UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination in INF-MAT4350 - Numerical linear algebra
Day of examination: 3 December 2009
Examination hours: 0900-1200
This problem set consists of 4 pages.
Appendices: None
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All 7 part questions will be weighted equally.

Problem 1 Matrix products

Let $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{E} \in \mathbb{R}^{n, n}$ be matrices where $\boldsymbol{A}^{T}=\boldsymbol{A}$. In this problem an (arithmetic) operation is an addition or a multiplication. We ask about exact numbers of operations.

$1 \mathbf{a}$

How many operations are required to compute the matrix product $\boldsymbol{B C}$? How many operations are required if \boldsymbol{B} is lower triangular?
Answer: For each of the n^{2} elements in \boldsymbol{B} we have to compute an inner product of length n. This requires n multiplications and $n-1$ additions. Therefore to compute $\boldsymbol{B} \boldsymbol{C}$ requires $n^{2}(2 n-1)=2 n^{3}-n^{2}$ operations.

If \boldsymbol{B} is lower triangular then row k of \boldsymbol{B} contains k non-zero elements, $k=1, \ldots, n$. Therefore, to compute an element in the k-th row of $\boldsymbol{B C}$ requires k multiplications and $k-1$ additions. Hence in total we need $n \sum_{k=1}^{n}(2 k-1)=n^{3}$ operations.

1b

Show that there exists a lower triangular matrix $\boldsymbol{L} \in \mathbb{R}^{n, n}$ such that $\boldsymbol{A}=\boldsymbol{L}+\boldsymbol{L}^{T}$.
Answer: We have $\boldsymbol{A}=\boldsymbol{A}_{\boldsymbol{L}}+\boldsymbol{A}_{\boldsymbol{D}}+\boldsymbol{A}_{\boldsymbol{R}}$, where $\boldsymbol{A}_{\boldsymbol{L}}$ is lower triangular with 0 on the diagonal, $\boldsymbol{A}_{\boldsymbol{D}}=\operatorname{diag}\left(a_{11}, \ldots, a_{n n}\right)$, and $\boldsymbol{A}_{\boldsymbol{R}}$ is upper triangular with 0 on the diagonal. Since $\boldsymbol{A}^{T}=\boldsymbol{A}$, we have $\boldsymbol{A}_{\boldsymbol{R}}=\boldsymbol{A}_{\boldsymbol{L}}^{T}$. If we let $\boldsymbol{L}:=\boldsymbol{A}_{\boldsymbol{L}}+\frac{1}{2} \boldsymbol{A}_{\boldsymbol{D}}$ we obtain $\boldsymbol{A}=\boldsymbol{L}+\boldsymbol{L}^{T}$.

1c

We have $\boldsymbol{E}^{T} \boldsymbol{A} \boldsymbol{E}=\boldsymbol{S}+\boldsymbol{S}^{T}$ where $\boldsymbol{S}=\boldsymbol{E}^{T} \boldsymbol{L} \boldsymbol{E}$. How many operations are required to compute $\boldsymbol{E}^{T} \boldsymbol{A} \boldsymbol{E}$ in this way?

Answer: Svar: We need n operations to compute the diagonal in \boldsymbol{L}. From Question (1a) we need n^{3} operations to compute $\boldsymbol{L} \boldsymbol{E}$ and consequently $2 n^{3}-n^{2}$ operations to compute $\boldsymbol{E}^{T}(\boldsymbol{L} \boldsymbol{E})$. Therefore n^{2} operations to compute the sum $\boldsymbol{S}+\boldsymbol{S}^{T}$. In total $3 n^{3}+n$ operations. Direct computation of $\boldsymbol{E}^{T} \boldsymbol{A} \boldsymbol{E}$ requires $4 n^{3}-2 n^{2}$ operations.

Problem 2 Gershgorin Disks

The eigenvalues of $\boldsymbol{A} \in \mathbb{R}^{n, n}$ lie inside $R \cap C$, where $R:=R_{1} \cup \cdots \cup R_{n}$ is the union of the row disks R_{i} of \boldsymbol{A}, and $C=C_{1} \cup \cdots \cup C_{n}$ is the union of the column disks C_{j}. You do not need to prove this. Write a Matlab function $[\mathrm{s}, \mathrm{r}, \mathrm{c}]=$ gershgorin(A) that computes the centres $\boldsymbol{s}=\left[s_{1}, \ldots, s_{n}\right] \in \mathbb{R}^{n}$ of the row and column disks, and their radii $\boldsymbol{r}=\left[r_{1}, \ldots, r_{n}\right] \in \mathbb{R}^{n}$ and $\boldsymbol{c}=\left[c_{1}, \ldots, c_{n}\right] \in \mathbb{R}^{n}$, respectively.

Answer:

With for-loops:

```
function [s,r,c] = gershgorin(A)
n=length(A);
s=diag(A); r=zeros(n,1); c=r;
for i=1:n
    for j=1:n
        r(i)=r(i)+abs(A(i,j));
        c(i)=c(i)+abs(A(j,i));
    end;
    r(i)=r(i)-abs(s(i)); c(i)=c(i) -abs(s(i));
end
```

Vectorized:

```
function [s,r,c] = gershgorinv(A)
n=length(A);
s=diag(A); e=ones(n,1);
r=abs(A)*e-abs(s);
c=(abs(A))'*e-abs(s);
```


Problem 3 Eigenpairs

Let $\boldsymbol{A} \in \mathbb{R}^{n, n}$ be tridiagonal (i.e. $a_{i j}=0$ when $|i-j|>1$) and suppose also that $a_{i+1, i} a_{i, i+1}>0$ for $i=1, \ldots, n-1$.

3a

Show that for an arbitrary nonsingular diagonal matrix $\boldsymbol{D}=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in$ $\mathbb{R}^{n, n}$, the matrix

$$
\begin{equation*}
B=\boldsymbol{D}^{-1} \boldsymbol{A} \boldsymbol{D} \tag{1}
\end{equation*}
$$

is tridiagonal by finding a formula for $b_{i j}, i, j=1, \ldots, n$.
Answer: If $\boldsymbol{C}=\boldsymbol{A} \boldsymbol{D}$ then

$$
c_{i j}=\sum_{k=1}^{n} a_{i k}(\boldsymbol{D})_{k j}=a_{i j}(\boldsymbol{D})_{j j}=a_{i j} d_{j},
$$

and

$$
b_{i j}=\sum_{k=1}^{n}\left(\boldsymbol{D}^{-1}\right)_{i k} c_{k j}=d_{i}^{-1} c_{i j}=d_{i}^{-1} a_{i j} d_{j} .
$$

This shows that $b_{i j}=0$ when $|i-j|>1$.

3b

Show that there exists a choice of \boldsymbol{D} such that \boldsymbol{B} is symmetric and determine $b_{i i}$ for $i=1, \ldots, n$ and $b_{i, i+1}$ for $i=1, \ldots, n-1$ with the choice $d_{1}=1$.

Answer:

$$
\begin{aligned}
& \boldsymbol{B} \text { symmetric } \\
& \quad \Leftrightarrow b_{i, i+1}=b_{i+1, i}, \quad i=1, \ldots, n-1 \\
& \quad \Leftrightarrow d_{i}^{-1} a_{i, i+1} d_{i+1}=d_{i+1}^{-1} a_{i+1, i} d_{i}, \quad i=1, \ldots, n-1 \\
& \quad \Leftrightarrow \frac{d_{i+1}^{2}}{d_{i}^{2}}=\frac{a_{i+1, i}}{a_{i, i+1}}=: \alpha_{i}, \quad i=1, \ldots, n-1 \\
& \quad \Leftrightarrow \frac{d_{i+1}}{d_{i}}= \pm \sqrt{\alpha_{i}}, \quad i=1, \ldots, n-1 \\
& \quad \Leftrightarrow d_{i+1}= \pm d_{i} \sqrt{\alpha_{i}}, \quad i=1, \ldots, n-1 .
\end{aligned}
$$

So \boldsymbol{B} will be symmetric if we choose

$$
d_{1}=1, \quad \text { and } \quad d_{i+1}=d_{i} \sqrt{\alpha_{i}}, \quad i=1, \ldots, n-1 .
$$

We find $b_{i i}=d_{i}^{-1} a_{i i} d_{i}=a_{i i}$ for $i=1, \ldots, n$ and $b_{i, i+1}=d_{i}^{-1} a_{i, i+1} d_{i+1}=a_{i, i+1} \sqrt{\alpha_{i}}=\operatorname{sign}\left(a_{i, i+1}\right) \sqrt{a_{i, i+1} a_{i+1, i}}, \quad i=1, \ldots, n-1$.

3c

Show that \boldsymbol{B} and \boldsymbol{A} have the same characteristic polynomials and explain why \boldsymbol{A} has real eigenvalues.

Answer:

$$
\begin{aligned}
\pi_{\boldsymbol{B}}(\lambda) & =\operatorname{det}\left(\boldsymbol{D}^{-1} \boldsymbol{A} \boldsymbol{D}-\lambda \boldsymbol{I}\right)=\operatorname{det}\left(\boldsymbol{D}^{-1}(\boldsymbol{A}-\lambda \boldsymbol{I}) \boldsymbol{D}\right) \\
& =\operatorname{det}\left(\boldsymbol{D}^{-1}\right) \operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I}) \operatorname{det}(\boldsymbol{D})=\operatorname{det}\left(\boldsymbol{D}^{-1} \boldsymbol{D}\right) \operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=\pi_{\boldsymbol{A}}(\lambda) .
\end{aligned}
$$

(Continued on page 4.)

Since \boldsymbol{B} is real and symmetric it has real eigenvalues and since $\pi_{\boldsymbol{B}}=\pi_{\boldsymbol{A}}, \boldsymbol{A}$ has the same real eigenvalues as \boldsymbol{B}.

Good luck!

