UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination inINF-MAT4350 — Numerical linear algebraDay of examination:3 December 2009Examination hours:0900-1200This problem set consists of 4 pages.Appendices:NonePermitted aids:None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All 7 part questions will be weighted equally.

Problem 1 Matrix products

Let $A, B, C, E \in \mathbb{R}^{n,n}$ be matrices where $A^T = A$. In this problem an (arithmetic) operation is an addition or a multiplication. We ask about exact numbers of operations.

1a

How many operations are required to compute the matrix product BC? How many operations are required if B is lower triangular?

Answer: For each of the n^2 elements in **B** we have to compute an inner product of length n. This requires n multiplications and n-1 additions. Therefore to compute **BC** requires $n^2(2n-1) = 2n^3 - n^2$ operations.

If **B** is lower triangular then row k of **B** contains k non-zero elements, k = 1, ..., n. Therefore, to compute an element in the k-th row of **BC** requires k multiplications and k - 1 additions. Hence in total we need $n \sum_{k=1}^{n} (2k - 1) = n^3$ operations.

1b

Show that there exists a lower triangular matrix $L \in \mathbb{R}^{n,n}$ such that $A = L + L^T$.

Answer: We have $\mathbf{A} = \mathbf{A}_{L} + \mathbf{A}_{D} + \mathbf{A}_{R}$, where \mathbf{A}_{L} is lower triangular with 0 on the diagonal, $\mathbf{A}_{D} = \text{diag}(a_{11}, \ldots, a_{nn})$, and \mathbf{A}_{R} is upper triangular with 0 on the diagonal. Since $\mathbf{A}^{T} = \mathbf{A}$, we have $\mathbf{A}_{R} = \mathbf{A}_{L}^{T}$. If we let $\mathbf{L} := \mathbf{A}_{L} + \frac{1}{2}\mathbf{A}_{D}$ we obtain $\mathbf{A} = \mathbf{L} + \mathbf{L}^{T}$.

(Continued on page 2.)

1c

We have $\boldsymbol{E}^T \boldsymbol{A} \boldsymbol{E} = \boldsymbol{S} + \boldsymbol{S}^T$ where $\boldsymbol{S} = \boldsymbol{E}^T \boldsymbol{L} \boldsymbol{E}$. How many operations are required to compute $\boldsymbol{E}^T \boldsymbol{A} \boldsymbol{E}$ in this way?

Answer: Svar: We need n operations to compute the diagonal in L. From Question (1a) we need n^3 operations to compute LE and consequently $2n^3-n^2$ operations to compute $E^T(LE)$. Therefore n^2 operations to compute the sum $S + S^T$. In total $3n^3 + n$ operations. Direct computation of $E^T AE$ requires $4n^3 - 2n^2$ operations.

Problem 2 Gershgorin Disks

The eigenvalues of $\mathbf{A} \in \mathbb{R}^{n,n}$ lie inside $R \cap C$, where $R := R_1 \cup \cdots \cup R_n$ is the union of the row disks R_i of \mathbf{A} , and $C = C_1 \cup \cdots \cup C_n$ is the union of the column disks C_j . You do not need to prove this. Write a Matlab function $[\mathbf{s},\mathbf{r},\mathbf{c}]=\mathbf{gershgorin}(\mathbf{A})$ that computes the centres $\mathbf{s} = [s_1,\ldots,s_n] \in \mathbb{R}^n$ of the row and column disks, and their radii $\mathbf{r} = [r_1,\ldots,r_n] \in \mathbb{R}^n$ and $\mathbf{c} = [c_1,\ldots,c_n] \in \mathbb{R}^n$, respectively.

Answer:

With for-loops:

```
function [s,r,c] = gershgorin(A)
n=length(A);
s=diag(A); r=zeros(n,1); c=r;
for i=1:n
    for j=1:n
        r(i)=r(i)+abs(A(i,j));
        c(i)=c(i)+abs(A(j,i));
    end;
    r(i)=r(i)-abs(s(i)); c(i)=c(i)-abs(s(i));
end
    Vectorized:
function [s,r,c] = gershgorinv(A)
n=length(A);
s=diag(A); e=ones(n,1);
```

r=abs(A)*e-abs(s);

c=(abs(A))'*e-abs(s);

Problem 3 Eigenpairs

Let $\mathbf{A} \in \mathbb{R}^{n,n}$ be tridiagonal (i.e. $a_{ij} = 0$ when |i - j| > 1) and suppose also that $a_{i+1,i}a_{i,i+1} > 0$ for $i = 1, \ldots, n-1$.

(Continued on page 3.)

3a

Show that for an arbitrary nonsingular diagonal matrix $\mathbf{D} = \text{diag}(d_1, d_2, \dots, d_n) \in \mathbb{R}^{n,n}$, the matrix

$$\boldsymbol{B} = \boldsymbol{D}^{-1} \boldsymbol{A} \boldsymbol{D} \tag{1}$$

is tridiagonal by finding a formula for b_{ij} , i, j = 1, ..., n.

Answer: If C = AD then

$$c_{ij} = \sum_{k=1}^{n} a_{ik}(\boldsymbol{D})_{kj} = a_{ij}(\boldsymbol{D})_{jj} = a_{ij}d_j,$$

and

$$b_{ij} = \sum_{k=1}^{n} (\boldsymbol{D}^{-1})_{ik} c_{kj} = d_i^{-1} c_{ij} = d_i^{-1} a_{ij} d_j.$$

This shows that $b_{ij} = 0$ when |i - j| > 1.

3b

Show that there exists a choice of D such that B is symmetric and determine b_{ii} for i = 1, ..., n and $b_{i,i+1}$ for i = 1, ..., n-1 with the choice $d_1 = 1$.

Answer:

$$\begin{aligned} \boldsymbol{B} \text{ symmetric} \\ \Leftrightarrow b_{i,i+1} = b_{i+1,i}, \quad i = 1, \dots, n-1 \\ \Leftrightarrow d_i^{-1} a_{i,i+1} d_{i+1} = d_{i+1}^{-1} a_{i+1,i} d_i, \quad i = 1, \dots, n-1 \\ \Leftrightarrow \frac{d_{i+1}^2}{d_i^2} = \frac{a_{i+1,i}}{a_{i,i+1}} =: \alpha_i, \quad i = 1, \dots, n-1 \\ \Leftrightarrow \frac{d_{i+1}}{d_i} = \pm \sqrt{\alpha_i}, \quad i = 1, \dots, n-1 \\ \Leftrightarrow d_{i+1} = \pm d_i \sqrt{\alpha_i}, \quad i = 1, \dots, n-1. \end{aligned}$$

So \boldsymbol{B} will be symmetric if we choose

$$d_1 = 1$$
, and $d_{i+1} = d_i \sqrt{\alpha_i}$, $i = 1, \dots, n-1$.

We find $b_{ii} = d_i^{-1} a_{ii} d_i = a_{ii}$ for i = 1, ..., n and $b_{i,i+1} = d_i^{-1} a_{i,i+1} d_{i+1} = a_{i,i+1} \sqrt{\alpha_i} = \operatorname{sign}(a_{i,i+1}) \sqrt{a_{i,i+1} a_{i+1,i}}, \quad i = 1, ..., n-1.$

3c

Show that B and A have the same characteristic polynomials and explain why A has real eigenvalues.

Answer:

$$\pi_{\boldsymbol{B}}(\lambda) = \det(\boldsymbol{D}^{-1}\boldsymbol{A}\boldsymbol{D} - \lambda\boldsymbol{I}) = \det\left(\boldsymbol{D}^{-1}(\boldsymbol{A} - \lambda\boldsymbol{I})\boldsymbol{D}\right)$$

=
$$\det(\boldsymbol{D}^{-1})\det(\boldsymbol{A} - \lambda\boldsymbol{I})\det(\boldsymbol{D}) = \det(\boldsymbol{D}^{-1}\boldsymbol{D})\det(\boldsymbol{A} - \lambda\boldsymbol{I}) = \pi_{\boldsymbol{A}}(\lambda).$$

(Continued on page 4.)

Since **B** is real and symmetric it has real eigenvalues and since $\pi_{\mathbf{B}} = \pi_{\mathbf{A}}$, **A** has the same real eigenvalues as **B**.

Good luck!