UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination in INF-MAT 3350/4350 - Numerical linear algebra
Day of examination: 6 December 2007
Examination hours: 0900-1200
This problem set consists of 4 pages.

Appendices:
Permitted aids:

None
None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All 9 part questions will be weighted equally.

Problem 1 Orthogonal transformations

A Householder transformation is a matrix $H \in \mathbb{R}^{n, n}$ of the form

$$
H=I-u u^{T},
$$

where $u \in \mathbb{R}^{n}$ is such that $u^{T} u=2$.

1a

Show that H is symmetric.
Answer:

$$
H^{T}=I^{T}-\left(u u^{T}\right)^{T}=I-\left(u^{T}\right)^{T} u^{T}=H .
$$

1b

Show that H is an orthogonal transformation.
Answer: Must show that $H^{T} H=I$. By symmetry, enough to show that $H^{2}=I:$

$$
H^{2}=\left(I-u u^{T}\right)\left(I-u u^{T}\right)=I-2 u u^{T}+u\left(u^{T} u\right) u^{T}=I,
$$

because $u^{T} u=2$.

1c

Find $H x$ when

$$
u=\frac{1}{\sqrt{10}}\binom{-2}{4} \quad \text { and } \quad x=\binom{3}{4} .
$$

Answer:

Since

$$
u u^{T}=\frac{1}{10}\left(\begin{array}{cc}
4 & -8 \\
-8 & 16
\end{array}\right)=\left(\begin{array}{cc}
2 / 5 & -4 / 5 \\
-4 / 5 & 8 / 5
\end{array}\right)
$$

we find that

$$
H=\left(\begin{array}{cc}
3 / 5 & 4 / 5 \\
4 / 5 & -3 / 5
\end{array}\right)
$$

Then

$$
H x=\left(\begin{array}{cc}
3 / 5 & 4 / 5 \\
4 / 5 & -3 / 5
\end{array}\right)\binom{3}{4}=\binom{5}{0} .
$$

1d

Find a $Q R$-factorization of the matrix

$$
A=\left(\begin{array}{cc}
3 & 5 \\
4 & 10
\end{array}\right)
$$

Answer:

Since x is the first column of A and $H x=5 e_{1}$, we can simply use H to obtain Q and R in one step. We find

$$
H A=\left(\begin{array}{cc}
5 & 11 \\
0 & -2
\end{array}\right)
$$

and therefore $A=Q R$ where

$$
Q=H^{-1}=H=\left(\begin{array}{cc}
3 / 5 & 4 / 5 \\
4 / 5 & -3 / 5
\end{array}\right) \quad \text { and } \quad R=\left(\begin{array}{cc}
5 & 11 \\
0 & -2
\end{array}\right) .
$$

Problem 2 Eigenvalues

$2 a$

Suppose the matrix $A \in \mathbb{R}^{n, n}$ has linearly independent eigenvectors v_{1}, \ldots, v_{n} and that its eigenvalues are such that $\lambda_{1}>\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{n}\right|$. If $z_{0} \in \mathbb{R}^{n}$ is a vector such that $v_{1}^{T} z_{0} \neq 0$, and we let $z_{k}=A^{k} z_{0}$ and $x_{k}=z_{k} /\left\|z_{k}\right\|$, what does x_{k} converge to as $k \rightarrow \infty$?
Answer:
We can express z_{0} as

$$
z_{0}=c_{1} v_{1}+\cdots+c_{n} v_{n},
$$

(Continued on page 3.)
where $c_{1} \neq 0$ because $v_{1}^{T} z_{0} \neq 0$. Then, since

$$
z_{k}=c_{1} \lambda_{1}^{k} v_{1}+\cdots+c_{n} \lambda_{n}^{k} v_{n}
$$

we have, if $c_{1}>0$,

$$
x_{k}=\frac{v_{1}+\left(c_{2} / c_{1}\right)\left(\lambda_{2} / \lambda_{1}\right)^{k} v_{2}+\cdots\left(c_{n} / c_{1}\right)\left(\lambda_{n} / \lambda_{1}\right)^{k} v_{n}}{\left\|v_{1}+\left(c_{2} / c_{1}\right)\left(\lambda_{2} / \lambda_{1}\right)^{k} v_{2}+\cdots\left(c_{n} / c_{1}\right)\left(\lambda_{n} / \lambda_{1}\right)^{k} v_{n}\right\|} \rightarrow \frac{v_{1}}{\left\|v_{1}\right\|}
$$

as $k \rightarrow \infty$, and, if $c_{1}<0$,

$$
x_{k}=\frac{-v_{1}-\left(c_{2} / c_{1}\right)\left(\lambda_{2} / \lambda_{1}\right)^{k} v_{2}-\cdots-\left(c_{n} / c_{1}\right)\left(\lambda_{n} / \lambda_{1}\right)^{k} v_{n}}{\left\|v_{1}+\left(c_{2} / c_{1}\right)\left(\lambda_{2} / \lambda_{1}\right)^{k} v_{2}+\cdots\left(c_{n} / c_{1}\right)\left(\lambda_{n} / \lambda_{1}\right)^{k} v_{n}\right\|} \rightarrow \frac{-v_{1}}{\left\|v_{1}\right\|},
$$

as $k \rightarrow \infty$.

2b

If u is an approximation to an eigenvector of $A \in \mathbb{R}^{n, n}$ then an approximation to the corresponding eigenvalue is the value λ that minimizes the function

$$
\rho(\lambda)=\|A u-\lambda u\|_{2} .
$$

Find λ which minimizes ρ.

Answer:

It is sufficient to minimize $E(\lambda)=\rho^{2}(\lambda)$, and

$$
E(\lambda)=(A u)^{T}(A u)-2 u^{T}(A u) \lambda+u^{T} u \lambda^{2} .
$$

We see that E is a quadratic polynomial and since $u^{T} u=\|u\|_{2}^{2}>0, E$ has a unique minimum, where $E^{\prime}(\lambda)=0$. Since

$$
E^{\prime}(\lambda)=-2 u^{T} A u+2 u^{T} u \lambda,
$$

we thus obtain the minimum when

$$
\lambda=\frac{u^{T} A u}{u^{T} u} .
$$

2c

What is the $Q R$-algorithm for finding all eigenvalues of a real matrix $A \in \mathbb{R}^{n, n}$, assuming they are all real and distinct? (You do not need to discuss convergence conditions).

Answer:

(i) $A_{1}=A$. (ii) For $k=1,2, \ldots$, find the $Q R$-factorization of A_{k}, i.e., $Q_{k} R_{k}=A_{k}$, and set $A_{k+1}=R_{k} Q_{k}$.

The elements of A_{k} below the diagonal converge to 0 and elements on the diagonal of A_{k} converge to the eigenvalues of A.

Problem 3 Iterative methods

The Jacobi method for solving the linear system $A x=b$ is

$$
\begin{equation*}
x_{k+1}=x_{k}+D^{-1} r_{k}, \tag{1}
\end{equation*}
$$

where $r_{k}=b-A x_{k}$, and D is the diagonal matrix with $d_{i i}=a_{i i}$.

3a

By writing (1) in the form

$$
\begin{equation*}
x_{k+1}=B x_{k}+c, \tag{2}
\end{equation*}
$$

for some B and c, derive a condition on $\rho(B)$ that guarantees the convergence of (1).
Answer: $B=I-D^{-1} A$ and $c=D^{-1} b$. Since (1) holds when x_{k} is replaced by x, so does (2), i.e.,

$$
x=B x+c,
$$

and substracting this from (2) and defining $e_{k}=x_{k}-x$ gives

$$
e_{k+1}=B e_{k}
$$

Therefore, for any vector norm, $\|\cdot\|,\left\|e_{k+1}\right\| \leq\|B\|\left\|e_{k}\right\|$, and so $\left\|e_{k}\right\| \leq$ $\|B\|^{k}\left\|e_{0}\right\|$, and the method converges if $\|B\|<1$. So a sufficient condition for convergence is that $\rho(B)<1$, i.e., that all eigenvalues of B are less than one in absolute value.

3b

By applying Gerschgorin's circle theorem to B, derive a condition on A that guarantees the convergence of (1).
Answer: By Gerschgorins circle theorem, all eigenvalues of B are in the union of the discs $B\left(b_{i i}, r_{i}\right)$, where

$$
r_{i}=\sum_{j \neq i}\left|b_{i j}\right| .
$$

Therefore, since $b_{i i}=0$, a sufficient condition for the convergence of (1) is that $r_{i}<1$ for all i. Since $b_{i j}=a_{i j} / a_{i i}$ for $i \neq j$, this condition is equivalent to the condition

$$
\sum_{j \neq i}\left|a_{i j}\right|<\left|a_{i i}\right|,
$$

i.e., that A is strictly diagonally dominant.

Good luck!

