UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination in INF-MAT 4350 - Numerical linear algebra
Day of examination: 4 December 2008
Examination hours: 0900-1200
This problem set consists of 4 pages.
Appendices:
None
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All 7 part questions will be weighted equally.

Problem 1 Iterative methods

Consider the linear system $A x=b$ in which

$$
A=\left(\begin{array}{lll}
3 & 0 & 1 \\
0 & 7 & 2 \\
1 & 2 & 4
\end{array}\right)
$$

and $b=(1,9,-2)^{T}$.

1a

With $x_{0}=(1,1,1)^{T}$, carry out one iteration of the Gauss-Seidel method to find $x_{1} \in \mathbb{R}^{3}$.
Answer:

$$
\begin{aligned}
& x_{1}(1)=\left(b(1)-x_{0}(3)\right) / 3=(1-1) / 3=0, \\
& x_{1}(2)=\left(b(2)-2 x_{0}(3)\right) / 7=(9-2 * 1) / 7=1, \\
& x_{1}(3)=\left(b(3)-x_{1}(1)-2 x_{1}(2)\right) / 4=(-2-0-2 * 1) / 4=-1 .
\end{aligned}
$$

1b

If we continue the iteration, will the method converge? Why?
Answer: Yes. Since A is diagonally dominant, i.e.,

$$
a_{i i}>\sum_{j \neq i}\left|a_{i j}\right|, \quad i=1,2,3,
$$

(Continued on page 2.)
all its eigenvalues are positive by Gerschgorin's circle theorem. Therefore, since A is also symmetric it is positive definite, which guarantees convergence.

1c

Write a matlab program for the Gauss-Seidel method applied to a matrix $A \in \mathbb{R}^{n, n}$ and right-hand side $b \in \mathbb{R}^{n}$. Use the ratio of the current residual to the initial residual as the stopping criterion, as well as a maximum number of iterations.

Hint: The function $\mathrm{C}=\operatorname{tril}(\mathrm{A})$ extracts the lower part of A into a lower triangular matrix C.

Answer:

```
function [x,it]=gs(A,b,x,tol,maxit)
nr=norm(b-A*x,2);
C = tril(A);
for k=1:maxit
    r=b-A*x;
    x=x+C\r;
    if norm(r,2)/nr<tol
        it=k; return;
    end
end
it = maxit;
```


Problem $2 \quad Q R$ factorization

Let

$$
A=\left(\begin{array}{cc}
2 & 1 \\
2 & -3 \\
-2 & -1 \\
-2 & 3
\end{array}\right)
$$

$2 a$

Find the Cholesky factorization of $A^{T} A$.
Answer:

$$
A^{T} A=\left(\begin{array}{cc}
16 & -8 \\
-8 & 20
\end{array}\right)
$$

We want $A^{T} A=R^{T} R$ where

$$
R=\left(\begin{array}{cc}
r_{11} & r_{12} \\
0 & r_{22}
\end{array}\right)
$$

and $r_{11}, r_{22}>0$. Since

$$
R^{T} R=\left(\begin{array}{cc}
r_{11}^{2} & r_{11} r_{12} \\
r_{11} r_{12} & r_{12}^{2}+r_{22}^{2}
\end{array}\right),
$$

(Continued on page 3.)
we need

$$
r_{11}^{2}=16, \quad r_{11} r_{12}=-8, \quad r_{12}^{2}+r_{22}^{2}=20
$$

The solution is $r_{11}=4, r_{12}=-2, r_{22}=4$.

2b

Find the $Q R$ factorization of A.
Answer: We have already found R :

$$
R=\left(\begin{array}{cc}
4 & -2 \\
0 & 4
\end{array}\right)
$$

Then, to get $A=Q R$ we need $Q=A R^{-1}$ and since

$$
R^{-1}=\frac{1}{16}\left(\begin{array}{ll}
4 & 2 \\
0 & 4
\end{array}\right)
$$

we find

$$
Q=A R^{-1}=\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
1 & -1 \\
-1 & -1 \\
-1 & 1
\end{array}\right)
$$

Problem 3 Kronecker products

Let $A, B \in \mathbb{R}^{n, n}$. Show that the eigenvalues of the Kronecker product $A \otimes B$ are products of the eigenvalues of A and B and that the eigenvectors of $A \otimes B$ are Kronecker products of the eigenvectors of A and B.
Answer: Suppose that $A u=\lambda u$ and $B v=\mu v$. Then

$$
\begin{aligned}
(A \otimes B)(u \otimes v) & =\left(\begin{array}{ccc}
A b_{11} & \cdots & A b_{1 n} \\
\vdots & & \vdots \\
A b_{n 1} & \cdots & A b_{n n}
\end{array}\right)\left(\begin{array}{c}
u v_{1} \\
\vdots \\
u v_{n}
\end{array}\right) \\
& =\left(\begin{array}{c}
A b_{11} u v_{1}+\cdots+A b_{1 n} u v_{n} \\
\vdots \\
A b_{n 1} u v_{1}+\cdots+A b_{n n} u v_{n}
\end{array}\right)=\left(\begin{array}{c}
A u(B v)_{1} \\
\vdots \\
A u(B v)_{n}
\end{array}\right) \\
& =(A u) \otimes(B v)=(\lambda u) \otimes(\mu v)=(\lambda \mu)(u \otimes v) .
\end{aligned}
$$

Problem 4 Matrix norms

Suppose $A \in \mathbb{R}^{n, n}$ is invertible, $b, c \in \mathbb{R}^{n}, b \neq 0$, and $A x=b$ and $A y=b+e$. Show that

$$
\frac{1}{K(A)} \frac{\|e\|}{\|b\|} \leq \frac{\|y-x\|}{\|x\|} \leq K(A) \frac{\|e\|}{\|b\|},
$$

where $\|\cdot\|$ is the Euclidean vector norm in \mathbb{R}^{n} and $K(A)$ is the condition number of A with respect to the matrix 2-norm.
Answer: Since $A x=b$, we have

$$
\begin{equation*}
\|b\|=\|A x\| \leq\|A\|\|x\| \tag{1}
\end{equation*}
$$

and because $A^{-1} b=x$, we have

$$
\begin{equation*}
\|x\|=\left\|A^{-1} b\right\| \leq\left\|A^{-1}\right\|\|b\| \tag{2}
\end{equation*}
$$

Similarly, since $A(y-x)=e$, we have

$$
\begin{equation*}
\|e\|=\|A(y-x)\| \leq\|A\|\|y-x\| \tag{3}
\end{equation*}
$$

and because $A^{-1} e=y-x$, we have

$$
\begin{equation*}
\|y-x\|=\left\|A^{-1} e\right\| \leq\left\|A^{-1}\right\|\|e\| . \tag{4}
\end{equation*}
$$

Now, since $K(A)=\|A\|\left\|A^{-1}\right\|$, equations (2) and (3) give the lower bound on $\|y-x\| /\|x\|$ and equations (1) and (4) give the upper bound.

Good luck!

