neq 0$$
 for $j \leq n-1$?

Theorem

Suppose **A** is strictly diagonally dominant and tridiagonal. Then **A** has a unique LU-factorization.

- ► Recall $r_1 = d_1, \quad l_k = \frac{a_k}{r_{k-1}}, \quad r_k = d_k l_k c_{k-1}, \quad k = 2, 3, ..., n.$
- ▶ We show that $|r_k| > |c_k|$ for k = 1, 2, ..., n.
- ▶ Using induction on k suppose for some $k \le n$ that $|r_{k-1}| > |c_{k-1}|$. This holds for k = 2.
- $|r_k| = |d_k l_k c_{k-1}| = |d_k \frac{a_k c_{k-1}}{r_{k-1}}| \ge |d_k| \frac{|a_k||c_{k-1}|}{|r_{k-1}|} > |d_k| |a_k| > |c_k|.$
- ► The uniqueness follows since any LU-factorization must satisfy the above equations.

Existence of LU for not-a-knot

$$\mathbf{N}_k = \begin{bmatrix} 1 & 2 & & & & \\ 1 & 4 & 1 & & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & 4 & 1 \\ & & & 2 & 1 \end{bmatrix} = \begin{bmatrix} d_1 & c_1 & & & & \\ a_2 & d_2 & c_2 & & & \\ & \ddots & \ddots & \ddots & \\ & & a_{n-1} & d_{n-1} & c_{n-1} \\ & & & a_n & d_n \end{bmatrix}$$

- $ightharpoonup r_1 = d_1, \quad l_k = \frac{a_k}{r_{k-1}}, \quad r_k = d_k l_k c_{k-1}, \quad k = 2, 3, \dots, n.$
- ▶ We need to show that $r_k \neq 0$ for k = 1, ..., n 1.
- $r_1 = d_1 = 1$, $l_2 = \frac{a_2}{r_1} = 1$, $r_2 = d_2 l_2 c_1 = 2$.
- ▶ Thus $|r_2| > 1 = |c_2|$.
- ▶ Suppose $|r_{k-1}| > |c_{k-1}|$ for some k with $3 \le k \le n-1$.
- ▶ Since $|d_k| > |a_k| + |c_k|$ the same calculation as for strict diagonally dominance shows that $|r_k| > |c_k|$. Since $r_1 \neq 0$ we have shown that $r_k \neq 0$ for k = 1, ..., n 1.

Summary

- ▶ Studied linear systems arising from cubic spline interpolation
- ► Each leads to a tridiagonal matrix
- ▶ Introduced the concepts of strict diagonal dominance
- studied non-singularity
- existence of LU-factorization for tridiagonal systems
- ▶ LU-factorization in O(n) flops.