
Lecture Notes for Inf-Mat 4350, 2010

Tom Lyche

August 28, 2010

2

Contents

Preface vii

1 Introduction 1
1.1 Notation . 1

I Some Linear Systems with a Special Structure 5

2 Examples of Linear Systems 7
2.1 Block Multiplication and Triangular Matrices 7

2.1.1 Block Multiplication 7
2.1.2 Triangular matrices 10

2.2 The Second Derivative Matrix 11
2.3 LU Factorization of a Tridiagonal System 12

2.3.1 Diagonal Dominance 13
2.4 Cubic Spline Interpolation . 16

2.4.1 C2 Cubic Splines . 16
2.4.2 Finding the Interpolant 18
2.4.3 Algorithms . 21

3 LU Factorizations 27
3.1 The LU Factorization . 27
3.2 Block LU Factorization . 30
3.3 The Symmetric LU Factorization 31
3.4 Positive Definite- and Positive Semidefinite Matrices 32

3.4.1 Definition and Examples 32
3.4.2 Some Criteria for the Nonsymmetric Case 33

3.5 The Symmetric Case and Cholesky Factorization 35
3.6 An Algorithm for SemiCholesky Factorization of a Banded Matrix 38
3.7 The PLU Factorization . 41

4 The Kronecker Product 43
4.1 Test Matrices . 43

4.1.1 The 2D Poisson Problem 43

i

ii Contents

4.1.2 The test Matrices 46
4.2 The Kronecker Product . 47
4.3 Properties of the 1D and 2D Test Matrices 50

5 Fast Direct Solution of a Large Linear System 55
5.1 Algorithms for a Banded Positive Definite System 55

5.1.1 Cholesky Factorization 56
5.1.2 Block LU Factorization of a Block Tridiagonal Matrix 56
5.1.3 Other Methods . 57

5.2 A Fast Poisson Solver based on Diagonalization 57
5.3 A Fast Poisson Solver based on the Discrete Sine and Fourier

Transforms . 58
5.3.1 The Discrete Sine Transform (DST) 58
5.3.2 The Discrete Fourier Transform (DFT) 59
5.3.3 The Fast Fourier Transform (FFT) 60
5.3.4 A Poisson Solver based on the FFT 62

5.4 Problems . 63

II Some Matrix Theory 65

6 Orthonormal Eigenpairs and the Schur Form 67
6.1 The Schur Form . 67

6.1.1 The Spectral Theorem 69
6.2 Normal Matrices . 70
6.3 The Rayleigh Quotient and Minmax Theorems 71

6.3.1 The Rayleigh Quotient 71
6.3.2 Minmax and Maxmin Theorems 72
6.3.3 The Hoffman-Wielandt Theorem 74

6.4 Proof of the Real Schur Form 74

7 The Singular Value Decomposition 77
7.1 Singular Values and Singular Vectors 77

7.1.1 SVD and SVF . 77
7.1.2 Examples . 80
7.1.3 Singular Values of Normal and Positive Semidefinite

Matrices . 83
7.1.4 A Geometric Interpretation 83

7.2 Singular Vectors . 84
7.2.1 The SVD of A∗A and AA∗ 85

7.3 Determining the Rank of a Matrix 86
7.4 The Minmax Theorem for Singular Values and the Hoffman-

Wielandt Theorem . 88

8 Matrix Norms 91
8.1 Vector Norms . 91

Contents iii

8.2 Matrix Norms . 93

8.2.1 The Frobenius Norm 93

8.2.2 Consistent and Subordinate Matrix Norms 94

8.2.3 Operator Norms . 96

8.2.4 The p-Norms . 97

8.2.5 Unitary Invariant Matrix Norms 99

8.2.6 Absolute and Monotone Norms 100

8.3 The Condition Number with Respect to Inversion 101

8.4 Convergence and Spectral Radius 104

8.4.1 Convergence in Rm,n and Cm,n 105

8.4.2 The Spectral Radius 105

8.4.3 Neumann Series . 107

III Iterative Methods for Large Linear Systems 109

9 The Classical Iterative Methods 111

9.1 Classical Iterative Methods; Component Form 111

9.2 The Discrete Poisson System . 113

9.3 Matrix Formulations of the Classical Methods 115

9.3.1 The Splitting Matrices for the Classical Methods . . 115

9.4 Convergence of Fixed-point Iteration 117

9.4.1 Stopping the Iteration 119

9.4.2 Richardson’s Method (R method) 119

9.5 Convergence of the Classical Methods for the Discrete Poisson
Matrix . 120

9.5.1 Number of Iterations 122

9.6 Convergence Analysis for SOR 123

9.7 The Optimal SOR Parameter ω 125

10 The Conjugate Gradient Method 129

10.1 The Conjugate Gradient Algorithm 130

10.2 Numerical Example . 131

10.3 Derivation and Basic Properties 133

10.4 Convergence . 137

11 Minimization and Preconditioning 143

11.1 Minimization . 143

11.2 Preconditioning . 145

11.3 Preconditioning Example . 148

11.3.1 A Banded Matrix 148

11.3.2 Preconditioning . 151

iv Contents

IV Orthonormal Transformations and Least Squares 153

12 Orthonormal Transformations 155

12.1 The QR Decomposition and QR Factorization. 155

12.1.1 QR and Gram-Schmidt 157

12.2 The Householder Transformation 158

12.3 Householder Triangulation . 161

12.3.1 QR and Linear Systems 163

12.4 Givens Rotations . 164

13 Least Squares 167

13.1 The Pseudo-Inverse and Orthogonal Projections 167

13.1.1 The Pseudo-Inverse 167

13.1.2 Orthogonal Projections 169

13.2 The Least Squares Problem . 170

13.3 Examples . 172

13.4 Numerical Solution using the Normal Equations 175

13.5 Numerical Solution using the QR Factorization 175

13.6 Numerical Solution using the Singular Value Factorization . . . 177

13.7 Perturbation Theory for Least Squares 177

13.7.1 Perturbing the right hand side 177

13.7.2 Perturbing the matrix 179

13.8 Perturbation Theory for Singular Values 180

V Eigenvalues and Eigenvectors 183

14 Numerical Eigenvalue Problems 185

14.1 Perturbation of Eigenvalues . 185

14.1.1 Gerschgorin’s Theorem 187

14.2 Unitary Similarity Transformation of a Matrix into Upper Hes-
senberg Form . 190

14.3 Computing a Selected Eigenvalue of a Symmetric Matrix 192

14.3.1 The Inertia Theorem 194

14.3.2 Approximating λm 196

14.4 Perturbation Proofs . 197

15 Some Methods for Computing Eigenvalues 199

15.1 The Power Method . 199

15.1.1 The Inverse Power Method 202

15.2 The QR Algorithm . 204

15.2.1 The Relation to the Power Method 205

15.2.2 A convergence theorem 205

15.2.3 The Shifted QR Algorithms 207

Contents v

VI Appendix 209

A Vectors 211
A.1 Vector Spaces . 211
A.2 Linear Independence and Bases 214
A.3 Operations on Subspaces . 216

A.3.1 Sums and intersections of subspaces 216
A.3.2 The quotient space 218

A.4 Convergence of Vectors . 218
A.4.1 Convergence of Series of Vectors 220

A.5 Inner Products . 221
A.6 Orthogonality . 223
A.7 Projections and Orthogonal Complements 226

B Matrices 229
B.1 Arithmetic Operations and Block Multiplication 229
B.2 The Transpose Matrix . 232
B.3 Linear Systems . 233
B.4 The Inverse matrix . 235
B.5 Rank, Nullity, and the Fundamental Subspaces 236
B.6 Linear Transformations and Matrices 239
B.7 Orthonormal and Unitary Matrices 240

C Determinants 243
C.1 Permutations . 243
C.2 Basic Properties of Determinants 245
C.3 The Adjoint Matrix and Cofactor Expansion 249
C.4 Computing Determinants . 251
C.5 Some Useful Determinant Formulas 254

D Eigenvalues and Eigenvectors 255
D.1 The Characteristic Polynomial 255

D.1.1 The characteristic equation 255
D.2 Similarity Transformations . 259
D.3 Linear Independence of Eigenvectors 260
D.4 Left Eigenvectors . 263

E Gaussian Elimination 265
E.1 Gaussian Elimination and LU factorization 266

E.1.1 Algoritms . 268
E.1.2 Operation count . 270

E.2 Pivoting . 271
E.2.1 Permutation matrices 272
E.2.2 Gaussian elimination works mathematically 272
E.2.3 Pivot strategies . 273

E.3 The PLU-Factorization . 274

vi Contents

E.4 An Algorithm for Finding the PLU-Factorization 275

F Computer Arithmetic 279
F.1 Absolute and Relative Errors . 279
F.2 Floating Point Numbers . 280
F.3 Rounding and Arithmetic Operations 282

F.3.1 Rounding . 283
F.3.2 Arithmetic Operations 283

F.4 Backward Rounding-Error Analysis 283
F.4.1 Computing a Sum 284
F.4.2 Computing an Inner Product 286
F.4.3 Computing a Matrix Product 287

G Differentiation of Vector Functions 289

H Some Inequalities 293
H.1 Convexity . 293
H.2 Inequalities . 294

I The Jordan Form 297
I.1 The Jordan Form . 297

I.1.1 The Minimal Polynomial 300

Bibliography 303

Index 305

Preface

These lecture notes contains the text for a course in matrix analysis and
numerical linear algebra given at the beginning graduate level at the University of
Oslo. In the appendix we give a review of basis linear algebra. Each of the chapters
correspond approximately to one week of lectures.

Oslo, 12 August, 2010

Tom Lyche

vii

viii Preface

List of Figures

2.1 The cubic Hermite interpolation polynomial interpolating f(x) =
x4 on [0, 2]. 16

2.2 The polynomial of degree 15 interpolating f(x) = arctan(10x) +
π/2 on [−1, 1]. See text . 17

2.3 A cubic spline interpolating f(x) = arctan(10x) + π/2 on [−1, 1].
See text . 18

2.4 A two piece cubic spline interpolant to f(x) = x4. 19

2.5 Cubic spline interpolation to the data in Example 2.25. The break-
points (xi, yi), i = 2, 3, 4 are marked with dots on the curve. . . . 21

2.6 A physical spline with ducks. 23

4.1 Numbering of grid points . 45

4.2 The 5-point stencil . 45

4.3 Band structure of the 2D test matrix, n = 9, n = 25, n = 100 . . . 46

5.1 Fill-inn in the Cholesky factor of the Poisson matrix (n = 100). . . 56

7.1 The ellipse y21/9 + y22 = 1 (left) and the rotated ellipse AS (right). 84

9.1 ρ(Gω) with ω ∈ [0, 2] for n = 100, (lower curve) and n = 2500
(upper curve). 121

10.10 Orthogonality in the conjugate gradient algorithm. 134

12.1 The Householder transformation 159

12.2 A plane rotation. 165

13.1 A least squares fit to data. 173

13.2 F . 178

14.1 The Gerschgorin disk Ri. 188

A.1 The orthogonal projection of x into S. 226

C.12 The triangle T defined by the three points P1, P2 and P3. 253

ix

x List of Figures

E.1 Gaussian elimination . 266

F.1 Distribution of some positive floating-point numbers 281

H.1 A convex function. 293

List of Tables

9.1 The number of iterations kn to solve the n × n discrete Poisson
problem using the methods of Jacobi, Gauss-Seidel, and SOR (see
text) with a tolerance 10−8. 114

9.2 Spectral radia for GJ , G1, Gω∗ and the smallest integer kn such
that ρ(G)kn ≤ 10−8. 122

10.6 The number of iterations K for the averaging problem on a
√
n×√

n grid for various n . 132
10.7 The number of iterations K for the Poisson problem on a

√
n×

√
n

grid for various n . 132

11.2 The number of iterations K (no preconditioning) and Kpre (with
preconditioning) for the problem (11.14) using the discrete Poisson
problem as a preconditioner. 151

15.7 Quadratic convergence of Rayleigh quotient iteration. 203

xi

xii List of Tables

List of Algorithms

2.11 trifactor . 13
2.12 trisolve . 13
2.23 findsubintervals . 21
2.24 cubppeval . 22
3.37 bandcholesky . 39
3.38 bandforwardsolve . 40
3.39 bandbacksolve . 40
5.1 Fast Poisson Solver . 58
5.4 Recursive FFT . 62
9.1 Jacobi . 113
9.2 SOR . 114
10.4 Conjugate Gradient Iteration . 131
10.5 Testing Conjugate Gradient . 132
11.3 Preconditioned Conjugate Gradient Algorithm 147
12.13 Generate a Householder transformation 160
12.18 Householder Triangulation of a matrix 163
12.24 Upper Hessenberg linear system 166
14.11 Householder reduction to Hessenberg form 191
14.13 Assemble Householder transformations 192
15.3 The Power Method . 201
15.5 Rayleigh quotient iteration . 203
E.5 lufactor . 269
E.6 forwardsolve . 269
E.7 backsolve . 270
E.12 PLU factorization . 276
E.14 Forward Substitution (column oriented) 277
E.15 Backward Substitution (column oriented) 277

xiii

xiv List of Algorithms

List of Exercises

2.1 . 9
2.2 . 9
2.3 . 9
2.4 . 9
2.5 . 9
2.6 . 9
2.15 . 14
2.16 . 14
2.17 . 15
2.18 . 15
2.26 . 22
2.27 . 23
2.28 . 23
2.29 Give me a Moment . 23
2.31 . 24
3.11 . 29
3.12 . 30
3.13 . 30
3.14 . 30
3.18 . 31
3.31 . 35
4.2 . 45
4.5 . 48
4.14 . 52
4.15 . 52
4.16 . 53
4.17 . 53
4.18 . 53
4.19 . 53
5.1 . 63
5.2 . 63
5.3 . 63
5.4 . 63
5.5 . 63
5.6 . 64

xv

xvi List of Exercises

5.7 . 64
5.8 . 64
5.9 . 64
5.10 . 64
6.3 . 68
6.7 . 70
6.8 . 70
6.12 . 71
6.15 . 73
6.17 . 74
6.19 . 74
7.9 . 82
7.10 . 82
7.16 . 85
7.19 . 86
7.21 . 87
7.22 . 87
8.4 . 92
8.5 . 92
8.6 . 93
8.7 . 93
8.13 . 95
8.14 . 95
8.15 . 95
8.17 . 95
8.18 . 95
8.24 . 98
8.25 . 99
8.29 . 100
8.30 . 100
8.31 . 100
8.32 . 100
8.33 . 100
8.34 . 100
8.35 . 100
8.36 . 101
8.39 . 102
8.43 . 104
8.50 . 106
8.52 . 108
8.53 . 108
9.9 . 118
9.10 . 118
9.11 . 118
9.12 . 118
9.14 . 118

List of Exercises xvii

9.17 . 120
9.20 . 123
10.2 . 130
10.3 . 130
10.8 . 133
10.12 . 135
10.13 . 136
10.14 . 136
10.20 . 139
11.1 . 145
11.2 . 145
12.5 . 157
12.7 . 158
12.10 . 159
12.14 . 160
12.15 . 161
12.16 . 161
12.17 . 161
12.22 . 165
12.23 . 165
13.1 . 167
13.2 . 167
13.3 . 168
13.4 . 168
13.5 . 168
13.6 . 168
13.7 . 168
13.8 . 168
13.9 . 168
13.10 . 168
13.13 . 170
13.14 . 170
13.15 . 170
13.21 . 174
13.22 . 174
13.23 . 174
13.28 . 179
13.29 . 179
13.31 . 180
14.7 . 189
14.9 . 189
14.10 . 190
14.12 . 191
14.14 . 192
14.15 . 192
14.19 . 195

xviii List of Exercises

14.20 . 195
14.21 . 195
14.22 . 196
14.23 . 196
14.25 . 197
15.12 . 206
A.9 . 213
A.10 . 213
A.11 . 213
A.12 . 213
A.21 . 216
A.22 . 216
A.23 . 216
A.24 . 216
A.26 . 216
A.30 . 218
A.36 . 220
A.37 . 221
A.43 . 223
A.44 . 223
A.45 . 223
A.46 . 223
A.47 . 223
A.56 . 227
B.4 . 233
B.11 . 236
B.12 . 236
B.13 . 236
B.18 . 238
B.19 . 238
B.20 . 238
B.29 . 241
C.1 . 245
C.3 . 249
C.5 . 249
C.10 . 252
C.11 . 252
C.13 . 252
C.14 . 253
C.15 . 254
D.8 . 258
D.9 . 258
D.10 . 258
D.11 . 258
D.12 . 258
D.13 . 258

List of Exercises xix

E.2 . 267
E.13 . 276
F.4 . 280
F.6 . 282
F.8 . 283
G.1 . 289
I.3 . 298
I.4 . 298
I.6 . 299
I.7 . 299
I.9 . 300
I.10 . 301
I.11 . 301

xx List of Exercises

Chapter 1

Introduction

1.1 Notation
The following sets will be used throughout these notes.

1. The set of natural numbers, integers, rational numbers, real numbers, and
complex numbers are denoted by N,Z,Q,R,C, respectively.

2. We use the ”colon equal” symbol v := e to indicate that the symbol v is
defined by the expression e.

3. Rn is the set of n-tuples of real numbers which we will represent as column
vectors. Thus x ∈ Rn means

x =


x1

x2

...
xn

 ,

where xi ∈ R for i = 1, . . . , n. Row vectors are normally identified using the
transpose operation. Thus if x ∈ Rn then x is a column vector and xT is a
row vector.

4. Addition and scalar multiplication are denoted, and defined by

x+ y =

x1 + y1
...

xn + yn

 , ax =

ax1

...
axn

 , x,y ∈ Rn, a ∈ R.

5. Rm,n is the set of m× n matrices with real elements represented as

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 .

1

2 Chapter 1. Introduction

The element in the ith row and jth column of a matrix A will be denoted by
ai,j , aij , A(i, j) or (A)i,j . We use the notations

a:j =


a1j
a2j
...

amj

 , aT
i: = [ai1, ai2, . . . , ain], A = [a:1,a:2, . . .a:n] =


aT
1:

aT
2:
...

aT
m:



for the columns a:j and rows aT
i: of A. We often drop the colon and write

aj and aT
i when no confusion can arise. If m = 1 then A is a row vector, if

n = 1 then A is a column vector, while if m = n then A is a square matrix. In
this text we will denote matrices by boldface capital letters A,B,C · · · and
vectors most often by boldface lower case letters x,y, z, · · · .

6. The imaginary unit
√
−1 is denoted by i. The complex conjugate and the

modulus of a complex number z is denoted by z and |z|, respectively. Thus if
z = x+ iy = reiϕ = r(cosϕ+ i sinϕ) is a complex number then z := x− iy =

re−iϕ = cosϕ − i sinϕ and |z| :=
√
x2 + y2 = r. Re(z) := x and Im(z) := y

denote the real and imaginary part of the complex number z.

7. For matrices and vectors with complex elements we use the notationA ∈ Cm,n

and x ∈ Cn. We identify complex row vectors using either the transpose T or
the conjugate transpose operation x∗ := xT = [x1, . . . , xn].

8. For x,y ∈ Cn and a ∈ C the operations of vector addition and scalar multi-
plication is defined by component operations as in the real case. (Cf. 4).

9. The arithmetic operations on rectangular matrices are

• matrix addition C = A+B if cij = aij + bij for all i, j and A,B,C
are matrices of the same dimension.

• multiplication by a scalar C = αA, where cij = αaij for all i, j.

• multiplication by another matrixC = AB,C = A·B orC = A∗B,
where A ∈ Cm,p, B ∈ Cp,n, C ∈ Cm,n, and cij =

∑p
k=1 aikbkj for

i = 1, . . . ,m, j = 1, . . . , n.

• element-by-element matrix operations C = A×B and D = A/B,
and E = A ∧ r where all matrices are of the same dimension and cij =
aijbij , dij = aij/bij and eij = arij for all i, j and suitable r. The element-
by-element product C = A × B is known as the Schur product and
also the Hadamard product.

10. Let A ∈ Rm,n or A ∈ Cm,n. The transpose AT , and conjugate transpose
A∗ are n,m matrices with elements aTij = aji and a∗ij = aji, respectively. If

B is an n, p matrix then (AB)T = BTAT and (AB)∗ = B∗A∗.

1.1. Notation 3

11. The unit vectors in Rn and Cn are denoted by

e1 :=


1
0
0
...
0

 , e2 :=


0
1
0
...
0

 , e3 :=


0
0
1
...
0

 , · · · , en :=


0
0
0
...
1

 ,

while In = I =: [δij]
n
i,j=1, where

δij :=

{
1 if i = j,

0 otherwise,

is the identity matrix of order n. Both the columns and the transpose of
the rows of I are the unit vectors e1, e2, . . . , en.

12. We use the following notations for diagonal- and tridiagonal n× n matrices

diag(di) = diag(d1, . . . , dn) :=


d1 0 · · · 0
0 d2 · · · 0
...

. . .
...

0 0 · · · dn

 =

d1 . . .

dn

 ,

B = tridiag(ai, di, ci) = tridiag(a,d, c) :=


d1 c1
a2 d2 c2

. . .
. . .

. . .

an−1 dn−1 cn−1

an dn

 .

Here bii = di for i = 1, . . . , n, bi+1,i = ai+1, bi,i+1 = ci for i = 1, . . . , n − 1,
and bij = 0 otherwise.

13. Suppose A ∈ Cm,n and 1 ≤ i1 < i2 < · · · < ir ≤ m, 1 ≤ j1 < j2 < · · · <
jc ≤ n. The matrix A(i, j) ∈ Cr,c is the submatrix of A consisting of rows
i := [i1, . . . , ir] and columns j := [j1, . . . , jc]

A(i, j) := A

(
i1 i2 · · · ir
j1 j2 · · · jc

)
=


ai1,j1 ai1,j2 · · · ai1,jc
ai2,j1 ai2,j2 · · · ai2,jc
...

...
...

air,j1 air,j2 · · · air,jc

 .

For the special case of consecutive rows and columns we use the notation

A(r1 : r2, c1 : c2) :=


ar1,c1 ar1,c1+1 · · · ar1,c2

ar1+1,c1 ar1+1,c1+1 · · · ar1+1,c2
...

...
...

ar2,c1 ar2,c1+1 · · · ar2,c2

 .

4 Chapter 1. Introduction

Part I

Some Linear Systems with a
Special Structure

5

Chapter 2

Examples of Linear
Systems

Many problems in computational science involves linear systems where the coeffi-
cient matrix has a special structure. In this chapter we present two problems that
lead to a linear system with a tridiagonal coefficient matrix. Such linear systems can
be solved by a version of Gaussian elimination adapted to the special structure. We
first consider block multiplication and some useful facts about triangular matrices.

2.1 Block Multiplication and Triangular Matrices

2.1.1 Block Multiplication

A rectangular matrix A can be partitioned into submatrices by drawing horizon-
tal lines between selected rows and vertical lines between selected columns. For
example, the matrix

A =

1 2 3
4 5 6
7 8 9


can be partitioned as

(i)

[
A11 A12

A21 A22

]
=

 1 2 3
4 5 6
7 8 9

 , (ii)
[
a:1,a:2,a:3

]
=

 1 2 3
4 5 6
7 8 9

 ,

(iii)

aT
1:

aT
2:

aT
3:

 =

 1 2 3
4 5 6
7 8 9

 , (iv)
[
A11,A12

]
=

 1 2 3
4 5 6
7 8 9

 .

In (i) the matrix A is divided into four submatrices

A11 =
[
1
]
, A12 =

[
2, 3

]
, A21 =

[
4
7

]
, and A22 =

[
5 6
8 9

]
,

7

8 Chapter 2. Examples of Linear Systems

while in (ii) and (iii) A has been partitioned into columns and rows, respectively.
The submatrices in a partition are often referred to as blocks and a partitioned
matrix is sometimes called a block matrix.

In the following we assume that A ∈ Cm,p and B ∈ Cp,n. Here are some rules
and observations for block multiplication.

1. If B =
[
b:1, . . . , b:n

]
is partitioned into columns then the partition of the

product AB into columns is

AB =
[
Ab:1,Ab:2, . . . ,Ab:n

]
.

In particular, if I is the identity matrix of order p then

A = AI = A
[
e1, e2, . . . , ep

]
=

[
Ae1,Ae2, . . . ,Aep

]
and we see that column j of A can be written Aej for j = 1, . . . , p.

2. Similarly, if A is partitioned into rows then

AB =


aT1:
aT2:
...

aTm:

B =


aT1:B
aT2:B
...

aTm:B


and taking A = I it follows that row i of B can be written eTi B for i =
1, . . . , p.

3. It is often useful to write the matrix-vector productAx as a linear combination
of the columns of A

Ax = x1a:1 + x2a:2 + · · ·+ xpa:p.

4. If B =
[
B1,B2

]
, where B1 ∈ Cp,r and B2 ∈ Cp,n−r then

A
[
B1,B2

]
=

[
AB1,AB2

]
.

This follows from Rule 1. by an appropriate grouping of columns.

5. If A =

[
A1

A2

]
, where A1 ∈ Ck,p and A2 ∈ Cm−k,p then[

A1

A2

]
B =

[
A1B
A2B

]
.

This follows from Rule 2. by a grouping of rows.

6. If A =
[
A1,A2

]
and B =

[
B1

B2

]
, where A1 ∈ Cm,s, A2 ∈ Cm,p−s, B1 ∈ Cs,n

and B2 ∈ Cp−s,n then[
A1,A2

] [B1

B2

]
=

[
A1B1 +A2B2

]
.

Indeed, (AB)ij =
∑p

j=1 aikbkj =
∑s

j=1 aikbkj +
∑p

j=s+1 aikbkj = (A1B1)ij +
(A2B2)ij = (A1B1 +A2B2)ij .

2.1. Block Multiplication and Triangular Matrices 9

7. If A =

[
A11 A12

A21 A22

]
and B =

[
B11 B12

B21 B22

]
then

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=

[
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

]
,

provided the vertical partition in A matches the horizontal one in B, i.e. the
number of columns in A11 and A21 equals the number of rows in B11 and
B12 and similar for the other blocks. To show this we use Rule 4. to obtain

AB =

[[
A11 A12

A21 A22

] [
B11

B21

]
,

[
A11 A12

A21 A22

] [
B12

B22

]]
.

We complete the proof using Rules 5. and 6.

8. For the general case see Section B.1.

Exercise 2.1 For any matrix A show that aij = eTi Aej for all i, j.

Exercise 2.2 Let B = ATA. Explain why this product is defined for any matrix.
Show that bij = ⟨a:i,a:j⟩ := aT

:ia:j for all i, j.

Exercise 2.3 For A ∈ Rm,n and B ∈ Rp,n show that

ABT = a:1b
T
:1 + a:2b

T
:2 + · · ·+ a:nb

T
:n.

This is called the outer product expansion of the columns of A and B.

Exercise 2.4 Suppose A ∈ Rm,n, B ∈ Rm,p, and X ∈ Rn,p. Show that

AX = B ⇐⇒ Ax:j = b:j , j = 1, . . . , p.

Exercise 2.5 Suppose A =
[
A1,A2

]
and B =

[
B1

0

]
. When is AB = A1B1?

Exercise 2.6 Suppose A,B,C ∈ Rn,n are given in block form by

A :=

[
λ aT

0 A1

]
, B :=

[
1 0T

0 B1

]
, C :=

[
1 0T

0 C1

]
,

where A1,B1,C1 ∈ Rn−1,n−1. Show that

CAB =

[
λ aTB1

0 C1A1B1

]
.

10 Chapter 2. Examples of Linear Systems

2.1.2 Triangular matrices

Recall that a matrix R is upper- or right triangular if rij = 0 for i > j, and a
matrix L is lower- or left triangular if lij = 0 for i < j. If R is upper triangular

then RT is lower triangular.
We need some basic facts about triangular matrices and we start with

Lemma 2.7 Suppose

A =

[
A11 A12

0 A22

]
where A,A11 and A22 are square matrices. Then A is nonsingular if and only if
both A11 and A22 are nonsingular. In that case

A−1 =

[
A−1

11 −A−1
11 A12A

−1
22

0 A−1
22

]
(2.1)

Proof. If A11 and A12 are nonsingular then[
A−1

11 −A−1
11 A12A

−1
22

0 A−1
22

] [
A11 A12

0 A22

]
=

[
I 0
0 I

]
= I

and A is nonsingular with the indicated inverse. Conversely, let B be the inverse
of the nonsingular matrix A. We partition B conformally with A and have

BA =

[
B11 B12

B21 B22

] [
A11 A12

0 A22

]
=

[
I 0
0 I

]
= I

Using block-multiplication we find

B11A11 = I, B21A11 = 0, B21A12 +B22A22 = I.

The first equation implies that A11 is nonsingular, this in turn implies that B21 = 0
in the second equation, and then the third equation simplifies to B22A22 = I. We
conclude that also A22 is nonsingular.

Consider now a triangular matrix.

Lemma 2.8 An upper (lower) triangular matrix A = [aij] ∈ Cn,n is nonsingular
if and only if the diagonal elements aii, i = 1, . . . , n are nonzero. In that case the
inverse is upper (lower) triangular with diagonal elements a−1

ii , i = 1, . . . , n.

Proof. We use induction on n. The result holds for n = 1. The 1-by-1 matrix
A = [a11] is nonsingular if and only if a11 ̸= 0 and in that case A−1 = [a−1

11].
Suppose the result holds for n = k and let A ∈ Ck+1,k+1 be upper triangular. We
partition A in the form

A =

[
Ak ak

0 ak+1,k+1

]

2.2. The Second Derivative Matrix 11

and note that Ak ∈ Ck,k is upper triangular. By Lemma 1.1 A is nonsingular if
and only if Ak and (ak+1,k+1) are nonsingular and in that case

A−1 =

[
A−1

k −A−1
k aka

−1
k+1,k+1

0 a−1
k+1,k+1

]
.

By the induction hypothesis Ak is nonsingular if and only if the diagonal elements
a11, . . . , akk of Ak are nonzero and in that case A−1

k is upper triangular with diag-
onal elements a−1

ii , i = 1, . . . , k. The result for A follows.

Lemma 2.9 The product C = AB = (cij) of two upper (lower) triangular matrices
A = (aij) and B = (bij) is upper (lower) triangular with diagonal elements cii =
aiibii for all i.

Proof. Exercise.

A matrix is unit triangular if it is triangular with 1’s on the diagonal.

Lemma 2.10 For a unit upper (lower) triangular matrix A ∈ Cn,n:

1. A is nonsingular and the inverse is unit upper(lower) triangular.

2. The product of two unit upper (lower) triangular matrices is unit upper (lower)
triangular.

Proof. 1. follows from Lemma 2.8, while Lemma 2.9 implies 2.

2.2 The Second Derivative Matrix
Consider the simple two point boundary value problem

−u′′(x) = f(x), x ∈ [0, 1], u(0) = 0, u(1) = 0, (2.2)

where f is a given continuous function on [0, 1]. This problem is also known as the
one-dimensional (1D) Poisson problem . In principle it is easy to solve (2.2)
exactly. We just integrate f twice and determine the two integration constants
so that the homogeneous boundary conditions u(0) = u(1) = 0 are satisfied. For
example, if f(x) = 1 then u(x) = x(x − 1)/2 is the solution. However, many
functions f cannot be integrated exactly, and in such cases a numerical method can
be used.

(2.2) can be solved approximately using the finite difference method. For
this we choose a positive integer m, define the discretization parameter h := 1/(m+
1), and replace the interval [0, 1] by grid points xj := jh for j = 0, 1, . . . ,m+1. We
then use the following finite difference approximation of the second derivative:

u′′(x) ≈ u(x− h)− 2u(x) + u(x+ h)

h2
.

12 Chapter 2. Examples of Linear Systems

We obtain approximations vj to the exact solution u(xj) for j = 1, . . . ,m by
replacing the differential equation by the difference equation

−vj−1 + 2vj − vj+1

h2
= f(jh), j = 1, . . . ,m, v0 = vm+1 = 0.

Moving the h2 factor to the right hand side this can be written as an m×m linear
system

Tv =



2 −1 0
−1 2 −1

0
. . .

. . .
. . .

0
−1 2 −1
0 −1 2




v1
v2
...

vm−1

vm

 = h2


f(h)
f(2h)

...
f((m− 1)h)

f(mh)

 =: b.

(2.3)
The matrix T is called the second derivative matrix and will occur frequently
in these notes.

2.3 LU Factorization of a Tridiagonal System
Consider the linear system Tv = b given by (2.3). We show in Theorem 2.14 below
that this system has a unique solution and that the algorithm we now describe is
well defined.

The matrix T is an instance of a tridiagonal matrix A = tridiag(ai, di, ci) ∈
Cn,n. An economical way to solve a tridiagonal system Ax = b is to construct, if
possible, triangular matrices L and R such that the product A = LR has the form

d1 c1
a2 d2 c2

. . .
. . .

. . .

an−1 dn−1 cn−1

an dn

 =


1
l2 1

. . .
. . .

ln 1



r1 c1

. . .
. . .

rn−1 cn−1

rn

 .

(2.4)
Once L and R are determined we can find x by solving two simpler systems Ly = b
and Rx = y.

To find L and R we note that L and R are bidiagonal, L has ones on the
diagonal, and that we have the same ci elements on the super-diagonals of A and
R. By equating elements in (2.4) we find

d1 = r1, ak = lkrk−1, dk = lkck−1 + rk, k = 2, 3, . . . , n.

Solving for lk and rk leads to

r1 = d1, lk =
ak
rk−1

, rk = dk − lkck−1, k = 2, 3, . . . , n. (2.5)

2.3. LU Factorization of a Tridiagonal System 13

We can then solve Ly = b and Rx = y

y1 = b1, yk = bk − lkyk−1, k = 2, 3, . . . , n,

xn = yn/rn, xk = (yk − ckxk+1)/rk, k = n− 1, . . . , 2, 1.
(2.6)

We formulate this as two algorithms.

Algorithm 2.11 (trifactor) Vectors l, r ∈ Cn are computed from a, c,d ∈
Cn. This implements the LU factorization of a tridiagonal matrix. The first
(dummy) component in a and last component of c are not used.

function [l,r]= trifactor(a,d,c)

r=d; l=d;

for k=2: length(d)

l(k)=a(k)/r(k-1);

r(k)=d(k)-l(k)*c(k-1);

end

Algorithm 2.12 (trisolve) The solution x of the tridiagonal system LRx =
b is found from (2.6). Here l, r, c, b ∈ Cn . The vectors l, r are typically output
from trifactor.

function x=trisolve(l,r,c,b)

x=b; n=length(b);

for k=2:n

x(k)=b(k)-l(k)*x(k-1);

end

x(n)=x(n)/r(n);

for k=n-1: -1:1

x(k)=(x(k)-c(k)*x(k+1))/r(k);

end

The number of floating point operations (flops) to compute the LU factoriza-
tion of a tridiagonal matrix using Algorithm 2.11 is only 3n− 3, while the number
of flops for Algorithm 2.12 is 5n − 4. This means that the number of flops (the
complexity) to solve a tridiagonal system is O(n), or more precisely 8n−7, and this
number only grows linearly with n. This should be compared to Gaussian elimi-
nation on a full n × n system which is an O(n3) process, i. e., it is proportional to
n3.

2.3.1 Diagonal Dominance

We show that Algorithms 2.11, 2.12 are well defined for a class of tridiagonal linear
systems. Moreover, these linear systems have a unique solution.

Definition 2.13 The matrix A = [aij] ∈ Cn,n is diagonally dominant if

|aii| ≥
∑
j ̸=i

|aij |, i = 1, . . . , n. (2.7)

14 Chapter 2. Examples of Linear Systems

It is strictly diagonally dominant if strict inequality holds for i = 1, . . . , n.

Recall that a square matrix A is singular if Ax = 0 for a nonzero vector x. A

diagonally dominant matrix can be singular. For example the matricesA1 =
[
1 1 0
1 2 1
0 1 1

]
and A2 =

[
1 0 0
0 0 0
0 0 1

]
are both diagonally dominant and singular. Indeed, A2 has a zero

row, and for A1 column two is the sum of columns one and three. In the literature
diagonal dominance is therefore most often defined by including some additional
condition(s). Here we prove the following result.

Theorem 2.14 Suppose A = tridiag(ai, di, ci) ∈ Cn,n is tridiagonal and diagonally
dominant. If |d1| > |c1| and ai ̸= 0 for i = 2, . . . , n − 1, then A has a unique LU
factorization (2.4). If in addition dn ̸= 0, then A is nonsingular.

Proof. The matrix A has an LU factorization if the rk’s in (2.5) are nonzero for
k = 1, . . . , n − 1. We show by induction on k that |rk| > |ck| for k = 1, . . . , n − 1.
Clearly |r1| = |d1| > |c1|. Suppose |ck−1|/|rk−1| < 1 for some 2 ≤ k ≤ n − 1. By
(2.5)

|rk| = |dk − lkck−1| = |dk − akck−1

rk−1
| ≥ |dk| −

|ak||ck−1|
|rk−1|

. (2.8)

Since ak ̸= 0 and by diagonal dominance |rk| > |dk| − |ak| ≥ |ck|. Thus |rk| >
|ck| ≥ 0, for k = 1, . . . , n− 1 and an LU factorization exists. It is unique since any
LU factorization must satisfy (2.5). If dn ̸= 0 then by (2.8) |rn| > 0 regarless of
wether an is zero or nonzero, so both L and R have nonzero diagonal elements. By
Lemma 2.8 the product A = LR is nonsingular.

Consider the system Tv = b. The matrix T is diagonally dominant and
satisfies the additional conditions in Theorem 2.14. Thus it is nonsingular and we
can solve the system in O(n) arithmetic operations using Algorithms 2.11,2.12.

Alternatively, we could solve the system Tv = b by using the inverse T−1 of
T and simply compute the matrix vector product v = T−1b. However this is not
a good idea. In fact, all elements in T−1 are nonzero and the calculation of T−1b
requires O(n2) operations. See Exercise 2.16.

Exercise 2.15 Show that T = LR, where

L =



1 0 · · · · · · 0

− 1
2 1

. . .
...

0 −2
3 1

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 −m−1
m 1


,R =



2 −1 0 · · · 0

0 3
2 −1

. . .
...

...
. . .

. . .
. . . 0

...
. . . m

m−1 −1

0 · · · · · · 0 m+1
m


. (2.9)

Thus, T = LR is the LU factorization of T .

2.3. LU Factorization of a Tridiagonal System 15

Exercise 2.16 Let S ∈ Rm,m have elements sij given by

si,j = sj,i =
1

m+ 1
j
(
m+ 1− i

)
, 1 ≤ j ≤ i ≤ m. (2.10)

Show that ST = I and conclude that T−1 = S.

Exercise 2.17 We consider a finite difference method for the two point boundary
value problem

−u′′(x) + r(x)u′(x) + q(x)u(x) = f(x), for x ∈ [a, b],

u(a) = g0, u(b) = g1.
(2.11)

We assume that the given functions f, q and r are continuous on [a, b] and that
q(x) ≥ 0 for x ∈ [a, b]. It can then be shown that (2.11) has a unique solution u.

To solve (2.11) numerically we choose m ∈ N, h = (b−a)/(m+1), xj = a+jh
for j = 0, 1, . . . ,m+ 1 and solve the difference equation

−vj−1 + 2vj − vj+1

h2
+ r(xj)

vj+1 − vj−1

2h
+ q(xj)vj = f(xj), j = 1, . . . ,m, (2.12)

with v0 = g0 and vm+1 = g1.

(a) Show that (2.12) leads to a tridiagonal linear system Av = b, where A =
tridiag(aj , dj .cj) ∈ Rm,m has elements

aj = −1− h

2
r(xj), cj = −1 +

h

2
r(xj), dj = 2 + h2q(xj),

and

bj =


h2f(x1)− a1g0, if j = 1,

h2f(xj), if 2 ≤ j ≤ m− 1,

h2f(xm)− cmg1, if j = m.

(b) Show that the linear system satisfies the conditions in Theorem 2.14 if the
spacing h is so small that h

2 |r(x)| < 1 for all x ∈ [a, b].

(c) Propose a method to find v1, . . . , vm.

Exercise 2.18 (a) Consider the problem (2.11) with r = 0, f = q = 1 and
boundary conditions u(0) = 1, u(1) = 0. The exact solution is u(x) = 1 −
sinhx/ sinh 1. Write a computer program to solve (2.12) for h = 0.1, 0.05, 0.025, 0.0125,
and compute the ”error” max1≤j≤m|u(xj)− vj | for each h.

(b) Make a combined plot of the solution u and the computed points vj, j =
0, . . . ,m+ 1 for h = 0.1.

(c) One can show that the error is proportional to hp for some integer p. Estimate
p based on the error for h = 0.1, 0.05, 0.025, 0.0125.

16 Chapter 2. Examples of Linear Systems

0.5 1.0 1.5 2.0

5

10

15

Figure 2.1. The cubic Hermite interpolation polynomial interpolating
f(x) = x4 on [0, 2].

2.4 Cubic Spline Interpolation
We next consider another problem leading to a tridiagonal linear system. Given
n ≥ 2 interpolation sites x = [x1, . . . , xn]

T with a := x1 < · · · < xn =: b, real
y values y = [y1, . . . , yn]

T , and derivative values σa, σb. We seek a function g :
[a, b] → R such that

g(xi) = yi, for i = 1, . . . , n, g′(a) = σa, g′(b) = σb. (2.13)

The derivative conditions are known under various names as first derivative, clamped,
or Hermite boundary conditions.

Since there are n+ 2 interpolation conditions in (2.13) a natural choice for a
function g is a polynomial with n + 2 coefficients, i. e., a polynomial of degree at
most n + 1. As shown in many books on numerical methods such a g is uniquely
defined and there are good algorithms for computing it. For example, when n = 2
the interpolant is known as the cubic Hermite interpolation polynomial.

Example 2.19 (Cubic Hermite interpolation) Let f : [0, 2] → R be given by
f(x) = x4. The cubic polynomial g given by g(x) = 4x3 − 4x2 satisfies

g(0) = f(0), g(2) = f(2), g′(0) = f ′(0), g′(2) = f ′(2).

We show g and f in Figure 2.1

The polynomial g of degree ≤ n + 1 = 15 interpolating the function f given
by f(x) = arctan(10x) + π/2, x ∈ [−1, 1] at the points xi = −1 + 2(i− 1)/(n− 1),
i = 1, . . . , n with g′(−1) = f ′(−1), g′(1) = f ′(1) is shown in Figure 2.2. The
interpolant has large oscillations near the end of the range.

2.4.1 C2 Cubic Splines

When n is large a polynomial interpolant can have undesirable oscillations (cf.
Figure 2.2 and in this section we consider an alternative which often leads to better
results.

2.4. Cubic Spline Interpolation 17

-1.0 -0.5 0.5 1.0

-1

1

2

3

4

5

Figure 2.2. The polynomial of degree 15 interpolating f(x) =
arctan(10x) + π/2 on [−1, 1]. See text

Definition 2.20 Let n ≥ 3, and a = x1 < x2 < . . . < xn = b. A function
g : [a, b] → R of the form

g(x) :=



p1(x), if a ≤ x < x2,

p2(x), if x2 ≤ x < x3,
...

pn−2(x), if xn−2 ≤ x < xn−1,

pn−1(x), if xn−1 ≤ x ≤ b,

(2.14)

is called a cubic spline with knots x = [x1, . . . , xn]
T provided

(i) Each pi is a polynomial of degree ≤ 3.

(ii) pi−1(xi) = pi(xi), p′i−1(xi) = p′i(xi), p′′i−1(xi) = p′′i (xi), i = 2, . . . , n− 1.

We note that.

1. By requirement (ii) the polynomials pi are ”glued” together with C2 conti-
nuity, i. e., g, g′ and g′′ are continuous on [a, b].

2. Each of the n − 1 cubic polynomials pi has 4 coefficients and there are 3
continuity conditions at each of the n− 2 interior knots. Thus, a cubic spline
appears to have 4(n − 1) − 3(n − 2) = n + 2 degrees of freedom. This is the
number of interpolation conditions in (2.13). We show in Theorem 2.22 below
that there is a unique cubic spline of the form (2.14) satisfying (2.13). We
call this function the cubic spline interpolant. A cubic spline interpolant
to the function f(x) = arctan(10x) + π/2 us shown in Figure 2.3 for n = 14
using the same uniform xi’s as in Figure 2.2. The spline interpolant is quite
close to f . In fact it is hard to distinguish the two curves.

Example 2.21 Show that g given by

g(x) :=

{
p1(x) = −x2 + 2x3, if 0 ≤ x < 1,

p2(x) = −4 + 12x− 13x2 + 6x3, if 1 ≤ x ≤ 2,
(2.15)

18 Chapter 2. Examples of Linear Systems

-1.0 -0.5 0.5 1.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 2.3. A cubic spline interpolating f(x) = arctan(10x) + π/2 on
[−1, 1]. See text

is a cubic spline interpolant to the data

x = [0, 1, 2]T , y = [0, 1, 4]T , σa = 0, σb = 32.

Discussion: Clearly g is in the form (2.14) with knots x and p1, p2 are cubic poly-
nomials. Since p1(1) = 1 = p2(1), p

′
1(1) = 4 = p′2(1), p

′′
1(1) = 32 = p′′2(1) we see

that g is a cubic spline. Moreover, g(x1) = p1(0) = 0 = y1, g(x2) = p2(1) = 1 = y2,
g(x3) = p2(2) = 16 = y3, g

′(0) = p′1(0) = 0 = σa, g
′(2) = p′2(2) = 32 = σb, and

so g interpolates the data. The data is sampled from the function given by the rule
f(x) = x4. A plot of f and g is shown in Figure 2.4. It is hard to distinguish the
two curves.

2.4.2 Finding the Interpolant

For reasons of numerical accuracy it is convenient to use a representation called the
shifted power form for each pi.

pi(x) = c1i + c2i(x− xi) + c3i(x− xi)
2 + c4i(x− xi)

3. (2.16)

A cubic spline is completely determined by the shift vector xs ∈ Rn−1 and the
coefficient matrix C

xs := [x1, . . . , xk]
T , C :=


c11 c12 · · · c1,k
c21 c22 · · · c2,k
c31 c32 · · · c3,k
c41 c42 · · · c4,k

 ∈ R4,k, k = n− 1. (2.17)

We call (2.17) the pp representation of g (with respect to xs).
As an example, consider (2.15). With x2 = 1 we obtain p2(x) = −4 + 12x −

13x2+6x3 = 1+4(x− 1)+5(x− 1)2+6(x− 1)3 and since x1 = 0 the shifted power
form takes the form

g(x) :=

{
p1(x) = −x2 + 2x3, if 0 ≤ x < 1,

p2(x) = 1 + 4(x− 1) + 5(x− 1)2 + 6(x− 1)3. if 1 ≤ x ≤ 2.

2.4. Cubic Spline Interpolation 19

1 2

16

Figure 2.4. A two piece cubic spline interpolant to f(x) = x4.

The pp representation is

xs = [0, 1]T , C =


0 1
0 4

−1 5
2 6

 . (2.18)

The following Theorem shows how to determine the pp form of the cubic spline
interpolant.

Theorem 2.22 Given a = x1 < . . . < xn = b, yi ∈ R, i = 1, . . . , n, and σa, σb.
Suppose the pp form xs, C = [cji] of a cubic spline g is given by xT

s = [x1, . . . , xn−1]
and

c1i := yi, c2i := si,

c3i := (3δi − 2si − si+1)/hi,

c4i := (−2δi + si + si+1)/h
2
i ,

(2.19)

where s = [s1, . . . , sn]
T is the solution of the linear system

Ns =


1 0
λ2 4 µ2

. . .
. . .

. . .

λn−1 4 µn−1

0 1




s1
s2
...

sn−1

sn

 =


σa

β2

...
βn−1

σb

 =: b, (2.20)

and where

hi = xi+1 − xi, δi =
yi+1 − yi

hi
,

λi =
2hi

hi−1 + hi
, µi =

2hi−1

hi−1 + hi
, βi = 3(λiδi−1 + µiδi),

(2.21)

20 Chapter 2. Examples of Linear Systems

Then g is a cubic spline interpolant and si := g′(xi) for i = 1, . . . , n. Moreover,
(2.20) has a unique solution s = [s1, . . . , sn]

T , so the cubic spline interpolant is
unique.

Proof. Taking derivatives in (2.16) give

pi(x) = c1i + c2i(x− xi) + c3i(x− xi)
2 + c4i(x− xi)

3,

p′i(x) = c2i + 2c3i(x− xi) + 3c4i(x− xi)
2,

p′′i (x) = 2c3i + 6c4i(x− xi).

(2.22)

Suppose pi is given by (2.16) where the cj,i are given by (2.19) for i = 1, . . . , n− 1,
s1 = σa and sn = σb, and s2, . . . , sn−1 are at this point undetermined. Then for
i = 1, . . . , n− 1

pi(xi) = yi, pi(xi+1) = yi+1,

p′i(xi) = si, p′i(xi+1) = si+1.
(2.23)

Thus g(xi) = yi and g′(xi) = si for i = 1, . . . , n and it follows that (2.13) holds.
Moreover, by (2.23)

pi−1(xi) = pi(xi), p′i−1(xi) = p′i(xi), i = 2, . . . , n− 1.

Thus, g is a cubic spline interpolant if and only if

p′′i−1(xi) = p′′i (xi), i = 2, . . . , n− 1. (2.24)

By (2.22)
p′′i−1(xi) = 2c3,i−1 + 6c4,i−1hi−1, p′′i (xi) = 2c3,i.

Thus, (2.24) holds if and only if for i = 2, . . . , n− 1

0 = hi−1hi

(1
2
p′′i−1(xi)−

1

2
p′′i (xi)

)
= hi−1hi

(
c3,i−1 + 3c4,i−1hi−1 − c3,i

)
= hi(3δi−1 − 2si−1 − si) + 3hi(−2δi−1 + si−1 + si)− hi−1(3δi − 2si − si+1)

= hisi−1 + 2(hi−1 + hi)si + hi−1si+1 − 3(hiδi−1 + hi−1δi).

Multiplying the last expression by 2/(hi−1 + hi) leads to the equations

λisi−1 + 4si + µisi+1 = βi, i = 2, . . . , n− 1, (2.25)

and (2.20) follows. The matrix N is nonsingular since λi + µi = 2 < 4 and λi ̸= 0,
so that the conditions in Theorem 2.14 hold. For uniqueness suppose g1 and g2 are
two cubic splines interpolating the same data (2.13). Then g := g1 − g2 is a cubic
spline interpolating zero data. The unique solution of (2.20) is then s = 0, and
since (2.19) must hold for any cubic spline interpolant it easily follows that C = 0.
Thus g = 0 and g1 = g2.

2.4. Cubic Spline Interpolation 21

-1 -0.5 0.5 1

-1

1

Figure 2.5. Cubic spline interpolation to the data in Example 2.25. The
breakpoints (xi, yi), i = 2, 3, 4 are marked with dots on the curve.

2.4.3 Algorithms

To find the cubic spline interpolant we first solve (2.20) for s using Algorithms 2.11,
2.12. Then we determine the pp representation from (2.19).

To plot a cubic spline g we need to compute y values qj = g(rj) at a number of
x values r = [r1, . . . , rm] ∈ Rm for some reasonably large integer m. To determine
g(rj) for some j we need to find an integer ij so that g(rj) = pij (rj). The following
Matlab function determines i = [i1, . . . , im]. It uses the built in Matlab functions
length, min, sort, find.

Algorithm 2.23 (findsubintervals) Given shifts xs = [x1, . . . , xk] and a real
number r, an integer i is computed so that i = 1 if r < x(2), i = k if r ≥ xk,
and xi ≤ r < xi+1 otherwise. If r is a vector then a vector i is computed, such
that the jth component of i gives the location of the jth component of r.

function i=findsubintervals(xs,r)

k=length(xs); m=length(r);

xs(1)= min(r)-1;

[sorted ,j] = sort([xs(:)’ r(:) ’]);

i = find(j>k)-(1:m);

Here is the algorithm that was used to compute points for the plot in Fig-
ure 2.4. It uses Algorithm 2.23.

22 Chapter 2. Examples of Linear Systems

Algorithm 2.24 (cubppeval) Given a pp representation (xs,C) of a cubic
spline g together with x values r ∈ Rm. The vector q = g(r) is computed.

function q=cubppeval(xs ,C,r)

i=findsubintervals(xs ,r); q=r;

for j=1: length(r)

k=i(j); t=r(j)-xs(k);

q(j)=[1 t t^2 t^3]*C(:,k);

end

Example 2.25 Consider the data x = [−1,−1/2, 0, 1/2, 1]T , y = [−1,−0.9, 0, 0.9, 1]T

and σa = σb = 1/10. By (2.20)
1 0 0 0 0
1 4 1 0 0
0 1 4 1 0
0 0 1 4 1
0 0 0 0 1



s1
s2
s3
s4
s5

 =
1

10


1
60
108
60
1

 .

We find

L =


1 0 0 0 0
1 1 0 0 0
0 1/4 1 0 0
0 0 4/15 1 0
0 0 0 0 1

 , R =


1 0 0 0 0
0 4 1 0 0
0 0 15/4 1 0
0 0 0 56/15 1
0 0 0 0 1

 ,

y = [1, 59, 373/4, 527/15, 1]T /10, and solution s = [7, 64, 157, 64, 7]T /70. A straight-
forward calculation gives the coefficients in the pp representation

C =


−70 −63 0 63
7 64 157 64

−72 186 0 −186
172 −124 −124 172

 /70.

The cubic spline interpolant is shown in Figure 2.5. Here Algorithm 2.24 was used
with 200 uniform plot points.

The name spline is inherited from the ”physical uncle”, i. e., an elastic ruler
that is used to draw smooth curves. Heavy weights, called ducks, are used to force
the physical spline to pass through, or near given locations. (Cf. Figure 2.6).

Exercise 2.26 In many cases the knots are uniformly spaced, i. e., hi = h for all
i. Show that (2.20) takes the form

1 0
1 4 1

. . .
. . .

. . .

1 4 1
0 1




s1
s2
...

sn−1

sn

 =


σa

3(y3 − y1)/h
...

3(yn − yn−2)/h
σb

 . (2.26)

2.4. Cubic Spline Interpolation 23

Figure 2.6. A physical spline with ducks.

Exercise 2.27 Show that

f(x+ h)− f(x− h)

2h
= f ′(x) +

h2

6
f (3)(η), x− h < η < x+ h.

This is known as the central difference approximation to the first derivative.

Exercise 2.28 Derive the pp representation of g in Example 2.25.

Exercise 2.29 (Give me a Moment) In this problem we determine the cubic
spline interpolant with 1. derivative boundary conditions using the unknown second
derivatives (sometimes called moments) mi := g′′(xi), i = 1, . . . , n as parameters
in the shifted power representation (2.16) of g. Show the following theorem.

Theorem 2.30 Given a = x1 < . . . < xn = b, yi ∈ R, i = 1, . . . , n, and σa, σb.
Suppose the pp form xs, C = [cji] of a cubic spline g is given by xT

s = [x1, . . . , xn−1]
and

c1i := yi, c2i := δi −
mi

3
hi −

mi+1

6
hi,

c3i := mi/2, c4i :=
mi+1 −mi

6hi
,

hi := xi+1 − xi, δi := (yi+1 − yi)/hi,

(2.27)

24 Chapter 2. Examples of Linear Systems

where m = [m1, . . . ,mn]
T is the solution of the linear system

N21m =


2 1
µ2 4 λ2

. . .
. . .

. . .

µn−1 4 λn−1

1 2




m1

m2

...
mn−1

mn

 =


γ1
γ2
...

γn−1

γn

 =: b21, (2.28)

and where

λi =
2hi

hi−1 + hi
, µi =

2hi−1

hi−1 + hi
,

γi := 12
δi − δi−1

hi−1 + hi
, i = 2, . . . , n− 1,

γ1 := 6(δ1 − σa)/h1, γn := 6(σb − δn−1)/hn−1.

(2.29)

Then g is the unique cubic spline interpolant to the data (2.13) and mi := g′′(xi)
for i = 1, . . . , n. Moreover, (2.28) has a unique solution.

Hint: Show that g(xi) = yi, g′′(xi) = mi for i = 1, . . . , n, and g ∈ C2 if
p′i−1(xi) = p′i(xi) for i = 2, . . . , n− 1. The requirements g′(a) = σa, g

′(b) = σb lead
to the first and last equation in (2.28).

Exercise 2.31 Not-a-knot boundary condition. Suppose n ≥ 5 and consider
finding a cubic spline g such that

g(xi) = yi, i = 1, . . . , n, p1 = p2, pn−2 = pn−1.

Since x2 and xn−1 are no longer knots we refer to this as the not-a-knot condition.
The spline g now consists of only n− 3 pieces

g(x) :=



p2(x), if a ≤ x < x3,

p3(x), if x3 ≤ x < x4,
...

pn−3(x), if xn−3 ≤ x < xn−2,

pn−2(x), if xn−2 ≤ x ≤ b.

(2.30)

With the shifted power form (2.16) we obtain the pp representation

xs = [x2, . . . , xn−2], C :=


c12 c13 · · · c1,n−2

c22 c23 · · · c2,n−2

c32 c33 · · · c3,n−2

c42 c43 · · · c4,n−2

 ∈ R4,n−3.

Show, using p2(a) = y1 and pn−2(b) = yn in addition to (2.25) for i = 3, . . . , n− 2

2.4. Cubic Spline Interpolation 25

that we obtain the linear system

N3s̃ :=


2 µ2

λ3 4 µ3

. . .
. . .

. . .

λn−2 4 µn−2

λn−1 2




s2
s3
...

sn−2

sn−1

 =


ν2
β3

...
βn−2

νn−1

 , (2.31)

where λi, µi, βi is given by (2.21) and

ν2 :=
1

2
λ2
2δ1 +

1

2
µ2
2(2 + 3h2/h1)δ2,

νn−1 :=
1

2
µ2
n−1δn−1 +

1

2
λ2
n−1(2 + 3hn−2/hn−1)δn−2.

(2.32)

Explain why N3 is nonsingular. Note that sn−1 is not needed for the pp represen-
tation of g.

26 Chapter 2. Examples of Linear Systems

Chapter 3

LU Factorizations

In Chapter 2 we saw how an LU factorization of the coefficient matrix can be used to
solve certain tridiagonal systems efficiently. In this chapter we consider the general
theory of LU factorizations1. We consider some related factorizations called block
LU, PLU, symmetric LU, and Cholesky.

3.1 The LU Factorization
We say that A = LR is an LU factorization of A ∈ Cn,n if L ∈ Cn,n is lower
triangular (left triangular)) and R ∈ Cn,n is upper triangular (right triangu-
lar). In addition we will assume that L is unit triangular, i. e., it has ones on the
diagonal. The LU factorization of the 2. derivative matrix T was given in (2.9).
But not every nonsingular matrix has an LU factorization.

Example 3.1 An LU factorization of A =
[
0 1
1 1

]
must satisfy the equations[

0 1
1 1

]
=

[
1 0
l1 1

] [
r1 r3
0 r2

]
=

[
r1 r3
l1r1 l1r3 + r2

]
for the unknowns l1 in L and r1, r2, r3 in R. Comparing (1, 1) elements we see that
r1 = 0, which makes it impossible to satisfy the condition 1 = l1r1 for the (2, 1)
element. We conclude that A has no LU factorization.

We will make use of some special submatrices.

Definition 3.2 For k = 1, . . . , n the matrices Ak ∈ Ck,k given by

Ak := A(1 : k, 1 : k) =

a11 · · · ak1
...

...
ak1 · · · akk


1In the literature an upper triangular matrix is denoted by U in an LU factorization and R

in a QR factorization. (see Chapter 12). We have chosen to use R to denote an upper triangular
matrix both for LU and QR factorizations.

27

28 Chapter 3. LU Factorizations

are called the leading principal submatrices of A = An ∈ Cn,n. More generally,
a matrix B ∈ Ck,k is called a principal submatrix of A if B = A(r, r), where
r = [r1, . . . , rk] for some 1 ≤ r1 < · · · < rk ≤ n. Thus

bi,j = ari,rj , i, j = 1, . . . , k,

The determinant of a (leading) principal submatrix is called a (leading) principal
minor.

A principal submatrix is leading if rj = j for j = 1, . . . , k. Also a principal
submatrix is special in that it uses the same rows and columns of A. For example,
for k = 1 the only principal submatrices are the diagonal elements of A .

Example 3.3 The principal submatrices of A =
[
1 2 3
4 5 6
7 8 9

]
are

[1], [5], [9], [1 2
4 5] , [1 3

7 9] , [5 6
8 9] , A.

The leading principal submatrices are

[1], [1 2
4 5] , A.

Theorem 3.4 Suppose the leading principal submatrices Ak of A ∈ Cn,n are non-
singular for k = 1, . . . , n− 1. Then A has a unique LU factorization.

Proof. We use induction on n to show that A has a unique LU factorization.
The result is clearly true for n = 1, since the unique LU factorization of a 1-by-1
matrix is [a11] = [1][a11]. Suppose that An−1 has a unique LU factorization An−1 =
Ln−1Rn−1, and that A1, . . . ,An−1 are nonsingular. Since An−1 is nonsingular it
follows that Ln−1 and Rn−1 are nonsingular. But then

A =

[
An−1 b
cT ann

]
=

[
Ln−1 0

cTR−1
n−1 1

] [
Rn−1 v
0 ann − cTR−1

n−1v

]
= LR, (3.1)

where v = L−1
n−1b, and this is an LU factorization of A. Since Ln−1 and Rn−1

are nonsingular the block (2,1) element in L and the block (1, 2) element in R are
uniquely given in (3.1), and then rnn is also determined uniquely. Thus the LU
factorization is unique by construction.

The following observation is useful.

Lemma 3.5 Suppose A = LR is an LU factorization of A ∈ Cn,n. For k =
1, . . . , n let Ak,Lk,Rk be the leading principal submatrices of A,L,R, respectively.
Then Ak = LkRk is an LU factorization of Ak for k = 1, . . . , n.

Proof. For k = 1, . . . , n− 1 we partition A = LR as follows:

A =

[
Ak Bk

Ck Dk

]
=

[
Lk 0
Mk Nk

] [
Rk Sk

0 T k

]
= LR, (3.2)

3.1. The LU Factorization 29

where Dk,Nk,T k ∈ Cn−k,n−k. Using block multiplication we find Ak = LkRk.
Since Lk is unit lower triangular and Rk is upper triangular we see that this gives
an LU factorization of Ak.

There is a converse of Theorem 3.4.

Theorem 3.6 Suppose A ∈ Cn,n has an LU factorization. If A is nonsingular
then the leading principal submatrices Ak are nonsingular for k = 1, . . . , n− 1.

Proof. Suppose A is nonsingular with the LU factorization A = LR. Since A
is nonsingular it follows that L and R are nonsingular. Let 1 ≤ k ≤ n. By
Lemma 3.5 it follows that Ak = LkRk. Since Lk is unit lower triangular it is
nonsingular. Moreover Rk is nonsingular since its diagonal elements are among the
nonzero diagonal elements of R. But then Ak is nonsingular.

The following lemma shows that the LU factorization of a nonsingular matrix
is unique.

Corollary 3.7 The LU factorization of a nonsingular matrix is unique whenever
it exists.

Proof. By Theorem 3.6 the leading principal submatrices are nonsingular for k =
1, . . . , n− 1. But then by Theorem 3.4 the LU factorization is unique.

Remark 3.8 Theorem 3.6 is not true in general if A is singular. An LU factor-
ization of an upper triangular matrix A is A = IA, and if A is singular it can
have zeros anywhere on the diagonal. By Lemma 2.8, if some akk is zero then Ak

is singular.

Remark 3.9 The LU factorization of a singular matrix need not be unique. In
particular, for the zero matrix any unit lower triangular matrix can be used as L in
an LU factorization.

Remark 3.10 We have shown that a nonsingular matrix A ∈ Rn,n has an LU
factorization if and only if the leading principle submatrices Ak are nonsingular for
k = 1, . . . , n−1. This condition seems fairly restrictive. However, for a nonsingular
matrix A there always is a permutation of the rows so that the permuted matrix has
an LU factorization. We obtain a factorization of the form P TA = LR or equiva-
lently A = PLR, where P is a permutation matrix, L is unit lower triangular, and
R is upper triangular. We call this a PLU factorization of A. (Cf. Section 3.7
and Appendix E.)

Exercise 3.11 Show that A =
[
1 1
0 1

]
has an LU factorization. Note that we have

only interchanged rows in Example 3.1

30 Chapter 3. LU Factorizations

Exercise 3.12 Find an LU factorization of the singular matrix [1 1
1 1]. Is it unique?

Exercise 3.13 Suppose A has an LU factorization A = LR. Show that det(Ak) =
r11r22 · · · rkk for k = 1, . . . , n.

Exercise 3.14 Suppose A ∈ Cn,n and Ak is nonsingular for k = 1, . . . , n− 1. Use
Exercise 3.13 to show that the diagonal elements rkk in the LU factorization are

r11 = a11, rkk =
det(Ak)

det(Ak−1)
, for k = 2, . . . , n. (3.3)

3.2 Block LU Factorization
Suppose A ∈ Rn,n is a block matrix of the form

A :=

A11 · · · A1m

...
...

Am1 · · · Amm

 , (3.4)

where each (diagonal) block Aii is square. We call the factorization

A = LR =


I

L21 I
...

. . .

Lm1 · · · Lm,m−1 I



R11 · · · R1m

R21 · · · R2m

. . .
...

Rmm

 (3.5)

a block LU factorization of A. Here the ith diagonal blocks I and Rii in L and
R have the same order as Aii, the ith diagonal block in A.

The results for elementwise LU factorization carry over to block LU factoriza-
tion as follows.

Theorem 3.15 Suppose A ∈ Rn,n is a block matrix of the form (3.4), and the
leading principal block submatrices

Ak :=

A11 · · · A1k

...
...

Ak1 · · · Akk


are nonsingular for k = 1, . . . ,m− 1. Then A has a unique block LU factorization
(3.5). Conversely, if A is nonsingular and has a block LU factorization then Ak is
nonsingular for k = 1, . . . ,m− 1.

Proof. Suppose Ak is nonsingular for k = 1, . . . ,m − 1. Following the proof in
Theorem 3.4 suppose Am−1 has a unique LU factorization Am−1 = Lm−1Rm−1,

3.3. The Symmetric LU Factorization 31

and that A1, . . . ,Am−1 are nonsingular. Then Lm−1 and Rm−1 are nonsingular
and

A =

[
Am−1 B

CT Amm

]
=

[
Lm−1 0

CTR−1
m−1 I

] [
Rm−1 L−1

m−1B

0 Amm −CTR−1
m−1L

−1
m−1B

]
,

(3.6)
is a block LU factorization of A. It is unique by derivation. Conversely, suppose A
is nonsingular and has a block LU factorization A = LR. Then as in Lemma 3.5 it
is easily seen that Ak = LkRk is a block LU factorization of Ak for k = 1, . . . ,m.
By Lemma 2.7 and induction a block triangular matrix is nonsingular if and only
if the diagonal blocks are nonsingular and we see that Lk and Rk are nonsingular,
and hence Ak is nonsingular for k = 1, . . . ,m− 1.

Remark 3.16 The number of flops for the block LU factorization is the same as for
the ordinary LU factorization. An advantage of the block method is that it combines
many of the operations into matrix operations.

Remark 3.17 Note that (3.5) is not an LU factorization of A since the Rii’s are
not upper triangular in general. To relate the block LU factorization to the usual LU
factorization we assume that each Rii has an LU factorization Rii = L̃iiR̃ii. Then

A = L̂R̂, where L̂ := Ldiag(L̃ii) and R̂ := diag(L̃
−1

ii)R, and this is an ordinary
LU factorization of A.

Exercise 3.18 Show that L̂ is unit lower triangular and R̂ is upper triangular.

3.3 The Symmetric LU Factorization
We consider next LU factorization of a real symmetric matrix.

Definition 3.19 Suppose A ∈ Rn,n. A factorization A = LDLT , where L is unit
lower triangular and D is diagonal is called a symmetric LU factorization of
A.

A matrix which has a symmetric LU factorization must be symmetric since
AT = (LDLT)T = LDLT = A.

Theorem 3.20 Suppose A ∈ Rn,n is nonsingular. Then A has a symmetric LU
factorization if and only if A = AT and Ak is nonsingular for k = 1, . . . , n − 1.
The symmetric LU factorization is unique.

Proof. If A1, . . . ,An−1 are nonsingular then Theorem 3.4 implies that A has a
unique LU factorization A = LR. Since A is nonsingular it follows that R is
nonsingular and since R is triangular the diagonal matrix D := diag(r11, . . . , rnn)
is nonsingular (cf. Lemma 2.8). But then A = LDMT , where MT = D−1R is

32 Chapter 3. LU Factorizations

unit upper triangular. By symmetry A = L(DMT) = M(DLT) = AT are two LU
factorizations of A, and by uniqueness M = L. Thus A has a unique symmetric
LU factorization.

Conversely, if A = LDLT is the symmetric LU factorization of A then A is
symmetric since LDLT is symmetric, and A has an LU factorization A = LR with
R = DLT . By Theorem 3.6 we conclude that A1, . . . ,An−1 are nonsingular.

3.4 Positive Definite- and Positive Semidefinite
Matrices

Symmetric positive definite matrices occur often in scientific computing. For ex-
ample, the second derivative matrix is symmetric positive definite, see Lemma 3.21
below. For symmetric positive definite and symmetric positive semidefinite matri-
ces there is a special version of the symmetric LU factorization. Before considering
this factorization we study some properties of positive (semi)definite matrices. We
study only real matrices, but consider also the nonsymmetric case..

3.4.1 Definition and Examples

Suppose A ∈ Rn,n is a square matrix. The function f : Rn → R given by

f(x) = xTAx =
n∑

i=1

n∑
j=1

aijxixj

is called a quadratic form. We say that A is

(i) positive definite if xTAx > 0 for all nonzero x ∈ Rn.

(ii) positive semidefinite if xTAx ≥ 0 for all x ∈ Rn.

(iii) negative (semi)definite if −A is positive (semi)definite.

(iv) symmetric positive (semi)definite if A is symmetric in addition to being
positive (semi)definite.

(v) symmetric negative (semi)definite if A is symmetric in addition to being
negative (semi)definite.

We observe the following.

• A matrix is positive definite if it is positive semidefinite and in addition

xTAx = 0 ⇒ x = 0. (3.7)

• The zero-matrix is symmetric positive semidefinite, while the unit matrix is
symmetric positive definite.

3.4. Positive Definite- and Positive Semidefinite Matrices 33

• A positive definite matrix must be nonsingular. Indeed, if Ax = 0 for some
x ∈ Rn then xTAx = 0 which by (3.7) implies that x = 0.

Lemma 3.21 The second derivative matrix T = tridiag(−1, 2,−1) ∈ Rn,n is sym-
metric positive definite.

Proof. Clearly T is symmetric. For any x ∈ Rn

xTTx = 2
n∑

i=1

x2
i −

n−1∑
i=1

xixi+1 −
n∑

i=2

xi−1xi

=
n−1∑
i=1

x2
i − 2

n−1∑
i=1

xixi+1 +
n−1∑
i=1

x2
i+1 + x2

1 + x2
n

= x2
1 + x2

n +
n−1∑
i=1

(xi+1 − xi)
2.

Thus xTTx ≥ 0 and if xTTx = 0 then x1 = xn = 0 and xi = xi+1 for i =
1, . . . , n− 1 which implies that x = 0. Hence T is positive definite.

Example 3.22 Consider (cf. (G.1)) the gradient ∇f and hessian ∇∇T f of a
function f : Ω ⊂ Rn → R

∇f(x) =


∂f(x)
∂x1

...
∂f(x)
∂xn

 ∈ Rn, ∇∇T f(x) =


∂2f(x)
∂x1∂x1

. . . ∂2f(x)
∂x1∂xn

...
...

∂2f(x)
∂xn∂x1

. . . ∂2f(x)
∂xn∂xn

 ∈ Rn,n.

We assume that f has continuous first and second partial derivatives on Ω.
Under suitable conditions on the domain Ω it is shown in advanced calculus

texts that if ∇f(x) = 0 and ∇∇T f(x) is positive definite then x is a local minimum
for f . This can be shown using the second-order Taylor expansion (G.2). Moreover,
x is a local maximum if ∇f(x) = 0 and ∇∇T f(x) is negative definite.

3.4.2 Some Criteria for the Nonsymmetric Case

We treat the positive definite and positive semidefinite cases in parallel.

Theorem 3.23 Let m,n be positive integers. If A ∈ Rn,n is positive semidefinite
and X ∈ Rn,m then B := XTAX ∈ Rm,m is positive semidefinite. If in addition
A is positive definite and X has linearly independent columns then B is positive
definite.

Proof. Let y ∈ Rm and set x := Xy. Then yTBy = xTAx ≥ 0. If A is positive
definite and X has linearly independent columns then x is nonzero if y is nonzero
and yTBy = xTAx > 0.

34 Chapter 3. LU Factorizations

Taking A := I and X := A we obtain

Corollary 3.24 Let m,n be positive integers. If A ∈ Rm,n then ATA is posi-
tive semidefinite. If in addition A has linearly independent columns then ATA is
positive definite.

Theorem 3.25 Any principal submatrix of a positive (semi)definite matrix is pos-
itive (semi)definite.

Proof. Suppose the submatrix B is defined by the rows and columns r1, . . . , rk
of A. Then B := XTAX, where X = [er1 , . . . , erk] ∈ Rn,k, and B is positive
(semi)definite by Theorem 3.23.

If A is positive definite then the leading principal submatrices are nonsingular
and we obtain:

Corollary 3.26 A positive definite matrix has a unique LU factorization.

Theorem 3.27 A positive (semi)definite matrix A has positive (nonnegative) eigen-
values. Conversely, if A has positive (nonnegative) eigenvalues and orthonormal
eigenvectors then it is positive (semi)definite.

Proof. Consider the positive definite case. Suppose Ax = λx with x ̸= 0. Multi-

plying both sides by xT and solving for λ we find λ = xTAx
xTx

> 0. Suppose conversely
that A ∈ Rn,n has eigenpairs (λj ,uj), j = 1, . . . , n. Let U := [u1, . . . ,un] ∈ Rn,n

and D := diag(λ1, . . . , λn). Since uT
i uj = δij , i, j = 1, . . . , n, it follows that

UTU = I and U−1 = UT . But then UUT = I as well. Now Auj = λjuj for

j = 1, . . . , n implies AU = UD and therefore UTAU = UTUD = D. Let x ∈ Rn

be nonzero and define c := UTx = [c1, . . . , cn]
T . Then Uc = UUTx = x, and so

xTAx = (Uc)TAUc = cTUTAUc = cTDc =

n∑
j=1

λjc
2
j .

But UT nonsingular implies c = UTx ̸= 0, and since λj > 0 for j = 1, . . . , n it
follows that xTAx > 0 so that A is positive definite. The positive semidefinite case
is similar.

Theorem 3.28 If A is positive (semi)definite then det(A) > 0 (det(A) ≥ 0).

Proof. Since the determinant of a matrix is equal to the product of its eigenvalues
this follows from Theorem 3.27.

3.5. The Symmetric Case and Cholesky Factorization 35

3.5 The Symmetric Case and Cholesky Factorization
For symmetric positive definite matrices there is an alternative to the symmetric
LU factorization known as the Cholesky factorization. We consider also a closely
related factorization of symmetric positive semidefinite matrices.

We need the following necessary conditions for symmetric positive semidefinite
matrices.

Lemma 3.29 If A is symmetric positive semidefinite then for all i, j

1. |aij | ≤ (aii + ajj)/2,

2. |aij | ≤
√
aiiajj,

3. maxi,j |aij | = maxi aii,

4. aii = 0 =⇒ aij = aji = 0, fixed i, all j.

Proof. 3. follows from 1. and 4. from 2. Now

0 ≤ (αei + βej)
TA(αei + βej) = α2aii + β2ajj + 2αβaij , all i, j, α, β ∈ R, (3.8)

since A is symmetric positive semidefinite. Taking α = 1, β = ±1 we obtain
aii + ajj ± 2aij ≥ 0 and this implies 1. 2. follows trivially from 1. if aii = ajj = 0.
Suppose one of them, say aii is nonzero. Note that aii = eTi Aei > 0. Taking
α = −aij , β = aii in (3.8) we find

0 ≤ a2ijaii + a2iiajj − 2a2ijaii = aii(aiiajj − a2ij).

But then aiiajj − a2ij ≥ 0 and 2. follows.

As an illustration consider the matrices

A1 =

[
0 1
1 1

]
, A2 =

[
1 2
2 2

]
, A3 =

[
−2 1
1 2

]
.

None of them is positive semidefinite, since neither 1. nor 2. hold.

Definition 3.30 A factorization A = RTR where R is upper triangular with
positive diagonal elements is called a Cholesky factorization. A factorization
A = RTR where R is upper triangular with nonnegative diagonal elements is called
a semi-Cholesky factorization.

Note that a semi-Cholesky factorization of a symmetric positive definite ma-
trix is necessarily a Cholesky factorization. For if A is positive definite then it is
nonsingular and then R must be nonsingular. Thus the diagonal elements of R
cannot be zero.

Exercise 3.31 Show that a symmetric matrix has a Cholesky factorization if and
only if it has a symmetric LU factorization with positive diagonal elements in D.

36 Chapter 3. LU Factorizations

Theorem 3.32 A matrix A ∈ Rn,n has a Cholesky factorization A = RTR if and
only if it is symmetric positive definite.

Proof. If A = RTR is a Cholesky factorization then A is symmetric. Since R has
positive diagonal elements it is nonsingular. Thus A is symmetric positive definite
by Corollary 3.24. The proof of the converse will lead to an algortihm. We use
induction on n. A positive definite matrix of order one has a Cholesky factorization
since the one and only element in A is positive. Suppose any symmetric positive
definite matrix of order n − 1 has a Cholesky factorization and suppose A ∈ Rn,n

is symmetric positive definite. We partition A as follows

A =

[
α vT

v B

]
, α ∈ R, v ∈ Rn−1, B ∈ Rn−1,n−1. (3.9)

Clearly α = eT1 Ae1 > 0. We claim that C := B − vvT /α is symmetric positive
definite. C is symmetric. To show that C is positive definite we let y ∈ Rn−1 be
nonzero and define xT := [−vTy/α,yT] ∈ Rn. Then x ̸= 0 and

0 < xTAx = [−vTy/α,yT]

[
α vT

v B

] [
−vTy/α

y

]
= [0,−(vTy)vT /α+ yTB]

[
−vTy/α

y

]
= −(vTy)(vTy)/α+ yTBy = yTCy,

(3.10)

since (vTy)vTy = (vTy)TvTy = yTvvTy. So C ∈ Rn−1,n−1 is symmetric positive
definite and by the induction hypothesis it has a Cholesky factorization C = RT

1 R1.
The matrix

R :=

[
β vT /β
0 R1

]
, β :=

√
α, (3.11)

is upper triangular with positive diagonal elements and

RTR =

[
β 0

v/β RT
1

] [
β vT /β
0 R1

]
=

[
α vT

v B

]
= A

is a Cholesky factorization of A.

We can now show

Theorem 3.33 The following is equivalent for a symmetric matrix A ∈ Rn,n.

1. A is positive definite.

2. A has only positive eigenvalues.

3. All leading principal minors are positive.

4. A = BTB for a nonsingular B ∈ Rn,n.

3.5. The Symmetric Case and Cholesky Factorization 37

Proof. A symmetric matrix has a set of eigenvectors that form an orthonormal
basis for Rn (Cf. Theorem 6.5). Therefore, by Theorem 3.27 we know that 1 ⇔ 2.
We show that 1 ⇒ 3 ⇒ 4 ⇒ 1.
1 ⇒ 3: By Theorem 3.25 the leading principal submatrix Ak of A is positive
definite, and has a positive determinant by Theorem 3.28.
3 ⇒ 4: Since all principal minors of A are positive the principal submatrices Ak

are nonsingular for all k and therefore A has a symmetric LU factorization. By
Exercise 3.31 A has a Cholesky factorization and we can take B = R.
4 ⇒ 1: This follows from Corollary 3.24.

Consider next the semi-Cholesky factorization.

Theorem 3.34 A matrix A ∈ Rn,n has a semi-Cholesky factorization A = RTR
if and only if it is symmetric positive semidefinite.

Proof. If A = RTR is a semi-Cholesky factorization then A is symmetric and it
is positive semidefinite by Corollary 3.24. Suppose A ∈ Rn,n is symmetric positive
semidefinite. A symmetric positive semidefinite matrix of order one has a semi-
Cholesky factorization since a11 is nonnegative. Suppose by induction on n that
any symmetric positive semidefinite matrix C of order n − 1 has a semi-Cholesky
factorization. We partition A as in (3.9). There are two cases. If α > 0 then
we obtain a semi-Cholesky factorization of A as in the proof of Theorem 3.32
since C is symmetric positive semidefinite. This follows as in (3.10) since now
0 ≤ xTAx = yTCy. If α = 0 then it follows from 4. in Lemma 3.29 that v = 0.
Moreover, B ∈ Rn−1,n−1 in (3.9) is positive semidefinite and therefore has a semi-

Cholesky factorization R1. But then R =

[
0 0T

0 R1

]
is a semi-Cholesky factorization

of A. Indeed, R is upper triangular and

RTR =

[
0 0T

0 RT
1

] [
0 0T

0 R1

]
=

[
0 0T

0 B

]
= A.

Theorem 3.35 The following is equivalent for a symmetric matrix A ∈ Rn,n.

1. A is positive semidefinite.

2. A has only nonnegative eigenvalues.

3. A = BTB for some B ∈ Rn,n.

4. All principal minors are nonnegative.

Proof. The proof of 1. ⇔ 2 follows as in the proof of Theorem 3.33. 1. ⇔ 3.
follows from Theorem 3.34 while 1. ⇒ 4. is a consequence of Theorem 3.25. To
prove 4. ⇒ 1. one first shows that ϵI+A is symmetric positive definite for all ϵ > 0

38 Chapter 3. LU Factorizations

(Cf. page 567 of [15]). But then xTAx = limϵ→0 x
T (ϵI +A)x ≥ 0 for all x ∈ Rn.

In 4. of Theorem 3.35 we require nonnegativity of all principal minors, while
only positivity of leading principal minors was required for positive definite matrices
(cf. Theorem 3.33). To see that nonnegativity of the leading principal minors is
not enough consider the matrix A :=

[
0 0
0 −1

]
. The leading principal minors are

nonnegative, but A is not positive semidefinite.

3.6 An Algorithm for SemiCholesky Factorization of
a Banded Matrix

Recall that a matrix A has bandwidth d ≥ 0 if aij = 0 for |i − j| > d. A
(semi)Cholesky factorization preserves bandwidth.

Theorem 3.36 The Cholesky factor R given by (3.11) has the same bandwidth as
A.

Proof. Suppose A ∈ Rn,n has bandwidth d ≥ 0. Then vT = [uT ,0T] in (3.9),
where u ∈ Rd, and therefore C := B−vvT /α differs from B only in the upper left
d× d corner. It follows that C has the same bandwidth as B and A. By induction
on n, C = RT

1 R1, where R1 has the same bandwidth as C. But then R in (3.11)
has the same bandwidth as A.

Consider now implementing an algorithm based on the previous discussion.
Since A is symmetric we only need to use the upper part of A. The first row of R
is [β,vT /β] if α > 0. If α = 0 then by 4 in Lemma 3.29 the first row of A is zero
and this is also the first row of R.

Suppose we store the first row of R in the first row of A and the upper part
of C = B − vvT /α in the upper part of A(2 : n, 2 : n). The first row of R and the
upper part of C can be computed as follows.

if A(1, 1) > 0

A(1, 1) =
√

A(1, 1)

A(1, 2 : n) = A(1, 2 : n)/A(1, 1)

for i = 2 : n

A(i, i : n) = A(i, i : n)−A(1, i) ∗A(1, i : n)

(3.12)

The code can be made more efficient when A is a band matrix. If the band-
width is d we simply replace all occurrences of n by min(i+ d, n).

Continuing the reduction we arrive at the following algorithm.

3.6. An Algorithm for SemiCholesky Factorization of a Banded Matrix 39

Algorithm 3.37 (bandcholesky) Suppose A is symmetric positive semidef-
inite. An upper triangular matrix R is computed so that A = RTR. This
is the Cholesky factorization of A if A is symmetric positive definite and a
semi-Cholesky factorization of A otherwise. The algorithm uses the Matlab
command triu.

function R=bandcholesky(A,d)

n=length(A);

for k=1:n

if A(k,k)>0

kp=min(n,k+d);

A(k,k)=sqrt(A(k,k));

A(k,k+1:kp)=A(k,k+1:kp)/A(k,k);

for i=k+1:kp

A(i,i:kp)=A(i,i:kp)-A(k,i)*A(k,i:kp);

end

else

A(k,k:kp)=zeros(1,kp-k+1);

end

end

R=triu(A);

In the algorithm we overwrite the upper triangle of A with the elements of R.
Row k of R is zero for those k where rkk = 0. We reduce round-off noise by forcing
those rows to be zero. In the semidefinite case no update is necessary and we ”do
nothing”.

There are many versions of Cholesky factorizations, see [3]. Algorithm 3.37 is
based on outer products vvT . An advantage of this formulation is that it can be
extended to symmetric positive semidefinite matrices.

Consider next forward and backward substitution. Since RT is lower triangu-
lar and banded the kth component of RTy = b is

∑k−1
j=max(1,k−d) rjkyj+rkkyk = bk,

and solving for yk

yk = (bk −
k−1∑

j=max(1,k−d)

rjkyj)/rkk, for k = 1, . . . , n, (3.13)

Similarly the kth component of Rx = y is rkkxk +
∑min(n,k+d)

i=k+1 rkixi = yk, and
solving for xk

xk = (yk −
min(n,k+d)∑

i=k+1

rkixi)/rkk, for k = n, n− 1, . . . , 1. (3.14)

This give the following algorithms

40 Chapter 3. LU Factorizations

Algorithm 3.38 (bandforwardsolve) Solves the lower triangular system
RTy = b. R is upper triangular and banded with rkj = 0 for j − k > d.

function y=bandforwardsolve(R,b,d)

n=length(b); y=b(:);

for k=1:n

km=max(1,k-d);

y(k)=(y(k)-R(km:k-1,k)’*y(km:k-1))/R(k,k);

end

Algorithm 3.39 (bandbacksolve) Solves the upper triangular systemRx =
y. R is upper triangular and banded with rkj = 0 for j − k > d.

function x=bandbacksolve(R,y,d)

n=length(y); x=y(:);

for i=n:-1:1

kp=min(n,k+d);

x(k)=(x(k)-R(k,k+1:kp)*x(k+1:kp))/R(k,k);

end

For a full matrix (d = n) the number of flops needed for the Cholesky factor-
ization including n square roots is given by

n∑
k=1

n∑
i=k+1

(1 +

n∑
j=i

2) + n =
1

3
n(n+

1

2
)(n+ 1) ≈ n3/3.

The number n3/3 is half the number of flops needed for Gaussian elimination of an
arbitrary matrix. We obtain this reduction since the Cholesky factorization takes
advantage of the symmetry of A.

The number of flops for the banded algorithms is given approximately by

n∑
k=1

k+d∑
i=k+1

(1 +
k+d∑
j=i

2) + n = O(nd2)

for Algorithm 3.37 and O(2nd) for each of Algorithms 3.38 and 3.39. When d is
small compared to n we see that these numbers are considerably smaller than the
O(n3/3) and O(2n2) counts for the factorization of a full symmetric matrix.

There is also a banded version of the symmetric LU factorization which re-
quires approximately the same number of flops as the Cholesky factorization. The
choice between using a symmetric LU factorization or an RTR factorization depends
on several factors. Usually an LU or a symmetric LU factorization is preferred for
matrices with small bandwidth (tridiagonal, pentadiagonal), while the RTR factor-
ization is restricted to symmetric positive semidefinite matrices and is often used
when the bandwidth is larger.

3.7. The PLU Factorization 41

3.7 The PLU Factorization
Suppose A is nonsingular. We show existence of a factorization A = PLR, where
P is a permutation matrix, L is a unit lower triangular, and R is upper triangular.
Recall that a permutation matrix is a matrix of the form

P = [ei1 , ei2 , . . . , ein] ∈ Rn,n,

where ei1 , . . . , ein is a permutation of the unit vectors e1, . . . , en ∈ Rn. Since
P TP = I the inverse of P is equal to its transpose, P−1 = P T and PP T = I
as well. A special case is an (j,k)-Exchange Matrix Ijk obtained by exchanging
column j and k of the identity matrix. Since Ijk = Ikj , and we obtain the identity
by applying Ijk twice, we see that I2

jk = I and an exchange matrix is symmetric
and equal to its own inverse. Pre-multiplying a matrix by an exchange matrix
interchanges two rows of the matrix, while post-multiplication interchanges two
columns.

Theorem 3.40 (The PLU theorem) A nonsingular matrix A has a factoriza-
tion A = PLR, where P is a permutation matrix, L is unit lower triangular, and
R is upper triangular.

Proof. We use induction on n. The result is obvious for n = 1. Suppose any
nonsingular matrix of order n−1 has a PLU factorization and consider a nonsingular
matrix A of order n. Since A is nonsingular one of the elements, say ar1, in the
first column of A must be nonzero. Let B := Ir1A and set

M1 := I −meT1 , m = [0,
b21
b11

, . . . ,
bn1
b11

]T .

Note that M1 is unit lower triangular and therefore nonsingular. We have M−1 =
I +meT1 since

(I +meT1)(I −meT1) = I −meT1 +meT1 −m(eT1 m)eT1 = I.

The first column of M1B is

M1Be1 = Be1 −meT1 Be1 = Be1 − b11m = [b11, 0 . . . , 0]
T

and we can write

M1B = M1Ir1A =

[
b11 cT2
0 D2

]
, with D2 ∈ Rn−1,n−1. (3.15)

The matrixM1Ir1A is a product of nonsingular matrices and therefore nonsingular.
By Lemma 2.7 the matrix D2 is nonsingular and by the induction hypothesis we
have D2 = P 2L2R2 or P T

2 D2 = L2R2, where P 2 ∈ Rn−1,n−1 is a permutation
matrix, L2 is unit lower triangular and R2 is upper triangular. Define matrices
Q2,M2,R of order n by

Q2 =

[
1 0
0 P 2

]
, M2 =

[
1 0
0 L2

]
, R =

[
b11 cT2
0 R2

]
.

42 Chapter 3. LU Factorizations

Then

QT
2 M1Ir1A =

[
1 0

0 P T
2

] [
b11 cT2
0 D2

]
=

[
b11 cT2
0 P T

2 D2

]
=

[
b11 cT2
0 L2R2

]
=

[
1 0
0 L2

] [
b11 cT2
0 R2

]
= M2R,

and hence

A = Ir1M
−1
1 Q2M2R =

(
Ir1Q2

)(
QT

2 M
−1
1 Q2

)
M2R.

Now

QT
2 M

−1
1 Q2 =

[
1 0

0 P T
2

]
(I +meT1)

[
1 0
0 P 2

]
= I +

[
1 0

0 P T
2

]
meT1

[
1 0
0 P 2

]
= I +

[
0

P T
2 m(2 : n)

]
eT1 .

ThusQT
2 M

−1
1 Q2 is unit lower triangular and we haveA = PLR, where P = Ir1Q2

is a permutation matrix, L = QT
2 M

−1
1 Q2M2 is unit lower triangular, and R is

upper triangular.

To find the PLU factorization of a matrix we can use Gaussian elimination
with row interchanges (pivoting). See Appendix E for details.

Chapter 4

The Kronecker Product

Matrices arising from 2D and 3D problems sometimes have a Kronecker product
structure. Identifying a Kronecker structure can be very rewarding since it simplifies
the study of such matrices.

4.1 Test Matrices
In this section we introduce some matrices which we will use to compare various
algorithms in later chapters.

4.1.1 The 2D Poisson Problem

Consider the problem

−∇2u := −∂2u

∂x2
−∂2u

∂y2
= f on Ω := (0, 1)2 = {(x, y) : 0 < x < 1, 0 < y < 1}, (4.1)

u := 0 on ∂Ω.

Here Ω is the open unit square while ∂Ω is the boundary of Ω. The function f is
given and continuous on Ω and we seek a function u = u(x, y) such that (4.1) holds
and which is zero on ∂Ω.

Let m be a positive integer. We solve the problem numerically by finding
approximations vj,k ≈ u(jh, kh) on a grid of points given by

Ωh := {(jh, kh) : j, k = 0, 1, . . . ,m+ 1}, where h = 1/(m+ 1).

The points Ωh := {(jh, kh) : j, k = 1, . . . ,m} are the interior points, while Ωh \Ωh

are the boundary points. The solution is zero at the boundary points. For an
interior point we insert the difference approximations

∂2u(jh, kh)

∂x2
≈ vj−1,k − 2vj,k + vj+1,k

h2
,

∂2u(jh, kh)

∂y2
≈ vj,k−1 − 2vj,k + vj,k+1

h2

43

44 Chapter 4. The Kronecker Product

in (4.1) and multiply both sides by h2 to obtain

(−vj−1,k + 2vj,k − vj+1,k) + (−vj,k−1 + 2vj,k − vj,k+1) = h2fj,k (4.2)

or
4vj,k − vj−1,k − vj+1,k − vj,k−1 − vj,k+1 = h2fjk := h2f(jh, kh). (4.3)

From the boundary conditions we have in addition

v0,k = vm+1,k = vj,0 = vj,m+1 = 0, j, k = 0, 1, . . . ,m+ 1. (4.4)

The equations (4.3) and (4.4) define a linear set of equations for the unknowns
V = [vjk] ∈ Rm,m.

Observe that (4.2) can be written as a matrix equation in the form

TV + V T = h2F with h = 1/(m+ 1), (4.5)

where T = tridiag(−1, 2,−1) ∈ Rm,m is the second derivative matrix given by (2.3),
V = (vjk) ∈ Rm,m, and F = (fjk) = (f(jh, kh)) ∈ Rm,m. Indeed, the (j, k) element
in TV + V T is given by

m∑
i=1

T j,ivi,k +
m∑
i=1

vj,iT i,k,

and this is precisely the left hand side of (4.2).
To write (4.3) and (4.4) in standard form Ax = b we need to order the

unknowns vj,k in some way. The following operation of vectorization of a matrix
gives one possible ordering.

Definition 4.1 For any B ∈ Rm,n we define the vector

vec(B) := [b11, . . . , bm1, b12, . . . , bm2, . . . , b1n, . . . , bmn]
T ∈ Rmn

by stacking the columns of B on top of each other.

Let n = m2 and x := vec(V) ∈ Rn. Note that forming x by stacking the
columns of V on top of each other means an ordering of the grid points which for
m = 3 is illustrated in Figure 4.1. We call this the natural ordering. The location
of the elements in (4.3) form a 5-point stencil, as shown in Figure 4.2.

To find the matrix A we note that for values of j, k where the 5-point stencil
does not touch the boundary, (4.3) takes the form

4xi − xi−1 − xi+1 − xi−m − xi+m = bi,

where xi = vjk and bi = h2fjk. This must be modified close to the boundary. We
obtain the linear system

Ax = b, A ∈ Rn,n, b ∈ Rn, n = m2, (4.6)

4.1. Test Matrices 45

>>

v in grid
j,k

v in V - matrix
j,k

1,1

1,2

1,3

2,1

2,2

2,3

3,1

3,2

3,3

3,1

2,1

1,1

3,2

2,2

1,2

3,3

2,3

1,3

1

4

7

2

5

8

3

6

9

x in gridi

Figure 4.1. Numbering of grid points

j,k 4j+1,k

-1
 j,k+1

 j-1,k

 j,k-1 -1

-1 i i+1

 i+m

 i-1

i-m

-1xx

 x

x

xv

v v v

v

Figure 4.2. The 5-point stencil

where x = vec(V), b = h2vec(F) with F = (fjk) ∈ Rm,m and A is the Poisson
matrix given by

aii = 4, i = 1, . . . , n
ai+1,i = ai,i+1 = −1, i = 1, . . . , n− 1, i ̸= m, 2m, . . . , (m− 1)m

ai+m,i = ai,i+m = −1, i = 1, . . . , n−m
aij = 0, otherwise.

(4.7)

For m = 3 we have the following matrix

A =



4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0
0 −1 4 0 0 −1 0 0 0

−1 0 0 4 −1 0 −1 0 0
0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 0 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4


.

Exercise 4.2 Write down the Poisson matrix for m = 2 and show that it is strictly
diagonally dominant.

46 Chapter 4. The Kronecker Product

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

nz = 33

0 5 10 15 20 25

0

5

10

15

20

25

nz = 105

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

nz = 460

Figure 4.3. Band structure of the 2D test matrix, n = 9, n = 25, n = 100

4.1.2 The test Matrices

The second derivative matrix T = tridiag(−1, 2,−1) is a special case of the tridi-
agonal matrix

T 1 :=



d a 0
a d a

0
. . .

. . .
. . .

0
a d a
0 a d


, (4.8)

where a, d ∈ R. We call this the 1D test matrix. It is strictly diagonally dominant
if |d| > 2|a|.

The (2 dimensional) Poisson matrix is a special case of the matrix T 2 = [aij] ∈
Rn,n with elements

ai,i+1 = ai+1,i = a, i = 1, . . . , n− 1, i ̸= m, 2m, . . . , (m− 1)m,
ai,i+m = ai+m,i = a, i = 1, . . . , n−m,

ai,i = 2d, i = 1, . . . , n,
ai,j = 0, otherwise,

(4.9)

and where a, d are real numbers. We will refer to this matrix as simply the 2D test
matrix. The 2D test matrix is

• symmetric,

• a banded matrix with bandwidth m =
√
n, (Cf. Figure 4.3).

• strictly diagonally dominant if |d| > 2|a|,

• the Poisson matrix given by (4.7) when a = −1 and d = 2, This matrix is
strictly diagonally dominant for m = 2, n = 4, but only diagonally dominant
for m > 2.

4.2. The Kronecker Product 47

• called the averaging matrix when a = 1/9 and d = 5/18. This matrix is
strictly diagonally dominant for all n.

Properties of T 2 can be derived from properties of T 1 by using properties of
the Kronecker product.

4.2 The Kronecker Product
Definition 4.3 For any positive integers p, q, r, s we define the Kronecker product
of two matrices A ∈ Rp,q and B ∈ Rr,s as a matrix C ∈ Rpr,qs given in block form
as

C =


Ab1,1 Ab1,2 · · · Ab1,s
Ab2,1 Ab2,2 · · · Ab2,s

...
...

...
Abr,1 Abr,2 · · · Abr,s

 .

We denote the Kronecker product of A and B by C = A⊗B.

This definition of the Kronecker product is known more precisely as the left
Kronecker product. In the literature one often finds the right Kronecker product
which in our notation is given by B ⊗A.

As examples of Kronecker products which are relevant for our discussion, if

T 1 =

[
d a
a d

]
and I =

[
1 0
0 1

]
then

T 1 ⊗ I =


d a 0 0
a d 0 0
0 0 d a
0 0 a d

 and I ⊗ T 1 =


d 0 a 0
0 d 0 a
a 0 d 0
0 a 0 d

 .

Also note that the Kronecker product u ⊗ v =
[
uT v1, . . . ,u

T vr
]T

of two column
vectors u ∈ Rp and v ∈ Rr is a column vector of length p× r.

The 2D test matrix T 2 can be written as a sum of two Kronecker products.
We see that

T 2 =


T 1

T 1

. . .

T 1

T 1

+


dI aI
aI dI aI

. . .
. . .

. . .

aI dI aI
aI dI

 = T 1⊗I+I⊗T 1.

Definition 4.4 Let for positive integers r, s, k, A ∈ Rr,r, B ∈ Rs,s and Ik be the
identity matrix of order k. The sum A⊗ Is + Ir ⊗B is known as the Kronecker
sum of A and B.

48 Chapter 4. The Kronecker Product

In other words, the 2D test matrix is the Kronecker sum of two identical 1D
test matrices.

The following simple arithmetic rules hold for Kronecker products. For scalars
λ, µ and matrices A,A1,A2,B,B1,B2,C of dimensions such that the operations
are defined we have (

λA
)
⊗

(
µB

)
= λµ

(
A⊗B

)
,(

A1 +A2

)
⊗B = A1 ⊗B +A2 ⊗B,

A⊗
(
B1 +B2

)
= A⊗B1 +A⊗B2,

(A⊗B)⊗ C = A⊗ (B ⊗C),

(A⊗B)T = AT ⊗BT .

(4.10)

Note however that in general we have A ⊗B ̸= B ⊗A, but it can be shown that
there are permutation matrices P , Q such that B ⊗A = P (A⊗B)Q, see [10].

Exercise 4.5 Prove (4.10).

The followingmixed product rule is an essential tool for dealing with Kronecker
products and sums.

Lemma 4.6 Suppose A,B,C,D are rectangular matrices with dimensions so that
the products AC and BD are defined. Then the product (A⊗B)(C⊗D) is defined
and

(A⊗B)(C ⊗D) = (AC)⊗ (BD). (4.11)

Proof. If B ∈ Rr,t and D ∈ Rt,s for some integers r, s, t then

(A⊗B)(C ⊗D) =

 Ab1,1 · · · Ab1,t
...

...
Abr,1 · · · Abr,t


 Cd1,1 · · · Cd1,s

...
...

Cdt,1 · · · Cdt,s

 .

Thus for all i, j

((A⊗B)(C ⊗D))i,j = AC
t∑

k=1

bi,kdk,j = (AC)(BD)i,j = ((AC)⊗ (BD))i,j .

The eigenvalues and eigenvectors of a Kronecker product can easily be de-
termined if one knows the corresponding quantities for each of the factors in the
product.

Lemma 4.7 Suppose A and B are square matrices. Then the eigenvalues of A⊗B
are products of eigenvalues of A and B, and the eigenvectors of A⊗B are Kronecker
products of eigenvectors of A and B. More precisely, if A ∈ Rr,r and B ∈ Rs,s and

Aui = λiui, i = 1, . . . , r, Bvj = µjvj , j = 1, . . . , s,

4.2. The Kronecker Product 49

then

(A⊗B)(ui ⊗ vj) = λiµj(ui ⊗ vj), i = 1, . . . , r, j = 1, . . . , s. (4.12)

Proof. Using (4.10) and (4.11) the proof is a one liner. For all i, j

(A⊗B)(ui ⊗ vj) = (Aui)⊗ (Bvj) = (λiui)⊗ (µjvj) = (λiµj)(ui ⊗ vj).

Consider next a Kronecker sum.

Lemma 4.8 For positive integers r, s let A ∈ Rr,r and B ∈ Rs,s. Then the eigen-
values of the Kronecker sum A ⊗ Is + Ir ⊗ B are all sums of eigenvalues of A
and B, and the eigenvectors of A ⊗ Is + Ir ⊗ B are all Kronecker products of
eigenvectors of A and B. More precisely, if

Aui = λiui, i = 1, . . . , r, Bvj = µjvj , j = 1, . . . , s,

then

(A⊗Is+Ir⊗B)(ui⊗vj) = (λi+µj)(ui⊗vj), i = 1, . . . , r, j = 1, . . . , s. (4.13)

Proof. Since Isvj = vj for j = 1, . . . , s and Irui = ui for i = 1, . . . , r we obtain
by Lemma 4.7 for all i, j

(A⊗ Is)(ui ⊗ vj) = λi(ui ⊗ vj), and (Ir ⊗B)(ui ⊗ vj) = µj(ui ⊗ vj).

The result now follows by summing these relations.

In many cases the Kronecker product and sum inherit properties of their
factors.

Lemma 4.9

1. If A and B are nonsingular then A⊗B is nonsingular. Moreover (A⊗B)−1 =
A−1 ⊗B−1.

2. If A and B are symmetric then A⊗B and A⊗ I + I ⊗B are symmetric.

3. If one of A, B is symmetric positive definite and the other is symmetric
positive semidefinite then A⊗ I + I ⊗B is symmetric positive definite.

Proof. Suppose that A ∈ Rr,r and B ∈ Rs,s. 1. follows from the mixed product
rule giving(

A⊗B
)(
A−1 ⊗B−1

)
=

(
AA−1

)
⊗
(
BB−1

)
= Ir ⊗ Is = Irs.

Thus
(
A ⊗ B

)
is nonsingular with the indicated inverse. 2. and the symmetry

part of 3. follow immediately from (4.10). Suppose A is positive definite and B

50 Chapter 4. The Kronecker Product

is positive semidefinite. Then A has positive eigenvalues and B has nonnegative
eigenvalues. By Lemma 4.8 the eigenvalues of A ⊗ I + I ⊗B are all positive and
3. follows.

In (4.5) we derived the matrix equation TV + V T = h2F for the unknowns
V in the discrete Poisson problem. With some effort we converted this matrix
equation to a linear system in standard form Ax = b, where A = T ⊗ I + I ⊗ T ,
x = vec(V), and b = vec(F). This conversion could have been carried out with less
effort using the following result.

Lemma 4.10 Suppose A ∈ Rr,r, B ∈ Rs,s, and F ,V ∈ Rr,s. Then we have

(A⊗B) vec(V) = vec(F) ⇔ AV BT = F , (4.14)

(A⊗ Is + Ir ⊗B) vec(V) = vec(F) ⇔ AV + V BT = F . (4.15)

Proof. We partition V , F , and BT by columns as V = [v1, . . . ,vs], F =
[f1, . . . ,fs] and BT = [b1, . . . , bs]. Then we have

(A⊗B) vec(V) = vec(F)

⇔

 Ab11 · · · Ab1s
...

...
Abs1 · · · Abss


v1

...
vs

 =

f1
...
fs



⇔ A[
∑
j

b1jvj , . . . ,
∑
j

bsjvj] = [f1, . . . ,fs]

⇔ A[V b1, . . . ,V bs] = F ⇔ AV BT = F .

This proves (4.14). (4.15) follows immediately from (4.14) as follows

(A⊗ Is + Ir ⊗B) vec(V) = vec(F)

⇔ (AV IT
s + IrV BT) = F ⇔ AV + V BT = F .

For more on Kronecker products see [10].

4.3 Properties of the 1D and 2D Test Matrices
We can apply these results to the 2D test matrix T 2. We first consider the 1D test
matrix. The eigenvectors of T 1 are the columns of the sine matrix defined by

S =
[
sin

jkπ

m+ 1

]m
j,k=1

∈ Rm,m. (4.16)

4.3. Properties of the 1D and 2D Test Matrices 51

For m = 3

S = [s1, s2, s3] =

 sin π
4 sin 2π

4 sin 3π
4

sin 2π
4 sin 4π

4 sin 6π
4

sin 3π
4 sin 6π

4 sin 9π
4

 =

t 1 t
1 0 −1
t −1 t

 , t :=
1√
2
.

Lemma 4.11 Suppose T 1 = (tkj)k,j = tridiag(a, d, a) ∈ Rm,m with m ≥ 2, a, d ∈
R, and let h = 1/(m+ 1).

1. We have T 1sj = λjsj for j = 1, . . . ,m, where

sj = [sin (jπh), sin (2jπh), . . . , sin (mjπh)]T , (4.17)

λj = d+ 2a cos(jπh). (4.18)

2. The eigenvalues are distinct and the eigenvectors are orthogonal

sTj sk =
1

2h
δj,k, j, k = 1, . . . ,m. (4.19)

Proof. We find

(T 1sj)k =
m∑
l=1

tk,l sin
(
ljπh

)
= a

[
sin

(
(k − 1)jπh

)
+ sin

(
(k + 1)jπh

)]
+ d sin

(
kjπh

)
=

(
d+ 2a cos(jπh)

)
sin

(
kjπh

)
= λjsk,j ,

and 1. follows. Since jπh = jπ/(m + 1) ∈ (0, π) for j = 1, . . . ,m and the cosine
function is strictly monotone decreasing on (0, π) the eigenvalues are distinct, and
since T 1 is symmetric it follows from Lemma 4.12 below that the eigenvectors sj
are orthogonal. To finish the proof of (4.19) we compute the square of the Euclidian
norm of each sj as follows:

sTj sj =

m∑
k=1

sin2(kjπh) =

m∑
k=0

sin2(kjπh) =
1

2

m∑
k=0

(1− cos(2kjπh))

=
m+ 1

2
− 1

2

m∑
k=0

cos(2kjπh)) =
m+ 1

2
,

since the last cosine sum is zero. We show this by summing a geometric series of
complex exponentials. With i =

√
−1 we find

m∑
k=0

cos(2kjπh)+i

m∑
k=0

sin(2kjπh) =

m∑
k=0

e2ikjπh =
e2i(m+1)jπh − 1

e2ijπh − 1
=

e2ijπ − 1

e2ijπh − 1
= 0,

and (4.19) follows.

Lemma 4.12 The eigenvalues of a Hermitian matrix are real. Moreover, eigen-
vectors corresponding to distinct eigenvalues are orthogonal.

52 Chapter 4. The Kronecker Product

Proof. Suppose A∗ = A and Ax = λx with x ̸= 0. We multiply both sides of
Ax = λx by x∗ and divide by x∗x to obtain λ = x∗Ax

x∗x . Taking complex conjugates

we find λ = λ∗ = (x∗Ax)∗

(x∗x)∗ = x∗A∗x
x∗x = x∗Ax

x∗x = λ, and λ is real.

Suppose in addition that (µ,y) is another eigenpair for A with µ ̸= λ. Multi-
plying Ax = λx by y∗ gives

λy∗x = y∗Ax = (x∗A∗y)∗ = (x∗Ay)∗ = (µx∗y)∗ = µy∗x,

using that µ is real. Since λ ̸= µ it follows that y∗x = 0 which means that x and
y are orthogonal.

It is now easy to find the eigenpairs of the 2D test matrix and determine when
it is positive definite.

Theorem 4.13 For fixed m ≥ 2 let T 2 be the matrix given by (4.9) and let h =
1/(m+ 1).

1. We have T 2xj,k = λj,kxj,k for j, k = 1, . . . ,m, where

xj,k = sj ⊗ sk, (4.20)

sj = [sin (jπh), sin (2jπh), . . . , sin (mjπh)]T , (4.21)

λj,k = 2d+ 2a cos(jπh) + 2a cos(kπh). (4.22)

2. The eigenvectors are orthogonal

xT
j,kxp,q =

1

4h2
δj,pδk,q, j, k, p, q = 1, . . . ,m. (4.23)

3. T 2 is symmetric positive definite if d > 0 and d ≥ 2|a|.

4. The Poisson and averaging matrix are symmetric positive definite.

Proof.
1. follows from Lemma 4.11 and Lemma 4.8 since T 2 = T 1⊗I+I⊗T 1. Using

the transpose rule, the mixed product rule and (4.19) we find for j, k, p, q = 1, . . . ,m

(
sj ⊗ sk

)T (
sp ⊗ sq

)
=

(
sTj ⊗ sTk

)(
sp ⊗ sq

)
=

(
sTj sp

)
⊗
(
sTk sq

)
=

1

4h2
δj,pδk,q

and 2. follows. Since T 2 is symmetric 3. will follow if the eigenvalues are positive.
But this is true if d > 0 and d ≥ 2|a| and this holds both for both choices a = −1,
d = 2 and a = 1/5, d = 5/18. Thus the matrices in 4. are positive definite.

Exercise 4.14 Write down the eigenvalues of T = tridiag(−1, 2,−1) using Lemma 4.11
and conclude that T is symmetric positive definite.

4.3. Properties of the 1D and 2D Test Matrices 53

Exercise 4.15 Use Lemma 4.11 to show that the matrix T 1 := tridiag(a, d, a) ∈
Rn,n is symmetric positive definite if d > 0 and d ≥ 2|a|.

Exercise 4.16 For m = 2 the matrix (4.9) is given by

A =


2d a a 0
a 2d 0 a
a 0 2d a
0 a a 2d

 .

Show that λ = 2a + 2d is an eigenvalue corresponding to the eigenvector x =
[1, 1, 1, 1]T . Verify that apart from a scaling of the eigenvector this agrees with
(4.22) and (4.21) for j = k = 1 and m = 2.

Exercise 4.17 Consider the following 9 point difference approximation to the
Poisson problem −∇2u = f , u = 0 on the boundary of the unit square (cf. (4.1))

(a) −(�hv)j,k = (µf)j,k j, k = 1, . . . ,m
(b) v0,k = vm+1,k = vj,0 = vj,m+1 = 0, j, k = 0, 1, . . . ,m+ 1,
(c) −(�hv)j,k = [20vj,k − 4vj−1,k − 4vj,k−1 − 4vj+1,k − 4vj,k+1

− vj−1,k−1 − vj+1,k−1 − vj−1,k+1 − vj+1,k+1]/(6h
2),

(d) (µf)j,k = [8fj,k + fj−1,k + fj,k−1 + fj+1,k + fj,k+1]/12.
(4.24)

a) Write down the 4-by-4 system we obtain for m = 2.

b) Find vj,k for j, k = 1, 2, if f(x, y) = 2π2 sin (πx) sin (πy) and m = 2. Answer:
vj,k = 5π2/66.

It can be shown that (4.24) defines an O(h4) approximation to (4.1).

Exercise 4.18 Consider the nine point difference approximation to (4.1) given by
(4.24) in Problem 4.17.

a) Show that (4.24) is equivalent to the matrix equation

TV + V T − 1

6
TV T = h2µF . (4.25)

Here µF has elements (µf)j,k given by (4.24d).

b) Show that the standard form of the matrix equation (4.25) is Ax = b, where
A = T ⊗ I + I ⊗ T − 1

6T ⊗ T , x = vec(V), and b = h2vec(µF).

Exercise 4.19 Consider the biharmonic equation

∇4u(s, t) = ∇2(∇2u(s, t)) = f(s, t) (s, t) ∈ Ω,
u(s, t) = 0, ∇2u(s, t) = 0 (s, t) ∈ ∂Ω.

(4.26)

Here Ω is the open unit square. The condition∇2u = 0 is called the Navier boundary
condition. Moreover, ∇4u = uxxxx + 2uxxyy + uyyyy.

54 Chapter 4. The Kronecker Product

a) Let v = −∇2u. Show that (4.26) can be written as a system

−∇2v(s, t) = f(s, t) (s, t) ∈ Ω
−∇2u(s, t) = v(s, t) (s, t) ∈ Ω

u(s, t) = v(s, t) = 0 (s, t) ∈ ∂Ω.
(4.27)

b) Discretizing, using (4.2), with T = diag(−1, 2,−1) ∈ Rm,m, h = 1/(m+ 1), and
F = (f(jh, kh))mj,k=1 we get two matrix equations

TV + V T = h2F , TU +UT = h2V .

Show that

(T ⊗ I + I ⊗ T)vec(V) = h2vec(F), (T ⊗ I + I ⊗ T)vec(U) = h2vec(V).

and hence A = (T ⊗ I + I ⊗ T)2 is the matrix for the standard form of the
discrete biharmonic equation.

c) Show that with n = m2 the vector form and standard form of the systems in b)
can be written

T 2U + 2TUT +UT 2 = h4F and Ax = b, (4.28)

where A = T 2⊗I+2T ⊗T +I⊗T 2 ∈ Rn,n, x = vec(U), and b = h4 vec(F).

d) Determine the eigenvalues and eigenvectors of the matrix A in c) and show that
it is symmetric positive definite. Also determine the bandwidth of A.

e) Suppose we want to solve the standard form equation Ax = b. We have two
representations for the matrix A, the product one in b) and the one in c).
Which one would you prefer for a basis of an algorithm? Why?

Chapter 5

Fast Direct Solution of a
Large Linear System

5.1 Algorithms for a Banded Positive Definite
System

In this chapter we present a fast method for solving Ax = b, where A is the Poisson
matrix (4.7). Thus for n = 3

A =



4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0
0 −1 4 0 0 −1 0 0 0

−1 0 0 4 −1 0 −1 0 0
0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 0 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4


=

 T + 2I −I 0
−I T + 2I −I
0 −I T + 2I

 ,

where T = tridiag(−1, 2,−1). For this matrix we know by now that

1. It is symmetric positive definite.

2. It is banded.

3. It is block-tridiagonal.

4. We know the eigenvalues and eigenvectors of A.

5. The eigenvectors are orthogonal.

55

56 Chapter 5. Fast Direct Solution of a Large Linear System

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

nz = 1009

Figure 5.1. Fill-inn in the Cholesky factor of the Poisson matrix (n = 100).

5.1.1 Cholesky Factorization

Since A is symmetric positive definite we can use the Cholesky factorization Al-
gorithm 3.37. Since A is banded with bandwidth d =

√
n the complexity of this

factorization is O(nd2) = O(n2). We need to store A possibly in sparse form.
The nonzero elements in R are shown in Figure 5.1. Note that the zeros

between the diagonals in A have become nonzero in R. This is known as fill-inn.

5.1.2 Block LU Factorization of a Block Tridiagonal Matrix

The Poisson matrix has a block tridiagonal structure. Consider finding the block
LU factorization of a block tridiagonal matrix. We are looking for a factorization
of the form

D1 C1

A2 D2 C2

. . .
. . .

. . .
Am−1 Dm−1 Cm−1

Am Dm

 =

 I
L2 I

. . .
. . .
Lm I

R1 C1

. . .
. . .

Rm−1 Cm−1

Rm

 . (5.1)

Here D1, . . . ,Dm and R1, . . . ,Rm are square matrices while A2, . . . ,Am and C1,
. . . ,Cm−1 can be rectangular.

Using block multiplication the formulas (2.5) generalize to

R1 = D1, Lk = AkR
−1
k−1, Rk = Dk −LkCk−1, k = 2, 3, . . . ,m. (5.2)

To solve the system Ax = b we partition b conformaly with A in the form bT =
[bT1 , . . . , b

T
m]. The formulas for solving Ly = b and Rx = y are as follows:

y1 = b1, yk = bk −Lkyk−1, k = 2, 3, . . . ,m,

xm = R−1
m ym, xk = R−1

k (yk −Ckxk+1), k = m− 1, . . . , 2, 1.
(5.3)

The solution is then xT = [xT
1 , . . . ,x

T
m]. To find Lk in (5.2) we solve the linear

systems LkRk−1 = Ak. Similarly we need to solve a linear system to find xk in
(5.3).

The number of arithmetic operations using block factorizations is O(n2),
asymptotically the same as for Cholesky factorization. However we only need to
store the m×m blocks and using matrix operations can be an advantage.

5.2. A Fast Poisson Solver based on Diagonalization 57

5.1.3 Other Methods

Other methods include

• Iterative methods. We study this in Chapters 9, 10, 11.

• Multigrid. See [5].

• Fast solvers based on diagonalization and the Fast Fourier Transform. See
Sections 5.2, 5.3.

5.2 A Fast Poisson Solver based on Diagonalization
The algorithm we now derive will only require O(n3/2) flops and we only need to
work with matrices of order m. Using the Fast Fourier Transform the number of
flops can be reduced further to O(n logn).

To start we recall that Ax = b can be written as a matrix equation in the
form (cf. (4.5))

TV + V T = h2F with h = 1/(m+ 1),

where T = tridiag(−1, 2,−1) ∈ Rm,m is the second derivative matrix, V = (vjk) ∈
Rm,m are the unknowns, and F = (fjk) = (f(jh, kh)) ∈ Rm,m contains function
values.

Recall that the eigenpairs of T are given by

Tsj = λjsj , j = 1, . . . ,m,

sj = [sin (jπh), sin (2jπh), . . . , sin (mjπh)]T ,

λj = 2− 2 cos(jπh) = 4 sin2 (jπh/2), h = 1/(m+ 1),

sTj sk = δjk/(2h) for all j, k.

Let

S := [s1, . . . , sm] =
[
sin (jkπh)

]m
j,k=1

∈ Rm,m, D = diag(λ1, . . . , λm). (5.4)

Then TS = SD and STS = S2 = I/(2h). Define X ∈ Rm,m by V = SXS, where
V is the solution of TV + V T = h2F . Then

TV + V T = h2F

V =SXS⇐⇒ TSXS + SXST = h2F

S()S⇐⇒ STSXS2 + S2XSTS = h2SFS

TS=SD⇐⇒ S2DXS2 + S2XS2D = h2SFS

S2=I/(2h)⇐⇒ DX +XD = 4h4SFS.

An equation of the form DX + XD = B, where D is diagonal is easy to solve.
If D = diag(λj) we obtain for each element the equation λjxjk + xjkλk = bjk so
xjk = bjk/(λj + λk) for all j, k.

58 Chapter 5. Fast Direct Solution of a Large Linear System

We now get the following algorithm to find the exact solution of TV +V T =
h2F .

Algorithm 5.1 (Fast Poisson Solver) We solve the Poisson problem
−∇2u = f on Ω = (0, 1)2 and u = 0 on ∂Ω using the 5-point scheme, i. e.,
let m ∈ N, h = 1/(m + 1), and F = (f(jh, kh)) ∈ Rm,m. We compute
V ∈ Rm,m, where vjk ≈ u(jh, kh) by solving the equation TV + V T = h2F
using diagonalization of T = tridiag(−1, 2,−1) ∈ Rm,m.

function V=fastpoisson(F)

m=length(F); h=1/(m+1); hv=pi*h*(1:m)’;

sigma=sin(hv /2).^2;

S=sin(hv*(1:m));

G=S*F*S;

X=h^4*G./(sigma*ones(1,m)+ ones(m,1)* sigma ’);

V=zeros(m+2,m+2);

V(2:m+1,2:m+1)=S*X*S;

The formulas are fully vectorized and for convenience we have used σj := λj/4
instead of λj . Since the statement ”X=h4*G./(sigma*ones(1,m)+ ones(m,1)*sigma’)”
only requires O(m2) flops the complexity of this algorithm is for large m determined
by the 4 m-by-m matrix multiplications and is given by O(4× 2m3) = O(8n3/2). 2

5.3 A Fast Poisson Solver based on the Discrete Sine
and Fourier Transforms

In Algorithm 5.1 we need to compute the product of the sine matrix S ∈ Rm,m

given by (5.4) and a matrix A ∈ Rm,m. Since the matrices are m-by-m this will
normally require O(m3) operations. In this section we show that it is possible to
calculate the products SA and AS in O(m2 log2 m) operations.

We need to discuss certain transforms known as the Discrete Sine Transform,
the Discrete Fourier Transform and the Fast Fourier Transform. These transforms
are of independent interest. They have applications to signal processing and image
analysis, and are often used when one is dealing with discrete samples of data on a
computer.

5.3.1 The Discrete Sine Transform (DST)

Given v = [v1, . . . , vm]T ∈ Rm we say that the vector w = [w1, . . . , wm]T given by

wj =
m∑

k=1

sin

(
jkπ

m+ 1

)
vk, j = 1, . . . ,m

is theDiscrete Sine Transform (DST) of v. In matrix form we can write the DST
as the matrix times vector w = Sv, where S is the sine matrix given by (5.4). We

2It is possible to compute V using only two matrix multiplications and hence reduce the
complexity to O(4n3/2). This is detailed in Problem 5.4.

5.3. A Fast Poisson Solver based on the Discrete Sine and Fourier Transforms 59

can then identify the matrix B = SA as the DST of A ∈ Rm,n, i.e. as the DST of
the columns of A. The product B = AS can also be interpreted as a DST. Indeed,
since S is symmetric we have B = (SAT)T which means that B is the transpose
of the DST of the rows of A. It follows that we can compute the unknowns V in
Algorithm 5.1 by carrying out Discrete Sine Transforms on 4 m-by-m matrices in
addition to the computation of X.

5.3.2 The Discrete Fourier Transform (DFT)

The fast computation of the DST is based on its relation to the Discrete Fourier
Transform (DFT) and the fact that the DFT can be computed by a technique known
as the Fast Fourier Transform (FFT). To define the DFT let for N ∈ N

ωN = exp−2πi/N = cos(2π/N)− i sin(2π/N), (5.5)

where i =
√
−1 is the imaginary unit. Given y = [y1, . . . , yN]T ∈ RN we say that

z = [z1, . . . , zN]T given by

zj =

N∑
k=1

ω
(j−1)(k−1)
N yk, j = 1, . . . , N

is the Discrete Fourier Transform (DFT) of y. We can write this as a matrix
times vector product z = FNy, where the matrix FN is given by

FN =
(
ω
(j−1)(k−1)
N

)N

j,k=1
∈ CN,N . (5.6)

This matrix is known as the Fourier matrix. If A ∈ RN,m we say that B = FNA
is the DFT of A.

As an example, since

ω4 = exp−2πi/4 = cos(π/2)− i sin(π/2) = −i

we find

F 4 =


1 1 1 1
1 ω4 ω2

4 ω3
4

1 ω2
4 ω4

4 ω6
4

1 ω3
4 ω6

4 ω9
4

 =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

 . (5.7)

The following lemma shows how the Discrete Sine Transform of order m can be
computed from the Discrete Fourier Transform of order 2m+ 2.

Lemma 5.2 Given a positive integer m and a vector x ∈ Rm. Component k of Sx
is equal to i/2 times component k + 1 of F 2m+2z where

z = [0, x1, . . . , xm, 0,−xm,−xm−1, . . . ,−x1]
T ∈ R2m+2.

In symbols

(Sx)k =
i

2
(F 2m+2z)k+1 , k = 1, . . . ,m.

60 Chapter 5. Fast Direct Solution of a Large Linear System

Proof. Let ω = ω2m+2 = e−2πi/(2m+2) = e−πi/(m+1). Component k+1 of F 2m+2z
is given by

(F 2m+2z)k+1 =
m∑
j=1

xjω
jk −

m∑
j=1

xjω
(2m+2−j)k

=
m∑
j=1

xj(ω
jk − ω−jk)

= −2i

m∑
j=1

xj sin

(
jkπ

m+ 1

)
= −2i(Smx)k.

Dividing both sides by −2i proves the lemma.

It follows that we can compute the DST of length m by extracting m compo-
nents from the DFT of length N = 2m+ 2.

5.3.3 The Fast Fourier Transform (FFT)

From a linear algebra viewpoint the Fast Fourier Transform is a quick way to com-
pute the matrix- vector product FNy. Suppose N is even. The key to the FFT is
a connection between FN and FN/2 which makes it possible to compute the FFT
of order N as two FFT’s of order N/2. By repeating this process we can reduce the
number of flops to compute a DFT from O(N2) to O(N log2 N).

Suppose N is even. The connection between FN and FN/2 involves a permu-
tation matrix PN ∈ RN,N given by

PN = [e1, e3, . . . , eN−1, e2, e4, . . . , eN],

where the ek = (δj,k) are unit vectors. If A is a matrix with N columns [a1, . . . ,aN]
then

APN = [a1,a3, . . . ,aN−1,a2,a4, . . . ,aN],

i.e. post multiplying A by PN permutes the columns of A so that all the odd-
indexed columns are followed by all the even-indexed columns. For example we
have from (5.7)

P 4 = [e1 e3 e2 e4] =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 F 4P 4 =


1 1 1 1
1 −1 −i i
1 1 −1 −1
1 −1 i −i

 ,

where we have indicated a certain block structure of F 4P 4. These blocks can be
related to the 2-by-2 matrix F 2. We define the diagonal scaling matrix D2 by

D2 = diag(1, ω4) =

[
1 0
1 −i

]
.

5.3. A Fast Poisson Solver based on the Discrete Sine and Fourier Transforms 61

Since ω2 = exp−2πi/2 = −1 we find

F 2 =

[
1 1
1 −1

]
, D2F 2 =

[
1 1

−i i

]
,

and we see that

F 4P 4 =

[
F 2 D2F 2

F 2 −D2F 2

]
.

This result holds in general.

Theorem 5.3 If N = 2m is even then

F 2mP 2m =

[
Fm DmFm

Fm −DmFm

]
, (5.8)

where

Dm = diag(1, ωN , ω2
N , . . . , ωm−1

N). (5.9)

Proof. Fix integers j, k with 0 ≤ j, k ≤ m − 1 and set p = j + 1 and q = k + 1.
Since ωm

m = 1, ω2
N = ωm, and ωm

N = −1 we find by considering elements in the four
sub-blocks in turn

(F 2mP 2m)p,q = ω
j(2k)
N = ωjk

m = (Fm)p,q,

(F 2mP 2m)p+m,q = ω
(j+m)(2k)
N = ω

(j+m)k
m = (Fm)p,q,

(F 2mP 2m)p,q+m = ω
j(2k+1)
N = ωj

Nωjk
m = (DmFm)p,q,

(F 2mP 2m)p+m,q+m = ω
(j+m)(2k+1)
N = −ω

j(2k+1)
N = (−DmFm)p,q.

It follows that the four m-by-m blocks of F 2mP 2m have the required structure.

Using Theorem 5.3 we can carry out the DFT as a block multiplication. Let
y ∈ R2m and set w = P T

2my = [w1,w2]
T , where w1,w2 ∈ Rm. Then

F 2my = F 2mP 2mP T
2my = F 2mP 2mw

=

[
Fm DmFm

Fm −DmFm

] [
w1

w2

]
=

[
q1 + q2

q1 − q2

]
,

where

q1 = Fmw1, and q2 = Dm(Fmw2).

In order to compute F 2my we need to compute Fmw1 and Fmw2. Note that
wT

1 = [y1, y3, . . . , yN−1], while wT
2 = [y2, y4, . . . , yN]. This follows since wT =

[wT
1 ,w

T
2] = yTP 2m and post multiplying a vector by P 2m moves odd indexed

components to the left of all the even indexed components.
We have seen that by combining two FFT’s of order m we obtain an FFT of

order 2m. If N = 2k then this process can be applied recursively as in the following
Matlab function:

62 Chapter 5. Fast Direct Solution of a Large Linear System

Algorithm 5.4 (Recursive FFT) For y ∈ Cn we compute the Fourier trans-
form z = F ny.

function z=fftrec(y)

n=length(y);

if n==1

z=y;

else

q1=fftrec(y(1:2:n-1));

q2=exp(-2*pi*i/n).^(0:n/2 -1).* fftrec(y(2:2:n));

z=[q1+q2 q1-q2];

end

Such a recursive version of FFT is useful for testing purposes, but is much too
slow for large problems. A challenge for FFT code writers is to develop nonrecursive
versions and also to handle efficiently the case where N is not a power of two. We
refer to [23] for further details.

The complexity of the FFT is given by γN log2 N for some constant γ inde-
pendent of N . To show this for the special case when N is a power of two let xk

be the complexity (the number of flops) when N = 2k. Since we need two FFT’s of
order N/2 = 2k−1 and a multiplication with the diagonal matrix DN/2, it is reason-

able to assume that xk = 2xk−1 + γ2k for some constant γ independent of k. Since
x0 = 0 we obtain by induction on k that xk = γk2k. Indeed, this holds for k = 0
and if xk−1 = γ(k − 1)2k−1 then xk = 2xk−1 + γ2k = 2γ(k − 1)2k−1 + γ2k = γk2k.
Reasonable implementations of FFT typically have γ ≈ 5, see [23].

The efficiency improvement using the FFT to compute the DFT is spectacular
for large N . The direct multiplication FNy requires O(8n2) flops since complex
arithmetic is involved. Assuming that the FFT uses 5N log2 N flops we find for
N = 220 ≈ 106 the ratio

8N2

5N log2 N
≈ 84000.

Thus if the FFT takes one second of computing time and the computing time
is proportional to the number of flops then the direct multiplication would take
something like 84000 seconds or 23 hours.

5.3.4 A Poisson Solver based on the FFT

We now have all the ingredients to compute the matrix products SA and AS using
FFT’s of order 2m + 2 where m is the order of S and A. This can then be used
for quick computation of the exact solution V of the discrete Poisson problem in
Algorithm 5.1. We first compute H = SF using Lemma 5.2 and m FFT’s, one for
each of the m columns of F . We then compute G = HS by m FFT’s, one for each
of the rows of H. After X is determined we compute Z = SX and V = ZS by
another 2m FFT’s. In total the work amounts to 4m FFT’s of order 2m+2. Since
one FFT requires O(γ(2m+ 2) log2(2m+ 2) flops the 4m FFT’s amount to

8γm(m+ 1) log2(2m+ 2) ≈ 8γm2 log2 m = 4γn log2 n,

5.4. Problems 63

where n = m2 is the size of the linear system Ax = b we would be solving if
Cholesky factorization was used. This should be compared to the O(8n3/2) flops
used in Algorithm 5.1 requiring 4 straightforward matrix multiplications with S.
What is faster will depend heavily on the programming of the FFT and the size of
the problem. We refer to [23] for other efficient ways to implement the DST.

5.4 Problems
Exercise 5.1 Show that the Fourier matrix F 4 is symmetric, but not Hermitian.

Exercise 5.2 Verify Lemma 5.2 directly when m = 1.

Exercise 5.3 Show that the exact solution of the discrete Poisson equation (4.3)
and (4.4) can be written V = (vi,j)

m
i,j=1, where

vij =
1

(m+ 1)4

m∑
p=1

m∑
r=1

m∑
k=1

m∑
l=1

sin
(

ipπ
m+1

)
sin

(
jrπ
m+1

)
sin

(
kpπ
m+1

)
sin

(
lrπ
m+1

)[
sin

(
pπ

2(m+1)

)]2
+

[
sin

(
rπ

2(m+1)

)]2 fp,r.

Exercise 5.4 Algorithm 5.1 involves multiplying a matrix by S four times. In this
problem we show that it is enough to multiply by S two times. We achieve this by
diagonalizing only the second T in TV + V T = h2F .

(a) Show that

TX +XD = C, where X = V S, and C = h2FS.

(b) Show that

(T + λjI)xj = cj j = 1, . . . ,m, (5.10)

where X = [x1, . . . ,xm] and C = [c1, . . . , cm] and λj = 4 sin2 (jπh/2). Thus we
can find X by solving m linear systems, one for each of the columns of X. Recall
that a tridiagonal m×m system can be solved by (2.5) and (2.6) in 8m− 7 flops.
Give an algorithm to find X which only requires O(δm2) flops for some constant δ
independent of m.

(c) Describe a method to compute V which only requires O(4m3) = O(4n3/2)
flops.

(d) Describe a method based on the Fast Fourier Transform which requires
O(γn log2 n) where γ is the same constant as mentioned at the end of the last
section.

Exercise 5.5 Consider the equation

TV + V T − 1

6
TV T = h2µF ,

64 Chapter 5. Fast Direct Solution of a Large Linear System

that was derived in Exercise 4.18 for the 9-point scheme. Define the matrix X by
V = SXS = (xj,k) where V is the solution of (4.25). Show that

DX +XD − 1

6
DXD = 4h4G, where G = SµFS,

and that

xj,k =
h4gj,k

σj + σk − 2
3σjσk

, where σj = sin2 ((jπh)/2) for j, k = 1, 2, . . . ,m.

Show that σj + σk − 2
3σjσk > 0 for j, k = 1, 2, . . . ,m. Conclude that the

matrix A in Exercise 4.18 b) is symmetric positive definite and that (4.24) always
has a solution V .

Exercise 5.6 Derive an algorithm for solving (4.24) which for large m requires
essentially the same number of operations as in Algorithm 5.1. (We assume that
µF already has been formed).

Exercise 5.7 For the biharmonic problem we derived in Exercise 4.19 the equation

T 2U + 2TUT +UT 2 = h4F .

Define the matrix X = (xj,k) by U = SXS where U is the solution of (4.28).
Show that

D2X + 2DXD +XD2 = 4h6G, where G = SFS,

and that

xj,k =
h6gj,k

4(σj + σk)2
, where σj = sin2 ((jπh)/2) for j, k = 1, 2, . . . ,m.

Exercise 5.8 Use Exercise 5.7 to derive an algorithm

function U=simplefastbiharmonic(F)

which requires only O(δn3/2) operations to find U in Problem 4.19. Here δ is some
constant independent of n.

Exercise 5.9 In Exercise 5.8 compute the solutionU corresponding to F = ones(m,m).
For some small m’s check that you get the same solution obtained by solving the
standard form Ax = b in (4.28). You can use x = A\b for solving Ax = b. Use

F(:) to vectorize a matrix and reshape(x,m,m) to turn a vector x ∈ Rm2

into an
m×m matrix. Make a plot of U for say m = 50.

Exercise 5.10 Repeat Exercises 4.19, 5.8 and 5.9 using the nine point rule (4.24)
to solve the system (4.27).

Part II

Some Matrix Theory

65

Chapter 6

Orthonormal Eigenpairs
and the Schur Form

A matrix is said to have orthonormal (orthogonal) eigenpairs if the eigenvec-
tors are orthonormal (orthogonal). Two examples are the 2. derivative matrix T in
(2.3) and the discrete Poisson matrix, cf. Lemma 4.13. In this chapter we charac-
terize the family of matrices that have orthonormal eigenpairs. These matrices are
called normal matrices and they contain the symmetric, Hermitian, and unitary
matrices among their members.

If B = S−1AS and S = U ∈ Cn,n is unitary, then S−1 = U∗ and B =
U∗AU . In this case we say that B is unitary similar to A. In the real case
where A and U are real matrices and U is orthogonal, we have S−1 = UT and
B = UTAU . Unitary and orthogonal transformations are important in numerical
algorithms since they are insensitive to noise in the elements of the matrix.

If B = U∗AU then AU = UB. If B = diag(λj) is diagonal and U =
[u1, . . . ,un], then Auj = λjuj for j = 1, . . . , n, and it follows that the columns of U
are orthonormal eigenvectors of A. Conversely, if A has orthonormal eigenvectors
u1, . . . ,un, then AU = UB or B = U∗AU , where the columns of U are the
eigenvectors of A and B is diagonal. Thus A is unitary similar to a diagonal
matrix if and only if A has a set of orthonormal eigenvectors.

6.1 The Schur Form
Not every matrix can be diagonalized by a similarity transformation, see Theo-
rems D.19, D.20, and D.27. But it can be triangularized, even by a unitary similarity
transformation.

Theorem 6.1 (Schur Triangularization) For each A ∈ Cn,n there exists a uni-
tary matrix U ∈ Cn,n such that R := U∗AU is upper triangular.

Proof. We use induction on n. For n = 1 the matrix U is the 1 × 1 identity
matrix. Assume that the theorem is true for matrices of order k and suppose
A ∈ Cn,n, where n := k+1. Let (λ1,v1) be an eigenpair for A with ∥v1∥2 = 1. By

67

68 Chapter 6. Orthonormal Eigenpairs and the Schur Form

Theorem A.55 we can extend v1 to an orthonormal basis {v1,v2, . . . ,vn} for Cn.
The matrix V := [v1, . . . ,vn] ∈ Cn,n is unitary, and the first column of the product
V ∗AV is

V ∗AV e1 = V ∗Av1 = λ1V
∗v1 = λ1e1.

It follows that

V ∗AV =

[
λ1 x∗

0 M

]
, for some M ∈ Ck,k and x ∈ Ck. (6.1)

By the induction hypothesis there is a unitary matrixW 1 ∈ Ck,k such thatW ∗
1MW 1

is upper triangular. Define

W =

[
1 0∗

0 W 1

]
and U = V W .

Then W and U (cf. Theorem B.26) are unitary and

U∗AU = W ∗(V ∗AV)W =

[
1 0∗

0 W ∗
1

] [
λ1 x∗

0 M

] [
1 0∗

0 W 1

]
=

[
λ1 x∗W 1

0 W ∗
1MW 1

]
,

is upper triangular.

By using the unitary transformation V on the n × n matrix A, we obtain a
matrix M of order n− 1. M has the same eigenvalues as A except λ. Thus we can
find another eigenvalue of A by working with a smaller matrix M and where one
occurrence of λ has been eliminated. This is an example of a deflation technique
which is very useful in numerical work.

If A has complex eigenvalues then U will be complex even if A is real. The
following is a real version of Theorem 6.1.

Theorem 6.2 For each A ∈ Rn,n with real eigenvalues there exists an orthogonal
matrix U ∈ Rn,n such that UTAU is upper triangular.

Proof. Consider the proof of Theorem 6.1. Since A and λ1 are real the eigenvector
v1 is real and the matrix W is real and orthogonal. By the induction hypothesis
V is real and orthogonal. But then also U = V W is real and orthogonal.

Exercise 6.3 Show that the Schur triangulation of A = [1 2
3 2] is U

TAU =
[−1 −2

0 4

]
,

where U = 1√
2

[
1 1
−1 1

]
.

From the Schur triangulationR = U∗AU we obtain the Schur factorization
A = URU∗. The matrices U and R are called the Schur factors.

A real matrix with complex eigenvalues cannot be reduced to triangular form
by an orthogonal similarity transformation. Indeed, if R = UTAU is triangular,

6.1. The Schur Form 69

one of the diagonal elements of R (one of the eigenvalues of A) will be complex. But
then U cannot be real. How far can we reduce a real matrix A by an orthogonal
similarity transformation? To study this we note that the complex eigenvalues of
A occur in conjugate pairs, λ = µ + iν, λ = µ − iν, where µ, ν are real. The real
2× 2 matrix

M =

[
µ ν
−ν µ

]
(6.2)

has eigenvalues λ and λ. We say that a matrix is quasi-triangular if it is block
triangular with only 1 × 1 and 2 × 2 blocks on the diagonal. Moreover, no 2 × 2
block should have real eigenvalues. As an example consider

R =


2 1 3 4 5
−1 2 4 3 2
0 0 1 2 3
0 0 0 3 2
0 0 0 −1 1

 .

R has three diagonal blocks:

D1 =

[
2 1
−1 2

]
, D2 =

[
1

]
, D3 =

[
3 2
−1 1

]
.

By Theorem D.3 the eigenvalues of R are the union of the eigenvalues of D1, D2

and D3. The eigenvalues of D1 are 2+i and 2−i, while D2 has eigenvalue 1, and D3

has the same eigenvalues as D1. Thus R has one real eigenvalue 1 corresponding to
the 1× 1 block and complex eigenvalues 2+i, 2−i with multiplicity 2 corresponding
to the two 2× 2 blocks.

For a proof that any A ∈ Rn,n can be brought to quasi-triangular form by a
real orthogonal similarity transformation see Section 6.4.

6.1.1 The Spectral Theorem

The special cases where A is Hermitian or real and symmetric deserve special at-
tention.

Theorem 6.4 Suppose A ∈ Cn,n is Hermitian. Then A has real eigenvalues
λ1, . . . , λn. Moreover, there is a unitary matrix U ∈ Cn,n such that U∗AU =
diag(λ1, . . . , λn). For the columns {u1, . . . ,un} of U we have Auj = λjuj for
j = 1, . . . , n. Thus {u1, . . . ,un} are orthonormal eigenvectors of A.

Proof. That the eigenvalues are real was shown in Lemma 4.12. By Theorem 6.1
there is a unitary matrix U ∈ Cn,n so that B = U∗AU is upper triangular. Since
A∗ = A, we have B∗ = B. But then B must be diagonal. The columns u1, . . . ,un

of U satisfies Auj = λjuj for all j and are orthonormal eigenvectors of A.

The following real version is known as the Spectral Theorem.

70 Chapter 6. Orthonormal Eigenpairs and the Schur Form

Theorem 6.5 Suppose A ∈ Rn,n and AT = A. Then A has real eigenvalues
λ1, λ2, . . . , λn. Moreover, there is an orthogonal matrix U ∈ Rn,n such that

UTAU = diag(λ1, λ2, . . . , λn).

For the columns {u1, . . . ,un} of U we have Auj = λjuj for j = 1, . . . , n. Thus
{u1, . . . ,un} are orthonormal eigenvectors of A.

Proof. The proof is similar to Theorem 6.4. Since A∗ = A it follows from
Theorem 6.4 that the eigenvalues are real. By Theorem 6.2 there is a matrix U ∈
Rn,n with UTU = I so that B = UTAU is upper triangular. Since AT = A,
we have BT = B. But then B must be diagonal. The columns u1, . . . ,un of U
satisfies Auj = λjuj for all j and are orthonormal eigenvectors of A.

Example 6.6 The orthogonal diagonalization of A =
[

2 −1
−1 2

]
is UTAU = diag(1, 3),

where U = 1√
2

[
1 1
1 −1

]
.

Exercise 6.7 Suppose C = A + iB, where A,B ∈ Rn,n. Show that C is skew-
Hermitian if and only if AT = −A and BT = B.

Exercise 6.8 Show that any eigenvalue of a skew-Hermitian matrix is purely imag-
inary.

6.2 Normal Matrices
It is possible to characterize matrices that have a diagonal Schur form.

Definition 6.9 (Normal Matrix) A matrix A ∈ Cn,n is said to be normal if
AA∗ = A∗A.

Examples of normal matrices are

1. A∗ = A, (Hermitian)

2. A∗ = −A, (Skew-Hermitian)

3. A∗ = A−1, (Unitary)

4. A = D. (Diagonal)

For real matrices ”Hermitian” and ”symmetric” are synonyms.
The following theorem says that a matrix has orthonormal eigenpairs if and

only if it is normal.

Theorem 6.10 A matrix A ∈ Cn,n is unitary similar with a diagonal matrix if
and only if it is normal.

6.3. The Rayleigh Quotient and Minmax Theorems 71

Proof. If B = U∗AU , with B diagonal, and U∗U = I, then

AA∗ = (UBU∗)(UB∗U∗) = UBB∗U∗ and

A∗A = (UB∗U∗)(UBU∗) = UB∗BU∗.

Now BB∗ = B∗B since B is diagonal, and A is normal.
Suppose A∗A = AA∗. By Theorem 6.1 we can find U with U∗U = I such

that B = U∗AU is upper triangular. Since A is normal B is normal. Indeed,

BB∗ = U∗AUU∗A∗U = U∗AA∗U = U∗A∗AU = B∗B.

The proof is complete if we can show that an upper triangular normal matrix B
must be diagonal. The diagonal elements in E := B∗B and F := BB∗ are given
by

eii =
n∑

k=1

bkibki =
i∑

k=1

|bki|2 and fii =
n∑

k=1

bikbik =
n∑

k=i

|bik|2.

The result now follows by equating eii and fii for i = 1, 2, . . . , n. In particular for
i = 1 we have |b11|2 = |b11|2 + |b12|2 + · · · + |b1n|2, so b1k = 0 for k = 2, 3, . . . , n.
Suppose bjk = 0 for j = 1, . . . , i−1, k = j+1, . . . , n. Then

eii =
i∑

k=1

|bki|2 = |bii|2 =
n∑

k=i

|bik|2 = fii

so bik = 0, k = i+1, . . . , n. By induction on the rows we see that B is diagonal.

6.3 The Rayleigh Quotient and Minmax Theorems

6.3.1 The Rayleigh Quotient

The Rayleigh quotient is an important tool when studying eigenvalues.

Definition 6.11 For A ∈ Cn,n and any x ∈ Cn the quantity R(x) = RA(x) :=
x∗Ax
x∗x is called a Rayleigh quotient for A.

If (λ,x) is an eigenpair for A then R(x) = x∗Ax
x∗x = λ.

Exercise 6.12 More generally for A ∈ Cn,n and any y,x ∈ Cn with y∗x ̸= 0 the
quantity R(y,x) = RA(y,x) := y∗Ax

y∗x is also called a Rayleigh quotient for A.

Show that if (λ,x) is a (right) eigenpair for A then R(y,x) = λ for any y with
y∗x ̸= 0. Also show that if (λ,y) is a left eigenpair for A then R(y,x) = λ for any
x with y∗x ̸= 0.

The following lemma gives some useful formulas.

72 Chapter 6. Orthonormal Eigenpairs and the Schur Form

Lemma 6.13 Suppose A ∈ Cn,n and let {u1, . . . ,uk} be an orthonormal basis for

a subspace S ⊂ Cn. If x,y ∈ S with x =
∑k

j=1 cjuj and y =
∑k

j=1 djuj, then

⟨x,y⟩ := x∗y =
k∑

j=1

cjdj , (6.3)

R(x) =
x∗Ax

x∗x
=

∑k
j=1 λj |cj |2∑k
j=1|cj |2

=

k∑
j=1

λj |cj |2, if ∥x∥2 = 1. (6.4)

Proof. We have

⟨x,y⟩ = ⟨
k∑

i=1

ciui,
k∑

j=1

djuj⟩ =
k∑

i=1

k∑
j=1

cidj⟨ui,uj⟩ =
k∑

j=1

cjdj

and (6.3) follows. Since Ax =
∑k

j=1 cjAuj =
∑k

j=1 cjλjuj we obtain from (6.3)

that ⟨x,Ax⟩ =
∑k

j=1 λj |cj |2 and also ∥x∥22 = ⟨x,x⟩ =
∑k

j=1|cj |2. This shows both
equalities in (6.4).

The Rayleigh quotient is especially useful when the matrix A is Hermitian.
Since A is normal it has orthonormal eigenpairs {(λ1,u1), . . . , (λn,un)} and the
eigenvalues are real and can be ordered, say λ1 ≥ λ2 ≥ · · · ≥ λn. In this case we
have for any i ≤ k and ci, . . . , ck not all zero

λk ≤
∑k

j=i λj |cj |2∑k
j=i|cj |2

≤ λi, if λi ≥ λi+1 ≥ · · · ≥ λk. (6.5)

Indeed, to show the lower (upper) bound we replace all λ’s in the numerator∑k
j=i λj |cj |2 by λk (λi). From (6.5) it follows that the value of the Rayleigh quotient

for a Hermitian matrix must lie between the smallest and largest eigenvalue. Since
R(u1) = λ1 and R(un) = λn we can express the smallest and largest eigenvalue in
terms of extrema of the Rayleigh quotient.

λn = min
x∈Cn

x ̸=0

R(x) ≤ max
x∈Cn

x ̸=0

R(x) = λ1 (6.6)

6.3.2 Minmax and Maxmin Theorems

More generally we have a minmax and maxmin characterization of the eigenvalues
of a Hermitian matrix. In the following theorem S is a subspace of Cn of the
indicated dimension.

Theorem 6.14 (The Courant-Fischer Theorem) Suppose A ∈ Cn,n is Her-
mitian with eigenvalues λ1, λ2, . . . , λn ordered so that λ1 ≥ · · · ≥ λn. Then for
k = 1, . . . , n

λk = min
dim(S)=n−k+1

max
x∈S
x ̸=0

R(x) = max
dim(S)=k

min
x∈S
x ̸=0

R(x). (6.7)

6.3. The Rayleigh Quotient and Minmax Theorems 73

Proof. We prove the maxmin version and leave the minmax version as an exercise.
Let {(λ1,u1), . . . , (λn,un)} be orthonormal eigenpairs for A. Fix k. We will show
that maxminR ≤ λk and maxminR ≥ λk, where maxminR is shorthand for
the expression after the second equality in (6.7). Let S be any subspace of Cn

of dimension k and define S ′ = span{uk, . . . ,un}. Since S + S ′ ⊂ Cn we have
dim(S + S ′) ≤ n and we can use (A.6) to find

dim(S ∩ S ′) = dim(S) + dim(S ′)− dim(S + S ′) ≥ k + (n− k + 1)− n = 1,

and it follows that S ∩ S ′ is nonempty. Let y ∈ S ∩ S ′ =
∑n

j=k djuj . By (6.4)
applied to S ′ we find

R(y) =

∑n
j=k λj |dj |2∑n
j=k|dj |2

≤ λk.

This implies that minx∈S
x ̸=0

R(x) ≤ λk and therefore, since S is arbitrary, maxminR ≤
λk. To show the inequality in the opposite direction we use the subspace Sk :=
span{u1, . . . ,uk}. Suppose x =

∑k
j=1 cjuj is any nonzero element in Sk. Then

R(x) =

∑k
j=1 λj |cj |2∑k
j=1|cj |2

≥ λk.

Since x is arbitrary we obtain minx∈Sk
x ̸=0

R(x) ≥ λk and therefore maxminR ≥ λk.

Exercise 6.15 Modify the proof of the maxmin verson of the Courant-Fischer the-
orem to prove the minmax version.

Using Theorem 6.14 we can prove inequalities of eigenvalues without knowing
the eigenvectors and we can get both upper and lower bounds.

Corollary 6.16 Let A,B,C ∈ Cn,n be Hermitian with eigenvalues α1 ≥ α2 ≥
· · · ≥ αn, β1 ≥ β2 ≥ · · · ≥ βn, and γ1 ≥ γ2 ≥ · · · ≥ γn, respectively. If C = A+B
then

αi + βn ≤ γi ≤ αi + β1, for i = 1, 2, . . . , n. (6.8)

Proof. Let u1, . . . ,un be orthonormal eigenvectors for A and let for fixed i, S :=
span{u1, . . . ,un−i+1}. By Theorem 6.14 and (6.5) we obtain

γi ≤ max
x∈S
x ̸=0

RC(x) ≤ max
x∈S
x ̸=0

RA(x) + max
x∈S
x ̸=0

RB(x) = αi +max
x∈S
x ̸=0

RB(x) ≤ αi + β1,

and this proves the upper inequality. For the lower one we define D := −B and
observe that −βn is the largest eigenvalue of D. Since A = C +D it follows from
the result just proved that αi ≤ γi − βn, which is the same as the lower inequality.

74 Chapter 6. Orthonormal Eigenpairs and the Schur Form

In many applications of this result the matrix B will be small and then the
theorem states that the eigenvalues of C are close to those of A. Moreover, it
associates a unique eigenvalue of A with each eigenvalue of C.

Exercise 6.17 Show that in Corollary 6.16, if B is symmetric positive semidefinite
then γi ≥ αi.

6.3.3 The Hoffman-Wielandt Theorem

We can also give a bound involving all eigenvalues.

Theorem 6.18 (Hoffman-Wielandt Theorem) Suppose A,B ∈ Cn,n are both
normal matrices with eigenvalues λ1, . . . , λn and µ1, . . . , µn, respectively. Then
there is a permutation i1, . . . , in of 1, 2, . . . , n such that

n∑
j=1

|µij − λj |2 ≤
n∑

i=1

n∑
j=1

|aij − bij |2. (6.9)

Taking B = A + E this shows, in terms of absolute error, that as long as
A+E is normal, i. e., we perturb in a ”normal way”, then the eigenvalue problem
for a normal matrix is well conditioned. Small perturbation in the elements of A
lead to small changes in the eigenvalues.

For a proof of this theorem see [[19], p. 190]. For a Hermitian matrix we can
use the identity permutation if we order both set of eigenvalues in nonincreasing or
nondecreasing order.

Exercise 6.19 Show that (6.9) does not hold for the matrices A := [0 0
0 4] and

B :=
[−1 −1

1 1

]
. Why does this not contradict the Hoffman-Wielandt theorem?

6.4 Proof of the Real Schur Form
In this section we prove the following theorem.

Theorem 6.20 Suppose A ∈ Rn,n. Then we can find U ∈ Rn,n with UTU = I
such that UTAU is quasi-triangular.

Proof. If A has only real eigenvalues, Theorem 6.2 gives the result. Suppose
λ = µ+ iν, µ, ν ∈ R, is an eigenvalue of A with ν ̸= 0. Let z = x+ iy, x,y ∈ Rn,
be an eigenvector of A corresponding to λ. Since

Az = A(x+ iy) = (µ+ iν)(x+ iy) = µx− νy + i(νx+ µy),

we find by comparing real and imaginary parts

Ax = µx− νy, Ay = νx+ µy. (6.10)

We claim that x and y are linearly independent. First we note that ν ̸= 0 implies
x ̸= 0, y ̸= 0. For if x = 0 then (6.10) implies that 0 = −νy, and hence y = 0 as

6.4. Proof of the Real Schur Form 75

well, contradicting the nonzeroness of the eigenvector. Similarly, if y = 0 then 0 =
νx, again resulting in a zero eigenvector. Suppose y = αx for some α. Replacing
y by αx in (6.10), we find Ax = (µ − αν)x and Ax = Ay/α = (µ + ν/α)x. But
then µ − αν = µ + ν/α or α2 = −1. Since x and y are real, we cannot have both
y = αx and α2 = −1. We conclude that x and y are linearly independent.

(6.10) can be written in matrix form as

AX1 = X1M , X1 = (x,y) ∈ Rn,2, (6.11)

where M is given by (6.2). By Theorem 12.3 we can find an orthogonal matrix
Q ∈ Rn,n such that

QX1 =

[
R
0

]
where R ∈ R2,2 is upper triangular. Since X1 has linearly independent columns,
R is nonsingular. Let Q = [q1, q2, . . . , qn] and define

X = [X1,X2] = [x,y, q3, . . . , qn].

We find

QX = [QX1,Qq3, . . . ,Qqn] =

[
R 0
0 In−2

]
.

Since R is nonsingular, QX and X are nonsingular. Moreover, using (6.11)

X−1AX = [X−1AX1,X
−1AX2] = [X−1X1M ,X−1AX2] =

[
M B
0 C

]
for some matrices B ∈ R2,n−2, C ∈ Rn−2,n−2. Now

QAQT = (QX)X−1AX(QX)−1 =

[
R 0
0 In−2

] [
M B
0 C

] [
R−1 0
0 In−2

]
,

or

QAQT =

[
RMR−1 RB

0 C

]
. (6.12)

By Theorem D.15 the 2× 2 matrix RMR−1 has the same eigenvalues λ and λ as
M . The remaining n−2 eigenvalues of A are the eigenvalues of C.

To complete the proof we use induction on n. The theorem is trivially true
for n = 1 and n = 2. Suppose n ≥ 3 and it holds for matrices of order ≤ n−1. Let

V =

[
I2 0

0 V̂

]

where V̂ ∈ Rn−2,n−2, V̂
T
V̂ = In−2 and V̂

T
CV̂ is quasi-triangular. Let U = QV .

Then U ∈ Rn,n, UTU = I and UTAU is quasi-triangular.

76 Chapter 6. Orthonormal Eigenpairs and the Schur Form

Chapter 7

The Singular Value
Decomposition

The singular value decomposition is useful both for theory and practice. Some
of its applications include solving over-determined equations, principal component
analysis in statistics, numerical determination of the rank of a matrix, algorithms
used in search engines, and the theory of matrices.

7.1 Singular Values and Singular Vectors
We know from Theorem 6.10 that a square matrix A can be diagonalized by a
unitary similarity transformation if and only if it is normal. In particular, if A ∈
Cn,n is normal with eigenvalues λ1, . . . , λn then

U∗AU = D = diag(λ1, . . . , λn) or A = UDU∗, where U∗U = I. (7.1)

In this section we show that any matrix, even a rectangular one, can be diagonalized
provided we allow two different unitary matrices. Thus

A = UΣV ∗, where Σ is a diagonal matrix, U∗U = I, and V ∗V = I. (7.2)

The diagonal elements of Σ, are called singular values and the columns of U and
V are singular vectors. The formula A = UΣV ∗ is known as the singular value
decomposition of A.

7.1.1 SVD and SVF

Every matrix has a singular value decomposition (SVD) and a reduced form called
the singular value factorization (SVF). To derive these we start with a lemma and
a theorem.

Lemma 7.1 Suppose m,n ∈ N and A ∈ Cm,n. The matrix A∗A has eigenpairs
(λj ,vj) for j = 1, . . . , n, where v∗

jvk = δjk and λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Moreover,

σj :=
√
λj = ∥Avj∥2, for j = 1, . . . , n. (7.3)

77

78 Chapter 7. The Singular Value Decomposition

Proof. The matrix A∗A ∈ Cn,n is Hermitian, and by Theorem 6.4 it has real
eigenvalues λj and orthonormal eigenvectors vj for j = 1, . . . , n. For each j
∥Avj∥22 = (Avj)

∗Avj = v∗
jA

∗Avj = v∗
jλjvj = λj , since v∗

jvj = 1, and (7.3)
follows.

The nonnegative square roots of the n eigenvalues of A∗A are called the
singular values of A ∈ Cm,n. They are usually ordered so that

σ1 ≥ · · · ≥ σr > 0 = σr+1 = · · · = σn. (7.4)

We will show that the number r of positive singular values equals the rank of A.
Moreover, the eigenvectors of A∗A determine orthonormal bases for the column
space span(A) and null space ker(A) of A.

Theorem 7.2 Suppose A ∈ Cm,n and let (σ2
j ,vj) for j = 1, . . . , n be orthonormal

eigenpairs for A∗A with σ1, . . . , σn ordered as in (7.4). Then {Av1, . . . ,Avr} is
an orthogonal basis for the column space span(A) of A and {vr+1, . . . ,vn} is an
orthonormal basis for the nullspace ker(A) of A.

Proof. The proof will be complete if we can show

1. Avj ̸= 0 if and only if 1 ≤ j ≤ r.

2. x =
∑n

j=1 cjvj ⇒ Ax =
∑r

j=1 cjAvj .

3. {Av1, . . . ,Avr} is orthogonal and nonzero.

4. span(A) = span{Av1, . . . ,Avr}.

5. ker(A) = span{vr+1, . . . ,vn}.

1 follows by combining (7.3) and (7.4). 2 is a consequence of 1. 1 and the calculation

(Avj)
∗Avk = v∗

jA
∗Avk = v∗

jσ
2
kvk = 0, j ̸= k

implies 3. Clearly Avj ∈ span(A) for j = 1, . . . , r and vj ∈ ker(A) by 1. 3 implies
4. Finally, by 3 {Av1, . . . ,Avr} are linearly independent. So if x ∈ ker(A) then
by 2 c1 = · · · = cr = 0 and 5 follows.

Every matrix has a singular value decomposition.

Theorem 7.3 (SVD) Let m,n ∈ N and suppose A ∈ Cm,n has rank r. Then A
has exactly r positive singular values σ1 ≥ · · · ≥ σr > 0. Moreover, A has the
singular value decomposition

A = UΣV ∗, U ∈ Cm,m, Σ ∈ Rm,n, V ∈ Cn,n,

where U and V are unitary and

Σ :=

[
Σ1 0r,n−r

0m−r,r 0m−r,n−r

]
∈ Rm,n, where Σ1 := diag(σ1, . . . , σr). (7.5)

7.1. Singular Values and Singular Vectors 79

Here 0k,l ∈ Rk,l is the zero matrix and 0k,l = [] is the empty matrix, if k = 0 or
l = 0.

If A is real then A = UΣV T , where U ∈ Rm,m and V ∈ Rn,n are orthonor-
mal, and Σ is again given by (7.5).

Proof. Suppose (λj ,vj) for j = 1, . . . , n are orthonormal eigenpairs for A∗A and
defineΣ by (7.5), where σj =

√
λj for all j. By Theorem 7.2 the set {Av1, . . . ,Avr}

is an orthogonal basis for the column space of A and it follows that r is the number
of positive singular values. We turn {Av1, . . . ,Avr} into an orthonormal basis
{u1, . . . ,ur} for span(A) by setting (cf. (7.3))

uj :=
Avj

∥Avj∥2
=

1

σj
Avj , for j = 1, . . . , r.

By Theorem 7.2

Avj = σjuj , j = 1, . . . , r and Avj = 0, j = r + 1, . . . , n. (7.6)

We extend {u1, . . . ,ur} to an orthonormal basis {u1, . . . ,um} for Cm and define

U := [u1, . . . ,um] ∈ Cm,m and V := [v1, . . . ,vn] ∈ Cn,n.

Since U and V have orthonormal columns they are unitary matrices, and from (7.5)
and (7.6)

UΣ = U [σ1e1, . . . , σrer,0, . . . ,0] = [σ1u1, . . . , σrur,0, . . . ,0] = [Av1, . . . ,Avn].

Thus UΣ = AV and since V is unitary we find UΣV ∗ = AV V ∗ = A.
For a matrix with real elements the eigenvectors of ATA are real and the

singular value decomposition takes the stated form.

From the singular value decomposition we obtain a reduced factorization called
the singular value factorization and an outer product form of this factorization.

Corollary 7.4 (SVF) Suppose A = UΣV ∗ is a singular value decomposition of
a rank r matrix A ∈ Cm,n. Then A has the singular value factorization

A = U1Σ1V
∗
1 =

r∑
i=1

σiuiv
∗
i , U1 ∈ Cm,r, Σ1 ∈ Rr,r, V 1 ∈ Cn,r,

where
Σ1 = diag(σ1, . . . , σr),

U = [u1, . . . ,um] = [U1,U2], U1 ∈ Cm,r, U2 ∈ Cm,m−r,

V = [v1, . . . ,vn] = [V 1,V 2], V 1 ∈ Cn,r, V 2 ∈ Cn,n−r,

(7.7)

Proof. We find

A = UΣV ∗ =
[
U1,U2

] [Σ1 0
0 0

] [
V ∗

1

V ∗
2

]
= U1Σ1V

∗
1 =

r∑
i=1

σiuiv
∗
i .

80 Chapter 7. The Singular Value Decomposition

SVF and SVD are not unique. The singular values are unique since they are
the nonnegative square roots of the eigenvalues of A∗A. However the matrices U
and V are in general not uniquely given.

7.1.2 Examples

Example 7.5 (Nonsingular matrix) Derive the following SVD.

A :=
1

25

[
11 48
48 39

]
= UΣV T =

1

5

[
3 −4
4 3

] [
3 0
0 1

]
1

5

[
3 4
4 −3

]
. (7.8)

Discussion: The eigenpairs of B := ATA = [97 96
96 153] /25 are

B

[
3
4

]
= 9

[
3
4

]
, B

[
4
−3

]
=

[
4
−3

]
.

Taking square roots and normalizing we find σ1 = 3, σ2 = 1, v1 = [34] /5, v2 =[
4
−3

]
/5. Thus u1 := Av1/σ1 = [34] /5 and u2 := Av2/σ2 =

[−4
3

]
/5 and this shows

(7.8). Since m = n = r we have U1 = U , Σ1 = Σ and V 1 = V . In general the
SVD and SVF are the same for a nonsingular matrix. See also Example 7.11 for
some further discussion.

Example 7.6 (Full row rank) Find the singular value decomposition of

A :=
1

15

[
14 4 16
2 22 13

]
∈ R2,3.

Discussion: The eigenpairs of B := ATA =
[

8 4 10
4 20 14
10 14 17

]
/9 are

B

12
2

 = 4

12
2

 , B

 2
−2
1

 = 1

 2
−2
1

 , B

 2
1

−2

 = 0

 2
1

−2

 .

Thus r = 2 and

Σ :=

[
2 0 0
0 1 0

]
, V :=

1

3

1 2 2
2 −2 1
2 1 −2

 .

From (7.6) we find u1 = Av1/σ1 = [3, 4]T /5, and u2 = Av2/σ2 = [4,−3]T /5 and

U =
1

5

[
3 4
4 −3

]
.

Since r = 2 it follows that rank(A) = 2, {u1,u2} is an orthonormal basis for
span(A) and {v3} is an orthonormal basis for ker(A). The SVF and outer product
form of A are

A =
1

5

[
3 4
4 −3

]
[2 0
0 1]

1

3

[
1 2 2
2 −2 1

]
= 2

1

15
[34] [1 2 2] + 1

1

15

[
4

−3

]
[2 −2 1] .

7.1. Singular Values and Singular Vectors 81

Example 7.7 (Full column rank) Find the SVD of

A1 =
1

15

14 2
4 22
16 13

 ∈ R3,2.

Since A1 = AT , where A is the matrix in Example 7.6 we can simply transpose the
SVD of A in that example. Thus

A1 = (UΣV T)T = V ΣTUT =
1

3

 1 2 2
2 −2 1
2 1 −2

2 0
0 1
0 0

 1

5

[
3 4
4 −3

]
. (7.9)

Alternatively we can follow the recipe from the previous examples. The eigenpairs
of

B1 = AT
1 A1 =

1

25

[
52 36
36 73

]
are

B

[
3
4

]
= 4

[
3
4

]
, B

[
4

−3

]
= 1

[
4

−3

]
.

Thus σ1 = 2, σ2 = 1. Now

u1 = A1v1/σ1 = [1, 2, 2]T /3, u2 = A1v2/σ1 = [2,−2, 1]T /3.

Since m = 3 we also need u3 which should be orthogonal to u1 and u2. u3 =
[2, 1,−2]T is such a vector and we obtain (7.9).

Example 7.8 (r < n < m) Consider

A =

1 1
1 1
0 0

 .

For this matrix all the zero matrices in (7.5) are nonempty. The eigenpairs of

B := ATA =

[
2 2
2 2

]
are

B

[
1
1

]
= 4

[
1
1

]
, B

[
1

−1

]
= 0

[
1

−1

]
and we find σ1 = 2, σ2 = 0, Thus r = 1, m = 3, n = 2 and

Σ =

Σ1 0
0 0
0 0

 , Σ1 = [2], V =
1√
2

[
1 1
1 −1

]
.

82 Chapter 7. The Singular Value Decomposition

Now (7.6) implies u1 = Av1/σ1 = s1/
√
2, where s1 = [1, 1, 0]T . To find the other

columns of U we extend s1 to a basis {s1, s2, s3} for R3, apply the Gram-Schmidt
orthogonalization process to {s1, s2, s3}, and then normalize. Choosing the basis

s1 =
[
1
1
0

]
, s2 =

[
0
1
0

]
, s3 =

[
0
0
1

]
,

we find from (A.16)

w1 = s1, w2 = s2−
sT2 w1

wT
1 w1

w1 =

[
−1/2
1/2
0

]
, w3 = s3−

sT3 w1

wT
1 w1

w1−
sT3 w2

wT
2 w2

w2 =
[
0
0
1

]
.

Normalizing the wi’s we obtain u1 = s1/∥s1∥2 = [1/
√
2, 1/

√
2, 0]T , u2 = s2/∥s2∥2 =

[−1/
√
2, 1/

√
2, 0]T , and u3 = s3/∥s3∥2 = [0, 0, 1]T . Therefore, A = UΣV T , where

U :=

[
1/

√
2 −1/

√
2 0

1/
√
2 1/

√
2 0

0 0 1

]
∈ R3,3, Σ :=

[
2 0
0 0
0 0

]
∈ R3,2, V :=

[
1/

√
2 1/

√
2

1/
√
2 −1/

√
2

]
∈ R2,2.

Exercise 7.9 Find the singular value decomposition of the following matrices

(a) A =

[
3
4

]
.

(b) A =

 1 1
2 2
2 2

.

Exercise 7.10 Find the singular value decomposition of the following matrices

(a) A = e1 the first unit vector in Rm.

(b) A = eTn the last unit vector in Rn.

(c) A =
[−1 0

0 3

]
.

The method we used to find the singular value decomposition in the previous exam-
ples and exercises can be suitable for hand calculation with small matrices, but it is
not appropriate as a basis for a general purpose numerical method. In particular,
the Gram-Schmidt orthogonalization process is not numerically stable, and forming
A∗A can lead to extra errors in the computation. State of the art computer imple-
mentations of the singular value decomposition use an adapted version of the QR
algorithm where the matrix A∗A is not formed. The QR algorithm is discussed in
Chapter 15.

7.1. Singular Values and Singular Vectors 83

7.1.3 Singular Values of Normal and Positive Semidefinite
Matrices

The singular values of a normal matrix are the absolute values of its eigenvalues.
For if A ∈ Cn,n is normal with eigenvalues λ1, . . . , λn ordered so that |λ1| ≥ · · · ≥
|λn|, then it follows from Theorem 6.10 that A = UDU∗, where U∗U = I, and
D = diag(λ1, . . . , λn) is a diagonal matrix. We find A∗A = UD∗DU∗, where
D∗D = diag(|λ1|2, . . . , |λn|2). It follows that σ2

i = |λi|2 or σi = |λi| for i = 1, . . . , n.
For a symmetric positive semi-definite matrix A ∈ Rn,n the singular values

are identical to the eigenvalues. The factorization A = UDU∗ above is both
a SVD decomposition and factorization provided we have sorted the nonnegative
eigenvalues in nondecreasing order.

Example 7.11 The matrix A in Example 7.5 is normal so that the singular values
of A are equal to the absolute value of the eigenvalues of A. The eigenvalues of A
are λ1 = 3 and λ2 = −1. Thus λ2 ̸= σ2.

7.1.4 A Geometric Interpretation

The singular value decomposition gives insight into the geometry of a linear trans-
formation. Consider the linear transformation T : Rn → Rm given by z → Az. The
function T maps the unit sphere S := {z ∈ Rn : ∥z∥2 = 1} onto an ellipsoid in Rm.
The singular values are the length of the semiaxes. We describe this in the square
nonsingular case. Suppose A = UΣV T is the singular value decomposition of A.
Since A has rank n we have Σ = diag(σ1, . . . , σn), with σ1 ≥ σ2 ≥ · · · ≥ σn > 0 and
A−1 = V Σ−1UT . Let E := AS ⊂ Cn be the image of S under the transformation
T . If x ∈ E then x = Az for some z ∈ S and we find

1 = ∥z∥22 = ∥A−1Az∥22 = ∥A−1x∥22 = ∥V Σ−1UTx∥22

= ∥Σ−1UTx∥22 = ∥Σ−1y∥22 =
y21
σ2
1

+ · · ·+ y2n
σ2
n

,

where y := UTx and we used ∥V v∥2 = ∥v∥2 for a vector v. The equation 1 =
y2
1

σ2
1
+ · · ·+ y2

n

σ2
n
describes an ellipsoid in Rn with semiaxes of length σj along the unit

vectors ej for j = 1, . . . , n. Since the orthogonal transformation Uy → x preserves
length, the image E = AS is an ellipsoid with semiaxes along the left singular
vectors uj = Uej of length σj . Since Avj = σjuj , the right singular vectors are
orthogonal points in S that are mapped onto the semiaxes of E .

Example 7.12 Consider the transformation A : R2 → R2 given by the matrix

A :=
1

25

[
11 48
48 39

]
in Example 7.5. Recall that σ1 = 3, σ2 = 1, u1 = [3, 4]T /5 and u2 = [−4, 3]T /5.
The ellipsoids y21/σ

2
1 + y22/σ

2
2 = 1 and E = AS are shown in Figure 7.1. Since

84 Chapter 7. The Singular Value Decomposition

y = UTx = [3/5x1+4/5x2,−4/5x1+3/5x2]
T , the equation for the ellipsoid on the

right is
(35x1 +

4
5x2)

2

9
+

(−4
5x1 +

3
5x2)

2

1
= 1,

-3 -2 -1 1 2 3
y1

-2

-1

1

2
y2 u1

u2 Σ1
Σ2

-2 -1 1 2
x1

-2

-1

2

x2

Figure 7.1. The ellipse y21/9 + y22 = 1 (left) and the rotated ellipse AS (right).

7.2 Singular Vectors
The columns u1, . . . ,um of U are called left singular vectors. and the columns
v1, . . . ,vn of V are called right singular vectors. These vectors satisfy the
following relations.

Theorem 7.13 If A = UΣV T is the singular value decomposition of A then

AV = UΣ and A∗U = V Σ∗. (7.10)

If U and V are partitioned as in (7.7) then

1. AV 1 = U1Σ1, or Avi = σiui for i = 1, . . . , r,

2. AV 2 = 0, or Avi = 0 for i = r + 1, . . . , n,

3. A∗U1 = V 1Σ1, or A∗ui = σivi for i = 1, . . . , r,

4. A∗U2 = 0, or A∗ui = 0 for i = r + 1, . . . ,m.

(7.11)

Proof. Since AV = UΣV ∗V = UΣ the first equation in (7.10) follows. Taking
conjugate transposes and multiplying by U we have A∗U = V Σ∗U∗U = V Σ∗ and
the second relation follows. In terms of partitioned matrices, (7.10) gives

A [V 1,V 2] = [U1,U2]
[
Σ1 0
0 0

]
, A∗ [U1,U2] = [V 1,V 2]

[
Σ1 0
0 0

]
,

and this leads to the equations in (7.11).

7.2. Singular Vectors 85

Theorem 7.14 The singular vectors of A ∈ Cm,n are orthonormal bases for the
four fundamental subspaces of A. In particular

1. U1 is an orthonormal basis for span(A),

2. V 2 is an orthonormal basis for ker(A),

3. V 1 is an orthonormal basis for span(A∗),

4. U2 is an orthonormal basis for ker(A∗).

(7.12)

Proof. Since uj = Avj/σj for j = 1, . . . , r it follows from Theorem 7.2 that the
first r left singular vectors of A form an orthonormal basis for span(A) and the last
n− r right singular vectors of A form an orthonormal basis for ker(A). The same
holds for A∗ and we have seen that the left and right singular vectors for A∗ are
the columns of V and U , respectively.

By counting the number of columns in the four submatrices U1,U2,V 1,V 2,
we obtain from Theorem 7.14 a new proof of the following fundamental result (Cf.
Theorem B.16).

Corollary 7.15 Suppose A ∈ Cm,n. Then

1. rank(A) + null(A) = n,

2. rank(A) + null(A∗) = m,

3. rank(A) = rank(A∗).

Exercise 7.16 Let A and B be as in Example 7.7. Give orthonormal bases for
span(B) and ker(B)and explain why span(B) ⊕ ker(mA) is an orthogonal decom-
position of R3.

7.2.1 The SVD of A∗A and AA∗

The singular value decomposition of A∗A and AA∗ is related to the spectral de-
composition of these matrices.

Theorem 7.17 Suppose A = UΣV ∗ = U1Σ1V
∗
1 is the singular value decomposi-

tion and factorization of A. Then a singular value decomposition and factorization
of the matrices A∗A and AA∗ are given by

A∗A = V Σ∗ΣV ∗ = V 1Σ
2
1V

∗
1 and AA∗ = UΣΣ∗U∗ = U1Σ

2
1U

∗
1. (7.13)

Moreover,

A∗AV 1 = V 1Σ
2
1, A∗AV 2 = 0, (7.14)

and

AA∗U1 = U1Σ
2
1, AA∗U2 = 0, (7.15)

86 Chapter 7. The Singular Value Decomposition

Proof. We compute A∗A = V Σ∗U∗UΣV ∗ = V Σ∗ΣV ∗ and

V Σ∗ΣV ∗ = [V 1,V 2]
[
Σ1 0
0 0

] [
Σ1 0
0 0

] [V ∗
1

V ∗
2

]
= V 1Σ

2
1V

∗
1,

with an analogous computation for AA∗. The equation (7.15) follows from the
computation AA∗U1 = U1Σ

2
1U

∗
1U1 = U1Σ

2
1, AA∗U2 = U1Σ

2
1U

∗
1U2 = 0. The

proof of (7.14) is analogous.

Theorem 7.17 leads to

Theorem 7.18 For any A ∈ Cm,n we have

1. rankA = rank(A∗A) = rank(AA∗),

2. null(A∗A) = nullA, and null(AA∗) = null(A∗),

3. span(A∗A) = span(A∗) and ker(A∗A) = ker(A).

Proof. The three matrices A, A∗A, and AA∗ have the same number of nonzero
singular values and we obtain 1. Moreover, 2. and 3. follow from Corollary 7.15
and (7.12), respectively, applied to A∗A and AA∗.

Exercise 7.19 Let A ∈ Cm,n with m ≥ n have singular values σ1, . . . , σn, left
singular vectors u1, . . . ,um ∈ Cm, and right singular vectors v1, . . . ,vn ∈ Cn.
Show that the matrix

C :=

[
0 A
A∗ 0

]
has the n+m eigenpairs

{(σ1,p1), . . . , (σn,pn)}, {(−σ1, q1), . . . , (−σn, qn)}, {(0, rn+1), . . . , (0, rm)},

where

pi =

[
ui

vi

]
, qi =

[
ui

−vi

]
, rj =

[
uj

0

]
, for i = 1, . . . , n and j = n+ 1, . . . ,m.

7.3 Determining the Rank of a Matrix
In many elementary linear algebra courses a version of Gaussian elimination, called
Gauss-Jordan elimination, is used to determine the rank of a matrix. To carry this
out by hand for a large matrix can be a Herculean task and using a computer and
floating point arithmetic the result will not be reliable. Entries, which in the final
result should have been zero, will have nonzero values because of round-off errors.
As an alternative we can use the singular value decomposition to determine rank.
Although success is not at all guaranteed, the result will be more reliable than if
Gauss-Jordan elimination is used.

By Theorem 7.3 the rank of a matrix is equal to the number of nonzero singular
values and if we have computed the singular values, then all we have to do is to count

7.3. Determining the Rank of a Matrix 87

the nonzero ones. The problem however is the same as for Gaussian elimination.
Due to round-off errors none of the computed singular values are likely to be zero.

The following discussion can be used to decide how many of the computed
singular values one can set equal to zero. Suppose A ∈ Cm,n with m ≥ n has
singular value decomposition A = U [Σ0]V ∗, where Σ = diag(σ1, . . . , σn) with
σ1 ≥ σ2 ≥ · · · ≥ σn. We choose ϵ > 0 and let 1 ≤ r ≤ n be the smallest
integer such that σ2

r+1 + · · · + σ2
n < ϵ2. Define A′ := U

[
Σ′

0

]
V ∗, where Σ′ :=

diag(σ1, . . . , σr, 0, . . . , 0) ∈ Rn,n. By Theorem 8.11

∥A−A′∥F = ∥
[

Σ
0

]
−
[

Σ′

0

]
∥F =

√
σ2
r+1 + · · ·+ σ2

n < ϵ.

Thus A is near a matrix A′ of rank r. This can be used to determine rank numer-

ically. We choose an r such that
√
σ2
r+1 + · · ·+ σ2

n is ”small”. Then we postulate

that rank(A) = r since A is close to a matrix of rank r.
The following theorem shows that of all m×n matrices of rank r, A′ is closest

to A measured in the Frobenius norm.

Theorem 7.20 (Best low rank approximation) Suppose A ∈ Rm,n has singu-
lar values σ1 ≥ · · · ≥ σn ≥ 0. For any r ≤ rank(A) we have

∥A−A′∥F = min
B∈Rm,n

rank(B)=r

∥A−B∥F =
√

σ2
r+1 + · · ·+ σ2

n.

For the proof of this theorem we refer to p. 322 of [20].

Exercise 7.21 Consider the singular value decomposition

A :=


0 3 3
4 1 −1
4 1 −1
0 3 3

 =


1
2

1
2

1
2

1
2

1
2 −1

2 − 1
2

1
2

1
2 −1

2
1
2 −1

2
1
2

1
2 − 1

2 −1
2




6 0 0
0 6 0
0 0 0
0 0 0


 2

3
2
3

1
3

−2
3

1
3 −2

3
1
3 − 2

3
2
3


(a) Give orthonormal bases for span(A), span(AT), ker(A), ker(AT) and span(A)⊥.

(b) Explain why for all matrices B ∈ R4,3 of rank one we have ∥A−B∥F ≥ 6.

(c) Give a matrix A1 of rank one such that ∥A−A1∥F = 6.

Exercise 7.22 Let A be the n× n matrix that for n = 4 takes the form

A =

[
1 −1 −1 −1
0 1 −1 −1
0 0 1 −1
0 0 0 1

]
.

Thus A is upper triangular with diagonal elements one and all elements above the
diagonal equal to −1. Let B be the matrix obtained from A by changing the (n, 1)
element from zero to −22−n.

88 Chapter 7. The Singular Value Decomposition

(a) Show that Bx = 0, where x := [2n−2, 2n−3, . . . , 20, 1]T . Conclude that B is
singular, det(A) = 1, and ∥A − B∥F = 22−n. Thus even if det(A) is not
small the matrix A is very close to being singular for large n.

(b) Use Theorem 7.20 to show that the smallest singular vale σn of A is bounded
above by 22−n.

7.4 The Minmax Theorem for Singular Values and
the Hoffman-Wielandt Theorem

We have a minmax and maxmin characterization for singular values.

Theorem 7.23 (The Courant-Fischer Theorem for Singular Values) Suppose
A ∈ Cm,n has singular values σ1, σ2, . . . , σn ordered so that σ1 ≥ · · · ≥ σn. Then
for k = 1, . . . , n

σk = min
dim(S)=n−k+1

max
x∈S
x ̸=0

∥Ax∥2
∥x∥2

= max
dim(S)=k

min
x∈S
x ̸=0

∥Ax∥2
∥x∥2

. (7.16)

Proof. Since
∥Ax∥22
∥x∥22

=
⟨Ax,Ax⟩
⟨x,x⟩

=
⟨x,A∗Ax⟩

⟨x,x⟩
denotes the Rayleigh quotient RA∗A(x) of A∗A, and since the singular values of A
are the nonnegative square roots of the eigenvalues of A∗A, the results follow from
the Courant-Fischer Theorem for eigenvalues, see Theorem 6.14.

By taking k = 1 and k = n in (7.16) we obtain for any A ∈ Cm,n

σ1 = max
x∈Cn

x ̸=0

∥Ax∥2
∥x∥2

, σn = min
x∈Cn

x ̸=0

∥Ax∥2
∥x∥2

. (7.17)

This follows since the only subspace of Cn of dimension n is Cn itself.
The Hoffman-Wielandt Theorem for eigenvalues of Hermitian matrices, The-

orem 6.18 can be written

n∑
j=1

|µj − λj |2 ≤ ∥A−B∥2F :=

n∑
i=1

n∑
j=1

|aij − bij |2, (7.18)

where A,B ∈ Cn,n are both Hermitian matrices with eigenvalues λ1 ≥ · · · ≥ λn

and µ1 ≥ · · · ≥ µn, respectively.
For singular values we have a similar result.

Theorem 7.24 (Hoffman-Wielandt Theorem for singular values) For any m,n ∈
N and A,B ∈ Cm,n we have

n∑
j=1

|βj − αj |2 ≤ ∥A−B∥2F . (7.19)

7.4. The Minmax Theorem for Singular Values and the Hoffman-Wielandt Theorem89

where α1 ≥ · · · ≥ αn and β1 ≥ · · · ≥ βn are the singular values of A and B,
respectively.

Proof. We apply the Hoffman-Wielandt Theorem for eigenvalues to the Hermitian
matrices

C :=

[
0 A
A∗ 0

]
and D :=

[
0 B
B∗ 0

]
∈ Cm+n,m+n.

If C and D has eigenvalues λ1 ≥ · · · ≥ λm+n and µ1 ≥ · · · ≥ µm+n, respectively
then

m+n∑
j=1

|λj − µj |2 ≤ ∥C −D∥2F . (7.20)

SupposeA has rank r and SVD UΣV ∗. We use (7.11) and determine the eigenpairs
of C as follows.[

0 A
A∗ 0

] [
ui

vi

]
=

[
Avi

A∗ui

]
=

[
αiui

αivi

]
= αi

[
ui

vi

]
, i = 1, . . . , r,[

0 A
A∗ 0

] [
ui

−vi

]
=

[
−Avi

A∗ui

]
=

[
−αiui

αivi

]
= −αi

[
ui

−vi

]
, i = 1, . . . , r,[

0 A
A∗ 0

] [
ui

0

]
=

[
0

A∗ui

]
=

[
0
0

]
= 0

[
ui

0

]
, i = r + 1, . . . ,m,[

0 A
A∗ 0

] [
0
vi

]
=

[
Avi

0

]
=

[
0
0

]
= 0

[
0
vi

]
, i = r + 1, . . . , n.

Thus C has the 2r eigenvalues α1,−α1, . . . , αr,−αr and m+n− 2r additional zero
eigenvalues. Similarly, ifB has rank s thenD has the 2s eigenvalues β1,−β1, . . . , βs,−βs

and m+ n− 2s additional zero eigenvalues. Let

t := max(r, s).

Then

λ1 ≥ · · · ≥ λm+n = α1 ≥ · · · ≥ αt ≥ 0 = · · · = 0 ≥ −αt ≥ · · · ≥ −α1,

µ1 ≥ · · · ≥ µm+n = β1 ≥ · · · ≥ βt ≥ 0 = · · · = 0 ≥ −βt ≥ · · · ≥ −β1.

We find

m+n∑
j=1

|λj − µj |2 =

t∑
i=1

|αi − βi|2 +
t∑

i=1

|−αi + βi|2 = 2

t∑
i=1

|αi − βi|2

and

∥C −D∥2F = ∥
[

0 A−B
A∗ −B∗ 0

]
∥2F = ∥B−A∥2F + ∥(B−A)∗∥2F = 2∥B−A∥2F .

But then (7.20) implies
∑t

i=1|αi − βi|2 ≤ ∥B −A∥2F . Since t ≤ n and αi = βi = 0
for i = t+ 1, . . . , n we obtain (7.19).

90 Chapter 7. The Singular Value Decomposition

Chapter 8

Matrix Norms

To measure the size of a matrix we can use a matrix norm. In this chapter we give
a systematic study of matrix norms. We start with vector norms. For simplicity we
consider only norms on Rn and Cn.

8.1 Vector Norms
To measure the size of a vector we use norms.

Definition 8.1 (Norm) A norm in Rn(Cn) is a function ∥·∥ : Rn(Cn) → R that
satisfies for all x,y in Rn(Cn) and all a in R(C)

1. ∥x∥ ≥ 0 with equality if and only if x = 0. (positivity)

2. ∥ax∥ = |a| ∥x∥. (homogeneity)

3. ∥x+ y∥ ≤ ∥x∥+ ∥y∥. (subadditivity)

The triples (Rn,R, ∥·∥) and (Cn,C, ∥·∥) are examples of normed vector spaces
and the inequality 3. is called the triangle inequality.

Since ∥x∥ = ∥x − y + y∥ ≤ ∥x − y∥ + ∥y∥ we obtain ∥x − y∥ ≥ ∥x∥ − ∥y∥.
By symmetry ∥x − y∥ = ∥y − x∥ ≥ ∥y∥ − ∥x∥ and we obtain the inverse triangle
inequality

∥x− y∥ ≥ | ∥x∥ − ∥y∥ |, x,y ∈ Cn. (8.1)

Consider now some specific vector norms. We define for p ≥ 1 the p-norms by

∥x∥p :=
(n∑
j=1

|xj |p
)1/p

, (8.2)

∥x∥∞ := max
1≤j≤n

|xj |. (8.3)

The most important cases are:

91

92 Chapter 8. Matrix Norms

1. ∥x∥1 =
∑n

j=1|xj | , (the one-norm or l1-norm)

2. ∥x∥2 =
(∑n

j=1|xj |2
)1/2

, the two-norm, l2-norm, or Euclidian norm)

3. ∥x∥∞ = max1≤j≤n|xj |, (the infinity-norm, l∞-norm, or max norm.)

The infinity norm is related to the other p-norms by

lim
p→∞

∥x∥p = ∥x∥∞ for all x ∈ Cn. (8.4)

This clearly holds for x = 0. For x ̸= 0 we write

∥x∥p := ∥x∥∞
(n∑
j=1

(|xj |
∥x∥∞

)p)1/p
.

Now each term in the sum is not greater than one and at least one term is equal to
one and we obtain

∥x∥∞ ≤ ∥x∥p ≤ n1/p∥x∥∞, p ≥ 1. (8.5)

Since limp→∞ n1/p = 1 for any n ∈ N we see that (8.4) follows.
It can be shown (cf. Appendix H) that the p-norm are norms in Rn and in Cn

for any p with 1 ≤ p ≤ ∞. The triangle inequality ∥x+y∥p ≤ ∥x∥p+∥y∥p is called
Minkowski’s inequality . To prove it one first establishes Hölder’s inequality

n∑
j=1

|xjyj | ≤ ∥x∥p∥y∥q,
1

p
+

1

q
= 1, x,y ∈ Cn. (8.6)

The relation 1
p + 1

q = 1 means that if p = 1 then q = ∞ and if p = 2 then q = 2.

(8.5) shows that the infinity norm and any other p-norm can be bounded in
terms of each other. We define

Definition 8.2 Two norms ∥·∥ and ∥·∥′ on Cn are equivalent if there are positive
constants m and M (depending only on n such that for all vectors x ∈ Cn we have

m∥x∥ ≤ ∥x∥′ ≤ M∥x∥. (8.7)

The following result is proved in Appendix H.

Theorem 8.3 All vector norms in Cn are equivalent.

The inverse triangle inequality (8.1) shows that a norm is a continuous function
Cn → R.

Exercise 8.4 Show that ∥·∥p is a vector norm in Rn for p = 1, p = ∞.

Exercise 8.5 The set
Sp = {x ∈ Rn : ∥x∥p = 1}

is called the unit sphere in Rn with respect to p. Draw Sp for p = 1, 2,∞ for n = 2.

8.2. Matrix Norms 93

Exercise 8.6 Let 1 ≤ p. Produce a vector xl such that ∥xl∥∞ = ∥xl∥p and another
vector xu such that ∥xu∥p = n1/p∥xu∥p∞. Thus the inequalities in (8.4) are sharp.

Exercise 8.7 If 1 ≤ q ≤ p ≤ ∞ then

∥x∥p ≤ ∥x∥q ≤ n1/q−1/p∥x∥p, x ∈ Cn.

Hint: For the rightmost inequality use Jensen’s inequality Cf. Theorem H.2 with
f(z) = zp/q and zi = |xi|q. For the left inequality consider first yi = xi/∥x∥∞,
i = 1, 2, . . . , n.

8.2 Matrix Norms
For simplicity we consider only matrix norms on the vector space (Cm,n,C). All
results also holds for (Rm,n,R).

Definition 8.8 (Matrix Norms) Suppose m,n are positive integers. A function
∥·∥ : Cm,n → R is called a matrix norm on Cm,n if for all A,B ∈ Cm,n and all
c ∈ C

1. ∥A∥ ≥ 0 with equality if and only if A = 0. (positivity)

2. ∥cA∥ = |c| ∥A∥. (homogeneity)

3. ∥A+B∥ ≤ ∥A∥+ ∥B∥. (subadditivity)

A matrix norm is simply a vector norm on the finite dimensional vector space
(Cm,n,C) of m× n matrices. Adapting Theorem 8.3 to this special situation gives

Theorem 8.9 All matrix norms are equivalent. Thus, if ∥·∥ and ∥·∥′ are two matrix
norms on Cm,n then there are positive constants µ and M such that

µ∥A∥ ≤ ∥A∥′ ≤ M∥A∥

holds for all A ∈ Cm,n. Moreover, a matrix norm is a continuous function.

8.2.1 The Frobenius Norm

From any vector norm ∥ ∥V on Cmn we can define a matrix norm on Cm,n by ∥A∥ :=
∥vec(A)∥V , where vec(A) ∈ Cmn is the vector obtained by stacking the columns
of A on top of each other. In particular, to the p vector norms for p = 1, 2,∞, we
have the corresponding sum norm, Frobenius norm, and max norm defined by

∥A∥S :=
m∑
i=1

n∑
j=1

|aij |, ∥A∥F :=
(m∑
i=1

n∑
j=1

|aij |2
)1/2

, ∥A∥M := max
i,j

|aij |. (8.8)

Of these norms the Frobenius norm is the most useful. It satisfies the following
properties.

94 Chapter 8. Matrix Norms

Lemma 8.10 For any matrix A ∈ Cm,n we have

1. ∥A∗∥F = ∥A∥F ,

2. ∥A∥2F =
∑n

j=1∥a:j∥22 =
∑m

i=1∥ai:∥22,

3. ∥UA∥F = ∥AV ∥F = ∥A∥F for any unitary matrices U ∈ Cm,m and V ∈
Cn,n,

4. ∥AB∥F ≤ ∥A∥F ∥B∥F for any B ∈ Cn,k,

5. ∥Ax∥2 ≤ ∥A∥F ∥x∥2, for all x ∈ Cn.

Proof.

1. ∥A∗∥2F =
∑n

j=1

∑m
i=1|aij |2 =

∑m
i=1

∑n
j=1|aij |2 = ∥A∥2F .

2. Obvious.

3. Recall that ∥Ux∥2 = ∥x∥2 for all x ∈ Cn if U∗U = I. Applying this to each

column a:j of A we find ∥UA∥2F
2.
=

∑n
j=1∥Ua:j∥22 =

∑n
j=1∥a:j∥22

2.
= ∥A∥2F .

Similarly, since V V ∗ = I we find ∥AV ∥F
1.
= ∥V ∗A∗∥F = ∥A∗∥F

1.
= ∥A∥F .

4. Using Cauchy-Schwarz’ inequality and 2. we obtain

∥AB∥2F =
n∑

i=1

k∑
j=1

(
aT
i:b:j

)2 ≤
n∑

i=1

k∑
j=1

∥ai:∥22∥b:j∥22 = ∥A∥2F ∥B∥2F .

5. Since ∥v∥F = ∥v∥2 for a vector this follows by taking k = 1 and B = x in 4.

There is a relation between the Frobenius norm and the singular values.

Theorem 8.11 We have ∥A∥F =
√

σ2
1 + · · ·+ σ2

n, where σ1, . . . , σn are the singu-
lar values of A.

Proof. Using Lemma 8.10 we find ∥A∥F
3.
= ∥U∗AV ∥F = ∥Σ∥F =

√
σ2
1 + · · ·+ σ2

n.

8.2.2 Consistent and Subordinate Matrix Norms

Since matrices can be multiplied it is useful to have an analogue of subadditivity
for matrix multiplication. For square matrices the product AB is defined in a fixed
space Cn,n, while in the rectangular case matrix multiplication combines matrices
in different spaces. The following definition captures this distinction.

8.2. Matrix Norms 95

Definition 8.12 (Consistent Matrix Norms) A matrix norm is called consis-
tent on Cn,n if

4. ∥AB∥ ≤ ∥A∥ ∥B∥ (submultiplicativity)

holds for all A,B ∈ Cn,n. A matrix norm is consistent if it is defined on Cm,n

for all m,n ∈ N, and 4. holds for all matrices A,B for which the product AB is
defined.

Clearly the three norms in (8.8) are defined for allm,n ∈ N. From Lemma 8.10
it follows that the Frobenius norm is consistent.

Exercise 8.13 Show that the sum norm is consistent.

Exercise 8.14 Show that the max norm is not consistent by considering [1 1
1 1].

Exercise 8.15

(a) Show that the norm

∥A∥ :=
√
mn∥A∥M , A ∈ Cm,n

is a consistent matrix norm.

(b) Show that the constant
√
mn can be replaced by m and by n.

For a consistent matrix norm on Cn,n we have the inequality

∥Ak∥ ≤ ∥A∥k for k ∈ N. (8.9)

When working with norms we often have to bound the vector norm of a matrix
times a vector by the norm of the matrix times the norm of the vector. We have
the following definition.

Definition 8.16 (Subordinate Matrix Norms) Suppose m,n ∈ N are given,
let ∥ ∥α on Cm and ∥ ∥β on Cn be vector norms, and let ∥ ∥ be a matrix norm on
Cm,n. We say that the matrix norm ∥ ∥ is subordinate to the vector norms ∥ ∥α
and ∥ ∥β if ∥Ax∥α ≤ ∥A∥ ∥x∥β for all A ∈ Cm,n and all x ∈ Cn. If ∥ ∥α = ∥ ∥β
then we say that ∥ ∥ is subordinate to ∥ ∥α.

By Lemma 8.10 we have ∥Ax∥2 ≤ ∥A∥F ∥x∥2, for all x ∈ Cn. Thus the
Frobenius norm is subordinate to the Euclidian vector norm.

Exercise 8.17 Show that the sum norm is subordinate to the l1-norm.

Exercise 8.18 (a) Show that the max norm is subordinate to the ∞ and 1 norm,
i. e., ∥Ax∥∞ ≤ ∥A∥M∥x∥1 holds for all A ∈ Cm,n and all x ∈ Cn.

(b) Show that ∥Ael∥∞ = ∥A∥M∥el∥1, where ∥A∥M = |akl|.

(c) Show that ∥A∥M = maxx ̸=0
∥Ax∥∞
∥x∥1

.

96 Chapter 8. Matrix Norms

8.2.3 Operator Norms

Corresponding to vector norms on Cn and Cm there is an induced matrix norm on
Cm,n which we call the operator norm.

Definition 8.19 (Operator Norm) Suppose m,n ∈ N are given and let ∥ ∥α be
a vector norm on Cm and ∥ ∥β a vector norm on Cn. For A ∈ Cm,n we define

∥A∥ := ∥A∥α,β := max
x ̸=0

∥Ax∥α
∥x∥β

. (8.10)

We call this the (α, β) operator norm, the (α, β)-norm, or simply the α-norm if
α = β.

Before we show that the (α, β)-norm is a matrix norm we make some obser-
vations.

1. It is enough to take the max over subsets of Cn. For example

∥A∥α,β = max
x/∈ker(A)

∥Ax∥α
∥x∥β

= max
∥x∥β=1

∥Ax∥α. (8.11)

That we only need to consider x’s outside the null space ker(A) ofA is obvious.
We can take the max over the β-norm unit sphere in Cn since

max
x ̸=0

∥Ax∥α
∥x∥β

= max
x ̸=0

∥∥∥A(x

∥x∥β
)∥∥∥

α
= max

∥x∥β=1
∥Ax∥α.

2. The operator norm ∥A∥ is subordinate to the vector norms ∥ ∥α and ∥ ∥β .
Thus

∥Ax∥α ≤ ∥A∥∥x∥β for all A ∈ Cm,n and x ∈ Cn. (8.12)

3. We can use max instead of sup in (8.10). This follows by the following com-
pactness argument. Since all vector norms on Cn are equivalent the unit
sphere Sβ ; = {x ∈ Cn : ∥x∥β = 1} is bounded. It is also finite dimensional and
closed, and hence compact. Moreover, since the vector norm ∥ ∥α is a contin-
uous function, it follows that the function f : Sβ → R given by f(x) = ∥Ax∥α
is continuous. But then f attains its max and min and we have

∥A∥α,β = ∥Ax∗∥α for some x∗ ∈ Cn with ∥x∗∥β = 1. (8.13)

Lemma 8.20 The operator norm given by (8.10) is a matrix norm on Cm,n. The
operator norm is consistent if the vector norm ∥ ∥α is defined for all m ∈ N and
∥ ∥β = ∥ ∥α.

Proof. We use (8.11). In 2. and 3. below we take the max over the unit sphere
Sβ .

1. Nonnegativity is obvious. If ∥A∥ = 0 then ∥Ay∥β = 0 for each y ∈ Cn. In
particular, each column Aej in A is zero. Hence A = 0.

8.2. Matrix Norms 97

2. ∥cA∥ = maxx∥cAx∥α = maxx|c| ∥Ax∥α = |c| ∥A∥.
3. ∥A+B∥ = maxx∥(A+B)x∥α ≤ maxx∥Ax∥α +maxx∥Bx∥α = ∥A∥+ ∥B∥.
4. ∥AB∥ = maxBx ̸=0

∥ABx∥α

∥x∥α
= maxBx ̸=0

∥ABx∥α

∥Bx∥α

∥Bx∥α

∥x∥α

≤ maxy ̸=0
∥Ay∥α

∥y∥α
maxx ̸=0

∥Bx∥α

∥x∥α
= ∥A∥ ∥B∥.

For any α-norm of the n× n identity matrix we find

∥I∥ = max
x ̸=0

∥Ix∥α
∥x∥α

= max
x ̸=0

1 = 1.

For the Frobenius norm we find ∥I∥F =
√
n, and this shows that the Frobenius

norm is not an operator norm for n > 1.

8.2.4 The p-Norms

Recall that the p or ℓp vector norms (8.2) are given by

∥x∥p :=
(n∑
j=1

|xj |p
)1/p

, p ≥ 1, ∥x∥∞ := max
1≤j≤n

|xj |.

The operator norms ∥ ∥p defined from these p-vector norms are used quite frequently
for p = 1, 2,∞. We define for any 1 ≤ p ≤ ∞

∥A∥p := max
x ̸=0

∥Ax∥p
∥x∥p

= max
∥y∥p=1

∥Ay∥p. (8.14)

In the most important cases we have explicit expressions for these norms.

Theorem 8.21 For A ∈ Cm,n we have

∥A∥1 := max
1≤j≤n

m∑
k=1

|ak,j |, (max column sum)

∥A∥2 := σ1, (largest singular value of A)

∥A∥∞ := max
1≤k≤m

n∑
j=1

|ak,j |, (max row sum).

(8.15)

The expression ∥A∥2 is called the two-norm or the spectral norm of A.

Proof. The result for p = 2 follows from the minmax theorem for singular values.

Indeed, by (7.17) we have σ1 = maxx ̸=0
∥Ax∥2

∥x∥2
. For p = 1,∞ we do the following:

(a) We derive a constant Kp such that ∥Ax∥p ≤ Kp for any x ∈ Cn with ∥x∥p = 1.

(b) We give an extremal vector y∗ ∈ Cn with ∥y∗∥p = 1 so that ∥Ay∗∥p = Kp.

98 Chapter 8. Matrix Norms

It then follows from (8.14) that ∥A∥p = ∥Ay∗∥p = Kp.

1-norm: Define K1, c and y∗ by K1 := max1≤j≤n

∑m
k=1|akj | =:

∑m
k=1|akc| and

y∗ := ec, a unit vector. Then ∥y∗∥1 = 1 and we obtain

(a)

∥Ax∥1 =
m∑

k=1

∣∣ n∑
j=1

akjxj

∣∣ ≤ m∑
k=1

n∑
j=1

|akj ||xj | =
n∑

j=1

(m∑
k=1

|akj |
)
|xj | ≤ K1.

(b) ∥Ay∗∥1 = K1.

∞-norm: Define K∞, r and y∗ by K∞ := max1≤k≤m

∑m
j=1|akj | =:

∑n
j=1|arj | and

y∗ := [e−iθ1 , . . . , e−iθn]T , where arj = |arj |eiθj for j = 1, . . . , n.

(a) ∥Ax∥∞ = max1≤k≤m

∣∣∑n
j=1 akjxj

∣∣ ≤ max1≤k≤m

∑n
j=1|akj ||xj | ≤ K∞.

(b) ∥Ay∗∥∞ = max1≤k≤m

∣∣∑n
j=1 akje

−iθj
∣∣ = K∞.

The last equality is correct because
∣∣∑n

j=1 akje
−iθj

∣∣ ≤ ∑n
j=1|akj | ≤ K∞ with

equality for k = r.

Example 8.22 In Example 7.6 we found that the largest singular value of the ma-
trix A := 1

15 [
14 4 16
2 22 13], is σ1 = 2. We find

∥A∥1 =
29

15
, ∥A∥2 = 2, ∥A∥∞ =

37

15
, ∥A∥F =

√
5.

We observe that the values of these norms do not differ by much.

In some cases the spectral norm is equal to an eigenvalue of the matrix.

Theorem 8.23 Suppose A ∈ Cn,n has singular values σ1 ≥ σ2 ≥ · · · ≥ σn and
eigenvalues |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. Then

∥A∥2 = σ1 and ∥A−1∥2 =
1

σn
, (8.16)

∥A∥2 = λ1 and ∥A−1∥2 =
1

λn
, if A is symmetric positive definite, (8.17)

∥A∥2 = |λ1| and ∥A−1∥2 =
1

|λn|
, if A is normal. (8.18)

For the norms of A−1 we assume of course that A is nonsingular.

Proof. Since 1/σn is the largest singular value of A−1, (8.16) follows. As shown
in Section 7.1.3 the singular values of a symmetric positive definite matrix (normal
matrix) are equal to the eigenvalues (absolute value of the eigenvalues). This implies
(8.17) and (8.18).

8.2. Matrix Norms 99

Exercise 8.24 Suppose A ∈ Cn,n is nonsingular. Use (8.16) and (7.17) to show
that

∥A−1∥2 = max
x ̸=0

∥x∥2
∥Ax∥2

.

Exercise 8.25 Let

A =

[
2 −1
−1 2

]
.

Compute ∥A∥p and ∥A−1∥p for p = 1, 2,∞.

The following result is sometimes useful.

Theorem 8.26 For any A ∈ Cm,n we have ∥A∥22 ≤ ∥A∥1∥A∥∞.

Proof. Let (σ2
1 ,v1) be an eigenpair for A∗A corresponding to the largest singular

value of A. Then

∥A∥22∥v1∥1 = σ2
1∥v1∥1 = ∥σ2

1v1∥1 = ∥A∗Av1∥1 ≤ ∥A∗∥1∥A∥1∥v1∥1.

Observing that ∥A∗∥1 = ∥A∥∞ by Theorem 8.21 and canceling ∥v1∥1 proves the
result.

8.2.5 Unitary Invariant Matrix Norms

Definition 8.27 A matrix norm ∥ ∥ on Cm,n is called unitary invariant if ∥UAV ∥ =
∥A∥ for any A ∈ Cm,n and any unitary matrices U ∈ Cm,m and V ∈ Cn,n.

When an unitary invariant matrix norm is used, the size of a perturbation
is not increased by a unitary transformation. Thus if U and V are unitary then
U(A+E)V = UAV + F , where ∥F ∥ = ∥E∥.

It follows from Lemma 8.10 that the Frobenius norm is unitary invariant. We
show here that this also holds for the spectral norm. It can be shown that the
spectral norm is the only unitary invariant operator norm, see [9] p. 308.

Theorem 8.28 The Frobenius norm and the spectral norm are unitary invariant.
Moreover ∥A∗∥F = ∥A∥F and ∥A∗∥2 = ∥A∥2.

Proof. The results for the Frobenius norm follow from Lemma 8.10. Suppose
A ∈ Cm,n and let U ∈ Cm,m and V ∈ Cn,n be unitary. Since the 2-vector norm is
unitary invariant we obtain

∥UA∥2 = max
∥x∥2=1

∥UAx∥2 = max
∥x∥2=1

∥Ax∥2 = ∥A∥2.

Now A and A∗ have the same nonzero singular values, and it follows from The-
orem 8.21 that ∥A∗∥2 = ∥A∥2. Moreover V ∗ is unitary. Using these facts we
find

∥AV ∥2 = ∥(AV)∗∥2 = ∥V ∗A∗∥2 = ∥A∗∥2 = ∥A∥2.

100 Chapter 8. Matrix Norms

Exercise 8.29 Show that ∥V A∥2 = ∥A∥2 holds even for a rectangular V as long
as V ∗V = I.

Exercise 8.30 Find A ∈ R2,2 and U ∈ R2,1 with UTU = I such that ∥AU∥2 <
∥A∥2. Thus, in general, ∥AU∥2 = ∥A∥2 does not hold for a rectangular U even if
U∗U = I.

Exercise 8.31 Show that ∥A∥p = ρ(A) := max |λi| (the largest eigenvalue of A),
1 ≤ p ≤ ∞, when A is a diagonal matrix.

Exercise 8.32 A vector a ∈ Cm can also be considered as a column vector A ∈
Cm,1.

(a) Show that the spectral matrix norm (2-norm) of A equals the Euclidean vector
norm of a.

(b) Show that ∥A∥p = ∥a∥p for 1 ≤ p ≤ ∞.

Exercise 8.33 If A ∈ Cm,n has elements aij, let |A| ∈ Cm,n be the matrix with
elements |aij |.

(a) Compute |A| if A =

[
1+i −2
1 1−i

]
, i =

√
−1.

(b) Show that for any A ∈ Cm,n ∥A∥F = ∥ |A| ∥F , ∥A∥p = ∥ |A| ∥p for p = 1,∞.

(c) Show that for any A ∈ Cm,n ∥A∥2 ≤ ∥ |A| ∥2.

(d) Find a real symmetric 2× 2 matrix A such that ∥A∥2 < ∥ |A| ∥2.

Exercise 8.34 Let m,n ∈ N and A ∈ Cm,n. Show that

∥A∥2 = max
∥x∥2=∥y∥2=1

|y∗Ax|.

8.2.6 Absolute and Monotone Norms

A vector norm on Cn is called an absolute norm if ∥x∥ = ∥ |x| ∥ for all x ∈ Cn.
Here |x| := [|x1|, . . . , |xn|]T , the absolute values of the components of x. Clearly the
vector p norms are absolute norms. We state without proof (see Theorem 5.5.10 of
[9]) that a vector norm on Cn is an absolute norm if and only if it is a monotone
norm, i. e.,

|xi| ≤ |yi|, i = 1, . . . , n =⇒ ∥x∥ ≤ ∥y∥, for all x,y ∈ Cn.

Absolute and monotone matrix norms are defined as for vector norms.

8.3. The Condition Number with Respect to Inversion 101

Exercise 8.35 Show that the Frobenius norm and the 1,∞ operator norms are
absolute norms.

Exercise 8.36 Show that the spectral norm is not an absolute norm.

The study of matrix norms will be continued in Chapter 9.

8.3 The Condition Number with Respect to Inversion
Consider the system of two linear equations

x1 + x2 = 20
x1 + (1− 10−16)x2 = 20− 10−15

whose exact solution is x1 = x2 = 10. If we replace the second equation by

x1 + (1 + 10−16)x2 = 20− 10−15,

the exact solution changes to x1 = 30, x2 = −10. Here a small change in one of
the coefficients, from 1− 10−16 to 1 + 10−16, changed the exact solution by a large
amount.

A mathematical problem in which the solution is very sensitive to changes
in the data is called ill-conditioned. Such problems are difficult to solve on a
computer.

In this section we consider what effect a small change (perturbation) in the
data A,b has on the solution x of a linear system Ax = b. Suppose y solves
(A +E)y = b+e where E is a (small) n × n matrix and e a (small) vector. How
large can y−x be? To measure this we use vector and matrix norms. In this section
∥ ∥ will denote a vector norm on Cn and also a submultiplicative matrix norm on
Cn,n which in addition is subordinate to the vector norm. Thus for anyA,B ∈ Cn,n

and any x ∈ Cn we have

∥AB∥ ≤ ∥A∥ ∥B∥ and ∥Ax∥ ≤ ∥A∥ ∥x∥.

This is satisfied if the matrix norm is the operator norm corresponding to the given
vector norm, but is also satisfied for the Frobenius matrix norm and the Euclidian
vector norm. This follows from Lemma 8.10.

Suppose x and y are vectors in Cn that we want to compare. The difference
∥y − x∥ measures the absolute error in y as an approximation to x, while ∥y −
x∥/∥x∥ and ∥y − x∥/∥y∥ are measures for the relative error.

We consider first a perturbation in the right-hand side b.

Theorem 8.37 Suppose A ∈ Cn,n is nonsingular, b, e ∈ Cn, b ̸= 0 and Ax = b,
Ay = b+e. Then

1

K(A)

∥e∥
∥b∥

≤ ∥y − x∥
∥x∥

≤ K(A)
∥e∥
∥b∥

, K(A) = ∥A∥ ∥A−1∥. (8.19)

102 Chapter 8. Matrix Norms

Proof. SubtractingAx = b fromAy = b+e we haveA(y−x) = e or y−x = A−1e.
Combining ∥y−x∥ = ∥A−1e∥ ≤ ∥A−1∥ ∥e∥ and ∥b∥ = ∥Ax∥ ≤ ∥A∥ ∥x∥ we obtain
the upper bound in (8.19). Combining ∥e∥ ≤ ∥A∥ ∥y − x∥ and ∥x∥ ≤ ∥A−1∥ ∥b∥
we obtain the lower bound.

Consider (8.19). ∥e∥/∥b∥ is a measure of the size of the perturbation e relative
to the size of b. The upper bound says that ∥y − x∥/∥x∥ in the worst case can be

K(A) = ∥A∥ ∥A−1∥

times as large as ∥e∥/∥b∥. K(A) is called the condition number with respect
to inversion of a matrix, or just the condition number, if it is clear from the
context that we are talking about solving linear systems or inverting a matrix. The
condition number depends on the matrix A and on the norm used. If K(A) is
large, A is called ill-conditioned (with respect to inversion). If K(A) is small, A
is called well-conditioned (with respect to inversion). We always have K(A) ≥ 1.
For since ∥x∥ = ∥Ix∥ ≤ ∥I∥∥x∥ for any x, by subordinance we have ∥I∥ ≥ 1 and
therefore by submultiplicativity ∥A∥ ∥A−1∥ ≥ ∥AA−1∥ = ∥I∥ ≥ 1.

Since all matrix norms are equivalent, the dependence of K(A) on the norm
chosen is less important than the dependence on A. Sometimes one chooses the
spectral norm when discussing properties of the condition number, and the ℓ1, ℓ∞,
or Frobenius norm when one wishes to compute it or estimate it.

Explicit expressions for the 2-norm condition number follow from Theorem 8.23.

Theorem 8.38 Suppose A ∈ Cn,n is nonsingular with singular values σ1 ≥ σ2 ≥
· · · ≥ σn > 0 and eigenvalues |λ1| ≥ |λ2| ≥ · · · ≥ |λn| > 0. Then K2(A) :=
∥A∥2∥A−1∥2 = σ1/σn. Moreover,

K2(A) =

{
λ1/λn, if A is symmetric positive definite,

|λ1|/|λn|, if A is normal.
(8.20)

It follows that A is ill-conditioned with respect to inversion if and only if
σ1/σn is large, or λ1/λn is large when A is symmetric positive definite.

Exercise 8.39 The upper and lower bounds for ∥y − x∥/∥x∥ given by (8.19) can
be attained for any matrix A, but only for special choices of b. Suppose yA and
yA−1 are vectors with ∥yA∥ = ∥yA−1∥ = 1 and ∥A∥ = ∥AyA∥ and ∥A−1∥ =
∥A−1yA−1∥.

(a) Show that the upper bound in (8.19) is attained if b = AyA and e = yA−1 .

(b) Show that the lower bound is attained if b = yA−1 and e = AyA.

We consider next a perturbation E in a nonsingular matrix A. The following
result shows that A + E is nonsingular if E is sufficiently small and that small
changes in A give small changes in the inverse if A is well conditioned.

8.3. The Condition Number with Respect to Inversion 103

Theorem 8.40 Suppose A ∈ Cn,n is nonsingular and let ∥·∥ be a consistent matrix
norm on Cn,n. If E ∈ Cn,n is so small that r := ∥A−1E∥ < 1 then A + E is
nonsingular and

∥(A+E)−1∥ ≤ ∥A−1∥
1− r

. (8.21)

If r < 1/2 then
∥(A+E)−1 −A−1∥

∥A−1∥
≤ 2K(A)

∥E∥
∥A∥

. (8.22)

Proof. We show in (8.31) in Section 8.4 that if B ∈ Cn,n and ∥B∥ < 1 then I −B
is nonsingular and

∥(I −B)−1∥ ≤ 1

1− ∥B∥
. (8.23)

Since r < 1 the matrix I−B := I+A−1E is nonsingular. Since (I−B)−1A−1(A+
E) = I we see that A + E is nonsingular with inverse (I − B)−1A−1. Hence,
∥(A + E)−1∥ ≤ ∥(I − B)−1∥∥A−1∥ and (8.21) follows from (8.23). From the
identity

(A+E)−1 −A−1 = −A−1E(A+E)−1

we obtain by (8.21)

∥(A+E)−1 −A−1∥ ≤ ∥A−1∥∥E∥∥(A+E)−1∥ ≤ K(A)
∥E∥
∥A∥

∥A−1∥
1− r

.

Dividing by ∥A−1∥ and setting r = 1/2 proves (8.22).

We can now show the following upper bounds.

Theorem 8.41 Suppose A,E ∈ Cn,n, b ∈ Cn with A invertible and b ̸= 0. If
r := ∥A−1E∥ < 1/2 for some operator norm then A +E is invertible. If Ax = b
and (A+E)y = b then

∥y − x∥
∥y∥

≤ ∥A−1E∥ ≤ K(A)
∥E∥
∥A∥

, (8.24)

∥y − x∥
∥x∥

≤ 2K(A)
∥E∥
∥A∥

.. (8.25)

Proof. That the matrix A + E is invertible follows from Theorem 8.40. (8.24)
follows easily by taking norms in the equation x − y = A−1Ey and dividing by
∥y∥. From the identity y − x =

(
(A+E)−1 −A−1

)
Ax we obtain ∥y − x∥ ≤

∥(A+E)−1 −A−1∥∥A∥∥x∥ and (8.25) follows from (8.21).

In Theorem 8.41 we gave a bound for the relative error in x as an approxi-
mation to y, (8.24), and the relative error in y as an approximation to x, (8.25).
∥E∥/∥A∥ is a measure for the size of the perturbation E in A relative to the size
of A. The condition number again plays a crucial role. ∥y − x∥/∥y∥ can be as

104 Chapter 8. Matrix Norms

large as K(A) times ∥E∥/∥A∥. It can be shown that the upper bound can be
attained for any A and any b. In deriving the upper bound we used the inequality
∥A−1Ey∥ ≤ ∥A−1∥ ∥E∥ ∥y∥. For a more or less random perturbation E this is not
a severe overestimate for ∥A−1Ey∥. In the situation where E is due to round-off
errors (8.24) can give a fairly realistic estimate for ∥y − x∥/∥y∥.

Suppose we have computed an approximate solution y to Ax = b. The vector
r(y) := Ay − b is called the residual vector, or just the residual. We can bound
x−y in term of r.

Theorem 8.42 Suppose A ∈ Cn,n, b ∈ Cn, A is nonsingular and b ̸= 0. Let
r(y) = Ay − b for each y ∈ Cn. If Ax = b then

1

K(A)

∥r(y)∥
∥b∥

≤ ∥y − x∥
∥x∥

≤ K(A)
∥r(y)∥
∥b∥

. (8.26)

Proof. We simply take e = r(y) in Theorem 8.37.

If A is well-conditioned, (8.26) says that ∥y−x∥/∥x∥ ≈ ∥r(y)∥/∥b∥. In other
words, the accuracy in y is about the same order of magnitude as the residual as
long as ∥b∥ ≈ 1. If A is ill-conditioned, anything can happen. We can for example
have an accurate solution even if the residual is large.

Exercise 8.43 Let ∥ ∥p be the lp vector norm and let condp(T) = ∥T ∥p∥T−1∥p,
where ∥T ∥p = maxx ̸=0 ∥Tx∥p/∥x∥p be the p-condition number of T ∈ Rm,m. In
this exercise we find the p-condition numbers for the matrix T := tridiag(−1, 2,−1)
in terms of h := 1/(m+ 1). You will need the explicit inverse of T given by (2.10)
and the eigenvalues given in Lemma 4.11.

a) Show that

cond1(T) = cond∞(T) =
1

2

{
h−2, m odd, m > 1,
h−2 − 1, m even.

(8.27)

b) Show that for p = 2 we have

cond2(T) = cot2 (
πh

2
) = 1/ tan2 (

πh

2
).

c) Show the bounds
4

π2
h−2 − 2

3
< cond2(T) <

4

π2
h−2. (8.28)

Hint: For the upper bound use the inequality tanx > x valid for 0 < x < π/2.
For the lower bound we use the inequality cot2 x > 1

x2 − 2
3 for x > 0. This can

be derived for 0 < x < π by first showing that the second derivative of cot2 x
is positive and then use Taylor’s theorem.

8.4 Convergence and Spectral Radius
We start with some basic notions that we need.

8.4. Convergence and Spectral Radius 105

8.4.1 Convergence in Rm,n and Cm,n

Definition 8.44 Consider an infinite sequence of matrices {Ak} = A0,A1,A2, . . .
in Cm,n.

1. {Ak} is said to converge to the limit A in Cm,n if each element sequence
{Ak(ij)}k converges to the corresponding element A(ij) for i = 1, . . . ,m and
j = 1, . . . , n.

2. {Ak} is a Cauchy sequence if for all ϵ > 0 there is an integer N ∈ N such
that for each k, l ≥ N and all i, j we have |Ak(ij)−Al(ij)| ≤ ϵ.

3. {Ak} is bounded if there is a constant M such that |Ak(ij)| ≤ M for all i, j, k.

By stacking the columns of A into a vector in Cmn we can use the results in
Section A.4 and obtain

Theorem 8.45 1. A sequence {Ak} in Cm,n converges to a matrix A ∈ Cm,n

if and only if limk→∞∥Ak −A∥ = 0 for any matrix norm ∥·∥.
2. A sequence {Ak} in Cm,n is convergent if and only if it is a Cauchy sequence.

3. Every bounded sequence {Ak} in Cm,n has a convergent subsequence.

8.4.2 The Spectral Radius

We define the spectral radius of a matrix A ∈ Cn,n as the maximum absolute
value of its eigenvalues.

ρ(A) := max
λ∈σ(A)

|λ|. (8.29)

Theorem 8.46 For any matrix norm ∥·∥ which is consistent on Cn,n and any
A ∈ Cn,n we have ρ(A) ≤ ∥A∥.

Proof. Let (λ,x) be an eigenpair for A and define X := [x, . . . ,x] ∈ Cn,n. Then
λX = AX, which implies |λ| ∥X∥ = ∥λX∥ = ∥AX∥ ≤ ∥A∥ ∥X∥. Since ∥X∥ ̸= 0
we obtain |λ| ≤ ∥A∥.

The inequality ρ(A) ≤ ∥A∥ can almost be made into an equality by choosing
the norm carefully.

Theorem 8.47 Let A ∈ Cn,n and ϵ > 0 be given. There is a consistent matrix
norm ∥·∥′ on Cn,n such that ρ(A) ≤ ∥A∥′ ≤ ρ(A) + ϵ.

Proof. LetA have eigenvalues λ1, . . . , λn. By the Schur Triangulation Theorem 6.1
there is a unitary matrix U and an upper triangular matrix R = [rij] such that
U∗AU = R. For t > 0 we define Dt := diag(t, t2, . . . , tn) ∈ Rn,n, and note that
the (i, j) element in DtRD−1

t is given by ti−jrij for all i, j. For n = 3

DtRD−1
t =

λ1 t−1r12 t−2r13
0 λ2 t−1r23
0 0 λ3

 .

106 Chapter 8. Matrix Norms

For each B ∈ Cn,n and t > 0 we define ∥B∥t := ∥DtU
∗BUD−1

t ∥1. We leave it
as an exercise to show that this is a consistent matrix norm on Cn,n. We define
∥B∥′ := ∥B∥t, where t is chosen so large that the sum of the absolute values of all
off-diagonal elements in DtRD−1

t is less than ϵ. Then

∥A∥′ = ∥DtU
∗AUD−1

t ∥1 = ∥DtRD−1
t ∥1 = max

1≤j≤n

n∑
i=1

|
(
DtRD−1

t

)
ij
|

≤ max
1≤j≤n

(|λj |+ ϵ) = ρ(A) + ϵ.

Theorem 8.48 For any A ∈ Cn,n we have

lim
k→∞

Ak = 0 ⇐⇒ ρ(A) < 1.

Proof. Suppose ρ(A) < 1. By Theorem 8.47 there is a consistent matrix norm ∥·∥
on Cn,n such that ∥A∥ < 1. But then ∥Ak∥ ≤ ∥A∥k → 0 as k → ∞. HenceAk → 0.
Conversely, suppose (λ,x) is an eigenpair of A with |λ| ≥ 1. Since Akx = λkx, by
Theorem D.3 it follows that Akx does not tend to zero. But then we cannot have
Ak → 0.

Theorem 8.49 For any consistent matrix norm ∥·∥ on Cn,n and any A ∈ Cn,n we
have

lim
k→∞

∥Ak∥1/k = ρ(A). (8.30)

Proof. By Theorems D.3 and 8.46 we obtain ρ(A)k = ρ(Ak) ≤ ∥Ak∥ for any k ∈ N
so that ρ(A) ≤ ∥Ak∥1/k. Let ϵ > 0 and consider the matrix B := (ρ(A) + ϵ)−1A.
Then ρ(B) = ρ(A)/(ρ(A) + ϵ) < 1 and ∥Bk∥ → 0 by Theorem 8.48 as k → ∞.
Choose N ∈ N such that ∥Bk∥ < 1 for all k ≥ N . Then for k ≥ N

∥Ak∥ = ∥
(
ρ(A) + ϵ)B

)k∥ =
(
ρ(A) + ϵ

)k∥Bk∥ <
(
ρ(A) + ϵ

)k
.

We have shown that ρ(A) ≤ ∥Ak∥1/k ≤ ρ(A) + ϵ for k ≥ N . Since ϵ is arbitrary
the result follows.

Exercise 8.50 The convergence limk→∞∥Ak∥1/k = ρ(A) can be quite slow. Con-
sider

A :=


λ a 0 ··· 0 0
0 λ a ··· 0 0
0 0 λ ··· 0 0
...

...
0 0 0 ··· λ a
0 0 0 ··· 0 λ

 ∈ Rn,n.

If |λ| = ρ(A) < 1 then limk→∞ Ak = 0 for any a ∈ R. We show below that the
(1, n) element of Ak is given by f(k) :=

(
k

n−1

)
an−1λk−n+1 for k ≥ n− 1.

8.4. Convergence and Spectral Radius 107

(a) Make a plot of f(k) for λ = 0.9, a = 10, and k ≤ 200. Your program should
also compute maxk f(k). Use your program to determine how large k must be
before f(k) < 10−8.

(b) We can determine the elements of Ak explicitly for any k. Let E := (A−λI)/a.
Show by induction that Ek =

[
0 In−k

0 0

]
for 1 ≤ k ≤ n− 1 and that En = 0.

(c) We have Ak = (aE + λI)k =
∑min{k,n−1}

j=0

(
k
j

)
λk−jajEj

n and conclude that the

(1, n) element is given by f(k) for k ≥ n− 1.

8.4.3 Neumann Series

A geometric series of matrices is known as a Neumann Series.

Theorem 8.51 (Neumann Series) Suppose B ∈ Cn,n. Then

1. The series
∑∞

k=0 B
k converges if and only if ρ(B) < 1.

2. If ρ(B) < 1 then (I −B) is nonsingular and (I −B)−1 =
∑∞

k=0 B
k.

3. If ∥B∥ < 1 for some consistent matrix norm ∥·∥ on Cn,n then

∥(I −B)−1∥ ≤ 1

1− ∥B∥
. (8.31)

Proof.

1. Suppose ρ(B) < 1. We use Theorem 8.45 and show that the sequence {Am}
of partial sums Am :=

∑m
k=0 B

k is a Cauchy sequence. Let ϵ > 0. By
Theorem 8.47 there is a consistent matrix norm ∥·∥ on Cn,n such that ∥B∥ < 1.
Then for l > m

∥Al −Am∥ = ∥
l∑

k=m+1

Bk∥ ≤
l∑

k=m+1

∥B∥k ≤ ∥B∥m+1

1− ∥B∥
≤ ϵ

provided m ≥ N and N is such that ∥B∥N+1

1−∥B∥ ≤ ϵ. Thus {Am} is a Cauchy

sequence and hence convergent.

Conversely, suppose (λ,x) is an eigenpair for B with λ ≥ 1. Now for l > m

∥(Al−Am)x∥ = ∥
l∑

k=m+1

Bkx∥ = ∥
l∑

k=m+1

λkx∥ = ∥x∥
l∑

k=m+1

|λ|k ≥ |λ|m+1 ∥x∥.

But then {Am} cannot be a Cauchy sequence and hence not convergent.

2. By induction on m it follows that

(m∑
k=0

Bk
)
(I −B) = I −Bm+1. (8.32)

108 Chapter 8. Matrix Norms

For if
(∑m−1

k=0 Bk
)
(I −B) = I −Bm then

(m∑
k=0

Bk
)
(I−B) =

(m−1∑
k=0

Bk+Bm
)
(I−B) = I−Bm+Bm−Bm+1 = I−Bm+1.

Since ρ(B) < 1 we conclude that Bm+1 → 0 and hence taking limits in (8.32)
we obtain

(∑∞
k=0 B

k
)
(I −B) = I which completes the proof of 2.

3. By 1: ∥(I −B)−1∥ = ∥
∑∞

k=0 B
k∥ ≤

∑∞
k=0∥B∥k = 1

1−∥B∥ .

Exercise 8.52 Show that ∥B∥t := ∥DtU
∗BUD−1

t ∥1 defined in the proof of The-
orem 8.47 is a consistent matrix norm on Cn,n.

Exercise 8.53 Suppose A ∈ Cn,n is nonsingular and E ∈ Cn,n. Show that A+E
is nonsingular if and only if ρ(A−1E) < 1.

Part III

Iterative Methods for Large
Linear Systems

109

Chapter 9

The Classical Iterative
Methods

Gaussian elimination and Cholesky factorization are direct methods. In absence
of rounding errors they find the exact solution using a finite number of arithmetic
operations. In an iterative method we start with an approximation x(0) to the
exact solution x and then compute a sequence {x(k)} such that hopefully x(k) → x.
Iterative methods are mainly used for large sparse systems, i. e., where many of the
elements in the coefficient matrix are zero. The main advantages of iterative meth-
ods are reduced storage requirements and ease of implementation. In an iterative
method the main work in each iteration is a matrix times vector multiplication, an
operation which often does not need storing the matrix, not even in sparse form.

We consider the classical iterative methods of Jacobi, Gauss-Seidel, and an ac-
celerated version of Gauss-Seidel’s method called Successive OverRelaxation (SOR).
David Young developed in his thesis a beautiful theory describing the convergence
rate of SOR, see [26]. We give the main points of this theory specialized to the
average- and discrete Poisson matrix. With a careful choice of an acceleration pa-
rameter the amount of work using SOR on the discrete Poisson problem is the same
as for the fast Poisson solver without FFT. Moreover, SOR is not restricted to con-
stant coefficient methods on a rectangle. However, to obtain fast convergence using
SOR it is necessary to have a good estimate for the acceleration parameter.

9.1 Classical Iterative Methods; Component Form
Suppose A ∈ Cn,n is nonsingular with nonzero diagonal elements and let b ∈ Cn.
Solving the ith equation of Ax = b for xi, we obtain a fixed-point form of Ax = b

xi =
(
−

i−1∑
j=1

aijxj −
n∑

j=i+1

aijxj + bi
)
/aii, i = 1, 2, . . . , n. (9.1)

Suppose we know an approximation x(k) = [x
(k)
1 , . . . , x

(k)
n]T to the exact solution x

of Ax = b.

111

112 Chapter 9. The Classical Iterative Methods

1. In Jacobi’s method (J method) we substitute x(k) into the right hand side
of (9.1) and compute a new approximation by

x
(k+1)
i =

(
−

i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k)
j + bi

)
/aii, for i = 1, 2, . . . , n. (9.2)

2. Gauss-Seidel’s method (GS method) is a modification of Jacobi’s method,

where we use the new x
(k+1)
i immediately after it has been computed.

x
(k+1)
i =

(
−

i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j + bi

)
/aii, for i = 1, 2, . . . , n. (9.3)

3. The Successive Over Relaxation method (SOR method) is obtained
by introducing an acceleration parameter 0 < ω < 2 in the GS method. We
write xi = ωxi + (1− ω)xi and this leads to the method

x
(k+1)
i = ω

(
−

i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j + bi

)
/aii + (1− ω)x

(k)
i . (9.4)

The SOR method reduces to the Gauss-Seidel method for ω = 1. Denoting the

right hand side of (9.3) by x
(k+1)
gs we can write (9.4) as x(k+1) = ωx

(k+1)
gs +(1−

ω)x(k), and we see that x(k+1) is located on the straight line passing through

the two points x
(k+1)
gs and x(k). The restriction 0 < ω < 2 is necessary for

convergence (cf. Theorem 9.22). Normally we choose the relaxation parameter
ω in the range 1 ≤ ω < 2 and then x(k+1) is computed by linear extrapolation,

i. e., it is not located between x
(k+1)
gs and x(k).

4. We mention also briefly the Symmetric Successive Over Relaxation method
SSOR. One iteration in SSOR consists of two SOR sweeps. A forward SOR
sweep (9.4), computing an approximation denoted x(k+1/2) instead of x(k+1),
is followed by a back SOR sweep computing

x
(k+1)
i = ω

(
−

i−1∑
j=1

aijx
(k+1/2)
j −

n∑
j=i+1

aijx
(k+1)
j +bi

)
/aii+(1−ω)x

(k+1/2)
i (9.5)

in the order i = n, n − 1, . . . 1. The method is slower and more complicated
than the SOR method. Its main use is as a symmetric preconditioner. For if
A is symmetric then SSOR combines the two SOR steps in such a way that
the resulting iteration matrix is similar to a symmetric matrix. We will not
discuss this method any further here and refer to Section 11.2 for an alternative
example of a preconditioner.

We will refer to the J,GS, and SOR methods as the classical (iteration) methods.

9.2. The Discrete Poisson System 113

9.2 The Discrete Poisson System
Consider the classical methods applied to the discrete Poisson matrix A ∈ Rn,n

given by (4.7). Let n = m2 and set h = 1/(m + 1). In component form the linear
system Ax = b can be written (cf. (4.3))

4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1 = h2fi,j , i, j = 1, . . . ,m,

with homogenous boundary conditions (4.4). Solving for ui,j we obtain

ui,j =
(
ui−1,j + ui+1,j + ui,j−1 + ui,j+1 + h2fi,j

)
/4, i, j = 1, . . . ,m. (9.6)

The J, GS , and SOR methods can now be written

J : v
(k+1)
ij =

(
v
(k)
i−1,j + v

(k)
i,j−1 + v

(k)
i+1,j + v

(k)
i,j+1 + h2fij

)
/4

GS : v
(k+1)
ij =

(
v
(k+1)
i−1,j + v

(k+1)
i,j−1 + v

(k)
i+1,j + v

(k)
i,j+1 + h2fij

)
/4

SOR : v
(k+1)
ij = ω

(
v
(k+1)
i−1,j + v

(k+1)
i,j−1 + v

(k)
i+1,j + v

(k)
i,j+1 + h2fij

)
/4 + (1− ω)v

(k)
i,j .

(9.7)
For GS and SOR we use the natural ordering i. e., with i, j in increasing order
i, j = 1, . . . ,m, while for J any ordering can be used.

Here is a Matlab program to test the convergence of Jacobi’s method on the
discrete Poisson problem.

Algorithm 9.1 (Jacobi) We carry out Jacobi iterations on the linear system

(9.6) with F = (fij) ∈ Rm,m, starting with V (0) = 0 ∈ Rm+2,m+2. The output

is the number of iterations k, to obtain ∥V (k)−U∥M := maxi,j |v(k)ij −uij | < tol.

Here (uij) ∈ Rm+2,m+2 is the ”exact” solution of (9.6) computed using the fast
Poisson solver in Algorithm 5.1. We set k = K+1 if convergence is not obtained
in K iterations.

function k=jdp(F,K,tol)

m=length(F);

U=fastpoisson(F);

V=zeros(m+2,m+2); W=V;

E=F/(m+1)^2;

for k=1:K

for i=2:m+1

for j=2:m+1

W(i,j)=(V(i-1,j)+V(i+1,j)+V(i,j -1)...

+V(i,j+1)+E(i-1,j -1))/4;

end

end

if max(max(abs(W-U)))<tol , return

end

V=W;

end

k=K+1;

114 Chapter 9. The Classical Iterative Methods

k100 k2500 k10 000 k40 000 k160 000

J 385 8386
GS 194 4194

SOR 35 164 324 645 1286

Table 9.1. The number of iterations kn to solve the n × n discrete Pois-
son problem using the methods of Jacobi, Gauss-Seidel, and SOR (see text) with a
tolerance 10−8.

In Table 9.1 we show the output k = kn from this algorithm using F =
ones(m,m) for m = 10, 50, K = 104, and tol = 10−8. We also show the number
of iterations for Gauss-Seidel and SOR with a value of ω known as the optimal
acceleration parameter ω = 2/(1 + sin(π/(m+ 1))). We will derive this value later.
For the GS and SOR methods we have used Algorithm 9.2.

Algorithm 9.2 (SOR) This is the analog of Algorithm 9.1 using GS and SOR
instead of J to solve the discrete Poisson problem. w is an acceleration param-
eter with 0 < w < 2. For w = 1 we obtain Gauss-Seidel’s method. The optimal
value for the discrete Poisson problem is w = 2/(1 + sin(π/(m+ 1))).

function k=sordp(F,K,w,tol)

m=length(F);

U=fastpoisson(F);

V=zeros(m+2,m+2);

E=F/(m+1)^2;

for k=1:K

for i=2:m+1

for j=2:m+1

V(i,j)=w*(V(i-1,j)+V(i+1,j)+V(i,j -1)...

+V(i,j+1)+E(i-1,j -1))/4+(1 -w)*V(i,j);

end

end

if max(max(abs(V-U)))<tol , return

end

end

k=K+1;

We make several remarks about these programs and the results in Table 9.1.

1. The rate (speed) of convergence is quite different for the three methods. The
J and GS method converge, but rather slowly. The J method needs about
twice as many iterations as the GS method. The improvement using the SOR
method with optimal ω is rather spectacular.

2. We show in Section 9.5.1 that the number of iterations kn for a size n problem
is kn = O(n) for the J and GS method and kn = O(

√
n) for SOR with optimal

9.3. Matrix Formulations of the Classical Methods 115

ω. The choice of tol will only influence the constants multiplying n or
√
n.

3. From (9.7) it follows that each iteration requires O(n) flops. Thus the number
of flops to achieve a given tolerance is O(kn × n). Therefore the number of
flops for the J and GS method is O(n2), while it is only O(n3/2) for the SOR
method with optimal ω. Asymptotically, for J and GS this is the same as
using banded Cholesky, while SOR competes with the fast method (without
FFT).

4. We do not need to store the coefficient matrix so the storage requirements for
these methods on the discrete Poisson problem is O(n), asymptotically the
same as for the fast methods. For the GS and SOR method we can store the
new v

(k+1)
ij in the same location as v

(k)
ij . For Jacobi’s method we need an extra

array. (W in Algorithm 9.1).

5. Jacobi’s method has the advantage that it can be easily parallelized.

9.3 Matrix Formulations of the Classical Methods
To study convergence it is convenient to use matrix formulations of the classical
methods. In general we can construct an iterative method by choosing a nonsingular
matrix M and write Ax = b in the equivalent form Bx = c, where B = M−1A
and c = M−1b. The system Bx = c can be written x = x−Bx+c = (I−B)x+c,
and this defines the iterative method

x(k+1) := Gx(k) + c, G = I −B = I −M−1A, c = M−1b. (9.8)

Different choices of M leads to different iterative methods. The matrix M can be
interpreted in two ways. It is a preconditioning matrix since a good choice of
M will lead to a system Bx = c with smaller condition number. It is also known
as a splitting matrix, since if we split A in the form A = M + (A − M) then
Ax = b can be written Mx = (M−A)x+b and this leads to the iterative method

Mx(k+1) = (M −A)x(k) + b (9.9)

which is equivalent to (9.8).
The matrix M should be chosen so that G has small spectral radius and

such that the linear system (9.9) is easy to solve for x(k+1). These are conflicting
demands. M should be an approximation to A to obtain a B with small condition
number, but then (9.9) might not be easy to solve for x(k+1).

9.3.1 The Splitting Matrices for the Classical Methods

To describe M for the classical methods we write A as a sum of three matrices,
A = D−AL −AR, where −AL, D, and −AR are the lower, diagonal, and upper

116 Chapter 9. The Classical Iterative Methods

part of A, respectively. Thus D := diag(a11, . . . , ann),

AL :=


0

−a21 0
...

. . .
. . .

−an,1 · · · −an,n−1 0

 , AR :=


0 −a12 · · · −a1n

. . .
. . .

...
0 −an−1,n

0

 . (9.10)

Proposition 9.3 The splitting matrices MJ ,M1,Mω for the J, GS, and SOR
method are given by

MJ = D, M1 = D −AL, Mω = ω−1D −AL. (9.11)

Proof. The equation Ax = b can be written Dx − ALx − ARx = b or Dx =
ALx+ARx+ b. This leads to

J : Dx(k+1) = ALx
(k) +ARx

(k) + b,

GS : Dx(k+1) = ALx
(k+1) +ARx

(k) + b,

SOR : Dx(k+1) = ω
(
ALx

(k+1) +ARx
(k) + b

)
+ (1− ω)Dx(k).

(9.12)

Writing these equations in the form (9.9) we obtain (9.11).

Example 9.4 For the system[
2 −1

−1 2

] [
x1

x2

]
=

[
1
1

]
we find

AL =

[
0 0
1 0

]
, D =

[
2 0
0 2

]
, AR =

[
0 1
0 0

]
,

and

MJ = D =

[
2 0
0 2

]
, Mω = ω−1D −AL =

[
2ω−1 0
−1 2ω−1

]
.

The iteration matrix Gω = I −M−1
ω A is given by

Gω =

[
1 0
0 1

]
−
[
ω/2 0
ω2/4 ω/2

] [
2 −1

−1 2

]
=

[
1− ω ω/2

ω(1− ω)/2 1− ω + ω2/4

]
. (9.13)

For the J and GS method we have

GJ = I −D−1A =

[
0 1/2
1/2 0

]
, G1 =

[
0 1/2
0 1/4

]
. (9.14)

We could have derived these matrices directly from the component form of the iter-
ation. For example, for the GS method we have the component form

x
(k+1)
1 =

1

2
x
(k)
2 +

1

2
, x

(k+1)
2 =

1

2
x
(k+1)
1 +

1

2
.

9.4. Convergence of Fixed-point Iteration 117

Substituting the value of x
(k+1)
1 from the first equation into the second equation we

find

x
(k+1)
2 =

1

2
(
1

2
x
(k)
2 +

1

2
) +

1

2
=

1

4
x
(k)
2 +

3

4
.

Thus

x(k+1) =

[
x
(k+1)
1

x
(k+1)
2

]
=

[
0 1/2
0 1/4

][
x
(k)
1

x
(k)
2

]
+

[
1/2
3/4

]
= G1x

(k) + c.

9.4 Convergence of Fixed-point Iteration
We have seen that the classical methods can be written in the form (9.8) for a
suitable M . Starting with x(0) this defines a sequence {x(k)} of vectors in Cn. If
limk→∞ x(k) = x for some x ∈ Cn then x is a solution of x = Gx+ c since

x = lim
k→∞

x(k+1) = lim
k→∞

(Gx(k) + c) = G lim
k→∞

x(k) + c = Gx+ c.

For a general G ∈ Cn,n and c ∈ Cn a solution of x = Gx+c is called a fixed-point
and the iteration x(k+1) = Gx(k) + c a fixed-point iteration. The fixed-point is
unique if I −G is nonsingular.

Consider next convergence of fixed-point iteration.

Definition 9.5 We say that the iterative method x(k+1) := Gx(k) + c converges
if the sequence {x(k)} converges for any starting vector x(0).

To study convergence we consider for k ≥ 0 the error

ϵ(k) := x(k) − x.

Lemma 9.6 The iterative method x(k+1) := Gx(k) + c converges if and only if
limk→∞ Gk = 0.

Proof. Subtraction of x = Gx+ c from x(k+1) = Gx(k) + c leads to cancellation
of c and ϵ(k+1) = Gϵ(k). By induction ϵ(k) = Gkϵ(0) for k = 0, 1, 2, It follows
that ϵ(k) → 0 for all ϵ(0) if and only if Gk → 0.

Recall that the spectral radius of a matrixG ∈ Cn,n with eigenvalues λ1 . . . , λn

is defined as ρ(G) = maxj |λj |. Using Theorem 8.46 we obtain the following theorem:

Theorem 9.7 Suppose G ∈ Cn,n and c ∈ Cn. The iteration x(k+1) = Gx(k) + c
converges if and only if ρ(G) < 1.

Since ρ(G) < ∥G∥ for any consistent matrix norm on Cn,n (cf. Theorem 8.46)
we obtain

Corollary 9.8 If ∥G∥ < 1 for some consistent matrix norm, then the iteration
x(k+1) = Gx(k) + c converges.

118 Chapter 9. The Classical Iterative Methods

Exercise 9.9 Show that both Jacobi’s method and Gauss-Seidel’s method diverge
for A = [1 2

3 4].

Exercise 9.10 Explain why J and GS converge for the cubic spline matrix N in
Chapter 2. (This is mainly of academic interest since for tridiagonal strictly diago-
nally dominant matrices Gaussian elimination has complexity O(n) and is preferable
for such systems.)

Exercise 9.11 Show that the J method converges if A is strictly diagonally domi-
nant, i. e., |aii| >

∑
j ̸=i|aij | for i = 1, . . . , n.

Exercise 9.12 Consider the GS method. Suppose r := maxi ri < 1, where ri =∑
j ̸=i

|aij |
|aii| . Show using induction on i that |ϵ(k+1)

j | ≤ r∥ϵ(k)∥∞ for j = 1, . . . , i.

Conclude that Gauss-Seidel’s method is convergent when A is strictly diagonally
dominant.

Consider next the rate of convergence. Suppose ∥ ∥ is a matrix norm that
is subordinate to a vector norm also denoted by ∥ ∥. Taking norms in ϵ(k) = Gkϵ(0)

we obtain
∥ϵ(k)∥ = ∥Gkϵ(0)∥ ≤ ∥Gk∥∥ϵ(0)∥ ≈ ρ(G)k∥ϵ(0)∥.

For the last formula we apply Theorem 8.49 which says that limk→∞∥Gk∥1/k =
ρ(G). Thus for fast convergence we should use a G with small spectral radius.

Lemma 9.13 Suppose ρ(G) = 1 − η for some 0 < η < 1, ∥ ∥ a consistent matrix
norm, and let s ∈ N. Then

k̃ :=
log(10)s

η
(9.15)

is an estimate for the smallest number of iterations k so that ρ(G)k ≤ 10−s.

Proof. k̃ is an approximate solution of the equation ρ(G)k = 10−s. Indeed, taking
logarithms we find k log ρ(G) = −s log 10. Thus

k = − s log (10)

log(1− η)
=

s log (10)

η +O(η2)
≈ log(10)s

η
= k̃.

Exercise 9.14 Consider the iteration in Example 9.4. Show that ρ(GJ) = 1/2.

Then show that x
(k)
1 = x

(k)
2 = 1− 2−k for k ≥ 0. Thus the estimate in Lemma 9.13

is exact in this case.

The convergence limk→∞∥Gk∥1/k = ρ(G) can be quite slow, (cf. Exer-
cise 8.50).

9.4. Convergence of Fixed-point Iteration 119

9.4.1 Stopping the Iteration

In Algorithms 9.1 and 9.2 we had access to the exact solution and could stop the
iteration when the error was sufficiently small in the infinity norm. The decision
when to stop is obviously more complicated when the exact solution is not known.
One possibility is to choose a vector norm, keep track of ∥x(k+1) − x(k)∥, and stop
when this number is sufficiently small. This must be applied with some care if ∥G∥
is close to one, as the following result indicates.

Lemma 9.15 Suppose ∥G∥ < 1 for some consistent matrix norm which is subordi-
nate to a vector norm also denoted by ∥ ∥. If x(k) = Gx(k−1) + c and x = Gx+ c.
Then

∥x(k) − x∥ ≤ ∥G∥
1− ∥G∥

∥x(k) − x(k−1)∥, k ≥ 1. (9.16)

Proof. We find

∥x(k) − x∥ = ∥G(x(k−1) − x)∥ ≤ ∥G∥∥x(k−1) − x∥
= ∥G∥∥x(k−1) − x(k) + x(k) − x∥ ≤ ∥G∥

(
∥x(k−1) − x(k)∥+ ∥x(k) − x∥

)
.

Thus (1− ∥G∥)∥x(k) − x∥ ≤ ∥G∥∥x(k−1) − x(k)∥ which implies (9.16).

Another possibility is to stop when the residual vector r(k) := b − Ax(k)

is sufficiently small in some norm. To use the residual vector for stopping it is
convenient to write the iterative method (9.8) in an alternative form. If M is the
splitting matrix of the method then by (9.9) we haveMx(k+1) = Mx(k)−Ax(k)+b.
This leads to

x(k+1) = x(k) +M−1r(k), r(k) = b−Ax(k). (9.17)

Testing on r(k) works fine if A is well conditioned, but Theorem 8.42 shows
that the relative error in the solution can be much larger than the relative error in
r(k) if A is ill-conditioned.

9.4.2 Richardson’s Method (R method)

This method is based on the simple splitting MR := αI, where α is a nonzero
scalar. By (9.17) we obtain Richardson’s method in the form

x(k+1) = x(k) + α−1r(k), r(k) = b−Ax(k). (9.18)

If all eigenvalues ofA have positive real parts then the R method converges provided
α is sufficiently large.

Proposition 9.16 Suppose all eigenvalues of A have positive real parts and that
α is real. Then there is an α0 such that the R method converges for α > α0. If A
has positive eigenvalues 0 < λn ≤ · · · ≤ λ1 then the spectral radius of

G(α) := I − α−1A

120 Chapter 9. The Classical Iterative Methods

is uniquely minimized if α = α∗, where

α∗ :=
λ1 + λn

2
, and ρ

(
G(α∗)

)
=

λ1 − λn

λ1 + λn
. (9.19)

Proof. The eigenvalues of G(α) are

µj(α) = 1− λj/α, j = 1, . . . , n,

and if uj := Reλj > 0 then

|µj(α)|2 = (1− λj

α
)(1− λj

α
) = 1− 2

uj

α
+

|λj |2

α2
= 1− |λj |2

α2

(
2αuj

|λj |2
− 1

)
< 1

if 2α > maxj(|λj |2/uj) and the R method converges. We next show that ρ
(
G(α)

)
>

ρ
(
G(α∗)

)
if α ̸= α∗. Indeed, if α > α∗ then

ρ
(
G(α)

)
≥ µn(α) = 1− λn/α > 1− λn/α

∗ =
λ1 − λn

λ1 + λn
= ρ

(
G(α∗)

)
.

Next, if α < α∗ then

−ρ
(
G(α)

)
≤ µ1(α) = 1− λ1/α < 1− λ1/α

∗ = −λ1 − λn

λ1 + λn
= −ρ

(
G(α∗)

)
,

and again ρ
(
G(α)

)
> ρ

(
G(α∗)

)
.

9.5 Convergence of the Classical Methods for the
Discrete Poisson Matrix

The matrix A in (4.7) is symmetric positive definite (cf. Theorem 4.13). We show
in Theorem 9.23 that the SOR method converges for all 0 < ω < 2 if A is symmetric
positive definite. So the GS method converges, but the J method does not converge
for all symmetric positive definite matrices.

Exercise 9.17 Show (by finding its eigenvalues) that the matrix1 a a
a 1 a
a a 1


is symmetric positive definite for −1/2 < a < 1, but that the J method does not
converge for 1/2 < a < 1.

For the discrete Poisson problem we can determine explicitly the eigenvalues
of the iteration matrices and thus not only show convergence, but also estimate the
number of iterations necessary to achieve a given accuracy.

9.5. Convergence of the Classical Methods for the Discrete Poisson Matrix 121

0.0 0.5 1.0 1.5 2.0

0.5

0.6

0.7

0.8

0.9

1.0

Figure 9.1. ρ(Gω) with ω ∈ [0, 2] for n = 100, (lower curve) and n = 2500
(upper curve).

Recall that by (4.22) the eigenvalues λj,k of A given by (4.7) are

λj,k = 4− 2 cos(jπh)− 2 cos(kπh), j, k = 1, . . . ,m, h = 1/(m+ 1).

Consider first Jacobi’s method. The matrix GJ = I − D−1A = I − A/4 has
eigenvalues

µj,k = 1− 1

4
λj,k =

1

2
cos(jπh) +

1

2
cos(kπh), j, k = 1, . . . ,m. (9.20)

It follows that ρ(GJ) = cos(πh) < 1 and the J method converges for all starting
values and all right hand sides.

For the SOR method it is possible to explicitly determine ρ(Gω) for any
ω ∈ (0, 2). The following result will be shown in Section 9.6.

Theorem 9.18 Consider the SOR iteration (9.7), whith the natural ordering. The
spectral radius of Gω is

ρ(Gω) =

 1
4

(
ωβ +

√
(ωβ)2 − 4(ω − 1)

)2

, for 0 < ω ≤ ω∗,

ω − 1, for ω∗ < ω < 2,
(9.21)

where β := ρ(GJ) and

ω∗ :=
2

1 +
√
1− β2

> 1. (9.22)

Moreover,
ρ(Gω) > ρ(Gω∗) for ω ∈ (0, 2) \ {ω∗}. (9.23)

122 Chapter 9. The Classical Iterative Methods

n=100 n=2500 k100 k2500
J 0.959493 0.998103 446 9703

GS 0.920627 0.99621 223 4852
SOR 0.56039 0.88402 32 150

Table 9.2. Spectral radia for GJ , G1, Gω∗ and the smallest integer kn
such that ρ(G)kn ≤ 10−8.

A plot of ρ(Gω) as a function of ω ∈ (0, 2) is shown in Figure 9.1 for n = 100
(lower curve) and n = 2500 (upper curve). As ω increases the spectral radius of
Gω decreases monotonically to the minimum ω∗. Then it increases linearly to the
value one for ω = 2. We call ω∗ the optimal relaxation parameter.

For the discrete Poisson problem we have β = cos(πh) and it follows from
(9.21),(9.22) that

ω∗ =
2

1 + sin(πh)
, ρ(Gω∗) = ω∗ − 1 =

1− sin(πh)

1 + sin(πh)
, h =

1

m+ 1
. (9.24)

Letting ω = 1 in (9.21) we find ρ(G1) = β2 = ρ(GJ)
2 = cos2(πh). Thus, for

the discrete Poisson problem the J method needs twice as many iterations as the
GS method for a given accuracy.

The values of ρ(GJ), ρ(G1), and ρ(Gω∗) = ω∗ − 1 are shown in Table 9.2 for
n = 100 and n = 2500. We also show the smallest integer kn such that ρ(G)kn ≤
10−8. This is an estimate for the number of iteration needed to obtain an accuracy
of 10−8. These values are comparable to the exact values given in Table 9.1.

9.5.1 Number of Iterations

Let s be a positive integer. We can now estimate the number of iterations kn to
obtain ρ(G)kn < 10−s for the J, GS and SOR method with optimal ω. We use
Lemma 9.13 that provided the estimate

k̃n =
log(10)s

η
, ρ(G) = 1− η.

Note that h = 1/(m + 1) ≈ n−1/2. The estimates we derive agree with those we
found numerically in Section 9.2.

• J: ρ(GJ) = cos(πh) = 1 − η, η = 1 − cos(πh) = 1
2π

2h2 + O(h4) = π2

2 /n +
O(n−2). Thus

k̃n =
2 log(10)s

π2
n+O(n−1) = O(n).

• GS: ρ(G1) = cos2(πh) = 1− η, η = 1− cos2(πh) = sin2 πh = π2h2 +O(h4) =
π2/n+O(n−2). Thus

k̃n =
log(10)s

π2
n+O(n−1) = O(n).

9.6. Convergence Analysis for SOR 123

• SOR: ρ(Gω∗) = 1−sin(πh)
1+sin(πh) = 1− 2πh+O(h2). Thus

k̃n =
log(10)s

π2

√
n+O(n−1/2) = O(

√
n).

Exercise 9.20 Consider for a ∈ C

x :=

[
x1

x2

]
=

[
0 a
a 0

] [
x1

x2

]
+

[
1− a
1− a

]
=: Gx+ c.

Starting with x(0) = 0 show by induction

x
(k)
1 = x

(k)
2 = 1− ak, k ≥ 0,

and conclude that the iteration converges to the fixed-point x = [1, 1]T for |a| < 1
and diverges for |a| > 1. Show that ρ(G) = 1 − η with η = 1 − |a|. Compute the
estimate (9.15) for the rate of convergence for a = 0.9 and s = 16 and compare with
the true number of iterations determined from |a|k ≤ 10−16.

9.6 Convergence Analysis for SOR
The iteration matrix Gω for the SOR method can be written in two alternative
forms that are both useful for the analysis.

Lemma 9.21 Suppose A ∈ Rn,n and D = diag(a11, . . . , ann) are both nonsingular.
Then

Gω = I − (ω−1D −AL)
−1A = (I − ωL)−1

(
ωR+ (1− ω)I

)
, (9.25)

where AL and AR are given by (9.10) and

L := D−1AL, R := D−1AR, so that D−1A = I −L−R. (9.26)

Proof. For the first form see (9.8) and Proposition 9.3. Solving the SOR part of
(9.12) for x(k+1) gives

x(k+1) = ω
(
Lx(k+1) +Rx(k) +D−1b

)
+ (1− ω)x(k),

or
(I − ωL)x(k+1) =

(
ωR+ (1− ω)I

)
x(k) + ωD−1b.

Solving for x(k+1) we obtain x(k+1) = Gωx
(k)+c, where Gω is given by the second

form in (9.25).

We start with the following convergence result.

Theorem 9.22 The SOR method diverges if ω is not in the interval (0, 2).

124 Chapter 9. The Classical Iterative Methods

Proof. Recall that the determinant of a product equals the product of determinants
and that the determinant of a triangular matrix equals the product of the diagonal
elements. From (9.25) we obtain

det(Gω) = det
(
(I − ωL)−1

)
det

(
ωR+ (1− ω)I

)
.

Since I − ωL is lower triangular with ones on the diagonal it follows from
Lemma 2.8 that the first determinant equals one. The matrix ωR + (1 − ω)I is
upper triangular with 1 − ω on the diagonal and therefore its determinant equals
(1− ω)n. It follows that det(Gω) = (1− ω)n.

Since the determinant of a matrix equals the product of its eigenvalues we
must have |λ| ≥ |1 − ω| for at least one eigenvalue λ of Gω. We conclude that
ρ(Gω) ≥ |ω − 1|. But then ρ(Gω) ≥ 1 if ω is not in the interval (0, 2) and by
Theorem 9.7 SOR diverges.

We next show that SOR converges for all ω ∈ (0, 2) if A is symmetric positive
definite.

Theorem 9.23 SOR converges for a symmetric positive definite matrix A ∈ Rn,n

if and only if 0 < ω < 2. In particular, Gauss-Seidel’s method converges for a
symmetric positive definite matrix.

Proof. By Theorem 9.22 convergence implies 0 < ω < 2. Suppose 0 < ω < 2. The
eigenpair equation Gωx = λx can be written x− (ω−1D −AL)

−1Ax = λx or

Ax = (ω−1D −AL)y, y := (1− λ)x. (9.27)

Since A = −AL +D −AR we find

(ω−1D −D +AR)y = (ω−1D −AL −A)y
(9.27)
= Ax−Ay = λAx,

so that by taking inner products and replacing A∗
R by AL

⟨y, λAx⟩ = ⟨y, (ω−1D −D +AR)y⟩ = ⟨(ω−1D −D +A∗
R)y,y⟩

= ⟨(ω−1D −D +AL)y,y⟩.
(9.28)

Taking inner product with y in (9.27) and adding to (9.28) we obtain

⟨Ax,y⟩+ ⟨y, λAx⟩ = ⟨(ω−1D −AL)y,y⟩+ ⟨(ω−1D −D +AL)y,y⟩
= (2ω−1 − 1)⟨Dy,y⟩ = (2ω−1 − 1)(1− λ)(1− λ)⟨Dx,x⟩
= (2ω−1 − 1)|1− λ|2⟨Dx,x⟩.

On the other hand, since A is symmetric

⟨Ax,y⟩+ ⟨y, λAx⟩ = (1− λ)⟨Ax,x⟩+ (1− λ)λ⟨Ax,x⟩ = (1− |λ|2)⟨Ax,x⟩.

Thus,
(2ω−1 − 1)|1− λ|2⟨Dx,x⟩ = (1− |λ|2)⟨Ax,x⟩. (9.29)

9.7. The Optimal SOR Parameter ω 125

Since A is symmetric positive definite we observe that also D is symmetric positive
definite. Furthermore we cannot have λ = 1 for then y = 0 which by (9.27) implies
that A is singular. Since 0 < ω < 2 implies ω−1 > 1/2 the left side of (9.29) is
positive and hence the right hand side is positive as well. We conclude that |λ| < 1.
But then ρ(Gω) < 1 and SOR converges.

9.7 The Optimal SOR Parameter ω
The following analysis holds both for the discrete Poisson matrix and the averaging
matrix given by (4.9). A more general theory is presented in [26]. Consider first
how the eigenvalues of GJ and Gω are related.

Theorem 9.24 Consider for a, d ∈ R the SOR method applied to the matrix (4.9),
where we use the natural ordering. Moreover, assume ω ∈ (0, 2).

1. If λ ̸= 0 is an eigenvalue of Gω then

µ :=
λ+ ω − 1

ωλ1/2
(9.30)

is an eigenvalue of GJ .

2. If µ is an eigenvalue of GJ and λ satisfies the equation

µωλ1/2 = λ+ ω − 1 (9.31)

then λ is an eigenvalue of Gω.

Proof. For simplicity of notation we assume that a = −1 and d = 2. The compo-
nent equations in this proof hold for i, j = 1, . . . ,m. Suppose (λ,w) is an eigenpair
for Gω. By (9.25) (I − ωL)−1

(
ωR+ (1− ω)I

)
w = λw or

(ωR+ λωL)w = (λ+ ω − 1)w. (9.32)

Let w = vec(W), where W ∈ Cm,m. Then (9.32) can be written

ω

4
(λwi−1,j + λwi,j−1 + wi+1,j + wi,j+1) = (λ+ ω − 1)wi,j , (9.33)

where wi,j = 0 if i ∈ {0,m + 1} or j ∈ {0,m + 1}. We claim that (µ,v) is an
eigenpair for GJ , where µ is given by (9.30) and v = vec(V) with

vi,j := λ−(i+j)/2wi,j . (9.34)

Indeed, replacing wi,j by λ(i+j)/2vi,j in (9.33) and cancelling the common factor
λ(i+j)/2 we obtain

ω

4
(vi−1,j + vi,j−1 + vi+1,j + vi,j+1) = λ−1/2(λ+ ω − 1)vi,j .

126 Chapter 9. The Classical Iterative Methods

But then

GJv = (L+R)v =
λ+ ω − 1

ωλ1/2
= µv.

For the converse let (µ,v) be an eigenpair for GJ and let as before v = vec(V),
W = vec(W) with vi,j = λ−(i+j)/2wi,j . The equation GJv = µv can be written

1

4
(vi−1,j + vi,j−1 + vi+1,j + vi,j+1) = µvi,j .

Let λ be a solution of (9.31). Replacing vi,j by λ−(i+j)/2wi,j and canceling λ−(i+j)/2

we obtain

1

4
(λ1/2wi−1,j + λ1/2wi,j−1 + λ−1/2wi+1,j + λ−1/2wi,j+1) = µwi,j ,

or, multiplying by ωλ1/2

ω

4
(λwi−1,j + λwi,j−1 + wi+1,j + wi,j+1) = ωµλ1/2wi,j ,

Thus, if ωµ1/2 = λ+ ω − 1 then by (9.33) (λ,w) is an eigenpair for Gω.

Proof of Theorem 9.18 By (4.22) the eigenvalues of GJ = I −A/(2d) are
given by

µj,k = −a
(
cos(jπh) + cos(kπh)

)
/(2d), j, k = 1, . . . ,m.

Thus the eigenvalues are real and if µ is an eigenvalue then −µ is also an eigenvalue.
Thus it is enough to consider positive eigenvalues µ. For simplicity of notation let
again a = −1 and d = 2. Solving (9.31) for λ gives

λ(µ) :=
1

4

(
ωµ±

√
(ωµ)2 − 4(ω − 1)

)2

. (9.35)

Both roots λ(µ) are eigenvalues of Gω. The discriminant

d(ω) := (ωµ)2 − 4(ω − 1).

is strictly decreasing on (0, 2) since

d′(ω) = 2(ωµ2 − 2) < 2(ω − 2) < 0.

Moreover d(0) = 4 > 0 and d(2) = 4µ2 − 4 < 0. As a function of ω, λ(µ) changes
from real to complex at

ω = ω̃(µ) :=
2

1 +
√

1− µ2
. (9.36)

In the complex case we find

|λ(µ)| = 1

4

(
(ωµ)2 + 4(ω − 1)− (ωµ)2

)
= ω − 1, ω̃(µ) < ω < 2.

9.7. The Optimal SOR Parameter ω 127

In the real case both roots of (9.35) are positive and the larger one is

λ(µ) =
1

4

(
ωµ+

√
(ωµ)2 − 4(ω − 1)

)2

, 0 < ω ≤ ω̃(µ). (9.37)

Both λ(µ) and ω̃(µ) are strictly increasing as functions of µ. It follows that |λ(µ)|
is maximized for µ = ρ(GJ) =: β and for this value of µ we obtain (9.21) for
0 < ω ≤ ω̃(β) = ω∗.

Evidently ρ(Gω) = ω−1 is strictly increasing in ω∗ < ω < 2. Equation (9.23)
will follow if we can show that ρ(Gω) is strictly decreasing in 0 < ω < ω∗. By
differentiation

d

dω

(
ωβ +

√
(ωβ)2 − 4(ω − 1)

)
=

β
√

(ωβ)2 − 4(ω − 1) + ωβ2 − 2√
(ωβ)2 − 4(ω − 1)

.

Since β2(ω2β2 − 4ω + 4) < (2 − ωβ2)2 the numerator is negative and the strict
decrease of ρ(Gω) in 0 < ω < ω∗ follows.

128 Chapter 9. The Classical Iterative Methods

Chapter 10

The Conjugate Gradient
Method

The conjugate gradient method is an iterative method for solving large sparse linear
systems Ax = b with a symmetric positive definite coefficient matrix A ∈ Rn,n.
It can also be used to minimize a quadratic function Q : Rn → R given by
Q(x) = 1

2x
TAx − xT b, see the following chapter. We compute a sequence of

approximations to the exact solution. Each new approximation x(k+1) is computed
from the previous x(k) by a formula of the form

x(k+1) = x(k) + αkp
(k), (10.1)

where p(k) is a vector, the search direction, and αk is a scalar determining the
step length. A characteristic of the method is that the residuals r(k) := b−Ax(k)

(the negative gradients of Q(x(k))) are orthogonal (or conjugate), i. e., (r(i), r(j)) =
0 for i ̸= j, where (x,y) := xTy is the usual inner product in Rn. This orthog-
onality property has given the method its name. If r(0), . . . , r(n−1) are nonzero
then r(0), . . . , r(n) are n + 1 orthogonal vectors in Rn and r(n) must be zero. It
follows that the conjugate gradient method is a direct method. The exact solution
is found in a finite number of operations. In practice, however the method is used as
an iterative method for large linear systems since the residuals become small quite
rapidly. For the Poisson problem the method converges as fast as the SOR-method
with optimal acceleration parameter and we do not have to estimate the parameter.
The conjugate gradient method was first published as a direct method in [7]. It was
only some 20-30 years later that the iterative nature was seriously appreciated.

The number of iterations to achieve a desired accuracy is essentially propor-
tional to the square root of the 2-norm condition number of the coefficient matrix
of the linear system. Thus the smaller the condition number the faster the method
converges.

Before deriving the method we give the algorithm, discuss implementation and
give numerical examples.

129

130 Chapter 10. The Conjugate Gradient Method

10.1 The Conjugate Gradient Algorithm
Suppose A ∈ Rn,n is symmetric positive definite and let b ∈ Rn. To solve the linear
system Ax = b we choose an initial guess x(0) ∈ Rn, set p(0) := r(0) := b−Ax(0)

and generate a sequence of vectors {x(k)} as follows:

For k = 0,1, 2, . . .

x(k+1) := x(k) + αkp
(k), αk :=

(r(k), r(k))

(p(k),Ap(k))
, (10.2)

r(k+1) := r(k) − αkAp(k), (10.3)

p(k+1) := r(k+1) + βkp
(k), βk :=

(r(k+1), r(k+1))

(r(k), r(k))
. (10.4)

Here (u,v) := uTv is the usual inner product of two vectors.
By induction on k we have r(k) = b − Ax(k). This follows by definition for

k = 0, and if it holds for k then by (10.3) and (10.2) r(k+1) = r(k) − αkAp(k) =
b−Ax(k) − αkAp(k) = b−A(x(k) + αkp

(k)) = b−Ax(k+1).

Example 10.1 Consider the linear system[
2 −1
−1 2

] [
x1

x2

]
=

[
1
0

]
.

Starting with x(0) = 0 we set p(0) = r(0) = b = [1, 0]T . Using (10.2) we find

α0 = (r(0),r(0))
(p(0),Ap(0))

= 1
2 . Then x(1) = x(0) + α0p

(0) = [00] +
1
2 [

1
0] =

[
1/2
0

]
and from

(10.3) we find r(1) = r(0) − α0Ap(0) = [10] − 1
2

[
2
−1

]
=

[
0

1/2

]
. By (10.4) we find

β0 = (r(1),r(1))
(r(0),r(0))

= 1
4 so that

p(1) = r(1) + β0p
(0) =

[
0

1/2

]
+

1

4
[10] =

[
1/4
1/2

]
.

Continuing with the next iteration we obtain α1 = (r(1),r(1))
(p(1),Ap(1))

= 2
3 and x(2) =

x(1) + α1p
(1) =

[
1/2
0

]
+ 2

3

[
1/4
1/2

]
=

[
2/3
1/3

]
. Since r(2) = r(1) − α1Ap(1) = 0 this is

the exact solution found in n = 2 iterations.

Exercise 10.2 Do one iteration with the conjugate gradient method when x(0) = 0.

(Answer: x(1) = (b,b)
(b,Ab)b.)

Exercise 10.3 Do two conjugate gradient iterations for the system[
2 −1

−1 2

] [
x1

x2

]
=

[
0
3

]
starting with x(0) = 0.

10.2. Numerical Example 131

The formulas in (10.2)-(10.4) and the previous discussion form a basis for an
algorithm.

Algorithm 10.4 (Conjugate Gradient Iteration) The symmetric positive
definite linear system Ax = b is solved by the conjugate gradient method.
x is a starting vector for the iteration. The iteration is stopped when
||r(k)||2/||r(0)||2 ≤ tol or k > itmax. K is the number of iterations used.

function [x,K]=cg(A,b,x,tol ,itmax)

r=b-A*x; p=r; rho=r’*r;

rho0=rho; for k=0: itmax

if sqrt(rho/rho0)<= tol

K=k; return

end

t=A*p; a=rho/(p’*t);

x=x+a*p; r=r-a*t;

rhos=rho; rho=r’*r;

p=r+(rho/rhos)*p;

end

K=itmax +1;

The work involved in each iteration is

1. one matrix times vector (t = Ap),

2. two inner products ((p, t) and (r, r)),

3. three vector-plus-scalar-times-vector (x = x + ap, r = r − at and p = r +
(rho/rhos)p),

The dominating part is the computation of t = Ap.

10.2 Numerical Example
We test the method on the example used in Chapter 9. The matrix is given by
the Kronecker sum T 2 := T 1 ⊗ I + I ⊗ T 1 where T 1 = tridiagm(a, d, a). We
recall that this matrix is symmetric positive definite if d > 0 and d ≥ 2|a|. We set
h = 1/(m+ 1) and f = [1, . . . , 1]T ∈ Rn.

Note that for our test problems T 2 only has O(5n) nonzero elements. There-
fore, taking advantage of the sparseness of T 2 we can compute t in Algorithm 10.4 in
O(n) flops. With such an implementation the total number of flops in one iteration
is O(n). We also note that it is not necessary to store the matrix T 2.

To use the Conjugate Gradient Algorithm on the test matrix for large n it is ad-
vantageous to use a matrix equation formulation. We define matrices V ,R,P ,B,T ∈
Rm,m by x = vec(V), r = vec(R), p = vec(P), t = vec(T), and h2f = vec(B).
Then T 2x = h2f ⇐⇒ T 1V + V T 1 = B, and t = T 2p ⇐⇒ T = T 1P + PT 1.

This leads to the following algorithm for testing the conjugate gradient algo-
rithm.

132 Chapter 10. The Conjugate Gradient Method

n 2 500 10 000 40 000 1 000 000 4 000 000
K 13 12 11 9 8

Table 10.6. The number of iterations K for the averaging problem on a√
n×

√
n grid for various n

n 2 500 10 000 40 000 160 000
K 80 160 321 647
K/

√
n 1.6 1.6 1.61 1.62

Table 10.7. The number of iterations K for the Poisson problem on a√
n×

√
n grid for various n

Algorithm 10.5 (Testing Conjugate Gradient) x

A = tridiagm(a, d, a)⊗ Im + Im ⊗ tridiagm(a, d, a) ∈ Rm2,m2

function [V,K]= cgtest(m,a,d,tol ,itmax)

R=ones(m)/(m+1)^2; rho=sum(sum(R.*R)); rho0=rho; P=R;

V=zeros(m,m); T1=sparse(tridiagonal(a,d,a,m));

for k=1: itmax

if sqrt(rho/rho0)<= tol

K=k; return

end

T=T1*P+P*T1; a=rho/sum(sum(P.*T)); V=V+a*P; R=R-a*T;

rhos=rho; rho=sum(sum(R.*R)); P=R+(rho/rhos)*P;

end

K=itmax +1;

Consider first the averaging matrix given by a = 1/9 and d = 5/18. Starting
with x(0) = 0 and tol = 10−8 we obtain the values in Table 10.6.

The convergence is quite rapid. Note that each iteration only requires O(n)
flops and since it appears that the number of iterations can be bounded indepen-
dently of n, we solve the problem in O(n) operations. This is the best we can do
for a problem with n unknowns.

Consider next the Poisson problem corresponding to a = −1 and d = 2. Again
starting with x(0) = 0 and tol = 10−8 and using CG in the form of Algorithm 10.5
we list K, the required number of iterations, and K/

√
n. We obtain the values in

Table 10.7.
The results show thatK is much smaller than n and appears to be proportional

to
√
n. This is the same speed as for SOR and we don’t have to estimate any

acceleration parameter.
We will show in Section 10.4 that the number of iterations to achieve ∥r∥2/∥r∥0 ≤

tol is bounded by the square root of the 2-norm condition number of T 2.

10.3. Derivation and Basic Properties 133

For the averaging problem it follows from (4.22) that the largest and smallest
eigenvalue of T 2 are λmax = 5

9 + 4
9 cos (πh) and λmin = 5

9 − 4
9 cos (πh). Thus

cond2(T 2) =
λmax

λmin
=

5 + 4 cos(πh)

5− 4 cos(πh)
≤ 9.

Thus the condition number is independent of n and the number of iterations can
be bounded independently of n.

For the Poisson problem we find

cond2(T 2) =
λmax

λmin
=

1 + cos(πh)

1− cos(πh)
= cond2(T) = O(n)

and we solve the discrete Poisson problem in O(n3/2) flops. Again this is the same
as for the SOR method and for the fast method without the FFT. In comparison
the Cholesky Algorithm requires O(n2) flops both for the averaging and the Poisson
problem.

10.3 Derivation and Basic Properties
Let A ∈ Rn,n be symmetric positive definite. We will use two inner products on Rn

1. (x,y) := xTy

2. ⟨x,y⟩ := xTAy.

The first product is the usual inner product corresponding to the Euclidian norm,
while the second product, called the A-product or the energy product, is an inner
product since A is symmetric positive definite.

Exercise 10.8 Show that the A-inner product is an inner product.

We note that
⟨x,y⟩ = (x,Ay) = (Ax,y).

The associated norm
∥x∥A :=

√
⟨x,x⟩

is called the A-norm or energy norm of x. Two vectors x,y ∈ Rn are orthog-
onal if (x,y) = 0 and A-orthogonal if ⟨x,y⟩ = 0.

Suppose x(0) ∈ Rn is an initial approximation to the solution of the linear
system Ax = b and let r(0) := b − Ax(0) be the corresponding residual. We
consider the Krylov subspaces Wk of Rn defined by W0 = {0} and

Wk = span(r(0),Ar(0),A2r(0), . . . ,Ak−1r(0)), k = 1, 2, 3, · · · .

The Krylov spaces are nested subspaces

W0 ⊂ W1 ⊂ W2 ⊂ · · · ⊂ Wn ⊂ Rn

134 Chapter 10. The Conjugate Gradient Method

r
k

W
k

(r , w)=0k

k

W
k-1

<r , w>=0k

r k

W
k

<p , w>=0

p

k

Figure 10.10. Orthogonality in the conjugate gradient algorithm.

with dim(Wk) ≤ k for all k ≥ 0. We also note that if w ∈ Wk then Aw ∈ Wk+1.
This implies

r(k−1),p(k−1),x(k) − x(0) ∈ Wk, k = 1, 2, (10.5)

For since p(0) = r(0) and x(1) − x(0) = α0p
(0) this holds for k = 1 and it holds for

any k ≥ 1 by induction.

Theorem 10.9 Suppose r(j) ̸= 0 for j = 0, 1, . . . , k. Then

1. {r(0), r(1), . . . , r(k)} is an orthogonal basis for Wk+1.

2. {p(0),p(1), . . . ,p(k)} is an A-orthogonal basis for Wk+1.

Proof. We show using induction on k that

1. {r(0), r(1), . . . , r(k)} is an orthogonal basis for Wk+1.

2.

p(j) = r(j) −
j−1∑
i=0

⟨r(j),p(i)⟩
⟨p(i),p(i)⟩

p(i), j ≤ k. (10.6)

Thus, {p(0), . . . ,p(k)} is the result of applying the Gram-Schmidt orthogonalization
process to the linearly independent residuals {r(0), . . . , r(k)} using the inner product
⟨·, ·⟩ (cf. Theorem A.50).

The claims hold for k = 0. If they hold for k then (r(k), r(i)) = ⟨p(k),p(i)⟩ = 0
for i < k. For j = 0, 1, . . . , k

(r(k+1), r(j)) = (r(k) − αkAp(k), r(j))

= (r(k), r(j))− αk⟨p(k),p(j) − βj−1p
(j−1)⟩

= (r(k), r(j))− αk⟨p(k),p(j)⟩.

This is zero for j < k and vanishes for j = k by the formula for αk. Since r(j) is
nonzero and r(j) ∈ Wj+1 ⊂ Wk+1 for j ≤ k Claim 1. follows.

10.3. Derivation and Basic Properties 135

By what we have shown ⟨r(k+1),w⟩ = 0 for w ∈ Wk. But then ⟨r(k+1),p(i)⟩ =
0 for i ≤ k−1 since p(i) ∈ Wi+1 ⊂ Wk for i ≤ k−1. Now (10.6) follows for j = k+1
since

r(k+1) −
k∑

i=0

⟨r(k+1),p(i)⟩
⟨p(i),p(i)⟩

p(i) = r(k+1) − ⟨r(k+1),p(k)⟩
⟨p(k),p(k)⟩

p(k)

= r(k+1) − (r(k+1),Ap(k))

⟨p(k),p(k)⟩
p(k)

= r(k+1) − (r(k+1), r(k) − r(k+1))

αk⟨p(k),p(k)⟩
p(k)

= r(k+1) +
(r(k+1), r(k+1))

(r(k), r(k))
p(k)

= r(k+1) + βkp
(k) = p(k+1).

Since any w ∈ Wk is a linear combination of {r(0), r(1), . . . , r(k−1)} and also
{p(0),p(1), . . . ,p(k−1)} Theorem 10.9 implies

(r(k),w) = ⟨p(k),w⟩ = 0, w ∈ Wk. (10.7)

These orthogonal properties are illustrated in Figure 10.10.
The orthogonality of the residuals implies the following best approximation

property of the sequence of iterates{x(k)} in the conjugate gradient algorithm.

Corollary 10.11 Suppose Ax = b, where A ∈ Rn,n is symmetric positive definite
and {x(k)} is generate by the conjugate gradient algorithm. Then x(k) −x(0) is the
best approximation to x− x(0) in the A-norm

∥x− x(k)∥A = min
w∈Wk

∥x− x(0) −w∥A. (10.8)

Proof. By (10.7)

0 = (r(k),w) = (Ax−Ax(k),w) = ⟨x− x(k),w⟩ = ⟨v − p,w⟩, w ∈ Wk,

where v := x− x(0) and p := x(k) − x(0). By (10.5) it follows that p ∈ Wk. Thus,
p is the A-orthogonal projection of v into Wk, and since v−p = x−x(k) the result
follows from Theorem A.52.

Exercise 10.12 Consider the linear system Ax = b where

A =

 2 −1 0
−1 2 −1
0 −1 2

 , and b =

 4
0
0

 .

136 Chapter 10. The Conjugate Gradient Method

a) Determine the vectors defining the Krylov spaces for k ≤ 3 taking as initial

approximation x = 0. Answer: [b,Ab,A2b] =

 4 8 20
0 −4 −16
0 0 4

 .

b) Carry out three CG-iterations on Ax = b. Answer:

[x(0),x(1),x(2),x(3)] =

 0 2 8/3 3
0 0 4/3 2
0 0 0 1

 ,

[r(0), r(1), r(2), r(3)] =

 4 0 0 0
0 2 0 0
0 0 4/3 0

 ,

[Ap(0),Ap(1),Ap(2)] =

 8 0 0
−4 3 0
0 −2 16/9

 ,

[p(0),p(1),p(2),p(3)] =

 4 1 4/9 0
0 2 8/9 0
0 0 12/9 0

 ,

c) Verify that

• dim(Wk) = k for k = 0, 1, 2, 3.

• x(3) is the exact solution of Ax = b.

• r(0), . . . , r(k−1) is an orthogonal basis for Wk for k = 1, 2, 3.

• p(0), . . . ,p(k−1) is an A-orthogonal basis for Wk for k = 1, 2, 3.

• {∥r(k)∥} is monotonically decreasing.

• {∥x(k) − x∥} is monotonically decreasing.

Exercise 10.13 Study the proof of Lemma 10.21 which shows that for the Eu-
clidean norm

∥x(k+1) − x∥2 ≤ ∥x(k) − x∥2, k ≥ 1.

Exercise 10.14 Consider solving the least squares problem by using the conjugate
gradient method on the normal equations ATAx = AT b. Explain why only the
following modifications in Algorithm 10.4 are necessary

1. r=A’(b-A*x); p=r;

2. a=rho/(t’*t);

3. r=r-a*A’*t;

Note that the condition number of the normal equations is cond2(A)2, the square of
the condition number of A.

10.4. Convergence 137

10.4 Convergence
The main result in this section is the following theorem.

Theorem 10.15 Suppose we apply the conjugate gradient method to a symmetric
positive definite system Ax = b. Then the A-norms of the errors satisfy

||x− x(k)||A
||x− x(0)||A

≤ 2

(√
κ− 1√
κ+ 1

)k

, for k ≥ 0,

where κ = cond2(A) = λmax/λmin is the 2-norm condition number of A.

This theorem explains what we observed in the previous section. Namely that
the number of iterations is linked to

√
κ, the square root of the condition number of

A. Indeed, the following corollary gives an upper bound for the number of iterations
in terms of

√
κ.

Corollary 10.16 If for some ϵ > 0 we have k ≥ 1
2 log(

2
ϵ)
√
κ then ∥x−x(k)∥mA

∥x−x(0)∥A
≤ ϵ.

We prove Theorem 10.15 for x(0) = 0. By Corollary 10.11 x(k) is the best
approximation to the solution x in the A-norm. We convert this best approxi-
mation property into a best approximation problem involving polynomials. In the
following we let Πk denote the class of univariate polynomials of degree ≤ k with
real coefficients.

Theorem 10.17 Suppose Ax = b where A ∈ Rn,n is symmetric positive defi-
nite with eigenvalues λ1, . . . , λn and corresponding orthonormal eigenvectors u1,u2,
. . . ,un. Then

||x− x(k)||2A = min
Q∈Πk

Q(0)=1

n∑
j=1

σ2
j

λj
Q(λj)

2, (10.9)

where the σj’s are the coefficients when b is expanded in terms of the basis of
eigenvectors of A, b =

∑n
j=1 σjuj.

Proof. If w ∈ Wk = span(b,Ab, . . . ,Ak−1b) then for some a0, . . . , ak−1

w =
k−1∑
j=0

ajA
jb = P (A)b,

where
P (A) = a0I + a1A+ a2A

2 + · · ·+ ak−1A
k−1

is a matrix polynomial corresponding to the ordinary polynomial P (t) = a0+a1t+
· · ·+ ak−1t

k−1 of degree ≤ k − 1. Then

||x−w||2A =
(
x−w,A(x−w)

)
=

(
A−1(b−Aw), b−Aw

)
=

(
A−1(b−AP (A)b), b−AP (A)b

)
=

(
A−1Q(A)b, Q(A)b

)
,

(10.10)

138 Chapter 10. The Conjugate Gradient Method

where Q(A) = I − AP (A) is another matrix polynomial corresponding to the
polynomial Q(t) = 1 − tP (t). Observe that Q ∈ Πk and Q(0) = 1. Using the
eigenvector expansion for b we obtain

Q(A)b =

n∑
j=1

σjQ(A)uj =

n∑
j=1

σjQ(λj)uj . (10.11)

The last equality follows from (D.3). We also have

A−1Q(A)uj = Q(λj)A
−1uj =

Q(λj)

λj
uj . (10.12)

Combining (10.10),(10.11), and (10.12) we find

||x−w||2A =
(
A−1Q(A)b, Q(A)b

)
=

(n∑
i=1

σi
Q(λi)

λi
ui,

n∑
j=1

σjQ(λj)uj

)

=
∑
i,j

σiσj
Q(λi)Q(λj)

λi
(ui,uj) =

n∑
j=1

σ2
j

Q(λj)
2

λj
.

Minimizing over w is the same as minimizing over all Q ∈ Πk with Q(0) = 1 and
the proof is complete.

We will use the following weaker form of Theorem 10.17 to estimate the rate
of convergence.

Corollary 10.18 Suppose [a, b] with 0 < a < b is an interval containing all the
eigenvalues of A. Then for all Q ∈ Πk with Q(0) = 1 we have

||x− x(k)||A
||x− x(0)||A

≤ max
a≤x≤b

|Q(x)|.

Proof. In the proof of Theorem 10.17 we showed that to each w ∈ Wk there
corresponds a polynomial Q ∈ Πk with Q(0) = 1 such that

||x−w||2A =
n∑

j=1

σ2
j

Q(λj)
2

λj
.

Taking w = x(0) we find ||x−x(0)||2A =
∑n

j=1

σ2
j

λj
. Therefore, by Theorem 10.17 for

any w ∈ Wk

||x− x(k)||2A ≤ ||x−w||2A ≤ max
a≤x≤b

|Q(x)|2
n∑

j=1

σ2
j

λj
= max

a≤x≤b
|Q(x)|2||x− x(0)||2A

and the result follows by taking square roots.

10.4. Convergence 139

We will apply Corollary 10.18 with Q(x) a suitably shifted and normalized
version of the Chebyshev poynomial. Recall that the Chebyshev polynomial of
degree n is defined recursively by

Tn+1(t) = 2tTn(t)− Tn−1(t), n ≥ 1

starting with T0(t) = 1 and T1(t) = t. Thus T2(t) = 2t2 − 1, T3(t) = 4t3 − 3t etc.
In general Tn is a polynomial of degree n. There are some convenient closed form
expressions for Tn.

Lemma 10.19 For n ≥ 0

1. Tn(t) = cos (narccos t) for t ∈ [−1, 1],

2. Tn(t) =
1
2

[(
t+

√
t2 − 1

)n
+
(
t+

√
t2 − 1

)−n]
for |t| ≥ 1.

Proof. 1. With Pn(t) = cos (n arccos t) we have Pn(t) = cosnϕ, where t = cosϕ.
Therefore

Pn+1(t) + Pn−1(t) = cos (n+ 1)ϕ+ cos (n− 1)ϕ = 2 cosϕ cosnϕ = 2tPn(t)

and it follows that Pn satisfies the same recurrence relation as Tn. Since P0 = T0

and P1 = T1 we have Pn = Tn for all n ≥ 0.
2. Fix t with |t| ≥ 1 and let xn := Tn(t) for n ≥ 0. The recurrence relation

for the Chebyshev polynomials can then be written

xn+1 − 2txn + xn−1 = 0 for n ≥ 1, with x0 = 1, x1 = t. (10.13)

To find xn we insert xn = zn into (10.13) and obtain zn+1 − 2tzn + zn−1 = 0 or
z2 − 2tz + 1 = 0. Let z1 and z2 be the roots of this quadratic equation. Then
zn1 , z

n
2 and more generally c1z

n
1 + c2z

n
2 are solutions of (10.13) for any constants c1

and c2. We find these constants from the initial conditions x0 = c1 + c2 = 1 and
x1 = c1z1 + c2z2 = t. Since z1 + z2 = 2t the solution is c1 = c2 = 1

2 . Solving the

quadratic equation we find z1 = α := t +
√
t2 − 1 and z2 = α−1. It follows that

xn = Tn(t) =
1
2 (α

n + α−n) which is the same as 2.

Exercise 10.20 Show that

Tn(t) = cosh(narccosh t) for |t| ≥ 1,

where arccosh is the inverse function of coshx := (ex + e−x)/2.

Proof of Theorem 10.15.

Proof. Let λ1, . . . , λn be the eigenvalues of A and let k ≥ 0. We apply Corol-
lary 10.18 with a = minλj , b = maxλj , and

Q(x) = Tk

(
b+ a− 2x

b− a

)
/Tk

(
b+ a

b− a

)
. (10.14)

140 Chapter 10. The Conjugate Gradient Method

Note that Q is admissible since Q ∈ Πk with Q(0) = 1. By Lemma 10.19

max
a≤x≤b

∣∣∣∣Tk

(
b+ a− 2x

b− a

)∣∣∣∣ = max
−1≤t≤1

∣∣Tk(t)
∣∣ = 1. (10.15)

Moreover with t = (b+ a)/(b− a) we have

t+
√
t2 − 1 =

√
κ+ 1√
κ− 1

, κ = b/a.

Thus again by Lemma 10.19 we find

Tk

(
b+ a

b− a

)
=

1

2

[(√
κ+ 1√
κ− 1

)k

+

(√
κ− 1√
κ+ 1

)k
]
≥ 1

2

(√
κ+ 1√
κ− 1

)k

. (10.16)

Using (10.15) and (10.16) in (10.14) completes the proof.

Proof of Corollary 10.16.

Proof. The inequality
x− 1

x+ 1
< e−2/x for x > 1 (10.17)

follows from the familiar series expansion of the exponential function. Indeed, with
y = 1/x we find

e2/x = e2y =
∞∑
k=0

(2y)k

k!
< 1 + 2

∞∑
k=1

yk =
1 + y

1− y
=

x+ 1

x− 1

and (10.17) follows. By Theorem 10.15 we then find

||x− x(k)||A
||x− x(0)||A

≤ 2

(√
κ− 1√
κ+ 1

)k

< 2e−2k/
√
κ.

Solving the inequality 2e−2k/
√
κ < ϵ leads immediately to the result.

The Euclidian norm of the residuals b − Ax(k) in the conjugate gradient it-
eration decreases monotonically (cf. Exercise 10.13). The following lemma shows
that the Euclidian norm of the errors x− x(k) are also monotonically decreasing.

Lemma 10.21 Let x be the exact solution of Ax = b, define ϵk = x − x(k) for
k ≥ 0 and let ∥ ∥ denote the Euclidian vector norm. If p(j) ̸= 0 for j ≤ k then
∥ϵk+1∥2 < ∥ϵk∥2. More precisely,

∥ϵk+1∥22 = ∥ϵk∥22 −
∥p(k)∥22
∥p(k)∥2A

(
∥ϵk+1∥2A + ∥ϵk∥2A

)
. (10.18)

10.4. Convergence 141

Proof. Set
ρj := ∥r(j)∥22 and πj := ∥p(j)∥2A, j ≥ 0

and let m be the smallest integer such that ∥ϵm∥2 = 0. Since p(j) ̸= 0 for j ≤ k we
have dimWk+1 = k + 1 which implies that r(k) ̸= 0 and hence m > k. For j < m

x(j+1) = x(j) + αjp
(j) = x(j−1) + αj−1p

(j−1) + αjp
(j) = · · · = x(0) +

j∑
i=0

αip
(i)

so that

ϵj = x(m) − x(j) =

m−1∑
i=j

αip
(i), αi =

ρi
πi

. (10.19)

For j > k

(p(j),p(k)) = (r(j)+βj−1p
(j−1),p(k)) = βj−1(p

(j−1),p(k)) = · · · = βj−1 · · ·βk(p
(k),p(k))

and since βj−1 · · ·βk = ρj/ρk we obtain

(p(j),p(k)) =
ρj
ρk

(p(k),p(k)), j ≥ k. (10.20)

By A-orthogonality and (10.19)

∥ϵj∥2A = ⟨
m−1∑
i=j

αip
(i),

m−1∑
i=j

αip
(i)⟩ =

m−1∑
i=j

α2
iπi =

m−1∑
i=j

ρ2i
πi

. (10.21)

Now

∥ϵk∥22 = ∥ϵk+1 + x(k+1) − x(k)∥22 = ∥ϵk+1 + αkp
(k)∥22

= ∥ϵk+1∥22 + αk

(
2
(
p(k), ϵk+1

)
+ αk∥p(k)∥22

)
.

(10.22)

and moreover

αk

(
2
(
p(k), ϵk+1

)
+ αk∥p(k)∥22

) (10.19)
= αk

(
2

m−1∑
j=k+1

αj

(
p(j),p(k)

)
+ αk∥p(k)∥22

)
(10.20)
= αk

(
2

m−1∑
j=k+1

αj
ρj
ρk

∥p(k)∥22 + αk∥p(k)∥22
)
=

∥p(k)∥22
πk

(m−1∑
j=k

ρ2j
πj

+

m−1∑
j=k+1

ρ2j
πj

)
(10.21)
=

∥p(k)∥22
πk

(
∥ϵk∥2A + ∥ϵk+1∥2A

)
.

Inserting this in (10.22) proves the lemma.

142 Chapter 10. The Conjugate Gradient Method

Chapter 11

Minimization and
Preconditioning

We continue the study of the conjugate gradient method. Recall that the rate of
convergence depends on the square root of the condition number of the coefficient
matrix. For problems with a large condition number the convergence can be slow.
For such problems a preconditioned conjugate gradient method is often used, and we
consider this method here.

The conjugate gradient method can also be used as a minimization algorithm
and we start discussing some aspects of minimization of quadratic functions.

11.1 Minimization
If A is symmetric positive definite then the quadratic function

Q(x) :=
1

2
xTAx− bTx, x ∈ Rn

has a unique global minimum x∗ ∈ Rn which is found by setting the gradient
g(x) := ∇Q(x) = Ax− b equal to zero (cf. Appendix G). So we find the minimum
as a solution of the linear system Ax∗ = b. We see also that the gradient of Q(x)
is equal to the residual of Ax = b, i.e. g(x) = Ax− b = r(x).

A general class of minimization algorithms for Q is given as follows:

1. Choose x(0) ∈ Rn.

2. For k = 0, 1, 2, . . .

(a) Choose a “search direction” d(k).

(b) Choose a “step length” σk.

(c) x(k+1) = x(k) + σkd
(k).

We would like to generate a sequence {x(k)} of points such that {x(k)} converges
quickly to the minimum x of Q.

143

144 Chapter 11. Minimization and Preconditioning

We can think of Q(x) as a paraboloid. To see this, let A = UDUT , where U
is orthogonal and D = diag(λ1, . . . , λn) is diagonal, be the spectral decomposition
of A and change variables to v = [v1, . . . , vn] := UTx and c := UT b = [c1, . . . , cn].
Then

Q(x) =
1

2
xTUDUTx− bTUUTx =

1

2
vTDv − cTv =

1

2

n∑
j=1

λjv
2
j −

n∑
j=1

cjvj .

In particular for n = 2 we have z := 1
2λ1v

2
1 +

1
2λ2v

2
2 − c1v1 − c2v2 and since λ1 and

λ2 are positive this is the equation for a paraboloid in (v1, v2, z) space as shown in
the following figure.

Suppose x(k) ≈ x∗. To find a better approximation to the minimum we choose
a search direction d(k) and go from x(k) along d(k) a certain distance determined
by σk. To see how σk and d(k) should be chosen, we note that

Q(x(k+1)) = Q(x(k)) + σk(d
(k), r(k)) +

1

2
σ2
k⟨d

(k),d(k)⟩, (11.1)

where r(k) = Ax(k)−b. SinceA is symmetric positive definite, we have σ2
k⟨d

(k),d(k)⟩ >
0 for all nonzero σk and d(k). In order to make Q(x(k+1)) smaller than Q(x(k)), we

must at least pick σk and d(k) such that σk(d
(k), r(k)) < 0. For such a direction we

can determine the step length σk = σ∗
k such that Q(x(k+1)) is as small as possible,

i.e.

Q(x(k+1)) = min
σ∈R

Q(x(k) + σd(k)).

Differentiating with respect to σk in (11.1) and setting the right-hand side equal to
zero, we find

σ∗
k := − (d(k), r(k))

⟨d(k),d(k)⟩
. (11.2)

11.2. Preconditioning 145

We find ∂2Q
∂σ2

k
= ⟨d(k),d(k)⟩ > 0 =⇒ Q(x(k) +σ∗

kd
(k)) = minσ∈R Q(x(k) +σd(k)) and

σ∗
k is called optimal with respect to d(k).

In the method of Steepest Descent we choose d(k) = −r(k) and σk = σ∗
k so

that

x(k+1) = x(k) +
(r(k), r(k))

⟨r(k), r(k)⟩
r(k), k = 0, 1, 2, (11.3)

The method of steepest descent will converge very slowly ifA is ill-conditioned.
For then the ratio of the smallest and biggest eigenvalue becomes large and the
paraboloid becomes very distorted. In this case the residuals need not point in
the direction of the minimum. It can be shown that the number of iterations is
proportional to the two-norm condition number λmax/λmin of A.

Consider now the conjugate gradient method. Here we choose A-orthogonal
search directions d(k) = −p(k). Since by (10.1) x(k+1) = x(k) + αkp

(k) where
αk = (p(k), r(k))/(p(k),Ap(k)), we see that the step length −αk is optimal with
respect to −p(k). Moreover the gradients {r(k)} are orthogonal. It can also be
shown that

Q(x(k+1)) = min
w∈Wk+1

Q(x(0) + w) (11.4)

and in the next section we show that the number of iterations is proportional to
the square root of the two-norm condition number of A. So the conjugate gradient
minimization algorithm converges much faster that the method of steepest descent
for problems where the ratio λmax/λmin is large.

Conjugate gradient like algorithms can be used to minimize more general
functions than Q, see [15].

Exercise 11.1 Show that (r(k), r(k+1) = 0 in the method of steepest descent. Does
this mean that all the residuals are orthogonal?

Exercise 11.2 Let Q(x) = xTAx− 2bTx have a minimum at x∗ ∈ Rn.

a) Show that Q(x) = ∥x∗ − x∥2A − ∥x∗∥2A for any x ∈ Rn.

b) Show (11.4).

11.2 Preconditioning
For problems Ax = b of size n where both n and cond2(A) are large it is often
possible to improve the performance of the conjugate gradient method by using a
technique known as pre-conditioning. Instead of Ax = b we consider an equiv-
alent system BAx = Bb, where B is nonsingular and cond2(BA) is smaller than
cond2(A). We cannot use CG on BAx = Bb directly since BA in general is not
symmetric even if bothA andB are. But ifB is symmetric positive definite then we
can apply CG to a symmetrized system and then transform the recurrence formulae
to an iterative method for the original system Ax = b. This iterative method is

146 Chapter 11. Minimization and Preconditioning

known as the pre-conditioned conjugate gradient method. We shall see that
the convergence properties of this method is determined by the eigenvalues of BA.

Suppose B is symmetric positive definite. By Theorem 3.33 there is a non-
singular matrix C such that B = CTC. (C is only needed for the derivation and
will never be computed). Now

BAx = Bb ⇔ CT (CACT)C−Tx = CTCb ⇔ (CACT)y = Cb, & x = CTy.

We have 3 linear systems

Ax = b (11.5)

BAx = Bb (11.6)

(CACT)y = Cb, & x = CTy. (11.7)

Note that (11.5) and (11.7) are symmetric positive definite linear systems. In ad-
dition to being symmetric positive definite the matrix CACT is similar to BA.
Indeed,

CT (CACT)C−T = BA.

Thus CACT and BA have the same eigenvalues. Therefore if we apply the conju-
gate gradient method to (11.7) then the rate of convergence will be determined by
the eigenvalues of BA.

We apply the conjugate gradient method to (CACT)y = Cb. Denoting the
search direction by q(k) and the residual by z(k) = CACTy(k) −Cb we obtain the
following from (10.2), (10.3), and (10.4).

y(k+1) = y(k) + αkq
(k), αk = (z(k), z(k))/(q(k), (CACT)q(k)),

z(k+1) = z(k) + αk(CACT)q(k),

q(k+1) = z(k+1) + βkq
(k), βk = (z(k+1), z(k+1))/(z(k), z(k)).

With

x(k) := CTy(k), p(k) := CTq(k), s(k) := CTz(k), r(k) := C−1z(k) (11.8)

this can be transformed into

x(k+1) = x(k) + αkp
(k), αk = (s(k), r(k))/⟨p(k),p(k)⟩, (11.9)

r(k+1) = r(k) + αkAp(k), (11.10)

s(k+1) = s(k) + αkBAp(k), (11.11)

p(k+1) = s(k+1) + βkp
(k), βk = (s(k+1), r(k+1))/(s(k), r(k)). (11.12)

Here x(k) will be an approximation to the solution x of Ax = b, r(k) =
Ax(k) − b is the residual in the original system and s(k) = BAx(k) − Bb is the
residual in the preconditioned system. This follows since by (11.8)

r(k) = C−1z(k) = C−1CACTy(k) − b = Ax(k) − b

11.2. Preconditioning 147

and s(k) = CTz(k) = CTCr(k) = Br(k). We now have the following preconditioned
conjugate gradient algorithm for obtaining an approximation x(k) to the solution
of a symmetric positive definite system Ax = b.Algorithm 11.3 (Preconditioned Conjugate Gradient Algorithm)

1. Choose a starting vector x(0) (for example x(0) = 0)

2. r0 = Ax(0) − b, p0 = s0 = Br0

3. ρ0 = (s0, r0); k = 0

4. while
√

ρk/ρ0 > ϵ & k < kmax

4.1a tk = Ap(k)

4.1b wk = Btk

4.2 αk = ρk/(p
(k), tk)

4.3 x(k+1) = x(k) + αkp
(k)

4.4a r(k+1) = r(k) + αktk (r(k) = Ax(k) − b)

4.4b s(k+1) = s(k) + αkwk (s(k) = BAx(k) −Bb)

4.5 ρk+1 = (s(k+1), r(k+1))

4.6 p(k+1) = s(k+1) +
ρk+1

ρk
p(k)

4.7 k = k + 1

This algorithm is quite similar to Algorithm 10.4. The main additional work
is contained in statement 4.1b. We’ll discuss this further in connection with an
example.

We have the following convergence result for this algorithm.

Theorem 11.4 Suppose we apply a symmetric positive definite preconditioner B to
the symmetric positive definite system Ax = b. Then the quantities x(k) computed
in Algorithm 11.3 satisfy the following bound:

||x− x(k)||A
||x− x(0)||A

≤ 2

(√
κ− 1√
κ+ 1

)k

, for k ≥ 0,

where κ = λmax/λmin is the ratio of the largest and smallest eigenvalue of BA.

Proof. Since Algorithm 11.3 is equivalent to solving (11.7) by the conjugate gra-
dient method Theorem 10.15 implies that

||y − y(k)||CACT

||y − y0||CACT

≤ 2

(√
κ− 1√
κ+ 1

)k

, for k ≥ 0,

where y(k) is the conjugate gradient approximation to the solution y of (11.7) and κ
is the ratio of the largest and smallest eigenvalue of CACT . Since BA and CACT

148 Chapter 11. Minimization and Preconditioning

are similar this is the same as the κ in the theorem. By (11.8) we have

∥y − y(k)∥2CACT = (y − y(k),CACT (y − y(k)))

= (CT (y − y(k)),ACT (y − y(k))) = ∥x− x(k)∥2A

and the proof is complete.

We conclude that B should satisfy the following requirements for a problem
of size n:

1. The eigenvalues of BA should be located in a narrow interval. Preferably one
should be able to bound the length of the interval independently of n.

2. The evaluation of Bx for a given vector x should not be expensive in storage
and flops, ideally O(n) for both.

11.3 Preconditioning Example
Throughout this section we use the same grid and notation as in Section 2.4. Let
h = 1/(m+ 1).

We recall the Poisson problem

−∇2u = −∂2u

∂x2
− ∂2u

∂y2
= f(x, y) for (x, y) ∈ Ω = (0, 1)2 (11.13)

u = 0 on ∂Ω,

where f is a given function, Ω is the unit square in the plane, and ∂Ω is the boundary
of Ω. For numerical solution we have the discrete Poisson problem which can
either be written as a matrix equation

h2fj,k = 4vj,k − vj−1,k − vj+1,k − vj,k−1 − vj,k+1, j, k = 1, . . . ,m

v0,k = vm+1,k = vj,0 = vj,m+1 = 0, j, k = 0, 1, . . . ,m+ 1,

or as a system Apx = b, where x = vec(vi,j), b = h2vec(fi,j) and the elements ai,j
of Ap are given by

aii = 4, i = 1, . . . , n
ai+1,i = ai,i+1 = −1, i = 1, . . . , n− 1, i ̸= m, 2m, . . . , (m− 1)m

ai+m,i = ai,i+m = −1, i = 1, . . . , n−m
aij = 0, otherwise.

11.3.1 A Banded Matrix

Consider the problem

− ∂
∂x

(
c(x, y)∂u∂x

)
− ∂

∂y

(
c(x, y)∂u∂y

)
= f(x, y) (x, y) ∈ Ω = (0, 1)2

u(x, y) = 0 (x, y) ∈ ∂Ω.
(11.14)

11.3. Preconditioning Example 149

Here Ω is the open unit square while ∂Ω is the boundary of Ω. The functions f
and c are given and we seek a function u = u(x, y) such that (11.14) holds. We
assume that c and f are defined and continuous on Ω and that c(x, y) > 0 for all
(x, y) ∈ Ω. The problem (11.14) reduces to the Poisson problem in the special case
where c(x, y) = 1 for (x, y) ∈ Ω .

As for the Poisson problem we solve (11.14) numerically on a grid of points

{(jh, kh) : j, k = 0, 1, . . . ,m+ 1}, where h = 1/(m+ 1),

and where m is a positive integer. Let (x, y) be one of the interior grid points. For
univariate functions f, g we use the central difference approximations

∂

∂t

(
f(t)

∂

∂t
g(t)

)
≈

(
f(t+

h

2
)
∂

∂t
g(t+ h/2)− f(t− h

2
)
∂

∂t
g(t− h

2
)

)
/h

≈
(
f(t+

h

2
)
(
g(t+ h)− g(t)

)
− f(t− h

2
)
(
g(t)− g(t− h)

))
/h2

to obtain

∂

∂x

(
c
∂u

∂x

)
j,k

≈
cj+ 1

2 ,k
(vj+1,k − vj,k)− cj− 1

2 ,k
(vj,k − vj−1,k)

h2

and
∂

∂y

(
c
∂u

∂y

)
j,k

≈
cj,k+ 1

2
(vj,k+1 − vj,k)− cj,k− 1

2
(vj,k − vj,k−1)

h2
,

where cp,q = c(ph, qh) and vj,k ≈ u(jh, kh). With these approximations the discrete
analog of (11.14) turns out to be

−(P hv)j,k = h2fj,k j, k = 1, . . . ,m
vj,k = 0 j = 0,m+ 1 all k or k = 0,m+ 1 all j,

(11.15)

where

−(P hv)j,k = (cj,k− 1
2
+ cj− 1

2 ,k
+ cj+ 1

2 ,k
+ cj,k+ 1

2
)vj,k

− cj,k− 1
2
vj,k−1 − cj− 1

2 ,k
vj−1,k − cj+ 1

2 ,k
vj+1,k − cj,k+ 1

2
vj,k+1

(11.16)
and fj,k = f(jh, kh).

As before we let V = (vj,k) ∈ Rm,m and F = (fj,k) ∈ Rm,m. The correspond-
ing linear system can be written Ax = b where x = vec(V), b = h2vec(F), and
the n-by-n coefficient matrix A is given by

ai,i = cji,ki− 1
2
+ cji− 1

2 ,ki
+ cji+ 1

2 ,ki
+ cji,ki+

1
2
, i = 1, 2, . . . , n

ai+1,i = ai,i+1 = −cji+ 1
2 ,ki

, imodm ̸= 0

ai+m,i = ai,i+m = −cji,ki+
1
2
, i = 1, 2, . . . , n−m

ai,j = 0 otherwise,
(11.17)

where (ji, ki) with 1 ≤ ji, ki ≤ m is determined uniquely from the equation i =
ji + (ki − 1)m for i = 1, . . . , n. When c(x, y) = 1 for all (x, y) ∈ Ω then we recover
the Poisson matrix.

150 Chapter 11. Minimization and Preconditioning

In general we cannot write A as a matrix equation of the form (4.15). But we
can show that A is symmetric and it is positive definite as long as the function c is
positive on Ω. Recall that a matrix A is positive definite if xTAx > 0 for all x ̸= 0.

Theorem 11.1 If c(x, y) > 0 for (x, y) ∈ Ω then the matrix A given by (11.17) is
symmetric positive definite.

Proof.
To each x ∈ Rn there corresponds a matrix V ∈ Rm,m such that x = vec(V).

We claim that

xTAx =

m∑
j=1

m∑
k=0

cj,k+ 1
2

(
vj,k+1 − vj,k

)2
+

m∑
k=1

m∑
j=0

cj+ 1
2 ,k

(
vj+1,k − vj,k

)2
, (11.18)

where v0,k = vm+1,k = vj,0 = vj,m+1 = 0 for j, k = 0, 1, . . . ,m+1. Since cj+ 1
2 ,k

and
cj,k+ 1

2
correspond to values of c in Ω for the values of j, k in the sums it follows that

they are positive and from (11.18) we see that xTAx ≥ 0 for all x ∈ Rn. Moreover
if xTAx = 0 then all quadratic factors are zero and vj,k+1 = vj,k for k = 0, 1, . . . ,m
and j = 1, . . . ,m. Now vj,0 = vj,m+1 = 0 implies that V = 0 and hence x = 0.
Thus A is symmetric positive definite.

It remains to prove (11.18). From the connection between (11.16) and (11.17)
we have

xTAx =
m∑
j=1

m∑
k=1

−(P hv)j,kvj,k

=

m∑
j=1

m∑
k=1

(
cj,k− 1

2
v2j,k + cj− 1

2 ,k
v2j,k + cj+ 1

2 ,k
v2j,k + cj,k+ 1

2
v2j,k

− cj,k− 1
2
vj,k−1vj,k − cj,k+ 1

2
vj,kvj,k+1

− cj− 1
2 ,k

vj−1,kvj,k − cj+ 1
2 ,k

vj,kvj+1,k

)
.

Using the homogenous boundary conditions we have

m∑
j=1

m∑
k=1

cj,k− 1
2
v2j,k =

m∑
j=1

m∑
k=0

cj,k+ 1
2
v2j,k+1,

m∑
j=1

m∑
k=1

cj,k− 1
2
vj,k−1vj,k =

m∑
j=1

m∑
k=0

cj,k+ 1
2
vj,k+1vj,k,

m∑
j=1

m∑
k=1

cj− 1
2 ,k

v2j,k =
m∑

k=1

m∑
j=0

cj+ 1
2 ,k

v2j+1,k,

m∑
j=1

m∑
k=1

cj− 1
2 ,k

vj−,kvj,k =
m∑

k=1

m∑
j=0

cj+ 1
2 ,k

vj+1,kvj,k.

11.3. Preconditioning Example 151

n 2500 10000 22500 40000 62500
K 222 472 728 986 1246
K/

√
n 4.44 4.72 4.85 4.93 4.98

Kpre 22 23 23 23 23

Table 11.2. The number of iterations K (no preconditioning) and Kpre

(with preconditioning) for the problem (11.14) using the discrete Poisson problem
as a preconditioner.

It follows that

xTAx =
m∑
j=1

m∑
k=0

cj,k+ 1
2

(
v2j,k + v2j,k+1 − 2vj,kvj,k+1

)
+

m∑
k=1

m∑
j=0

cj+ 1
2 ,k

(
v2j,k + v2j+1,k − 2vj,kvj+1,k

)
and (11.18) follows. �

11.3.2 Preconditioning

Consider solving Ax = b, where A is given by (11.17) and b ∈ Rn. Since A is
positive definite it is nonsingular and the system has a unique solution x ∈ Rn.
Moreover we can use either Cholesky factorization or the block tridiagonal solver to
find x. Since the bandwidth of A is m =

√
n both of these methods require O(n2)

flops for large n.
If we choose c(x, y) ≡ 1 in (11.14), we get the Poisson problem (11.13). With

this in mind, we may think of the coefficient matrix Ap arising from the discretiza-
tion of the Poisson problem as an approximation to the matrix (11.17). This sug-
gests using B = A−1

p , the inverse of the discrete Poisson matrix as a preconditioner
for the system (11.15).

Consider Algorithm 11.3. With this preconditioner Statement 4.1b can be
written Apwk = tk.

In Section 5.2 we developed a Simple fast Poisson Solver, Cf. Algorithm 5.1.
This method can be utilized to solve Apwk = tk.

Consider the specific problem where

c(x, y) = e−x+y and f(x, y) = 1.

We have used Algorithm 10.4 (conjugate gradient without preconditioning),
and Algorithm 11.3 (conjugate gradient with preconditioning) to solve the problem
(11.14). We used x(0) = 0 and ϵ = 10−8. The results are shown in Table 11.2.

Without preconditioning the number of iterations still seems to be more or
less proportional to

√
n although the convergence is slower than for the constant

152 Chapter 11. Minimization and Preconditioning

coefficient problem. Using preconditioning speeds up the convergence considerably.
The number of iterations appears to be bounded independently of n. This illustrates
that preconditioning is needed when solving nontrivial problems.

Using a preconditioner increases the work in each iteration. For the present
example the number of flops in each iteration changes from O(n) without precondi-
tioning to O(n3/2) or O(n log2 n) with preconditioning. This is not a large increase
and both the number of iterations and the computing time is reduced drastically.

Let us finally show that the number κ = λmax/λmin which determines the
rate of convergence for the preconditioned conjugate gradient method applied to
(11.14) can be bounded independently of n.

Theorem 11.3 Suppose 0 < c0 ≤ c(x, y) ≤ c1 for all (x, y) ∈ [0, 1]2. For the
eigenvalues of the matrix BA = A−1

p A just described we have

κ =
λmax

λmin
≤ c1

c0
.

Proof.
Suppose A−1

p Ax = λx for some x ∈ Rn\{0}. Then Ax = λApx. Multiplying

this by xT and solving for λ we find

λ =
xTAx

xTApx
.

We computed xTAx in (11.18) and we obtain xTApx by setting all the c’s there
equal to one

xTApx =
m∑
i=1

m∑
j=0

(
vi,j+1 − vi,j

)2
+

m∑
j=1

m∑
i=0

(
vi+1,j − vi,j

)2
.

Thus xTApx > 0 and bounding all the c’s in (11.18) from below by c0 and above
by c1 we find

c0(x
TApx) ≤ xTAx ≤ c1(x

TApx)

which implies that c0 ≤ λ ≤ c1 for all eigenvalues λ of BA = A−1
p A.

Using c(x, y) = e−x+y as above, we find c0 = e−2 and c1 = 1. Thus κ ≤ e2 ≈
7.4, a quite acceptable matrix condition which explains the convergence results from
our numerical experiment.

Part IV

Orthonormal Transformations
and Least Squares

153

Chapter 12

Orthonormal
Transformations

Transformations by elementary lower triangular matrices is used in Gaussian elim-
ination to reduce a matrix to triangular form (cf. Appendix E). Elementary lower
triangular matrices are not the only kind of transformations which can be used
for such a task. In this chapter we study how transformations by orthogonal ma-
trices can be used to reduce a rectangular matrix to upper triangular (also called
upper trapezoidal) form. This lead to a decomposition of the matrix known as a
QR decomposition and a compact form which we refer to as a QR factorization.
Orthonormal transformations have the advantage that they preserve the Euclidian
norm of a vector, and the spectral norm and Frobenius norm of a matrix. Indeed,
if Q ∈ Rm,m is an orthogonal matrix then ∥Qv∥2 = ∥v∥2, ∥QA∥2 = ∥A∥2, and
∥QA∥F = ∥A∥F for any vector v ∈ Rm and any matrix A ∈ Rm,n, (cf. Lemma 8.10
and Theorem 8.28). This means that when an orthogonal transformation is applied
to an inaccurate vector or matrix then the error will not grow. Thus in general an
orthogonal transformation is numerically stable. The QR factorization can be used
to solve least squares problems and linear equations. We consider linear equations
in this chapter and least squares problems in Chapter 13.

12.1 The QR Decomposition and QR Factorization.
Definition 12.1 Let A ∈ Cm,n with m ≥ n ≥ 1. We say that A = QR is a QR
decomposition of A if Q ∈ Cm,m is square and unitary and

R =

[
R1

0m−n,n

]
where R1 ∈ Cn,n is upper triangular and 0m−n,n ∈ Cm−n,n is the zero matrix. We
call A = QR a QR factorization of A if Q ∈ Cm,n has orthonormal columns
and R ∈ Cn,n is upper triangular.

A QR factorization is obtained from a QR decomposition A = QR by simply
using the first n columns of Q and the first n rows of R. Indeed, if we partition Q

155

156 Chapter 12. Orthonormal Transformations

as [Q1,Q2] and R =
[
R1
0

]
, where Q1 ∈ Rm,n and R1 ∈ Rn,n then A = Q1R1 is a

QR factorization of A. On the other hand a QR factorization A = Q1R1 of A can
be turned into a QR decomposition by extending the set of columns {q1, . . . , qn} of
Q1 into an orthonormal basis {q1, . . . , qn, qn+1, . . . , qm} for Rm and adding m− n
rows of zeros to R1. We then obtain the QR decomposition A = QR, where
Q = [q1, . . . , qm] and R =

[
R1
0

]
.

Example 12.2 An example of a QR decomposition is

A =


1 3 1
1 3 7
1 −1 −4
1 −1 2

 =
1

2


1 1 −1 −1
1 1 1 1
1 −1 −1 1
1 −1 1 −1

×


2 2 3
0 4 5
0 0 6
0 0 0

 = QR,

while a QR factorization A = Q1R1 is obtained by dropping the last column of Q
and the last row of R so that

A =
1

2


1 1 −1
1 1 1
1 −1 −1
1 −1 1

×

2 2 3
0 4 5
0 0 6

 = Q1R1

Consider existence and uniqueness.

Theorem 12.3 Suppose A ∈ Cm,n with m ≥ n ≥ 1. Then A has a QR decom-
position and a QR factorization. The QR factorization is unique if A has linearly
independent columns and R has positive diagonal elements.

Proof. The general case can be proved using Householder transformations, see
Theorem 12.19. Suppose A ∈ Rm,n has linearly independent columns. By Corol-
lary 3.24 the matrix ATA is symmetric positive definite, and by Theorem 3.32
it has a Cholesky factorization ATA = RTR, where R ∈ Rn,n is upper trian-
gular and nonsingular. The matrix Q := AR−1 has orthonormal columns since
QTQ = R−TATAR−1 = R−TRTRR−1 = I. But then A = QR is a QR factor-
ization ofA. This shows existence. For uniqueness, ifA = QR is a QR factorization
of A and R has positive diagonal elements then ATA = RTQTQR = RTR is the
Cholesky factorization of ATA. Since the Cholesky factorization is unique it follows
that R is unique and hence Q = AR−1 is unique.

The QR factorization can be used to prove a classical determinant inequality.

Theorem 12.4 (Hadamard’s Inequality) For any A = [a1, . . . ,an] ∈ Cn,n we
have

|det(A)| ≤
n∏

j=1

∥aj∥2. (12.1)

Equality holds if and only if A has a zero column or the columns of A are orthogonal.

12.1. The QR Decomposition and QR Factorization. 157

Proof. Let A = QR be a QR factorization of A. Since

1 = det(I) = det(Q∗Q) = det(Q∗) det(Q) = |det(Q)|2

we have |det(Q)| = 1. Let R = [r1, . . . , rn]. Then (A∗A)jj = ∥aj∥22 = (R∗R)jj =
∥rj∥22, and

|det(A)| = |det(QR)| = |det(R)| =
n∏

j=1

|rjj | ≤
n∏

j=1

∥rj∥2 =
n∏

j=1

∥aj∥2.

The inequality is proved. If equality holds then either det(A) = 0 and A has a zero
column, or det(A) ̸= 0 and rjj = ∥rj∥2 for j = 1, . . . , n. This happens if and only
if R is diagonal. But then A∗A = R∗R is diagonal, which means that the columns
of A are orthogonal.

Exercise 12.5

A =


1 2
1 2
1 0
1 0

 , Q =
1

2


1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

 , R =


2 2
0 2
0 0
0 0

 .

Show that Q is orthogonal and that QR is a QR decomposition of A. Find a QR
factorization of A.

12.1.1 QR and Gram-Schmidt

The Gram-Schmidt orthogonalization of the columns of A can be used to find the
QR factorization of A.

Theorem 12.6 Suppose A ∈ Rm,n has rank n and define

v1 = a1, vj = aj −
j−1∑
i=1

aT
j vi

vT
i vi

vi, for j = 2, . . . , n. (12.2)

Let

Q1 := [q1, . . . , qn], qj =
vj

∥vj∥2
, j = 1, . . . , n,

R1 :=


∥v1∥2 aT

2 v1 aT
3 v1 · · · aT

n−1v1 aT
nv1

0 ∥v1∥2 aT
3 v2 · · · aT

n−1v2 aT
nv2

. . .
...

∥vn−1∥2 aT
nvn−1

∥vn∥2

 .
(12.3)

Then A = Q1R1 is the unique QR factorization of A.

158 Chapter 12. Orthonormal Transformations

Proof. Q1 is well defined and with orthonormal columns since by Theorem A.50
{q1, . . . , qn} is an orthonormal basis for span(A). That A = Q1R1 follows by
writing (12.2) in the form

a1 = ∥v1∥2q1, aj =

j−1∑
i=1

(aT
j vi)qi + ∥vj∥2qj , j = 2, . . . , n.

Clearly R1 has positive diagonal elements and the factorization is unique.

Exercise 12.7 Construct Q1 and R1 in Example 12.2 using Gram-Schmidt or-
thogonalization.

12.2 The Householder Transformation
The Gram-Schmidt orthogonalization process should not be used to compute the QR
factorization numerically. The columns of Q1 computed in floating point arithmetic
using Gram-Schmidt orthogonalization will often be far from orthogonal. There is
a modified version of Gram-Schmidt which behaves better numerically, but this will
not be considered here, see [2]. Instead we consider Householder transformations.

Definition 12.8 A matrix H ∈ Rn,n of the form

H := I − uuT , where u ∈ Rn and uTu = 2

is called a Householder transformation. The name elementary reflector is
also used.

For n = 2 we find H =
[

1−u2
1 −u1u2

−u2u1 1−u2
2

]
. A Householder transformation is symmetric

and orthogonal. Indeed, HT = (I − uuT)T = H and

HTH = H2 = (I − uuT)(I − uuT) = I − 2uuT + u(uTu)uT = I.

There are several ways to represent a Householder transformation. House-
holder used I − 2uuT , where uTu = 1. For any nonzero v ∈ Rn the matrix

H := I − 2
vvT

vTv
(12.4)

is a Householder transformation. In fact H = I − uuT , where u :=
√
2 v
∥v∥2

.

The main use of Householder transformations is to produce zeros in vectors.
We start with

Lemma 12.9 Suppose x,y ∈ Rn with ∥x∥2 = ∥y∥2 and v := x − y ̸= 0. Then(
I − 2vvT

vT v

)
x = y.

12.2. The Householder Transformation 159

x

y=Hx
Px

x+y

Figure 12.1. The Householder transformation

Proof. Since xTx = yTy we have

vTv = (x− y)T (x− y) = 2xTx− 2yTx = 2vTx. (12.5)

But then
(
I − 2vvT

vT v

)
x = x− 2vTx

vTv
v = x− v = y.

A geometric interpretation of this lemma is shown in Figure 12.1. We have

H = I − 2vvT

vTv
= P − vvT

vTv
, where P := I − vvT

vTv
,

and

Px = x− vTx

vTv
v

(12.5)
= x− 1

2
v =

1

2
(x+ y).

It follows that Hx is the reflected image of x. The mirror contains the vector x+y
and has normal x− y.

Exercise 12.10 Show that ∥x∥2 = ∥y∥2 implies that x− y is orthogonal to x+ y
and conclude that Px is the orthogonal projection of x into the subspace span(x+y).

We can introduce zeros in components 2, 3, . . . in a vector x by picking α2 =
xTx and y := αe1 in Lemma 12.9. The equation α2 = xTx has two solutions
α = +∥x∥2 and α = −∥x∥2. We want to develop an algorithm which defines a
Householder transformation for any nonzero x. We achieve this by choosing α to
have opposite sign of x1. Then v1 = x1 − α ̸= 0 so v ̸= 0. Another advantage of
this choice is that we avoid cancelation in the subtraction in the first component of
v = x− αe1. This leads to a numerically stable algorithm.

Lemma 12.11 For a nonzero vector x ∈ Rn we define

α :=

{
−∥x∥2 if x1 > 0

+∥x∥2 otherwise,
(12.6)

and

H := I − uuT with u =
x/α− e1√
1− x1/α

. (12.7)

Then H is a Householder transformation and Hx = αe1.

160 Chapter 12. Orthonormal Transformations

Proof. Let y := αe1 and v := x − y. If x1 > 0 then y1 = α < 0, while if x1 ≤ 0
then y1 = α > 0. It follows that xTx = yTy and v ̸= 0. By Lemma 12.9 we have

Hx = αe1, where H = I − 2vvT

vT v
is a Householder transformation. Since

0 < vTv = (x− αe1)
T (x− αe1) = xTx− 2αx1 + α2 = 2α(α− x1),

we find

H = I − 2(x− αe1)(x− αe1)
T

2α(α− x1)
= I − (x/α− e1)(x/α− e1)

T

1− x1/α
= I − uuT .

Example 12.12 For x := [1, 2, 2]T we have ∥x∥2 = 3 and since x1 > 0 we choose
α = −3. We find u = −[2, 1, 1]T /

√
3 and

H = I − 1

3

21
1

 [
2 1 1

]
=

1

3

−1 −2 −2
−2 2 −1
−2 −1 2

 .

The formulas in Lemma 12.11 are implemented in the following algorithm
from [17].

Algorithm 12.13 (Generate a Householder transformation) To given
x ∈ Rn the following algorithm computes a = α and the vector u so that
(I − uuT)x = αe1.

function [u,a]= housegen(x)

a=norm(x); u=x;

if a==0

u(1)= sqrt (2); return;

end

if u(1)>0

a=-a;

end

u=u/a; u(1)=u(1)-1;

u=u/sqrt(-u(1));

If x = 0 then any u with ∥u∥2 =
√
2 can be used in the Householder trans-

formation. In the algorithm we use u =
√
2e1 in this case.

Exercise 12.14 Determine H in Algorithm 12.13 when x = e1.

Householder transformations can also be used to zero out only the lower part
of a vector. Suppose y ∈ Rk, z ∈ Rn−k and α2 = zTz. Consider finding a
Householder transformation H such that H [yz] = [y

αe1
]. Let û and α be the

12.3. Householder Triangulation 161

output of Algorithm 12.13 called with x = z, i. e., [û, α] = housegen(z) and set
uT = [0T , ûT]. Then

H = I − uuT =

[
I 0
0 I

]
−

[
0
û

] [
0 ûT

]
=

[
I 0

0 Ĥ

]
,

where Ĥ = I− ûûT . Since uTu = ûT û = 2 we see that H and Ĥ are Householder
transformations.

Exercise 12.15 Construct a Householder transformation Q such that Qx = y in
the following cases.

a) x =

[
3
4

]
, y =

[
5
0

]
.

b) x =

 2
2
1

 , y =

 0
3
0

.
Exercise 12.16 Show that a 2 × 2 Householder transformation can be written in
the form

Q =

[
− cosϕ sinϕ
sinϕ cosϕ

]
.

Find Qx if x = [cosϕ, sinϕ]T .

Exercise 12.17 a) Find Householder transformations Q1,Q2 ∈ R3,3 such that

Q2Q1A = Q2Q1

 1 0 1
−2 −1 0
2 2 1


is upper triangular.

b) Find the QR factorization of A where R has positive diagonal elements.

12.3 Householder Triangulation
Suppose A ∈ Rm,n. We treat the cases m > n and m ≤ n separately and consider
first m > n. We describe how to find a sequence H1, . . . ,Hn of orthogonal matrices
such that

HnHn−1 · · ·H1A =

[
R1

0

]
,

and where R1 is upper triangular. Here each Hk is a Householder transformation.
Since the product of orthogonal matrices is orthogonal and each Hk is symmetric
we obtain the QR decomposition of A in the form

A = QR, where Q := H1H2 · · ·Hn and R :=

[
R1

0

]
. (12.8)

162 Chapter 12. Orthonormal Transformations

Define A1 = A and suppose for k ≥ 1 that Ak is upper triangular in its first k − 1
columns so that Ak =

[
Bk Ck

0 Dk

]
, where Bk ∈ Rk−1,k−1 is upper triangular and

Dk ∈ Rn−k+1,n−k+1. Let Ĥk = I − ûkû
T
k be a Householder transformation which

zero out the first column in Dk under the diagonal, so that Ĥk(Dke1) = αke1.

Set Hk :=
[
Ik−1 0

0 Ĥk

]
. Then Ak+1 := HkAk =

[
Bk Ck

0 ĤkDk

]
=

[
Bk+1 Ck+1

0 Dk+1

]
,

where Bk+1 ∈ Rk,k is upper triangular and Dk+1 ∈ Rn−k,n−k. Thus Ak+1 is
upper triangular in its first k columns and the reduction has been carried one
step further. At the end R := An+1 =

[
R1
0

]
, where R1 is upper triangular and

R = Hn · · ·H2H1A. Thus A = H1 · · ·HnR and we obtain (12.8).
The process just described can be illustrated as follows when m = 4 and n = 3

using so called Wilkinson diagrams.


x x x
x x x
x x x
x x x

 H1→


r11 r12 r13
0 x x
0 x x
0 x x

 H2→


r11 r12 r13
0 r22 r23
0 0 x
0 0 x

 H3→


r11 r12 r13
0 r22 r23
0 0 r33
0 0 0

 .

A1 = D1 A2 =

[
B2 C2

0 D2

]
A3 =

[
B3 C3

0 D3

]
A4 =

[
R1

0

]

The transformation is applied to the lower right block.
The process can also be applied to A ∈ Rm,n if m ≤ n. In this case m − 1

Householder transformations will suffice and we obtain

Hm−1 · · ·H1A = [R1,S1] = R, (12.9)

where R1 is upper triangular and S1 ∈ Rm,n−m.
In an algorithm we can store most of the vectors ûk = [ukk, . . . , umk]

T and
R1 in A. However, the elements ukk in ûk and rkk in R1 have to compete for the
diagonal in A. For m = 4 and n = 3 the two possibilities look as follows:

A =


u11 r12 r13
u21 u22 r23
u31 u32 u33

u41 u42 u43

 or A =


r11 r12 r13
u21 r22 r23
u31 u32 r33
u41 u42 u43

 .

Whatever alternative is chosen the loser has to be stored in a separate vector. In
the following algorithm we store r : kk in the diagonal of A, while the vectors û
are not stored.

12.3. Householder Triangulation 163

Algorithm 12.18 (Householder Triangulation of a matrix) Suppose
A ∈ Rm,n with m ≥ n and B ∈ Rm,r. The algorithm uses housegen to
compute Householder transformations H1, . . . ,Hs, where s = min(n,m − 1)
such that R = Hs...H1A is upper trapezoidal and C = Hs...H1B. If
B = I ∈ Rm,m then CTR is the QR decomposition of A. If B is the empty
matrix then C is the empty matrix with m rows and 0 columns.

function [R,C] = housetriang(A,B)

[m,n]=size(A); r=size(B,2); A=[A,B];

for k=1: min(n,m-1)

[v,A(k,k)]= housegen(A(k:m,k));

C=A(k:m,k+1:n+r); A(k:m,k+1:n+r)=C-v*(v’*C);

end

R=triu(A(:,1:n)); C=A(:,n+1:n+r);

The function housegen(x) returns a Householder transformation for any x ∈
Rn. Thus in Algorithm 12.18 we obtain a QR decomposition A = QR, where
Q = H1 . . .Hr, is orthogonal and r = min{n,m − 1}. Thus a QR factorization
always exists and we have proved

Theorem 12.19 Any A ∈ Rm,n has a QR decomposition and a QR factorization.

The bulk of the work in Algorithm 12.18 is the computation of C−v∗(vT ∗C)
for each k. It can be determined from the following lemma.

Lemma 12.20 Suppose A ∈ Rm,n, u ∈ Rm and v ∈ Rn. The computation of
A− u(uTA) and A− (Av)vT both cost O(4mn) flops.

Proof. It costs O(2mn) flops to compute wT := uTA, O(mn) flops to compute
W = uwT and O(mn) flops for the final subtraction A − W , a total of O(4mn)
flops. Taking transpose we obtain the same count for A− (Av)vT .

Since C ∈ Rm−k+1,n+r−k and m ≥ n the cost of computing the update
C − v ∗ (vT ∗ C) is 4(m − k)(n + r − k) flops. This implies that the work in
Algorithm 12.18 can be estimated as∫ n

0

4(m− k)(n+ r − k)dk = 2m(n+ r)2 − 2

3
(n+ r)3. (12.10)

12.3.1 QR and Linear Systems

Algorithm 12.18 can be used to solve linear systems . If A ∈ Rn,n is nonsingular and
b ∈ Rn then the output will be the upper triangular matrix R = Hn−1...H1A ∈
Rn,n and C = c = Hn−1...H1b ∈ Rn. So

Ax = b ⇒ Hn−1...H1A = Hn−1...H1b,

and the solution of Ax = b is found by solving the upper triangular linear system
Rx = c.

164 Chapter 12. Orthonormal Transformations

Algorithm 12.18 can be used as an alternative to Gaussian elimination. Recall
that in Gaussian elimination we compute an LU factorization of A and then find
the solution by solving two triangular systems. The two methods are similar since
they both reduce A to upper triangular form using certain transformations.

Which method is better? Here is a short discussion

• Advantages with Householder:

– Always works for nonsingular systems.

– Row interchanges are not necessary.

– Numerically stable.

• Advantages with Gauss

– Half the number of flops compared to Householder.

– Row interchanges are often not necessary.

– Usually stable, (but no guarantee).

– In general better than Householder for banded and sparse matrices.

Linear systems can be constructed where Gaussian elimination will fail nu-
merically even if row interchanges are used. On the other hand the transforma-
tions used in Householder triangulation are orthogonal so the method is quite
stable. So why is Gaussian elimination more popular than Householder triangu-
lation? One reason is that the number of flops in (12.10) when m = n is given
by 2n(n + 1)2 − 2

3 (n + 1)3 ≈ 2n3 − 2
3n

3 = 4n3/3, while the count for Gaussian
elimination is half of that. Numerical stability can be a problem with Gaussian
elimination, but years and years of experience shows that it works well for most
practical problems and pivoting is often not necessary. Tradition might also play a
role.

12.4 Givens Rotations
In some applications, the matrix we want to triangulate has a special structure.
Suppose for example that A ∈ Rn,n is square and upper Hessenberg as illustrated
by a Wilkinson diagram for n = 4

A =


x x x x
x x x x
0 x x x
0 0 x x

 .

Only one element in each column needs to be annihilated and a full Householder
transformation will be inefficient. In this case we can use a simpler transformation.

Definition 12.21 A plane rotation (also called a Given’s rotation) is a matrix
of the form

P :=

[
c s
−s c

]
, where c2 + s2 = 1.

12.4. Givens Rotations 165

x

y=Px
θ

Figure 12.2. A plane rotation.

A plane rotation is orthogonal and there is a unique angle θ ∈ [0, 2π) such that c =
cos θ and s = sin θ. Moreover, the identity matrix is a plane rotation corresponding
to θ = 0.

Exercise 12.22 Show that if x = [r cosα
r sinα] then Px =

[
r cos (α−θ)
r sin (α−θ)

]
. Thus P rotates

a vector x in the plane an angle θ clockwise. See Figure 12.2.

Suppose

x =

[
x1

x2

]
̸= 0, c :=

x1

r
, s :=

x2

r
, r := ∥x∥2.

Then

Px =
1

r

[
x1 x2

−x2 x1

] [
x1

x2

]
=

1

r

[
x2
1 + x2

2

0

]
=

[
r
0

]
,

and we have introduced a zero in x. We can take P = I when x = 0.
For an n-vector x ∈ Rn and 1 ≤ i < j ≤ n we define a rotation in the i, j-

plane as a matrix P ij = (pkl) ∈ Rn,n by pkl = δkl except for positions ii, jj, ij, ji,
which are given by [

pii pij
pji pjj

]
=

[
c s
−s c

]
, where c2 + s2 = 1.

Premultiplying a matrix by a rotation in the i, j plane changes only rows i and
j of the matrix, while postmultiplying the matrix by such a rotation only changes
column i and j. In particular, if B = P ijA and C = AP ij then B(k, :) = A(k, :),
C(:, k) = A(:, k) for all k ̸= i, j and[

B(i, :)
B(j, :)

]
=

[
c s

−s c

] [
A(i, :)
A(j, :)

]
,
[
C(:, i) C(:, j)

]
=

[
A(:, i) A(:, j)

] [c s
−s c

]
.

(12.11)
An upper Hessenberg matrixA ∈ Rn,n can be transformed to upper triangular

form using rotations P i,i+1 for i = 1, . . . , n − 1. For n = 4 the process can be
illustrated as follows.

A =

[
x x x x
x x x x
0 x x x
0 0 x x

]
P 12→

[
r11 r12 r13 r14
0 x x x
0 x x x
0 0 x x

]
P 23→

[r11 r12 r13 r14
0 r22 r23 r24
0 0 x x
0 0 x x

]
P 34→

[r11 r12 r13 r14
0 r22 r23 r24
0 0 r33 r34
0 0 0 r44

]
.

For an algorithm see Exercise 12.23.

166 Chapter 12. Orthonormal Transformations

Exercise 12.23 Let A ∈ Rn,n be upper Hessenberg and nonsingular, and let b ∈
Rn. The following algorithm solves the linear system Ax = b using rotations P k,k+1

for k = 1, . . . , n− 1. Determine the number of flops of this algorithm.

Algorithm 12.24 (Upper Hessenberg linear system) Suppose A ∈ Rn,n

is nonsingular and upper Hessenberg and that b ∈ Rn. This algorithm uses
Given’s rotations to solve the linear system Ax = b. It uses Algorithm E.7.

function x=rothesstri(A,b)

n=length(A); A=[A b];

for k=1:n-1

r=norm([A(k,k),A(k+1,k)]);

if r>0

c=A(k,k)/r; s=A(k+1,k)/r;

A([k k+1],k+1:n+1)=[c s;-s c]*A([k k+1],k+1:n+1);

end

A(k,k)=r; A(k+1,k)=0;

end

x=backsolve(A(:,1:n),A(:,n+1));

Chapter 13

Least Squares

13.1 The Pseudo-Inverse and Orthogonal Projections

13.1.1 The Pseudo-Inverse

Suppose A = U1Σ1V
∗
1 is a singular value factorization of A ∈ Cm,n. The matrix

A† ∈ Cn,m given by

A† := V 1Σ
−1
1 U∗

1 (13.1)

is called the pseudo-inverse of A. It is independent of the particular factorization
used to define it. We show this in Exercises 13.1, 13.2. In terms of the singular
value decomposition we have

A† = V Σ†U∗, where Σ† :=
[

Σ−1
1 0r,m−r

0n−r,r 0n−r,m−r

]
.

If A is square and nonsingular then A†A = AA† = I and A† is the usual inverse
of A. Any matrix has a pseudoinverse, and so A† is a generalization of the usual
inverse.

Exercise 13.1 Show that B := A† satisfies (1) ABA = A, (2) BAB = B, (3)
(BA)∗ = BA, and (4) (AB)∗ = AB.

Conversely, Exercise 13.2 shows that if B ∈ Cn,m satisfies the four equations
in Exercise 13.1 then B = A†. Thus A† is uniquely defined by these axioms and is
independent of the particular singular value factorization used to define it.

Exercise 13.2 Given A ∈ Cm,n, and suppose B,C ∈ Cn,m satisfy

ABA = A (1) ACA = A,
BAB = B (2) CAC = C,

(AB)H = AB (3) (AC)H = AC,
(BA)H = BA (4) (CA)H = CA.

167

168 Chapter 13. Least Squares

Verify the following proof that B = C.

B = (BA)B = (AH)BHB = (AHCH)AHBHB = CA(AHBH)B

= CA(BAB) = (C)AB = C(AC)AB = CCHAH(AB)

= CCH(AHBHAH) = C(CHAH) = CAC = C.

Exercise 13.3 Show that the matrices A =
[
1 1
1 1
0 0

]
and B = 1

4 [
1 1 0
1 1 0] satisfy the

axioms in Exercise 13.1. Thus we can conclude that B = A† without computing
the singular value decomposition of A.

Exercise 13.4 Suppose A ∈ Cm,n has linearly independent columns. Show that
AHA is nonsingular and A† = (AHA)−1AH . If A has linearly independent rows,
then show that AAH is nonsingular and A† = AH(AAH)−1.

Exercise 13.5 Show that u† = (uHu)−1uH if u ∈ Cn,1 is nonzero.

Exercise 13.6 If A = uvH where u ∈ Cm, v ∈ Cn are nonzero, show that

A† =
1

α
AH , α = ∥u∥22∥v∥22.

Exercise 13.7 Show that diag(λ1, . . . , λn)
† = diag(λ†

1, . . . , λ
†
n) where

λ†
i =

{
1/λi, λi ̸= 0
0 λi = 0.

Exercise 13.8 Suppose A ∈ Cm,n. Show that

a) (AH)† = (A†)H .

b) (A†)† = A.

c) (αA)† = 1
αA

†, α ̸= 0.

Exercise 13.9 Suppose k,m, n ∈ N, A ∈ Cm,n, B ∈ Cn,k. Suppose A has linearly
independent columns and B has linearly independent rows.

a) Show that (AB)† = B†A†. Hint: Let E = AF , F = B†A†. Show by using
A†A = BB† = I that F is the pseudo-inverse of E.

b) Find A ∈ R1,2, B ∈ R2,1 such that (AB)† ̸= B†A†.

Exercise 13.10 Show that AH = A† if and only if all singular values of A are
either zero or one.

13.1. The Pseudo-Inverse and Orthogonal Projections 169

13.1.2 Orthogonal Projections

The singular value decomposition and the pseudo-inverse can be used to compute
orthogonal projections into the subspaces span(A) and ker(A∗).

We start by recalling some facts about sums, direct sums and orthogonal sums
of subspaces (Cf. Chapter A). Suppose S and T are subspaces, and ⟨·, ·⟩ an inner
product on Rn or Cn. We define

• Sum: X := S + T := {s+ t : s ∈ S and t ∈ T }.

• Direct Sum: S + T is called a direct sum if S ∩ T = {0}. We write S ⊕ T
instead of S + T in this case.

• Orthogonal Sum: S ⊕T is an orthogonal sum if ⟨s, t⟩ = 0 for all s ∈ S and
all t ∈ T .

• Orthogonal Complement: T = S⊥ := {x ∈ X : ⟨s,x⟩ = 0 for all s ∈ S}.

• If S ⊕ T is an orthogonal sum and v = s+ t ∈ S ⊕ T with s ∈ S and t ∈ T
then s and t are called the orthogonal projections of v into S and T . The
orthogonal projection is unique.

We recall that

• S + T = T + S and S + T is a subspace of Rn or Cn.

• dim(S + T) = dimS + dim T − dim(S ∩ T).

• dim(S ⊕ T) = dimS + dim T .

• Every v ∈ S ⊕ T can be decomposed uniquely as v = s+ t, where s ∈ S and
t ∈ T .

• Cm = span(A)⊕ ker(A∗) is an orthogonal sum for any A ∈ Cm,n.

Theorem 13.11 Suppose A ∈ Cm,n and b ∈ Cm. Then

b1 := AA†b (13.2)

is the orthogonal projection of b into span(A), and

b2 := (I −AA†)b (13.3)

is the orthogonal projection of b into the orthogonal complement ker(A∗) of span(A).

Proof. Suppose A = UΣV T is a singular value decomposition of A ∈ Cm,n. Then

b = UU∗b = [U1 U2]

[
U∗

1

U∗
2

]
b = U1U

∗
1b+U2U

∗
2b =: b1 + b2,

where bj = U jcj and cj := U∗
jb for j = 1, 2. Since U1(U2) is an orthonormal basis

for span(A) (ker(A∗)), we have b1(b2) ∈ span(A) (ker(A∗)). Now AA† = U1U
∗
1,

and then b2 = b− b1 = (I −AA†)b.

170 Chapter 13. Least Squares

Example 13.12 The singular value decomposition of A =
[
1 0
0 1
0 0

]
is A = I3AI2.

Thus U1 =
[
1 0
0 1
0 0

]
and U2 =

[
0
0
1

]
. Moreover A† = I2 [1 0 0

0 1 0] I3 = [1 0 0
0 1 0] . If b =[

b1
b2
b3

]
, then b1 = AA†b = U1U

T
1 b =

[
1 0 0
0 1 0
0 0 0

]
b =

[
b1
b2
0

]
and b2 = (I3 − AA†)b =

U2U
T
2 b =

[
0 0 0
0 0 0
0 0 1

]
b =

[
0
0
b3

]
.

Exercise 13.13 Show that if A has rank n then A(A∗A)−1A∗b is the projection
of b into span(A). (Cf. Exercise 13.4.)

Exercise 13.14 Consider the linear system Ax = b where A ∈ Cn,n has rank
r > 0 and b ∈ Cn. Let

UHAV =

[
Σ1 0
0 0

]
represent the singular value decomposition of A.

a) Let c = [c1, . . . , cn]
T = UHb and y = [y1, . . . , yn]

T = V Hx. Show that Ax = b
if and only if [

Σ1 0
0 0

]
y = c.

b) Show that Ax = b has a solution x if and only if cr+1 = · · · = cn = 0.

c) Deduce that a linear system Ax = b has either no solution, one solution or
infinitely many solutions.

Exercise 13.15 For any A ∈ Cm,n, b ∈ Cn show that one and only one of the
following systems has a solution

(1) Ax = b, (2) AHy = 0, yHb ̸= 0.

In other words either b ∈ span(A), or we can find y ∈ ker(AH) such that yHb ̸= 0.
This is called Fredholms alternative.

13.2 The Least Squares Problem
Let A ∈ Cm,n and b ∈ Cm be given. Consider the linear system Ax = b of m
equations in n unknowns. If m > n, we have more equations than unknowns and
there might be no vector x such that Ax = b. Let r(x) = Ax − b ∈ Cm. We
can then pick a vector norm ∥·∥ and look for x ∈ Cn which minimizes ∥r(x)∥. The
choice ∥·∥ = ∥·∥2, the Euclidean norm, is particularly convenient and will be studied
here.

13.2. The Least Squares Problem 171

Definition 13.16 Given A ∈ Cm,n and b ∈ Cm. We call an x ∈ Cn which
minimizes ∥r(x)∥22 = ∥Ax− b∥22 a least squares solution of Ax = b. We set

E(x) := ∥Ax− b∥22 = ∥r(x)∥22.

To find x which minimizes E(x) is called the least squares problem.

Since the square root function is monotone minimizing E(x) or
√

E(x) is
equivalent.

Theorem 13.17 The least squares problem always has a solution. The solution is
unique if and only if A has linearly independent columns. Moreover, the following
are equivalent.

1. x is a solution of the least squares problem.

2. A∗Ax = A∗b

3. x = A†b+z, for some z ∈ ker(A), and where A† is the pseudo-inverse of A.

We have ∥x∥2 ≥ ∥A†b∥2 for all solutions x of the least squares problem.

Proof. Let b = b1 + b2, where b1 ∈ span(A) and b2 ∈ ker(A∗) are the orthogonal
projections into span(A) and ker(A∗), respectively (see Theorem 13.11). Since
b∗2v = 0 for any v ∈ span(A) we have b∗2(b1 −Ax) = 0 for any x ∈ Cm. Therefore,
for x ∈ Cn,

∥b−Ax∥22 = ∥(b1 −Ax) + b2∥22 = ∥b1 −Ax∥22 + ∥b2∥22 ≥ ∥b2∥22,

with equality if and only if Ax = b1. Since b1 ∈ span(A) we can always find such
an x and existence follows.
1 ⇐⇒ 2: By what we have shown x solves the least squares problem if and only if
Ax = b1 so that b−Ax = b1 + b2 −Ax = b2 ∈ ker(A∗), or A∗(b−Ax) = 0.
1 =⇒ 3: Suppose Ax = b1 and definez := x − A†b. Then Az = Ax − AA†b =
b1 − b1 = 0 and z ∈ ker(A).
3 =⇒ 1: If x = A†b+ z with z ∈ ker(A) then Ax = AA†b+Az = b1.

If A has linearly independent columns then ker(A) = {0} and x = A†b is the
unique solution.

Suppose x = A†b+ z, with z ∈ ker(A) is a solution. To show the minimum
norm property ∥x∥2 ≥ ∥A†b∥2 we recall that if the right singular vectors of A are
partitioned as [v1, . . . ,vr,vr+1, . . . ,vn] = [V 1,V 2], then V 2 is a basis for ker(A).
Moreover, V ∗

2V 1 = 0 since V has orthonormal columns. If A† = V 1Σ
−1U∗

1 and
z ∈ ker(A) then z = V 2y for some y ∈ Cn−r and we obtain

z∗A†b = y∗V ∗
2V 1Σ

−1U∗
1b = 0.

Thus z and A†b are orthogonal so that ∥x∥22 = ∥A†b + z∥22 = ∥A†b∥22 + ∥z∥22 ≥
∥A†b∥22.

172 Chapter 13. Least Squares

The linear system
A∗Ax = A∗b

is called the normal equations. It is a linear system of n equations in n unknowns.
If A is real then the coefficient matrix ATA is nonsingular and hence symmetric
positive definite if and only if A has linearly independent columns.

Before discussing numerical methods for solving the least squares problem we
consider some examples.

13.3 Examples
Example 13.18 We choose n functions ϕ1, ϕ2, . . . , ϕn defined for t ∈ {t1, t2, . . . , tm}
and positive numbers w1, . . . , wm. Typical examples of functions might be polyno-
mials, trigonometric functions, exponential functions, or splines. We want to find
x = [x1, x2, . . . , xn]

T such that

E(x) :=
m∑
i=1

wi

 n∑
j=1

xjϕj(ti)− yi

2

is as small as possible. Let p(t) :=
∑n

j=1 xjϕj(t). The numbers wi are called
weights. If yi is an accurate observation, we can choose a large weight wi. This
will force p(ti) − yi to be small. Similarly, a small wi will allow p(ti) − yi to be
large. If an estimate for the standard deviation δyi in yi is known for each i, we
can choose wi = 1/(δyi)

2, i = 1, 2, . . . ,m. Let A ∈ Rm,n, b ∈ Rm have elements
ai,j =

√
wiϕj(ti) and bi =

√
wiyi. Then

(Ax)i =
√
wi

n∑
j=1

xjϕj(ti),

E(x) =
m∑
i=1

[(Ax)i − bi]
2 = ∥Ax− b∥22.

and we have a least squares problem.
The i, j element bi,j in B = ATA and the ith component ci in c = AT b take

the form
bi,j =

∑m
k=1 ak,iak,j =

∑m
k=1 wkϕi(tk)ϕj(tk),

ci =
∑m

k=1 w
1/2
k ykϕi(tk).

(13.4)

In particular, if n = 2, wi = 1, i = 1, . . . ,m, ϕ1(t) = 1, and ϕ2(t) = t, the normal
equations can be written[

m
∑

tk∑
tk

∑
t2k

] [
x1

x2

]
=

[∑
yk∑
tkyk

]
. (13.5)

Here k ranges from 1 to m in the sums. This 2 × 2 system is symmetric positive
definite and is easily solved for x1 and x2.

13.3. Examples 173

Example 13.19 With the data

x 1.0 2.0 3.0 4.0
y 3.1 1.8 1.0 0.1

we try a least squares fit of the form

p(t) = x1 + x2t.

We can find x1 and x2 by solving the linear system (13.5). In this case we obtain[
4 10
10 30

] [
x1

x2

]
=

[
6

10.1

]
. (13.6)

The solution is x1 = 3.95 and x2 = −0.98. The data and the polynomial p(t) are
shown in Figure 13.1.

- t

6

y

@
@
@
@

@
@
@
@

@
@
@@

×

×

×

×

y = 3.95− 0.98t

Figure 13.1. A least squares fit to data.

Example 13.20 Suppose we have a simple input/output model. To every input
u ∈ Rn we obtain an output y ∈ R. Assuming we have a linear relation

y = uTx =
n∑

i=1

uixi,

between u and y, how can we determine x?
Performing m ≥ n experiments we obtain a table of values

u u1 u2 · · · um

y y1 y2 · · · ym
.

174 Chapter 13. Least Squares

We would like to find x such that

Ax =


uT
1

uT
2
...

uT
m

x =


y1
y2
...
ym

 = b.

We can estimate x by solving the least squares problem min∥Ax− b∥22.

Exercise 13.21 Suppose (ti, yi)
m
i=1 are m points in the plane. We consider the

over-determined systems

(i) x1 = y1
x1 = y2

...
x1 = ym

(ii) x1 + t1x2 = y1
x1 + t2x2 = y2

...
x1 + tmx2 = ym

a) Find the normal equations for (i) and the least squares solution.

b) Find the normal equations for (ii) and give a geometric interpretation of the
least squares solution.

Exercise 13.22 Related to (ii) in Exercise 13.21 we have the overdetermined sys-
tem

(iii) x1 + (ti − t̂)x2 = yi, i = 1, 2, . . . ,m,

where t̂ = (t1 + · · ·+ tm)/m.

a) Find the normal equations for (iii) and give a geometric interpretation of the
least squares solution.

b) Fit a straight line to the points (ti, yi): (998.5, 1), (999.5, 1.9), (1000.5, 3.1) and
(1001.5, 3.5) using a). Draw a sketch of the solution.

Exercise 13.23 In this problem we derive an algorithm to fit a circle (t − c1)
2 +

(y − c2)
2 = r2 to m ≥ 3 given points (ti, yi)

m
i=1 in the (t, y)-plane. We obtain the

overdetermined system

(ti − c1)
2 + (yi − c2)

2 = r2, i = 1, . . . ,m, (13.7)

of m equations in the three unknowns c1, c2 and r. This system is nonlinear, but it
can be solved from the linear system

tix1 + yix2 + x3 = t2i + y2i , i = 1, . . . ,m, (13.8)

and then setting c1 = x1/2, c2 = x2/2 and r2 = c21 + c22 + x3.

13.4. Numerical Solution using the Normal Equations 175

a) Derive (13.8) from (13.7). Explain how we can find c1, c2, r once [x1, x2, x3] is
determined.

b) Formulate (13.8) as a linear least squares problem for suitable A and b.

c) Does the matrix A in b) have linearly independent columns?

d) Use (13.8) to find the circle passing through the three points (1, 4), (3, 2), (1, 0).

13.4 Numerical Solution using the Normal Equations
We assume that A and b are real and that A has linearly independent columns.
The coefficient matrix B := ATA in the normal equations is symmetric positive
definite, and we can solve these equations using the RTR factorization of B.

Consider forming the normal equations. We can use either a column oriented-
or a row oriented approach. To derive these we partition A in terms of columns or
rows as

A = [a:1, . . . ,a:n] =

 aT
1:

...
aT

m:

 .

We then find

1. (ATA)ij = aT
:ia:j , (AT b)i = aT

:ib, (inner product form),

2. ATA =
∑m

i=1 ai:a
T
i: , AT b =

∑m
i=1 biai:, (outer product form).

The outer product form is suitable for large problems since it uses only one pass
through the data importing one row of mA at a time from some separate storage.

Consider the number of operations to compute B := ATA. We need 2m
flops to find each aT

:ia:j . Since B is symmetric we only need to compute n(n +
1)/2 such inner products. It follows that B can be computed in O(mn2) flops.
The computation of B using outer products can also be done in O(mn2) flops by
computing only one half of A. In conclusion the number of operations are O(mn2)
to find B, 2mn to find AT b, O(n3/3) to find R, O(n2) to solve RTy = c and O(n2)
to solve Rx = y. Since m ≥ n, the bulk of the work is to find B.

A problem with the normal equation approach is that the linear system can
be poorly conditioned. In fact the 2-norm condition number of B := ATA is the
square of the condition number ofA. This follows, since the singular values of B are
the square of the singular values of A. If A is ill-conditioned, this could make the
normal equation approach problematic. One difficulty which can be encountered is
that the computed ATA might not be positive definite. See Problem 13.31 for an
example.

13.5 Numerical Solution using the QR Factorization
Suppose A ∈ Rm,n has rank n and let b ∈ Rm. The QR factorization can be used
to solve the least squares problem minx∈Rn∥Ax − b∥2. Suppose A = Q1R1 is a

176 Chapter 13. Least Squares

QR factorization of A. Since Q1 has orthonormal columns we find

ATA = RT
1 Q

T
1 Q1R1 = RT

1 R1, AT b = RT
1 Q

T
1 b.

Since A has rank n the matrix RT
1 is nonsingular and can be canceled. Thus

ATAx = AT b =⇒ R1x = c1, c1 := QT
1 b.

We can use Householder transformations or Givens rotations to find R1 and c1.
Consider using the Householder triangulation algorithm Algorithm 12.18. We find
R = QTA and c = QT b, where A = QR is the QR decomposition of A. The
matrices R1 and c1 are located in the first n rowws of R and c.

Thus have the following method to solve the full rank least squares problem.

1. [R,c]=housetriang(A,b).

2. Solve R(1 : n, 1 : n)x = c(1 : n) for the least squares solution x.

Example 13.24 Consider the least squares problem with

A =


1 3 1
1 3 7
1 −1 −4
1 −1 2

 and b =


1
1
1
1

 .

This is the matrix in Example 12.2. The least squares solution x is found by solving
the system 2 2 3

0 4 5
0 0 6

x1

x2

x3

 =
1

2

1 1 1 1
1 1 −1 −1
1 −1 −1 1

×


1
1
1
1


and we find x = [1, 0, 0]T .

Using Householder triangulation is a useful alternative to normal equations
for solving full rank least squares problems. The 2 norm condition number for
the system R1x = c1 is K2(R1) = K2(Q1R1) = K2(A), and as discussed in the
previous section this is the square root of K2(A

TA), the condition number for the
normal equations. Thus if A is mildly ill-conditioned the normal equations can be
quite ill-conditioned and solving the normal equations can give inaccurate results.
On the other hand Algorithm 12.18 is quite stable.

But using Householder transformations requires more work. The leading term
in the number of flops in Algorithm 12.18 is approximately 2mn2 − 2n3/3, (cf.
(12.10)), while the number of flops needed to form the normal equations, taking ad-
vantage of symmetry is O(mn2). Thus for m much larger than n using Householder
triangulation requires twice as many flops as the an approach based on the normal
equations. Also, Householder triangulation have problems taking advantage of the
structure in sparse problems.

13.6. Numerical Solution using the Singular Value Factorization 177

13.6 Numerical Solution using the Singular Value
Factorization

This method can be used even if A does not have full rank. It requires knowledge
of the pseudo-inverse of A. By Theorem 13.17

x = A†b+ z

is a least squares solution for any z ∈ ker(A).

Example 13.25 The pseudo-inverse of A =

1 1
1 1
0 0

 is A† = 1
4

[
1 1 0
1 1 0

]
. (cf.

Example 13.3. Moreover, [−1, 1]T is a basis for ker(A). If b = [b1, b2, b3]
T , then

for any z ∈ R the vector

x =
1

4

[
1 1 0
1 1 0

]b1b2
b3

+ z

[
1

−1

]

is a solution of min∥Ax− b∥2 and this gives all solutions.

When rank(A) is less than the number of columns of A then ker(A) ̸= {0},
and we have a choice of z. One possible choice is z = 0 giving the minimal norm
solution A†b. (Cf. Theorem 13.17.)

13.7 Perturbation Theory for Least Squares
In this section we consider what effect small changes in the data A, b have on the
solution x of the least squares problem min∥Ax− b∥2.

If A has linearly independent columns then we can write the least squares
solution x (the solution of AHAx = AHb) as

x = A†b, A† := (AHA)−1AH .

13.7.1 Perturbing the right hand side

Let us now consider the effect of a perturbation in b on x.

Theorem 13.26 Suppose A ∈ Cm,n has linearly independent columns, and let
b, e ∈ Cm. Let x,y ∈ Cn be the solutions of min∥Ax− b∥2 and min∥Ay− b− e∥2.
Finally, let b1, e1 be the projections of b and e on span(A). If b1 ̸= 0, we have for
any operator norm

1

K(A)

∥e1∥
∥b1∥

≤ ∥y − x∥
∥x∥

≤ K(A)
∥e1∥
∥b1∥

, K(A) = ∥A∥∥A†∥. (13.9)

178 Chapter 13. Least Squares

Proof. Subtracting x = A†b from y = A†b +A†e we have y − x = A†e. Since
AHe = AHe1, we have A†e = A†e1. Thus ∥y − x∥ = ∥A†e1∥ ≤ ∥A†∥∥e1∥.
Moreover, ∥b1∥ = ∥Ax∥ ≤ ∥A∥∥x∥. Therefore ∥y−x∥/∥x∥ ≤ ∥A∥∥A†∥∥e1∥/∥b1∥
proving the rightmost inequality. From A(x − y) = e1 and x = A†b1 we obtain
the leftmost inequality.

(13.9) is analogous to the bound (8.19) for linear systems. We see that the
numberK(A) = ∥A∥∥A†∥ generalizes the condition number ∥A∥∥A−1∥ for a square
matrix. The main difference between (13.9) and (8.19) is however that ∥e∥/∥b∥ in
(8.19) has been replaced by ∥e1∥/∥b1∥, the projections of e and b on span(A). If
b lies almost entirely in N(AH), i.e. ∥b∥/∥b1∥ is large, ∥e1∥/∥b1∥ can be much
larger than ∥e∥/∥b∥. This is illustrated in Figure 13.2. If b is almost orthogonal
to span(A), ∥e1∥/∥b1∥ will normally be much larger than ∥e∥/∥b∥. Note that
∥e1∥/∥b1∥ is also present in the lower bound.

A span()

= N()A
T

τ

b

e

e
1

b
1

b
2

Figure 13.2. Graphical interpretation of the bounds in Theorem 13.26.

Example 13.27 Suppose

A =

 1 1
0 1
0 0

 , b =

 10−4

0
1

 , e =

 10−6

0
0

 .

For this example we can compute K(A) by finding A† explicitly. Indeed,

ATA =

[
1 1
1 2

]
, (ATA)−1 =

[
2 −1
−1 1

]
A† = (ATA)−1AT =

[
1 −1 0
0 1 0

]
.

13.7. Perturbation Theory for Least Squares 179

Thus K∞(A) = ∥A∥∞∥A†∥∞ = 2 · 2 = 4 is quite small.
Consider now the projections b1 and b2. We have span(A) = span(e1, e2) ⊂

R2, and N(AT) = span(e3) ⊂ R3. The projection b1 on span(A) is b1 = (10−4, 0)T .
Since ∥b∥∞/∥b1∥∞ = 104 is large, we expect that the solutions x and y of min∥Ax−
b∥2 and min∥Ay− b− e∥2 will differ by much more than ∥e∥∞/∥b∥∞ = 10−6. To
check this we compute x and y. These can be found by either solving the normal
equations or by solving Ax = b1, Ay = b1 + e1. This gives x = b1 = (10−4, 0)T

and y = b1 + e1 = (10−4 + 10−6, 0)T . We find

∥x− y∥∞
∥x∥∞

=
10−6

10−4
= 10−2,

and this is indeed much larger than ∥e∥∞/∥b∥∞ = 10−6, but equals ∥e1∥∞/∥b1∥∞.
(13.9) takes the form

1

4
10−2 ≤ ∥y − x∥∞

∥x∥∞
≤ 4 · 10−2.

Exercise 13.28 Let

A =

 1 2
1 1
1 1

 , b =

 b1
b2
b3

 .

a) Determine the projections b1 and b2 of b on span(A) and N(AT).

b) Compute K(A) = ∥A∥2∥A†∥2.

For each A we can find b and e so that we have equality in the upper bound
in (13.9). The lower bound is best possible in a similar way.

Exercise 13.29 a) Let A ∈ Cm,n. Show that we have equality to the right in
(13.9) if b = AyA, e1 = yA† where ∥AyA∥ = ∥A∥, ∥A†yA†∥ = ∥A†∥.

b) Show that we have equality to the left if we switch b and e in a).

c) Let A be as in Example 13.27. Find extremal b and e when the l∞ norm is used.

13.7.2 Perturbing the matrix

The analysis of the effects of a perturbation E in A is quite difficult. The following
result is stated without proof, see [12, p. 51]. For other estimates see [2] and [19].

Theorem 13.30 Suppose A,E ∈ Cm,n, m > n, where A has linearly independent
columns and α := 1 − ∥E∥2∥A†∥2 > 0. Then A + E has linearly independent
columns. Let b = b1+b2 ∈ Cm where b1 and b2 are the projections on span(A) and
N(AH) respectively. Suppose b1 ̸= 0. Let x and y be the solutions of min∥Ax−b∥2
and min∥(A+E)y − b∥2. Then

ρ =
∥x− y∥2
∥x∥2

≤ 1

α
K(1 + βK)

∥E∥2
∥A∥2

, β =
∥b2∥2
∥b1∥2

, K = ∥A∥2∥A†∥2. (13.10)

180 Chapter 13. Least Squares

(13.10) says that the relative error in y as an approximation to x can be at
mostK(1+βK)/α times as large as the size ∥E∥2/∥A∥2 of the relative perturbation
in A. If b lies almost entirely in span(A), β will be small, and we have ρ ≤
1
αK∥E∥2/∥A∥2. This corresponds to the estimate (8.25) for linear systems. If β is
not small, the term 1

αK
2β∥E∥2/∥A∥2 will dominate. In other words, the condition

number is roughly K(A) if β is small and K(A)2β if β is not small. Note that β is
large if b is almost orthogonal to span(A) and that b2 = b−Ax is the residual of
x.

Exercise 13.31 Consider the least squares problems where

A =

 1 1
1 1
1 1+ϵ

 , b =

 2
3
2

 , ϵ ∈ R.

a) Find the normal equations and the exact least squares solution.

b) Suppose ϵ is small and we replace the (2, 2) entry 3+2ϵ+ϵ2 in ATA by 3+2ϵ.
(This will be done in a computer if ϵ <

√
u, u being the round-off unit). Solve

ATAx = AT b for x and compare with the x found in a). (We will get a
much more accurate result using the QR factorization or the singular value
decomposition on this problem).

13.8 Perturbation Theory for Singular Values
In this section we consider what effect a small change in the matrix A has on the
singular values.

We recall the Hoffman-Wielandt Theorem for singular values, Theorem 7.24.
If A,B ∈ Rm,n are rectangular matrices with singular values α1 ≥ α2 ≥ · · · ≥ αn

and β1 ≥ β2 ≥ · · · ≥ βn, then

n∑
j=1

|αj − βj |2 ≤ ∥A−B∥2F .

This shows that the singular values of a matrix are well conditioned. Changing the
Frobenius norm of a matrix by small amount only changes the singular values by a
small amount.

Using the 2-norm we have a similar result involving only one singular value.

Theorem 13.32 Let A,B ∈ Rm,n be rectangular matrices with singular values
α1 ≥ α2 ≥ · · · ≥ αn and β1 ≥ β2 ≥ · · · ≥ βn. Then

|αj − βj | ≤ ∥A−B∥2, for j = 1, 2, . . . , n. (13.11)

Proof. Fix j and let S be the n−j+1 dimensional subspace for which the minimum
in Theorem 7.23 is obtained for A. Then

αj = max
x∈S
x ̸=0

∥(B + (A−B))x∥2
∥x∥2

≤ max
x∈S
x ̸=0

∥Bx∥2
∥x∥2

+max
x∈S
x ̸=0

∥(A−B)x∥2
∥x∥2

≤ βj+∥A−B∥2.

13.8. Perturbation Theory for Singular Values 181

By symmetry we obtain βj ≤ αj + ∥A−B∥2 and the proof is complete.

The following result is an analogue of Theorem 8.40.

Theorem 13.33 Let A,E ∈ Rm,n have singular values α1 ≥ · · · ≥ αn and ϵ1 ≥
· · · ≥ ϵn. If ∥A†∥2∥E∥2 < 1 then

1. rank(A+E) ≥ rank(A),

2. ∥(A+E)†∥2 ≤ ∥A†∥2

1−∥A†∥2∥E∥2
= 1

αr−ϵ1
,

where r is the rank of A.

Proof. Suppose A has rank r and let B := A + E have singular values β1 ≥
· · · ≥ βn. In terms of singular values the inequality ∥A†∥2∥E∥2 < 1 can be written
ϵ1/αr < 1 or αr > ϵ1. By Theorem 13.32 we have αr − βr ≤ ϵ1, which implies
βr ≥ αr − ϵ1 > 0, and this shows that rank(A+E > r. To prove 2., the inequality
βr ≥ αr − ϵ1 implies that

∥(A+E)†∥2 ≤ 1

βr
≤ 1

αr − ϵ1
=

1/αr

1− ϵ1/αr
=

∥A†∥2
1− ∥A†∥2∥E∥2

182 Chapter 13. Least Squares

Part V

Eigenvalues and Eigenvectors

183

Chapter 14

Numerical Eigenvalue
Problems

In this and the next chapter we consider numerical methods for finding one or more
of the eigenvalues and eigenvectors of a matrix A ∈ Cn,n. Maybe the first method
which comes to mind is to form the characteristic polynomial πA of A, and then
use a polynomial root finder, like Newton’s method to determine one or several of
the eigenvalues.

It turns out that this is not suitable as an all purpose method. One reason is
that a small change in one of the coefficients of πA(λ) can lead to a large change in
the roots of the polynomial. For example, if πA(λ :) = λ16 and q(λ) = λ16 − 10−16

then the roots of πA are all equal to zero, while the roots of q are λj = 10−1e2πij/16,
j = 1, . . . , 16. The roots of q have absolute value 0.1 and a perturbation in one of
the polynomial coefficients of magnitude 10−16 has led to an error in the roots of
approximately 0.1. The situation can be somewhat remedied by representing the
polynomials using a different basis.

We will see that for many matrices the eigenvalues are less sensitive to per-
turbations in the elements of the matrix. In this text we will only consider methods
which work directly with the matrix.

14.1 Perturbation of Eigenvalues
In this section we study the following problem. Given matrices A,E ∈ Cn,n, where
we think of E as a pertubation of A. By how much do the eigenvalues of A
and A + E differ? Not surprisingly this problem is more complicated than the
corresponding problem for linear systems.

We illustrate this by considering two examples. Suppose A0 := 0 is the zero
matrix. If λ ∈ σ(A0 + E) = σ(E), then |λ| ≤ ∥E∥∞ by Theorem 8.46, and any
zero eigenvalue of A0 is perturbed by at most ∥E∥∞. On the other hand consider

185

186 Chapter 14. Numerical Eigenvalue Problems

for ϵ > 0 the matrices

A1 :=


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1
0 0 0 · · · 0 0

 , E :=


0 0 0 · · · 0 0
0 0 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 0
ϵ 0 0 · · · 0 0

 = ϵene
T
1 .

The characteristic polynomial of A1 + E is π(λ) := (−1)n(λn − ϵ), and the zero

eigenvalues of A1 are perturbed by the amount |λ| = ∥E∥1/n∞ . Thus, for n = 16, a
perturbation of say ϵ = 10−16 gives a change in eigenvalue of 0.1.

The following theorem shows that a dependence ∥E∥1/n∞ is the worst that can
happen.

Theorem 14.1 (Elsner’s Theorem) Suppose A,E ∈ Cn,n. To every µ ∈ σ(A+
E) there is a λ ∈ σ(A) such that

|µ− λ| ≤
(
∥A∥2 + ∥A+E∥2

)1−1/n∥E∥1/n2 . (14.1)

Proof. Suppose A has eigenvalues λ1, . . . , λn and let λ1 be one which is closest to
µ. Let u1 with ∥u1∥2 = 1 be an eigenvector corresponding to µ, and extend u1 to
an orthonormal basis {u1, . . . ,un} of Cn. Note that

∥(µI −A)u1∥2 = ∥(A+E)u1 −Au1∥2 = ∥Eu1∥2 ≤ ∥E∥2,
n∏

j=2

∥(µI −A)uj∥2 ≤
n∏

j=2

(|µ|+ ∥Auj∥2) ≤
(
∥(A+E)∥2 + ∥A∥2

)n−1
.

Using this and Hadamard’s inequality (12.1) we find

|µ− λ1|n ≤
n∏

j=1

|µ− λj | = |det(µI −A)| = |det
(
(µI −A)[u1, . . . ,un]

)
|

≤ ∥(µI −A)u1∥2
n∏

j=2

∥(µI −A)uj∥2 ≤ ∥E∥2
(
∥(A+E)∥2 + ∥A∥2

)n−1
.

The result follows by taking nth roots in this inequality.

It follows from this theorem that the eigenvalues depend continuously on the

elements of the matrix. The factor ∥E∥1/n2 shows that this dependence is almost,
but not quite, differentiable. As an example, the eigenvalues of the matrix [1 1

ϵ 1] are
1±

√
ϵ and this expression is not differentiable at ϵ = 0.
Recall that a matrix is nondefective if the eigenvectors form a basis for Cn.

For nondefective matrices we can get rid of the annoying exponent 1/n in ∥E∥2.
The following theorem is proved in Section 14.4. For a more general discussion see
[19].

14.1. Perturbation of Eigenvalues 187

Theorem 14.2 Suppose A ∈ Cn,n has linearly independent eigenvectors {x1, . . . ,
xn} and let X = [x1, . . . ,xn] be the eigenvector matrix. Suppose E ∈ Cn,n and let
µ be an eigenvalue of A+E. Then we can find an eigenvalue λ of A such that

|λ− µ| ≤ Kp(X)∥E∥p, 1 ≤ p ≤ ∞, where Kp(X) := ∥X∥p ∥X−1∥p. (14.2)

The equation (14.2) shows that for a nondefective matrix the absolute error
can be magnified by at mostKp(X), the condition number of the eigenvector matrix
with respect to inversion. If Kp(X) is small then a small perturbation changes the
eigenvalues by small amounts.

Even if we get rid of the factor 1/n, the equation (14.2) illustrates that it can be
difficult or sometimes impossible to compute accurate eigenvalues and eigenvectors
of matrices with almost linearly dependent eigenvectors. On the other hand the
eigenvalue problem for normal matrices is better conditioned. Indeed, ifA is normal
then it has a set of orthonormal eigenvectors and the eigenvector matrix is unitary.
If we restrict attention to the 2-norm then K2(X) = 1 and (14.2) implies the
following result.

Theorem 14.3 Suppose A ∈ Cn,n is normal and let µ be an eigenvalue of A+E
for some E ∈ Cn,n. Then we can find an eigenvalue λ of A such that |λ−µ| ≤ ∥E∥2.

For an even stronger result for Hermitian matrices see Corollary 6.16. We
conclude that the situation for the absolute error in an eigenvalue of a Hermitian
matrix is quite satisfactory. Small perturbations in the elements are not magnified
in the eigenvalues.

14.1.1 Gerschgorin’s Theorem

The following theorem is useful for locating eigenvalues of an arbitrary square ma-
trix.

Theorem 14.4 (Gerschgorin’s Circle Theorem) Suppose A ∈ Cn,n. Define
for i = 1, 2, . . . , n

Ri = {z ∈ C : |z − aii| ≤ ri}, ri :=

n∑
j=1
j ̸=i

|aij |,

Cj = {z ∈ C : |z − ajj | ≤ cj}, cj :=
n∑

i=1
i ̸=j

|aij |.

Then any eigenvalue of A lies in R ∩ C where R = R1 ∪ R2 ∪ · · · ∪ Rn and C =
C1 ∪ C2 ∪ · · · ∪ Cn.

Proof. Suppose (λ,x) is an eigenpair for A. We claim that λ ∈ Ri, where
i is such that |xi| = ∥x∥∞. Indeed, Ax = λx implies that

∑
j aijxj = λxi or

188 Chapter 14. Numerical Eigenvalue Problems

(λ− aii)xi =
∑

j ̸=i aijxj . Dividing by xi and taking absolute values we find

|λ− aii| = |
∑
j ̸=i

aijxj/xi| ≤
∑
j ̸=i

|aij ||xj/xi| ≤ ri

since |xj/xi| ≤ 1 for all j. Thus λ ∈ Ri.

Since λ is also an eigenvalue of AT , it must be in one of the row disks of AT .
But these are the column disks Cj of A. Hence λ ∈ Cj for some j.

The set Ri is a subset of the complex plane consisting of all points inside a
circle with center at aii and radius ri, c.f. Figure 14.1. Ri is called a (Gerschgorin)
row disk.

6

-

-&%
'$

ri
ai,i

Real axis

Imaginary axis

Figure 14.1. The Gerschgorin disk Ri.

An eigenvalue λ lies in the union of the row disks R1, . . . , Rn and also in
the union of the column disks C1, . . . , Cn. If A is Hermitian then Ri = Ci for i =
1, 2, . . . , n. Moreover, in this case the eigenvalues of A are real, and the Gerschgorin
disks can be taken to be intervals on the real line.

Example 14.5 Let T = tridiag(−1, 2,−1) ∈ Rm,m be the second derivative matrix.
Since A is Hermitian we have Ri = Ci for all i and the eigenvalues are real. We
find

R1 = Rm = {z ∈ R : |z−2| ≤ 1}, and Ri = {z ∈ R : |z−2| ≤ 2}, i = 2, 3, . . . ,m−1.

We conclude that λ ∈ [0, 4] for any eigenvalue λ of T . To check this, we recall that
by Lemma 4.11 the eigenvalues of T are given by

λj = 4

[
sin

jπ

2(m+ 1)

]2
, j = 1, 2, . . . ,m.

14.1. Perturbation of Eigenvalues 189

When m is large the smallest eigenvalue 4
[
sin π

2(m+1)

]2
is very close to zero and the

largest eigenvalue 4
[
sin mπ

2(m+1)

]2
is very close to 4. Thus Gerschgorin,s theorem

gives a remarkably good estimate for large m.

Sometimes some of the Gerschgorin disks are distinct and we have

Corollary 14.6 If p of the Gerschgorin row disks are disjoint from the others, the
union of these disks contains precisely p eigenvalues. The same result holds for the
column disks.

Proof. Consider a family of matrices

A(t) := D + t(A−D), D := diag(a11, . . . , ann), t ∈ [0, 1].

We have A(0) = D and A(1) = A. As a function of t, every eigenvalue of A(t) is
a continuous function of t. This follows from Theorem 14.1, see Exercise 14.7. The
row disks Ri(t) of A(t) have radius proportional to t, indeed

Ri(t) = {z ∈ C : |z − aii| ≤ tri}, ri :=
n∑

j=1

j ̸=i

|aij |.

Clearly 0 ≤ t1 < t2 ≤ 1 implies Ri(t1) ⊂ Ri(t2) and Ri(1) is a row disk of A
for all i. Suppose

∪p
k=1 Rik(1) are disjoint from the other disks of A and set

Rp(t) :=
∪p

k=1 Rik(t) for t ∈ [0, 1]. Now Rp(0) contains only the p eigenvalues
ai1,i1 , . . . , aip,ip of A(0) = D. As t increases from zero to one the set Rp(t) is
disjoint from the other row disks of A and by the continuity of the eigenvalues
cannot loose or gain eigenvalues. It follows that Rp(1) must contain p eigenvalues
of A.

Exercise 14.7 Suppose t1, t2 ∈ [0, 1] and that µ is an eigenvalue of A(t2). Show,
using Theorem 14.1 with A = A(t1) and E = A(t2) − A(t1), that A(t1) has an
eigenvalue λ such that

|λ− µ| ≤ C(t2 − t1)
1/n, where C ≤ 2

(
∥D∥2 + ∥A−D∥2

)
.

Thus, as a function of t, every eigenvalue of A(t) is a continuous function of t.

Example 14.8 Consider the matrix A =
[1 ϵ1 ϵ2
ϵ3 2 ϵ4
ϵ5 ϵ6 3

]
, where |ϵi| ≤ 10−15 all i. By

Corollary 14.6 the eigenvalues λ1, λ2, λ3 of A are distinct and satisfy |λj − j| ≤
2× 10−15 for j = 1, 2, 3.

190 Chapter 14. Numerical Eigenvalue Problems

Exercise 14.9 Consider the matrix

A =


4 1 0 0
1 4 1 0
0 1 4 1
0 0 1 4

 .

Show using Gerschgorin’s theorem that A is nonsingular.

Exercise 14.10 Show using Gerschgorin,s theorem that a strictly diagonally dom-
inant matrix A (|ai,i| >

∑
j ̸=i |ai,j | for all i) is nonsingular.

14.2 Unitary Similarity Transformation of a Matrix
into Upper Hessenberg Form

Before attempting to find eigenvalues and eigenvectors of a matrix (exceptions are
made for certain sparse matrices), it is often advantageous to reduce it by similarity
transformations to a simpler form. Orthogonal similarity transformations are par-
ticularly important since they are insensitive to noise in the elements of the matrix.
In this section we show how this reduction can be done.

Recall that a matrix A ∈ Rn,n is upper Hessenberg if ai,j = 0 for j =
1, 2, . . . , i−2, i = 3, 4, . . . , n. We will reduce A ∈ Rn,n to upper Hessenberg form by
unitary similarity transformations. Let A1 = A and define Ak+1 = HkAkHk for
k = 1, 2, . . . , n − 2. Here Hk is a Householder transformation chosen to introduce
zeros in the elements of column k of Ak under the subdiagonal. The final matrix
An−1 will be upper Hessenberg.

If A1 = A is symmetric, the matrix An−1 will be symmetric and tridiagonal.
For if AT

k = Ak then

AT
k+1 = (HkAkHk)

T = HkA
T
kHk = Ak+1.

Since An−1 is upper Hessenberg and symmetric, it must be tridiagonal.
To describe the reduction to upper Hessenberg or tridiagonal form in more

detail we partition Ak as follows

Ak =

[
Bk Ck

Dk Ek

]
.

Suppose Bk ∈ Rk,k is upper Hessenberg, and the first k − 1 columns of Dk ∈
Rn−k,k are zero, i.e. Dk = [0,0, . . . ,0,dk]. Let V k = I − vkv

T
k ∈ Rn−k,n−k be a

Householder transformation such that V kdk = αke1, where α2
k = dT

k dk. Define

Hk =

[
Ik 0
0 V k

]
∈ Rn,n.

14.2. Unitary Similarity Transformation of a Matrix into Upper Hessenberg Form 191

The matrix Hk is a Householder transformation, and we find

Ak+1 = HkAkHk =

[
Ik 0
0 V k

] [
Bk Ck

Dk Ek

] [
Ik 0
0 V k

]
=

[
Bk CkV k

V kDk V kEkV k

]
.

Now V kDk = [V k0, . . . ,V k0,V kdk] = (0, . . . ,0, αke1). Moreover, the matrix Bk

is not affected by the Hk transformation. Therefore the upper left (k+1)× (k+1)
corner of Ak+1 is upper Hessenberg and the reduction is carried one step further.
The reduction stops with An−1 which is upper Hessenberg.

To find Ak+1 we use Algorithm 12.13 to find vk and αk. We store vk in the
kth column of a matrix L as L(k + 1 : n, k) = vk. This leads to the following
algorithm.

Algorithm 14.11 (Householder reduction to Hessenberg form) This
algorithm uses Householder similarity transformations to reduce a matrix
A ∈ Rn,n to upper Hessenberg form. The reduced matrix B is tridiagonal if
A is symmetric. Details of the transformations are stored in a lower triangular
matrix L. The elements of L can be used to assemble an orthonormal matrix Q
such that B = QTAQ. Algorithm 12.13 is used in each step of the reduction.

function [L,B] = hesshousegen(A)

n=length(A); L=zeros(n,n); B=A;

for k=1:n-2

[v,B(k+1,k)]= housegen(B(k+1:n,k));

L(k+1:n,k)=v; B(k+2:n,k)=zeros(n-k-1 ,1);

C=B(k+1:n,k+1:n); B(k+1:n,k+1:n)=C-v*(v’*C);

C=B(1:n,k+1:n); B(1:n,k+1:n)=C-(C*v)*v’;

end

Exercise 14.12 Show that the number of flops for Algorithm 14.11 is O(103 n3).

We can use the output of Algorithm 14.11 to assemble the matrix Q ∈ Rn,n

such that Q is orthonormal and QTAQ is upper Hessenberg. We need to compute

the product Q = H1H2 · · ·Hn−2, where Hk =
[
I 0
0 I−vkv

T
k

]
and vk ∈ Rn−k. Since

v1 ∈ Rn−1 and vn−2 ∈ R2 it is most economical to assemble the product from right
to left. We compute

Qn−1 = I and Qk = HkQk+1 for k = n− 2, n− 3, . . . , 1.

Suppose Qk+1 has the form
[
Ik 0
0 Uk

]
, where Uk ∈ Rn−k,n−k. Then

Qk =

[
Ik 0
0 I − vkv

T
k

]
∗
[
Ik 0
0 Uk

]
=

[
Ik 0
0 Uk − vk(v

T
kUk)

]
.

This leads to the following algorithm.

192 Chapter 14. Numerical Eigenvalue Problems

Algorithm 14.13 (Assemble Householder transformations) Suppose
[L,B] = hesshousegen(A) is the output of Algorithm 14.11. This algo-
rithm assembles an orthonormal matrix Q from the columns of L such that
B = QTAQ is upper Hessenberg.

function Q = accumulateQ(L)

n=length(L); Q=eye(n);

for k=n-2: -1:1

v=L(k+1:n,k); C=Q(k+1:n,k+1:n);

Q(k+1:n,k+1:n)=C-v*(v’*C);

end

Exercise 14.14 Show that the number of flops required by Algorithm 14.13 is
O(43n

3).

Exercise 14.15 If A is symmetric we can modify Algorithm 14.11 as follows. To
find Ak+1 from Ak we have to compute V kEkV k where Ek is symmetric. Dropping
subscripts we have to compute a product of the form G = (I − vvT)E(I − vvT).
Let w := Ev, β := 1

2v
Tw and z := w−βv. Show that G = E−vzT −zvT . Since

G is symmetric, only the sub- or superdiagonal elements of G need to be computed.
Computing G in this way, it can be shown that we need O(4n3/3) operations to
tridiagonalize a symmetric matrix by orthonormal similarity transformations. This
is less than half the work to reduce a nonsymmetric matrix to upper Hessenberg
form. We refer to [18] for a detailed algorithm.

14.3 Computing a Selected Eigenvalue of a
Symmetric Matrix

Let A ∈ Rn,n be symmetric with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn. In this section
we consider a method to compute an approximation to the mth eigenvalue λm for
some 1 ≤ m ≤ n. Using Householder similarity transformations as outlined in the
previous section we can assume that A is symmetric and tridiagonal.

A =


d1 c1
c1 d2 c2

. . .
. . .

. . .

cn−2 dn−1 cn−1

cn−1 dn

 . (14.3)

14.3. Computing a Selected Eigenvalue of a Symmetric Matrix 193

Suppose one of the off-diagonal elements is equal to zero, say ci = 0. We then have
A =

[
A1 0
0 A2

]
, where

A1 =


d1 c1
c1 d2 c2

. . .
. . .

. . .

ci−2 di−1 ci−1

ci−1 di

 and A2 =


di+1 ci+1

ci+1 di+2 ci+2

. . .
. . .

. . .

cn−2 dn−1 cn−1

cn−1 dn

 .

Thus A is block diagonal and each diagonal block is tridiagonal. By 6. of Theo-
rem D.3 we can split the eigenvalue problem into two smaller problems involving
A1 and A2. We assume that this reduction has been carried out so that A is
irreducible, i. e., ci ̸= 0 for i = 1, . . . , n− 1.

We first show that irreducibility implies that the eigenvalues are distinct.

Lemma 14.16 An irreducible, tridiagonal and symmetric matrix A ∈ Rn,n has n
real and distinct eigenvalues.

Proof. Let A be given by (14.3). By Theorem 6.5 the eigenvalues are real. Define
for x ∈ R the polynomial pk(x) := det(xIk − Ak) for k = 1, . . . , n, where Ak is
the upper left k × k corner of A (the leading principal submatrix of order k). The
eigenvalues of A are the roots of the polynomial pn. Using the last column to
expand for k ≥ 2 the determinant pk+1(x) we find

pk+1(x) = (x− dk+1)pk(x)− c2kpk−1(x). (14.4)

Since p1(x) = x− d1 and p2(x) = (x− d2)(x− d1)− c21 this also holds for k = 0, 1
if we define p−1(x) = 0 and p0(x) = 1. For M sufficiently large we have

p2(−M) > 0, p2(d1) < 0, p2(+M) > 0.

Since p2 is continuous there are y1 ∈ (−M,d1) and y2 ∈ (d1,M) such that p2(y1) =
p2(y2) = 0. It follows that the root d1 of p1 separates the roots of p2, so y1 and y2
must be distinct. Consider next

p3(x) = (x− d3)p2(x)− c22p1(x) = (x− d3)(x− y1)(x− y2)− c22(x− d1).

Since y1 < d1 < y2 we have for M sufficiently large

p3(−M) < 0, p3(y1) > 0, p3(y2) < 0, p3(+M) > 0.

Thus the roots x1, x2, x3 of p3 are separated by the roots y1, y2 of p2. In the
general case suppose for k ≥ 2 that the roots z1, . . . , zk−1 of pk−1 separate the roots
y1, . . . , yk of pk. Choose M so that y0 := −M < y1, yk+1 := M > yk. Then

y0 < y1 < z1 < y2 < z2 · · · < zk−1 < yk < yk+1.

We claim that for M sufficiently large

pk+1(yj) = (−1)k+1−j |pk+1(yj)| ̸= 0, for j = 0, 1, . . . , k + 1.

194 Chapter 14. Numerical Eigenvalue Problems

This holds for j = 0, k + 1, and for j = 1, . . . , k since

pk+1(yj) = −c2kpk−1(yj) = −c2k(yj − z1) · · · (yj − zk−1).

It follows that the roots x1, . . . , xk+1 are separated by the roots y1, . . . , yk of pk and
by induction the roots of pn (the eigenvalues of A) are distinct.

14.3.1 The Inertia Theorem

We say that two matrices A,B ∈ Cn,n are congruent if A = EHBE for some
nonsingular matrix E ∈ Cn,n. By Theorem 6.10 a Hermitian matrix A is both
congruent and similar to a diagonal matrix D, UHAU = D where U is unitary.
The eigenvalues of A are the diagonal elements of D. Let π(A), ζ(A) and υ(A)
denote the number of positive, zero and negative eigenvalues ofA. IfA is Hermitian
then all eigenvalues are real and π(A) + ζ(A) + υ(A) = n.

Theorem 14.17 (Sylvester’s Inertia Theorem) If A,B ∈ Cn,n are Hermitian
and congruent then π(A) = π(B), ζ(A) = ζ(B) and υ(A) = υ(B).

Proof. Suppose A = EHBE, where E is nonsingular. Assume first that A and
B are diagonal matrices. Suppose π(A) = k and π(B) = m < k. We shall show
that this leads to a contradiction. Let E1 be the upper left m × k corner of E.
Since m < k, we can find a nonzero x such that E1x = 0 (cf. Lemma B.5). Let
yT = [xT ,0T] ∈ Cn, and z = [z1, . . . , zn]

T = Ey. Then zi = 0 for i = 1, 2, . . . ,m.
If A has positive eigenvalues λ1, . . . , λk and B has eigenvalues µ1, . . . , µn, where
µi ≤ 0 for i ≥ m+ 1 then

yHAy =

n∑
i=1

λi|yi|2 =

k∑
i=1

λi|xi|2 > 0.

But

yHAy = yHEHBEy = zHBz =
n∑

i=m+1

µi|zi|2 ≤ 0,

a contradiction.
We conclude that π(A) = π(B) if A and B are diagonal. Moreover, υ(A) =

π(−A) = π(−B) = υ(B) and ζ(A) = n−π(A)−υ(A) = n−π(B)−υ(B) = ζ(B).
This completes the proof for diagonal matrices.

Let in the general case U1 and U2 be unitary matrices such that UH
1 AU1 =

D1 and UH
2 BU2 = D2 where D1 and D2 are diagonal matrices. Since A =

EHBE, we find D1 = FHD2F where F = UH
2 EU1 is nonsingular. Thus D1 and

D2 are congruent diagonal matrices. But since A and D1, B and D2 have the
same eigenvalues, we find π(A) = π(D1) = π(D2) = π(B). Similar results hold for
ζ and υ.

14.3. Computing a Selected Eigenvalue of a Symmetric Matrix 195

Corollary 14.18 Suppose A = tridiag(ci, di, ci) ∈ Rn,n is symmetric and that
α ∈ R is such that A−αI has an LDLT factorization, i.e. A−αI = LDLT where
L is unit lower triangular and D is diagonal. Then the number of eigenvalues of
A strictly less than α equals the number of negative diagonal elements in D. The
diagonal elements d1(α), . . . , dn(α) in D can be computed recursively as follows

d1(α) = d1 − α, dk(α) = dk − α− c2k−1/dk−1(α), k = 2, 3, . . . , n. (14.5)

Proof. Since the diagonal elements in R in an LU factorization equal the diagonal
elements in D in an LDLT factorization we see that the formulas in (14.5) follows
immediately from (2.5). Since L is nonsingular, A− αI and D are congruent. By
the previous theorem υ(A−αI) = υ(D), the number of negative diagonal elements
in D. If Ax = λx then (A−αI)x = (λ−α)x, and λ−α is an eigenvalue of A−αI.
But then υ(A− αI) equals the number of eigenvalues of A which are less than α.

Exercise 14.19 Consider the matrix in Exercise 14.9. Determine the number of
eigenvalues greater than 4.5.

Exercise 14.20 Let for n ∈ N

An =



10 1 0 · · · 0

1 10 1
. . .

...

0
. . .

. . .
. . . 0

...
. . . 1 10 1

0 · · · 0 1 10


.

a) Let dk be the diagonal elements of D in an LDLT factorization of An. Show
that 5+

√
24 < dk ≤ 10, k = 1, 2, . . . , n.

b) Show that Dn = det(An) > (5 +
√
24)n. Give n0 ∈ N such that your computer

gives an overflow when Dn0 is computed in floating point arithmetic.

Exercise 14.21 (Simultaneous diagonalization of two symmetric matrices by a
congruence transformation). Let A,B ∈ Rn,n where AT = A and B is sym-
metric positive definite. Let B = UTDU where U is orthonormal and D =

diag(d1, . . . , dn). Let Â = D−1/2UAUTD−1/2 where D−1/2 = diag(d
−1/2
1 , . . . , d

−1/2
n).

a) Show that Â is symmetric. Let Â = Û
T
D̂Û where Û is orthonormal and D̂ is

diagonal. Set E = UTD−1/2Û
T
.

b) Show that E is nonsingular and that ETAE = D̂, ETBE = I.

196 Chapter 14. Numerical Eigenvalue Problems

14.3.2 Approximating λm

Corollary 14.18 can be used to determine the mth eigenvalue of A, where λ1 ≤
λ2 ≤ · · · ≤ λn. For this we use interval bisection. Using Gerschgorin’s theorem we
first find an interval [a, b], such that [a, b) contains the eigenvalues of A. Let for
x ∈ [a, b]

ρ(x) := #{k : dk(x) < 0 for k = 1, . . . , n}

be the number of eigenvalues of A which are strictly less than x. Clearly ρ(a) = 0,
ρ(b) = n and ρ(e) − ρ(d) is the number of eigenvalues in [d, e). Let c = (a + b)/2
and k := ρ(c). If k ≥ m then λm ≤ c and λm ∈ [a, c], while if k < m then λm ≥ c
and λm ∈ [c, b]. Continuing with the interval containing λm we generate a sequence
{[aj , bj]} of intervals, each containing λm and bj − aj = 2−j(b− a).

As it stands this method will fail if in (14.5) one of the dk(α) is zero. One
possibility is to replace such a dk(α) by a suitable small number, say δk = ±|ck|ϵM ,
where the negative sign is used if ck < 0, and ϵM is the Machine epsilon, typically
2× 10−16 for Matlab. This replacement is done if |dk(α)| < |δk|.

Exercise 14.22 Suppose A = tridiag(c,d, c) is symmetric and tridiagonal with el-
ements d1, . . . , dn on the diagonal and c1, . . . , cn−1 on the neighboring subdiagonals.
Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of A. We shall write a program to
compute one eigenvalue λm for a given m using bisection and the method outlined
in Section 14.3.2.

a) Write a function k=count(c,d,x) which for given x counts the number of
eigenvalues of A strictly less than x. Use the replacement described above if
one of the dj(x) is close to zero.

b) Write a function lambda=findeigv(c,d,m) which first estimates an interval
[a, b] containing all eigenvalues of A and then generates a sequence {[ak, bk]}
of intervals each containing λm. Iterate until bk − ak ≤ (b− a)ϵM , where ϵM
is Matlab’s machine epsilon eps. Typically ϵM ≈ 2.22× 10−16.

c) Test the program on T := tridiag(−1, 2,−1) of size 100. Compare the exact
value of λ5 with your result and the result obtained by using Matlab’s built-in
function eig.

Exercise 14.23 Suppose A ∈ Cn,n is upper Hessenberg and x ∈ C. We will study
two algorithms to compute f(x) = det(A− xI).

a) Show that Gaussian elimination without pivoting requires O(1 ∗ n2) flops.

b) Show that the number of flops is the same if partial pivoting is used.

c) Estimate the number of flops if Given’s rotations are used.

d) Compare the two methods discussing advantages and disadvantages.

14.4. Perturbation Proofs 197

14.4 Perturbation Proofs
We first show that the p-norm of a diagonal matrix is equal to its spectral radius.

Lemma 14.24 If A = diag(λ1, . . . , λn) is a diagonal matrix then ∥A∥p = ρ(A)
for 1 ≤ p ≤ ∞.

Proof. For any x ∈ Cn and p < ∞ we have

∥Ax∥p = ∥[λ1x1, . . . , λnxn]
T ∥p =

(n∑
j=1

|λj |p|xj |p
)1/p ≤ ρ(A)∥x∥p.

Thus ∥A∥p = maxx ̸=0
∥Ax∥p

∥x∥p
≤ ρ(A). But from Theorem 8.46 we have ρ(A) ≤

∥A∥p and the proof is complete for p < ∞.

Exercise 14.25 Give a direct proof that ∥A∥∞ = ρ(A) if A is diagonal.

Suppose now (µ,x) is an approximation to an eigenpair of a matrix A. One
way to check the accuracy is to compute the residual r := Ax− µx. For an exact
eigenpair the residual is zero and we could hope that a small residual implies an
accurate eigenpair.

Theorem 14.26 (Absolute errors) Suppose A ∈ Cn,n has linearly independent
eigenvectors {x1, . . . ,xn} and let X = [x1, . . . ,xn] be the eigenvector matrix. To
any µ ∈ C and x ∈ Cn with ∥x∥p = 1 we can find an eigenvalue λ of A such that

|λ− µ| ≤ Kp(X)∥r∥p, 1 ≤ p ≤ ∞, (14.6)

where r := Ax− µx and Kp(X) := ∥X∥p ∥X−1∥p. If for some E ∈ Cn,n it holds
that (µ,x) is an eigenpair for A+E, then we can find an eigenvalue λ of A such
that

|λ− µ| ≤ Kp(X)∥E∥p, 1 ≤ p ≤ ∞, (14.7)

Proof. If µ ∈ σ(A) then we can take λ = µ and (14.6), (14.7) hold trivially.
So assume µ /∈ σ(A). Since A is nondefective it can be diagonalized, we have
A = XDX−1, where D = diag(λ1, . . . , λn) and (λj ,xj) are the eigenpairs of A for
j = 1, . . . , n. Define D1 := D−µI. Then D−1

1 = diag
(
(λ1−µ)−1, . . . , (λn−µ)−1

)
exists and

XD−1
1 X−1r =

(
X(D − µI)X−1

)−1
r = (A− µI)−1(A− µI)x = x.

Using this and Lemma 14.24 we obtain

1 = ∥x∥p = ∥XD−1
1 X−1r∥p ≤ ∥D−1

1 ∥pKp(X)∥r∥p =
Kp(X)∥r∥p
minj |λj − µ|

.

But then (14.6) follows. If (A + E)x = µx then 0 = Ax − µx + Ex = r + Ex.
But then ∥r∥p = ∥−Ex∥p ≤ ∥E∥p. Inserting this in (14.6) proves (14.7).

198 Chapter 14. Numerical Eigenvalue Problems

For the accuracy of an eigenvalue of small magnitude we are interested in the
size of the relative error.

Theorem 14.27 (Relative errors) Suppose in Theorem 14.26 that A ∈ Cn,n is
nonsingular. To any µ ∈ C and x ∈ Cn with ∥x∥p = 1, we can find an eigenvalue
λ of A such that

|λ− µ|
|λ|

≤ Kp(X)Kp(A)
∥r∥p
∥A∥p

, 1 ≤ p ≤ ∞, (14.8)

where r := Ax− µx. If for some E ∈ Cn,n it holds that (µ,x) is an eigenpair for
A+E, then we can find an eigenvalue λ of A such that

|λ− µ|
|λ|

≤ Kp(X)∥A−1E∥p ≤ Kp(X)Kp(A)
∥E∥p
∥A∥p

, 1 ≤ p ≤ ∞, (14.9)

Proof. Applying Theorem 8.46 to A−1 we have for any λ ∈ σ(A)

1

λ
≤ ∥A−1∥p =

Kp(A)

∥A∥p

and (14.8) follows from (14.6). To prove (14.9) we define the matrices B := µA−1

and F := −A−1E. If (λj ,x) are the eigenpairs forA then
(

µ
λj
,x

)
are the eigenpairs

for B for j = 1, . . . , n. Since (µ,x) is an eigenpair for A+E we find

(B + F − I)x = (µA−1 −A−1E − I)x = A−1
(
µI − (E +A)

)
x = 0.

Thus (1,x) is an eigenpair for B + F . Applying Theorem 14.26 to this eigenvalue
we can find λ ∈ σ(A) such that |µλ − 1| ≤ Kp(X)∥F ∥p = Kp(X)∥A−1E∥p which
proves the first estimate in (14.9). The second inequality in (14.9) follows from the
submultiplicativity of the p-norm.

Chapter 15

Some Methods for
Computing Eigenvalues

15.1 The Power Method
Let A ∈ Cn,n have eigenpairs (λj ,vj), j = 1, . . . , n. Given z0 ∈ Cn we assume that

(i) |λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|,
(ii) zT

0 v1 ̸= 0

(iii) A has linearly independent eigenvectors.

(15.1)

The first assumption means that A has a dominant eigenvalue λ1 of algebraic mul-
tiplicity one. The second assumption says that z0 has a component in the direction
v1. The third assumption is not necessary, but is included in order to simply the
analysis.

The power method is a technique to compute the dominant eigenvector v1

of A. As a by product we can also find the corresponding eigenvalue. We define a
sequence {zk} of vectors in Cn by

zk := Akz0 = Azk−1, k = 1, 2, (15.2)

To see what happens let z0 = c1v1 + c2v2 + · · · + cnvn, where by assumption (ii)
of (15.1) we have c1 ̸= 0. Since Akvj = λk

jvj for all j we see that

zk = c1λ
k
1v1 + c2λ

k
2v2 + · · ·+ cnλ

k
nvn, k = 0, 1, 2, (15.3)

Dividing by λk
1 we find

zk

λk
1

= c1v1 + c2

(λ2

λ1

)k

v2 + · · ·+ cn

(λn

λ1

)k

vn, k = 0, 1, 2, (15.4)

Assumption (i) of (15.1) implies that (λj/λ1)
k → 0 as k → ∞ for all j ≥ 2 and we

obtain
lim
k→∞

zk

λk
1

= c1v1, (15.5)

199

200 Chapter 15. Some Methods for Computing Eigenvalues

the dominant eigenvector of A. It can be shown that this also holds for defective
matrices as long as (i) and (ii) of (15.1) hold, see for example page 58 of [18].

In practice we need to scale the iterates zk somehow and we normally do not
know λ1. Instead we choose a norm on Cn, set x0 = z0/∥z0∥ and generate for
k = 1, 2, . . . unit vectors as follows:

(i) yk = Axk−1

(ii) xk = yk/∥yk∥.
(15.6)

Lemma 15.1 Suppose (15.1) holds. Then

lim
k→∞

(|λ1|
λ1

)k
xk =

c1
|c1|

v1

∥v1∥
.

In particular, if λ1 > 0 and c1 > 0 then the sequence {xk} will converge to the
eigenvector u1 := v1/∥v1∥ of unit length.

Proof. By induction on k it follows that xk = zk/∥zk∥ for all k ≥ 0, where
zk = Akz0. Indeed, this holds for k = 1, and if it holds for k−1 then yk = Axk−1 =
Azk−1/∥zk−1∥ = zk/∥zk−1∥ and xk = (zk/∥zk−1∥)(∥zk−1∥/∥zk∥) = zk/∥zk∥.
But then

xk =
zk

∥zk∥
=

c1λ
k
1

|c1λk
1 |

v1 +
c2
c1

(
λ2

λ1

)k

v2 + · · ·+ cn
c1

(
λn

λ1

)k

vn

∥v1 +
c2
c1

(
λ2

λ1

)k

v2 + · · ·+ cn
c1

(
λn

λ1

)k

vn∥
, k = 0, 1, 2, . . . ,

and this implies the lemma.

Suppose we know an approximate eigenvector u of A, but not the correspond-
ing eigenvalue µ. One way of estimating µ is to minimize the Euclidian norm of the
residual r(λ) := Au− λu.

Theorem 15.2 Let A ∈ Cn,n, u ∈ Cn \ {0}, and let ρ : C → R be given by
ρ(λ) = ∥Au− λu∥2. Then ρ is minimized when λ := u∗Au

u∗u , the Rayleigh quotient
for A.

Proof. It is equivalent to minimize E(λ) := ρ2(λ). Now

E(λ) = uTuλ2 − 2uTAuλ+ uTATAu.

We see that E is a quadratic polynomial and since uTu > 0, E has a unique
minimum λ, where E′(λ) = 0. The solution of E′(λ) = 0 is given by λ = u∗Au

u∗u .

Using Rayleigh quotients we can incorporate the calculation of the eigenvalue
into the power iteration. We can then compute the residual and stop the iteration

15.1. The Power Method 201

when the residual is sufficiently small. The estimate (14.8) can give us some insight.
Recall that if A is nonsingular and nondefective with eigenvector matrix X and
(µ,u) is an approximate eigenpair with ∥u∥2 = 1, then we can find an eigenvalue λ
of A such that

|λ− µ|
|λ|

≤ K2(X)K2(A)
∥Au− µu∥2

∥A∥2
.

Thus if the relative residual is small and both A and X are well conditioned then
the relative error in the eigenvalue will be small.

This discussion leads to the power method with Rayleigh quotient computa-
tion.

Algorithm 15.3 (The Power Method) Given A ∈ Cn,n, a starting vector
z ∈ Cn, a maximum number K of iterations, and a convergence tolerance
tol. The power method combined with a Rayleigh quotient estimate for the
eigenvalue is used to compute a dominant eigenpair (l,x) of A with ∥x∥2 = 1.
The integer it returns the number of iterations needed in order for ∥Ax −
lx∥2/∥A∥F < tol. If no such eigenpair is found in K iterations the value
it = K + 1 is returned.

function [l,x,it]= powerit(A,z,K,tol)

af=norm(A,’fro’); x=z/norm(z);

for k=1:K

y=A*x; l=x’*y;

if norm(y-l*x)/af<tol

it=k; x=y/norm(y); return

end

x=y/norm(y);

end

it=K+1;

Example 15.4 We try powerit on the three matrices

A1 :=

[
1 2
3 4

]
, A2 :=

[
1.7 −0.4
0.15 2.2

]
, and A3 =

[
1 2
−3 4

]
.

In each case we start with the random vector z = [0.6602, 0.3420] and tol = 10−6.
For A1 we get convergence in 7 iterations, for A2 it takes 174 iterations, and for
A3 we do not get convergence.

The matrix A3 does not have a dominant eigenvalue since the two eigenvalues
are complex conjugate of each other. Thus the basic condition (i) of (15.1) is not
satisfied and the power method diverges. The enormous difference in the rate of
convergence for A1 and A2 can be explained by looking at (15.4). The rate of

convergence depends on the ratio |λ2|
|λ1| . If this ratio is small then the convergence is

fast, while it can be quite slow if the ratio is close to one. The eigenvalues of A1 are
λ1 = 5.3723 and λ2 = −0.3723 giving a quite small ratio of 0.07 and the convergence
is fast. On the other hand the eigenvalues of A2 are λ1 = 2 and λ2 = 1.9 and the
corresponding ratio is 0.95 resulting in slow convergence.

202 Chapter 15. Some Methods for Computing Eigenvalues

A variant of the power method is the shifted power method In this method
we choose a number s and apply the power method to the matrix A − sI. The
number s is called a shift since it shifts an eigenvalue λ of A to λ − s of A − sI.
Sometimes the convergence can be faster if the shift is chosen intelligently. For
example, if we apply the shifted power method to A2 in Example 15.4 with shift
1.8 then with the same starting vector and tol as above we get convergence in 17
iterations instead of 174 for the unshifted algorithm.

15.1.1 The Inverse Power Method

Another variant of the power method with Rayleigh quotient is the inverse power
method. This method can be used to determine any eigenpair (λ,x) of A as long
as λ has algebraic multiplicity one. In the inverse power method we apply the power
method to the inverse matrix (A − sI)−1, where s is a shift. If A has eigenvalues
λ1, . . . , λn in no particular order then (A− sI)−1 has eigenvalues

µ1(s) = (λ1 − s)−1, µ2(s) = (λ2 − s)−1, . . . , µn(s) = (λn − s)−1.

Suppose λ1 is a simple eigenvalue ofA. Then lims→λ1 |µ1(s)| = ∞, while lims→λ1 µj(s) =
(λj − λ1)

−1 < ∞ for j = 2, . . . , n. Hence, by choosing s sufficiently close to λ1 the
inverse power method will converge to that eigenvalue.

For the inverse power method (15.6) is replaced by

(i) (A− sI)yk = xk−1

(ii) xk = yk/∥yk∥.
(15.7)

Note that we solve the linear system rather than computing the inverse matrix.
Normally the PLU factorization of A− sI is precomputed in order to speed up the
iteration.

A variant of the inverse power method is known simply asRayleigh quotient
iteration. In this method we change the shift from iteration to iteration, using the
previous Rayleigh quotient sk−1 as the current shift. In each iteration we need to
compute the following quantities

(i) (A− sk−1I)yk = xk−1,

(ii) xk = yk/∥yk∥,
(iii) sk = x∗

kAxk,

(iv) rk = Axk − skxk.

We can avoid the calculation of Axk in (iii) and (iv). Let

ρk :=
y∗
kxk−1

y∗
kyk

, wk :=
xk−1

∥yk∥2
.

Then

sk =
y∗
kAyk

y∗
kyk

= sk−1 +
y∗
k(A− sk−1I)yk

y∗
kyk

= sk−1 +
y∗
kxk−1

y∗
kyk

= sk−1 + ρk,

rk = Axk − skxk =
Ayk − (sk−1 + ρk)yk

∥yk∥2
=

xk−1 − ρkyk

∥yk∥2
= wk − ρkxk.

15.1. The Power Method 203

k 1 2 3 4 5
∥r∥2 1.0e+000 7.7e-002 1.6e-004 8.2e-010 2.0e-020
|s− λ1| 3.7e-001 -1.2e-002 -2.9e-005 -1.4e-010 -2.2e-016

Table 15.7. Quadratic convergence of Rayleigh quotient iteration.

Another problem is that the linear system in i) becomes closer and closer to singular
as sk converges to the eigenvalue. Thus the system becomes more and more ill-
conditioned and we can expect large errors in the computed yk. This is indeed
true, but we are lucky. Most of the error occurs in the direction of the eigenvector
and this error disappears when we normalize yk in ii). Miraculously, the normalized
eigenvector will be quite accurate.

We obtain the following algorithm.

Algorithm 15.5 (Rayleigh quotient iteration) Given an approximation
(s,x) to an eigenpair (λ,v) of a matrix A ∈ Cn,n. This algorithm computes a
hopefully better approximation to (λ,v) by doing one Rayleigh quotient itera-
tion. The length nr of the new residual is also returned

function [x,s,nr]= rayleighit(A,x,s)

n=length(x);

y=(A-s*eye(n,n))\x;

yn=norm(y);

w=x/yn;

x=y/yn;

rho=x’*w;

s=s+rho;

nr=norm(w-rho*x);

Since the shift changes from iteration to iteration the computation of y in
rayleighit will require O(n3) flops for a full matrix. For such a matrix it might
pay to reduce it to a upper Hessenberg form or tridiagonal form before starting the
iteration. However, if we have a good approximation to an eigenpair then only a
few iterations are necessary to obtain close to machine accuracy.

If Rayleigh quotient iteration converges the convergence will be quadratic and
sometimes even cubic. We illustrate this with an example.

Example 15.6 The matrix A = [1 2
3 4] has an eigenvalue λ1 = (5−

√
33)/2 ≈ −0.37.

We test the rate of convergence by calling rayleighit 5 times starting with x =
[1, 1]T and s = 0. The results are shown in Table 15.7. The errors are approximately
squared in each iteration indicating quadratic convergence.

204 Chapter 15. Some Methods for Computing Eigenvalues

15.2 The QR Algorithm
The QR algorithm is an iterative method to compute all eigenvalues and eigenvec-
tors of a matrix A ∈ Cn,n. The matrix is reduced to triangular form by a sequence
of unitary similarity transformations computed from the QR factorization of A.
Recall that for a square matrix the QR factorization and the QR decomposition are
the same. If A = QR is a QR factorization then Q ∈ Cn,n is unitary, Q∗Q = I
and R ∈ Cn,n is upper triangular.

The basic QR algorithm takes the following form:

A1 = A

for k = 1, 2, . . .

QkRk = Ak (QR factorization of Ak)

Ak+1 = RkQk.

end

(15.8)

Here are two examples to illustrate the convergence.

Example 15.8 We start with

A1 = A =

[
2 1
1 2

]
=

(1√
5

[
−2 −1
−1 2

])
∗
(1√

5

[
−5 −4
0 3

])
= Q1R1

and obtain

A2 = R1Q1 =
1

5

[
−5 −4
0 3

]
∗
[
−2 −1
−1 2

]
=

[
2.8 −0.6
−0.6 1.2

]
.

Continuing we find

A3 =

[
2.997 −0.074
−0.074 1.0027

]
, A9 =

[
3.0000 −0.0001
−0.0001 1.0000

]
A9 is almost diagonal and contains the eigenvalues λ1 = 3 and λ2 = 1 on the
diagonal.

Example 15.9 Applying the QR iteration (15.8) to the matrix

A1 = A =


0.9501 0.8913 0.8214 0.9218
0.2311 0.7621 0.4447 0.7382
0.6068 0.4565 0.6154 0.1763
0.4860 0.0185 0.7919 0.4057


we obtain

A14 =


2.323 0.047223 −0.39232 −0.65056

−2.1e− 10 0.13029 0.36125 0.15946
−4.1e− 10 −0.58622 0.052576 −0.25774
1.2e− 14 3.3e− 05 −1.1e− 05 0.22746

 .

15.2. The QR Algorithm 205

This matrix is almost quasi-triangular and estimates for the eigenvalues λ1, . . . , λ4

of A can now easily be determined from the diagonal blocks of A14. The 1 × 1
blocks give us two real eigenvalues λ1 ≈ 2.323 and λ4 ≈ 0.2275. The middle 2 × 2
block has complex eigenvalues resulting in λ2 ≈ 0.0914+ 0.4586i and λ3 ≈ 0.0914−
0.4586i. From Gerschgorin’s circle theorem 14.4 and Corollary 14.6 it follows that
the approximations to the real eigenvalues are quite accurate. We would also expect
the complex eigenvalues to have small absolute errors.

15.2.1 The Relation to the Power Method

In the basic QR algorithm we obtain the QR factorization of the powers Ak as
follows:

Theorem 15.10 Let Q1, . . . ,Qk and R1, . . . ,Rk be the matrices generated by the
basic QR algorithm (15.8). Then the products

Q̃k := Q1 · · ·Qk and R̃k := Rk · · ·R1 for k ≥ 1 (15.9)

are the matrices in a QR factorization Ak = Q̃kR̃k of Ak.

Proof. The proof is by induction on k. Clearly Q̃1R̃1 = Q1R1 = A1. Suppose

Q̃k−1R̃k−1 = Ak−1 for some k ≥ 2. Since QkRk = Ak = Q̃
∗
k−1AQ̃k−1 we find

Q̃kR̃k = Q̃k−1(QkRk)R̃k−1 = Q̃k−1AkR̃k−1 = (Q̃k−1Q̃
∗
k−1)AQ̃k−1R̃k−1 = Ak.

Since R̃k is upper triangular, its first column is a multiple of e1 so that

Ake1 = Q̃kR̃ke1 = r̃
(k)
11 Q̃ke1 or q̃

(k)
1 := Q̃ke1 =

1

r̃
(k)
11

Ake1.

Since ∥q̃(k)
1 ∥2 = 1 the first column of Q̃k is the result of applying the normalized

power iteration (15.6) to the starting vector x0 = e1. If this iteration converges we
conclude that the first column of Q̃k must converge to a dominant eigenvector of
A. It can be shown that the first column of Ak must then converge to λ1e1, where
λ1 is a dominant eigenvalue of A. This is clearly what happens in Examples 15.8
and 15.9.

15.2.2 A convergence theorem

There is no theorem which proves convergence of the QR algorithm in general. The
following theorem shows convergence under somewhat restrictive assumptions.

Theorem 15.11 Suppose in the basic QR algorithm (15.8) that

1. A ∈ Rn,n can be diagonalized, X−1AX = Λ := diag(λ1, . . . , λn).

206 Chapter 15. Some Methods for Computing Eigenvalues

2. The eigenvalues λ1, . . . , λn are real with |λ1| > |λ2| > · · · > |λn| > 0.

3. The inverse of the eigenvector matrix has an LU factorization X−1 = LR.

Let Q̃k = Q1 . . .Qk for k ≥ 1. Then there is a diagonal matrix Dk with diagonal
elements ±1 such that Q̃kDk → Q, where QTAQ is triangular and Q is the Q-
factor in the QR factorization of the eigenvector matrix X.

Proof. In this proof we assume that every QR factorization has an R with pos-
itive diagonal elements so that the factorization is unique. Let X = QR be the
QR factorization of X. We observe that QTAQ is upper triangular. For since
X−1AX = Λ we have R−1QTAQR = Λ so that QTAQ = RΛR−1 is upper

triangular. Since Ak+1 = Q̃
T

kAQ̃k, it is enough to show that Q̃kDk → Q for some
diagonal matrix Dk with diagonal elements ±1.

We define the nonsingular matrices

F k := RΛkLΛ−kR−1 = Q̂kR̂k, Gk := R̂kRΛkR, Dk := diag
(δ1
|δ1|

, . . . ,
δn
|δn|

)
,

where δ1, . . . , δn are the diagonal elements in the upper triangular matrix Gk and
F k = Q̂kR̂k is the QR factorization of F k. Then

Ak = XΛkX−1 = QRΛkLR = Q(RΛkLΛ−kR−1)(RΛkR)

= QF k(RΛkR) = QQ̂kR̂k(RΛkR) = (QQ̂kD
−1
k)(DkGk),

and this is the QR factorization of Ak. Indeed, QQ̂kD
−1
k is a product of orthonor-

mal matrices and therefore orthonormal. Moreover DkGk is a product of upper
triangular matrices and therefore upper triangular. Note that Dk is chosen so that
this matrix has positive diagonal elements. By Theorem 15.10 Ak = Q̃kR̃k is also
the QR factorization of Ak, and we must have Q̃k = QQ̂kD

−1
k or Q̃kDk = QQ̂k.

The theorem will follow if we can show that Q̂k → I.
The matrix ΛkLΛ−k is lower triangular with elements (λi

λj
)klij on and under

the diagonal. Thus for n = 3

ΛkLΛ−k =

 1 0 0

(λ2

λ1
)kl21 1 0

(λ3

λ1
)kl31 (λ3

λ2
)kl32 1

 .

By Assumption 2. it follows that ΛkLΛ−k → I, and hence F k → I. Since R̂
T

k R̂k is

the Cholesky factorization of F T
kF k it follows that R̂

T

k R̂k → I. By the continuity

of the Cholesky factorization it holds R̂k → I and hence R̂
−1

k → I. But then

Q̂k = F kR̂
−1

k → I.

Exercise 15.12 Use Theorem 8.40 to show that R̂k → I implies R̂
−1

k → I.

15.2. The QR Algorithm 207

15.2.3 The Shifted QR Algorithms

Like in the inverse power method it is possible to speed up the convergence by
introducing shifts. The explicitly shifted QR algorithm works as follows:

A1 = A

for k = 1, 2, . . .

Choose a shift sk

QkRk = Ak − skI (QR factorization of Ak − sI)

Ak+1 = RkQk + skI.

end

(15.10)

We will not develop the practical details of an implementation of this algo-
rithm. We contend ourselves with the following remarks. See [18] for a detailed
discussion and algorithms.

1. Ak+1 is unitary similar to Ak. For since Rk = Q∗
k(Ak− skI) we find Ak+1 =

RkQk + skI = Q∗
k(Ak − skI)Qk + skI = Q∗

kAkQk.

2. Before applying this algorithm we reduce A to upper Hessenberg form using
Algorithm 14.11.

3. If A is upper Hessenberg then all matrices {Ak}k≥1 will be upper Hessenberg.
This follows since Qk = (Ak − skI)R

−1 implies Ak+1 = Rk(Ak − skI)R
−1
k +

skI = RkAkR
−1
k . This product of two upper triangular matrices and an

upper Hessenberg matrix is upper Hessenberg.

4. Givens rotations is used to compute the QR factorization of Ak − skI.

5. To compute Ak+1 from Ak requires O(n2) flops if Ak is upper Hessenberg
and O(n) flops if Ak is tridiagonal.

6. The shifted QR algorithm is related to the power method, cf. Theorem 15.10.

7. The equation A − skI = QkRk implies that (A − skI)
Tqk = rknnen, where

qk is the last column of Qk and rknn is the (n, n) element in Rk. Thus qk is
the result of one iteration of the inverse power method to AT with shift sk.

8. If a subdiagonal element ai+1,i of an upper Hessenberg matrix A is equal
to zero, then the eigenvalues of A are the union of the eigenvalues of the
two smaller matrices A(1 : i, 1 : i) and A(i + 1 : n, i + 1 : n). Thus if
during the iteration the (i + 1, i) element of Ak is sufficiently small then
we can continue the iteration on the two smaller submatrices separately. This
splitting occurs often in practice and can with a proper implementation reduce
the computation time considerably.

9. The shift sk := eTnAken is called the Rayleigh quotient shift.

10. The eigenvalue of the lower right 2×2 corner of Ak closest to the n, n element
of Ak is called theWilkinson shift. This shift can be used to find complex
eigenvalues of a real matrix.

11. The convergence is very fast and at least quadratic both for the Rayleigh
quotient shift and the Wilkinson shift.

208 Chapter 15. Some Methods for Computing Eigenvalues

12. By doing two QR iterations at a time it is possible to find both real and
complex eigenvalues without using complex arithmetic. The corresponding
algorithm is called the implicitly shifted QR algorithm

13. After having computed the eigenvalues we can compute the eigenvectors in
steps. First we find the eigenvectors of the triangular or quasi-triangular
matrix. We then compute the eigenvectors of the upper Hessenberg matrix
and finally we get the eigenvectors of A.

14. Practical experience indicates that only O(n) iterations are needed to find all
eigenvalues of A. Thus both the explicit- and implicit shift QR algorithms
are normally O(n3) algorithms.

Part VI

Appendix

209

Appendix A

Vectors

This chapter contains a review of vector space concepts that will be useful in this
text. we start by introducing a vector space. To define a vector space we need a
field F, a set of vectors V, a way to combine vectors called vector addition, and
a way to combine elements of F and V called scalar multiplication. In the first
part of this section F will be an arbitrary field, but later the field will be the set of
real or complex numbers with the usual arithmetic operations.

A.1 Vector Spaces
Definition A.1 A field is a set F together with two operations +, · : F × F → F
such that for all a, b, c ∈ F the following arithmetic rules hold

(A0) there exists an element 0 ∈ F such that a+ 0 = a.

(Am) there exists an element (−a) ∈ F such that a + (−a) = 0. We define sub-
traction as a− b := a+ (−b).

(Aa) a+ (b+ c) = (a+ b) + c.

(Ac) a+ b = b+ a.

(M1) there exists an element 1 ∈ F such that a · 1 = a.

(Mi) if a ̸= 0 then there exists an element a−1 ∈ F such that a · a−1 = 1.

(Ma) a · (b · c) = (a · b) · c.

(Mc) a · b = b · a.

(D) a · (b+ c) = a · b+ a · c.

The requirements (A0), (Am), (Aa) are the axioms for a group. They state that
(F,+) is a group, and since in addition (Ac) holds then (F,+) is by defintion an

211

212 Appendix A. Vectors

abelian group. The axioms (M1), (Mi), (Ma), (Mc) state that (F\{0}, ·) is an
abelian group. Often we drop the dot and write ab for the product a · b. Examples
of fields are R or C with ordinary addition and multiplication.

Definition A.2 A vector space over a field F is a set V together with two opera-
tions vector addition, + : V × V → V and scalar multiplication, · : F× V → V such
that for all a, b ∈ F and v,w ∈ V the following hold

(V) (V,+) is an abelian group.

(Va) (a · b) · v = a · (b · v).

(Vd1) (a+ b) · v = a · v + b · v.

(Vd2) a · (v +w) = a · v + a ·w.

(M1) 1 · v = v.

We denote a vector space by (V,F) or by V if the underlying field is clear from the
context.

Definition A.3 Let (V,F) be a vector space and S a nonempty subset of V. Then
(S,F) is a subspace of (V,F) if (S,F) is itself a vector space.

It follows that (S,F) is a subspace of (V,F) if S is closed under vector addition
and scalar multiplication, i.e. as1 + bs2 ∈ S for all a, b ∈ F and all s1, s2 ∈ S. For
any vector space (V,F) the two sets {0}, consisting only of the zero element in V,
and V itself are subspaces. They are called the trivial subspaces.

Here are some examples of vector spaces.

Example A.4 (The Vector Spaces Rn and Cn) In the following chapters we
will deal almost exclusively with the vector spaces Rn = (Rn,R), Cn = (Cn,C)
and their subspaces. Addition and scalar multiplication are defined by

v +w =

v1 + w1

...
vn + wn

 , av =

av1...
avn

 .

Example A.5 (Subspaces of R2 and R3) For a given vector x ∈ Rn let S =
{tx : t ∈ R}. Then S is a subspace of Rn, in fact it represents a straight line
passing through the origin. For n = 2 it can be shown that all nontrivial subspaces
of R2 are of this form. For n = 3 the nontrivial subspaces are all lines and all
planes containing {0}.

A.1. Vector Spaces 213

Example A.6 (The Vector Space C(I)) Let F = R and let C(I) be the set of all
real valued functions f : I → R which are defined and continuous on an interval I ⊂
R. Here the vectors are functions in C(I). Vector addition and scalar multiplication
are defined for all f, g ∈ C(I) and all a ∈ R by

(f + g)(x) := f(x) + g(x), (af)(x) := af(x), for all x ∈ I.

C(I) =
(
C(I),R

)
is a vector space since

• the sum of two continuous functions is continuous,

• a constant times a continuous function is continuous

• vector addition and scalar multiplication are defined point-wise, so the axioms
for a vector space follows from properties of real numbers.

Example A.7 (The Vector Space Πn) Let Πn(I) be the set of all polynomials
of degree at most n defined on a subset I ⊂ R or I ⊂ C. We write simply Πn if
I = R or I = C. With pointwise addition and scalar multiplication defined as in
Example A.6 the set (Πn(I),R) is a subspace of (C(I),R).

Definition A.8 (Linear Combinations) The sum c1v1 + c2v2 + · + cnvn with
ci ∈ F and vi ∈ V for i = 1, . . . , n is called a linear combination of v1, . . . ,vn.
We say that the linear combination is nontrivial if at least one of the ci’s is nonzero.
The set

span{v1, . . . ,vn} := {c1v1 + · · ·+ cnvn : ci ∈ F, i = 1, . . . , n}

spanned by v1, . . . ,vn ∈ V is a subspace of (V,F). A vector space V is called finite
dimensional if it has a finite spanning set; i.e. there exist n ∈ N and {v1, . . . ,vn}
in V such that V = span{v1, . . . ,vn}.

Exercise A.9 Show that the 0 of vector addition is unique and that {0} is a sub-
space.

Exercise A.10 Show that 0 · x = 0 for any x ∈ V.

Exercise A.11 Show that span{v1, . . . ,vn} is a subspace.

Exercise A.12 Show that span{v1, . . . ,vn} is the smallest subspace containing the
vectors v1, . . . ,vn.

214 Appendix A. Vectors

A.2 Linear Independence and Bases
Definition A.13 Let X := {v1, . . . ,vn} be a set of vectors in a vector space (V,F).
We say that X is linearly dependent if we can find a nontrivial linear combination
which is equal to zero. We say that X is linearly independent if it is not linearly
dependent. In other words

c1v1 + · · ·+ cnvn = 0 for some c1, . . . , cn ∈ F =⇒ c1 = · · · = cn = 0.

The elements in a set of linearly independent vectors must all be nonzero and
we have

Lemma A.14 Suppose v1, . . . ,vn span a vector space V and that w1, . . . ,wk are
linearly independent vectors in V. Then k ≤ n.

Proof. Suppose k > n. Write w1 as a linear combination of elements from the set
X0 := {v1, . . . ,vn}, sayw1 = c1v1+· · ·+cnvn. Sincew1 ̸= 0 not all the c’s are equal
to zero. Pick a nonzero c, say ci1 . Then vi1 can be expressed as a linear combination
of w1 and the remaining v’s. So the set X1 := {w1,v1, . . . ,vi1−1,vi1+1, . . . ,vn}
must also be a spanning set for V. We repeat this for w2 and X1. In the linear
combination w2 = di1w1+

∑
j ̸=i1

djvj , we must have di2 ̸= 0 for some i2. Moreover
i2 ̸= i1 for otherwise w2 = d1w1 contradicting the linear independence of the w’s.
So the set X2 consisting of the v’s with vi1 replaced by w1 and vi2 replaced by w2

is again a spanning set for V. Repeating this process n− 2 more times we obtain a
spanning set Xn where all the v’s have been replaced by w1, . . . ,wn. Since k > n
we can then write wk as a linear combination of w1, . . . ,wn contradicting the linear
independence of the w’s. We conclude that k ≤ n.

Definition A.15 A finite set of vectors {v1, . . . ,vn} in a vector space (V,F) is a
basis for (V,F) if

1. span{v1, . . . ,vn} = V.

2. {v1, . . . ,vn} is linearly independent.

Theorem A.16 Suppose (V,F) is a vector space and that S := {v1, . . . ,vn} is a
spanning set for V. Then we can find a subset {vi1 , . . . ,vik} of S that forms a basis
for V.

Proof. If {v1, . . . ,vn} is linearly dependent we can express one of the v’s as a
nontrivial linear combination of the remaining v’s and drop that v from the spanning
set. Continue this process until the remaining v’s are linearly independent. They
still span the vector space and therefore form a basis.

Corollary A.17 A vector space is finite dimensional if and only if it has a basis.

A.2. Linear Independence and Bases 215

Proof. Let V = span{v1, . . . ,vn} be a finite dimensional vector space. By Theo-
rem A.16 V has a basis. Conversely, if V = span{v1, . . . ,vn} and {v1, . . . ,vn} is a
basis then it is by defintion a finite spanning set.

Theorem A.18 Every basis for a vector space V has the same number of elements.
This number is called the dimension of the vector space and denoted dimV.

Proof. Suppose X = {v1, . . . ,vn} and Y = {w1, . . . ,wk} are two bases for V . By
Lemma A.14 we have k ≤ n. Using the same Lemma with X and Y switched we
obtain n ≤ k. We conclude that n = k.

The set of unit vectors {e1, . . . ,en} form a basis for both Rn and Cn. The
dimension of the trivial subspace {0} is defined to be zero.

Theorem A.19 Every linearly independent set of vectors {v1, . . . ,vk} in a finite
dimensional vector space V can be enlarged to a basis for V.

Proof. If {v1, . . . ,vk} does not span V we can enlarge the set by one vector vk+1

which cannot be expressed as a linear combination of {v1, . . . ,vk}. The enlarged
set is also linearly independent. Continue this process. Since the space is finite
dimensional it must stop after a finite number of steps.

It is convenient to introduce a matrix transforming a basis in a subspace into
a basis for the space itself.

Lemma A.20 Suppose S is a subspace of a finite dimensional vector space (V,F)
and let {s1, . . . , sn} be a basis for S and {v1, . . . ,vm} a basis for V. Then each sj
can be expressed as a linear combination of v1, . . . ,vm, say

sj =
m∑
i=1

aijvi for j = 1, . . . , n. (A.1)

If x ∈ S then x =
∑n

j=1 cjsj =
∑m

i=1 bivi for some coefficients b := [b1, . . . , bm]T ,

c := [c1, . . . , cn]
T . Moreover b = Ac, where A = [aij] ∈ Cm,n. The matrix A has

linearly independent columns.

Proof. (A.1) holds since sj ∈ V and {v1, . . . ,vn} spans V. Since {s1, . . . , sn}
is a basis for S and {v1, . . . ,vm} a basis for V every x ∈ S can be written x =∑n

j=1 cjsj =
∑m

i=1 bivi for some scalars (cj) and (bi). But then

x =
n∑

j=1

cjsj
(A.1)
=

n∑
j=1

cj
(m∑
i=1

aijvi

)
=

m∑
i=1

(n∑
j=1

aijcj
)
vi =

m∑
i=1

bivi.

Since {v1, . . . ,vm} is linearly independent it follows that bi =
∑n

j=1 aijcj for i =
1, . . . ,m or b = Ac. Finally, to show that A has linearly independent columns

216 Appendix A. Vectors

suppose b := Ac = 0 for some c = [c1, . . . , cn]
T . Define x :=

∑n
j=1 cjsj . Then

x =
∑m

i=1 bivi and since b = 0 we have x = 0. But since {s1, . . . , sn} is linearly
independent we have c = 0.

The matrix A in Lemma A.20 is called a change of basis matrix.

Exercise A.21 Show that the elements in a linearly independent set must be nonzero.

Exercise A.22 Show that the set of unit vectors {e1, . . . , en} form a basis both for
Rn and for Cn. Why does this show that the dimension of Rn and Cn is n?

A.3 Operations on Subspaces
Let R and S be two subsets of a vector space (V,F) and let a be a scalar. The sum,
multiplication by scalar, union, and intersection of R and S are defined by

R+ S := {r + s : r ∈ R and s ∈ S}, (A.2)

aS := {as : s ∈ S}, (A.3)

R∪ S := {x : x ∈ R or x ∈ S}. (A.4)

R∩ S := {x : x ∈ R and x ∈ S}. (A.5)

Exercise A.23 Let R = {(x, y) : x2 + y2 ≤ 1} be the unit disc in R2 and set
S = {(x, y) : (x− 1

2)
2 + y2 ≤ 1}. Find R+ S, 2S,R∪ S,, and R∩ S.

A.3.1 Sums and intersections of subspaces

In many cases R and S will be subspaces. Then aS = S and both the sum and
intersection of two subspaces is a subspace of (V,F). Note however that the union
R∪ S of two subspaces is not necessarily a subspace.

Exercise A.24 Let R and S be two subspaces of a vector space (V,F). Show that
aS = S and that both R+ S and R∩ S are subspaces of (V,F).

Example A.25 For given vectors x,y ∈ Rn with x and y linearly independent let
R = span{x} and S = span{y}. Then R and S are subspaces of Rn. For n = 2 we
have R + S = R2, while for n = 3 the sum represents a plane passing through the
origin. We also see that R∩ S = {0} and that R∪ S is not a subspace.

Exercise A.26 Show the statements made in Example A.25.

Theorem A.27 Let R and S be two subspaces of a vector space (V,F). Then

dim(R+ S) = dim(R) + dim(S)− dim(R∩ S). (A.6)

A.3. Operations on Subspaces 217

Proof. Let {u1, . . . ,up} be a basis for R ∩ S, where {u1, . . . ,up} = ∅, the empty
set, in the caseR∩S = {0}. We use Theorem A.19 to extend {u1, . . . ,up} to a basis
{u1, . . . ,up, r1, . . . , rq} for R and a basis {u1, . . . ,up, s1, . . . , st} for S. Every x ∈
R+ S can be written as a linear combination of {u1, . . . ,up, r1, . . . , rq, s1, . . . , st}
so these vectors span R + S. We show that they are linearly independent and
hence a basis. Suppose u + r + s = 0, where u :=

∑p
j=1 αjuj , r :=

∑q
j=1 ρjrj ,

and s :=
∑t

j=1 σjsj . Now r = −(u + s) belongs to both R and to S and hence
r ∈ R ∩ S. Therefore r can be written as a linear combination of u1, . . . ,up

say r :=
∑p

j=1 βjuj and at the same time as a linear combination of r1, . . . , rq.

But then 0 =
∑p

j=1 βjuj −
∑q

j=1 ρjrj and since {u1, . . . ,up, r1, . . . , rq} is linearly
independent we must have β1 = · · · = βp = ρ1 = · · · = ρq = 0 and hence r = 0.
We now have u + s = 0 and by linear independence of {u1, . . . ,up, s1, . . . , st} we
obtain α1 = · · · = αp = σ1 = · · · = σt = 0. We have shown that the vectors
{u1, . . . ,up, r1, . . . , rq, s1, . . . , st} constitute a basis for R + S. The result now
follows from a simple calculation

dim(R+ S) = p+ q + t = (p+ q) + (p+ t)− p = dim(R) + dim(S)− dim(R∩ S).

From this theorem it follows that dim(R + S) = dim(R) + dim(S) provided
R∩ S = {0}.

Definition A.28 (Direct Sum) Let R and S be two subspaces of a vector space
(V,F). If R∩S = {0} then the subspace R+S is called a direct sum and denoted
R⊕S. The subspaces R and S are called complementary in the subspace R⊕S.

Theorem A.29 Let R and S be two subspaces of a vector space (V,F) and assume
R∩S = {0}. Every x ∈ R⊕S can be decomposed uniquely in the form x = r+ s,
where r ∈ R and s ∈ S. If {r1, . . . , rk} is a basis for R and {s1, . . . , sn} is a basis
for S then {r1, . . . , rk, s1, . . . , sn} is a basis for R⊕ S.

Proof. To show uniqueness, suppose we could write x = r1 + s1 = r2 + s2 for
r1, r2 ∈ R and s1, s2 ∈ S. Then r1 − r2 = s2 − s1 and it follows that r1 − r2 and
s2−s1 belong to both R and S and hence to R∩S. But then r1−r2 = s2−s1 = 0
so r1 = r2 and s2 = s1. Thus uniqueness follows. Suppose {r1, . . . , rk} is a basis
for R and {s1, . . . , sn} is a basis for S. Since dim(R+ S) = dim(R) + dim(S) the
vectors {r1, . . . , rk, s1, . . . , sn} span R + S. To show linear independence suppose∑k

j=1 ρjrj +
∑n

j=1 σjsj = 0. The first sum belongs to R and the second to S and
the sum is a decomposition of 0. By uniqueness of the decomposition both sums
must be zero. But then ρ1 = · · · = ρk = σ1 = · · · = σn = 0 and linear independence
follows.

218 Appendix A. Vectors

A.3.2 The quotient space

For the sum of two sets we write x+S := {x+ s : s ∈ S} when one of the sets is a
singleton set {x}. Suppose S is a subspace of a vector space (X ,F). Since aS = S
we have

a(x+ S) + b(y + S) = (ax+ by) + S, for all a, b ∈ F and all x,y ∈ S.

The set
X/S := {x+ S : x ∈ X} (A.7)

is a vector space if we define

a(x+ S) + b(y + S) := (ax+ by) + S, for all a, b ∈ F and all x,y ∈ S.

The space X/S is called the quotient space of X by S. The zero element in X/S
is S itself. Moreover, if x+ S = y + S then x− y ∈ S.

Exercise A.30 Show that X/S is a vector space.

Theorem A.31 Suppose S is a subspace of a finite dimensional vector space (X ,F).
Then

dim(S) + dim
(
X/S

)
= dim(X). (A.8)

Proof. Let n := dim(X), k = dim(S), and let {s1, . . . , sk} be a basis for S. By
Theorem A.19 we can extend it to a basis {s1, . . . , sk, tk+1, . . . , tn} for X . The
result will follow if we can show that {tk+1 + S, . . . , tn + S} is a basis for X/S.
Recall that the zero element in X/S is S. To show linear independence suppose∑n

j=k+1 aj(tj + S) = S for some ak+1, . . . , an in F. Since
∑n

j=k+1 ajS = S and the

zero element in X/S is unique we must have
∑n

j=k+1 ajtj = 0 which implies that
ak+1 = · · · = an = 0 by linear independence of the t’s. It remains to show that
span{tk+1 +S, . . . , tn +S} = X/S. Suppose x+S ∈ X/S. For some a1, . . . , an we

have x = x1+x2, where x1 =
∑k

j=1 ajsj and x2 =
∑n

j=k+1 ajtj . Since x1+S = S
we have x+ S = x2 + S =

∑n
j=k+1 ajtj + S =

∑n
j=k+1 aj(tj + S) ∈ X/S.

A.4 Convergence of Vectors
Consider an infinite sequence {xk} = x0,x1,x2, . . . of vectors in Rn. This sequence
converges to zero if and only if each component sequence xk(j) converges to zero
for j = 1, . . . , n. In terms of the natural basis we have xk =

∑n
j=1 xk(j)ek and

another way of stating convergence to zero is that in terms of the basis {e1, . . . ,en}
for Rn each coefficient xk(j) of xk converges to zero.

Consider now a more general vector space.

Definition A.32 Let {v1, . . . ,vn} be a basis for a finite dimensional vector space
(V,F), where F = R or F = C, and let {xk} be an infinite sequence of vectors in

A.4. Convergence of Vectors 219

V with basis coefficients {ck}, i.e. xk =
∑n

j=1 ckjvj for each k. We say that {xk}
converges to zero, or have the limit zero, if limk→∞ ckj = 0 for j = 1, . . . , n. We
say that {xk} converge to the limit x in V if xk − x converges to zero. We write
this as limk→∞ xk = x or xk → x (as k → ∞).

This definition is actually independent of the basis chosen. If {w1, . . . ,wn}
is another basis for V and xk =

∑n
j=1 bkjwj for each k then from Lemma A.20

bk = Ack for some nonsingular matrix A independent of k. Hence ck → 0 if and
only if bk → 0. If {ak} and {bk} are sequences of scalars and {xk} and {yk} are
sequences of vectors such that {ak} → a, {bk} → b, {xk} → x, and {yk} → y
then {akxk + bkyk} → ax + by. This shows that scalar multiplication and vector
addition are continuous functions with respect to this notion of limit.

Corresponding to a basis {v1, . . . ,vn}, we define

∥x∥c := max
1≤j≤n

|cj | where x =

n∑
j=1

cjvj .

We leave as an exercise to show that this is a norm on V. Recall that any two
norms on V are equivalent. This implies that for any other norm ∥·∥ on V there are
positive constants α, β such that any x =

∑n
j=1 cjvj satisfy

∥x∥ ≤ α max
1≤j≤n

|cj | and |cj | ≤ β∥x∥ for j = 1, . . . , n. (A.9)

Suppose now (V,F, ∥·∥) is a normed vector space with F = R or F = C. The
notion of limit can then be stated in terms of convergence in norm.

Theorem A.33 In a normed vector space we have xk → x if and only if limk→∞∥xk−
x∥ = 0.

Proof. Suppose {v1, . . . ,vn} is a basis for the vector space and assume xk,x ∈ V.
Then xk − x =

∑n
j=1 ckjvj for some scalars ckj By (A.9) we see that

1

β
max
k,j

|ckj | ≤ ∥xk − x∥ ≤ αmax
k,j

|ckj |

and hence ∥xk − x∥ → 0 ⇔ limk ckj → 0 for each j ⇔ xk → x.

Since all vector norms are equivalent we have convergence in any norm we can
define on a finite dimensional vector space.

Definition A.34 Let (V,F, ∥·∥) be a normed vector space and let {xk} in V be an
infinite sequence.

1. {xk} is a Cauchy sequence if limk,l→∞(xk−xl) = 0 or equivalently limk,l→∞∥xk−
xl∥ = 0. More precisely, for each ϵ > 0 there is an integer N ∈ N such that
for each k, l ≥ N we have ∥xk − xl∥ ≤ ϵ.

2. The normed vector space is said to be complete if every Cauchy sequence
converges to a point in the space.

220 Appendix A. Vectors

3. {xk} is called bounded if there is a positive number M such that ∥xk∥ ≤ M
for all k.

4. {xnk
} is said to be a subsequence of {xk}k≥0 if 0 ≤ n0 < n1 < n2 · · · .

Theorem A.35 In a finite dimensional vector space V the following hold:

1. A sequence in V is convergent if and only if it is a Cauchy sequence.

2. V is complete.

3. Every bounded sequence in V has a convergent subsequence.

Proof.

1. Suppose xk → x. By the triangle inequality ∥xk −xl∥ ≤ ∥xk −x∥+ ∥xl −x∥
and hence ∥xk − xl∥ → 0. Conversely, let {v1, . . . ,vn} be a basis for V and
{xk} a Cauchy sequence with xk =

∑n
j=1 ckjvj for each k. Then xk − xl =∑n

j=1(ckj − clj)vj and since limk,l→∞(xk − xl) = 0 we have by definition of
convergence limk,l→∞(ckj − clj) = 0 for j = 1, . . . , n. Thus for each j we have
a Cauchy-sequence {ckj} ∈ C and since C is complete {ckj} converges to some
cj ∈ C. But then xk → x :=

∑n
j=1 cjvj ∈ V.

2. V is complete since we just showed that every Cauchy sequence converges to
a point in the space.

3. Let {v1, . . . ,vn} be a basis for V and {xk} be a bounded sequence with
xk =

∑n
j=1 ckjvj for each k. By (A.9) each coefficient sequence {ckj}k is

a bounded sequence of complex numbers and therefore, by a well known prop-
erty of complex numbers, has a convergent subsequence. In particular the
sequence of v1 coefficients {ck1} has a convergent subsequence cki,1. For the
second component the sequence {cki,2} has a convergent subsequence, say cli,2.
Continuing with j = 3, . . . , n we obtain integers 0 ≤ m0 < m1 < · · · such that
{cmi,j} is a convergent subsequence of ckj for j = 1, . . . , n. But then {xmi}
is a convergent subsequence of {xk}.

A.4.1 Convergence of Series of Vectors

Consider now an infinite series
∑∞

m=0 ym of vectors in a vector space (V,F) with
F = R or F = C. We say that the series converges if the sequence of partial sums
{xk} given by xk =

∑k
m=0 ym converges. A sufficient condition for convergence is

that
∑∞

m=0∥ym∥ converges for some vector norm. We say that the series converges
absolutely if this is the case. Note that ∥

∑∞
m=0 ym∥ ≤

∑∞
m=0∥ym∥, and absolute

convergence in one norm implies absolute convergence in any norm by Theorem 8.3.
In an absolute convergent series we may change the order of the terms without
changing the value of the sum.

A.5. Inner Products 221

Exercise A.36 Show that if {ak} → a, {bk} → b, {xk} → x, and {yk} → y then
{akxk + bkyk} → ax+ by.

Exercise A.37 Show that ∥·∥c is a norm.

A.5 Inner Products
An inner product or scalar product in a vector space (V,F), where F = R or
F = C, is a function ⟨·, ·⟩ mapping pairs of vectors into a scalar. We consider first
the case where F = R.

Definition A.38 An inner product in a vector space (V,R) is a function V×V → R
satisfying for all x,y, z ∈ V and all a, b ∈ R the following conditions:

1. ⟨x,x⟩ ≥ 0 with equality if and only if x = 0. (positivity)

2. ⟨x,y⟩ = ⟨y,x⟩ (symmetry)

3. ⟨ax+ by, z⟩ = a⟨x,z⟩+ b⟨y, z⟩. (linearity)

The triple (V,R, ⟨·, ·,)⟩ is called a real inner product space

The standard inner product in V = Rn is given by ⟨x,y⟩ := xTy. It is
clearly an inner product in Rn.

When the field of scalars is C the inner product is complex valued and prop-
erties 2. and 3. are altered as follows:

Definition A.39 An inner product in a vector space (V,C) is a function V×V → C
satisfying for all x,y, z ∈ V and all a, b ∈ C the following conditions:

1. ⟨x,x⟩ ≥ 0 with equality if and only if x = 0. (positivity)

2. ⟨x,y⟩ = ⟨y,x⟩ (skew symmetry)

3. ⟨ax+ by, z⟩ = a⟨x,z⟩+ b⟨y, z⟩. (linearity)

The triple (V,C, ⟨·, ·,)⟩ is called a complex inner product space

Note the complex conjugate in 2. and that (Cf. Exercise A.45)

⟨x, ay + bz⟩ = a⟨x,y⟩+ b⟨x,z⟩. (A.10)

The standard inner product in Cn is given by ⟨x,y⟩ := x∗y =
∑n

j=1 xjyj .
It is clearly an inner product in Cn.

Suppose now (V,F, ⟨·, ·,)⟩ is an inner product space with F = R or F = C. We
define the inner product norm by

∥x∥ :=
√
⟨x,x⟩, x ∈ V.

222 Appendix A. Vectors

For any vectors x,y ∈ V and scalar a ∈ F we have (Cf. Exercises A.44 and A.45)
by linearity and symmetry the expansion

∥x+ ay∥2 = ∥x∥2 + 2a⟨x,y⟩+ a2∥y∥2 (real case), (A.11)

= ∥x∥2 + 2Re⟨x, ay⟩+ |a|2∥y∥2 (complex case), (A.12)

where Re z and Im z denotes the real- and imaginary part of the complex
number z.

In the complex case we can write the inner product of two vectors as a sum
of inner product norms. For any x,y ∈ V it follows from (A.12) that

4⟨x,y⟩ = ∥x+ y∥2 − ∥x− y∥2 + i∥x− iy∥2 − i∥x+ iy∥2, (A.13)

where i =
√
−1 and we used that Im(z) = Re(−iz) for any z ∈ C.

To show that the inner product norm is a norm in (V,R) we need the triangle
inequality. To show it we start with a famous inequality.

Theorem A.40 (Cauchy-Schwarz inequality) For any x,y in a real or com-
plex inner product space

|⟨x,y⟩| ≤ ∥x∥∥y∥

with equality if and only if x and y are linearly dependent.

Proof. The inequality is trivial if ⟨x,y⟩ = 0 so assume ⟨x,y⟩ ̸= 0. Suppose

first ⟨x,y⟩ ∈ R. We define the scalar a := − ⟨x,y⟩
∥y∥2 , and use (A.11) to obtain

0 ≤ ∥x + ay∥2 = ∥x∥2 −
(
⟨x,y⟩

)2
/∥y∥2. Thus the inequality follows in the real

case. Suppose next ⟨x,y⟩ is complex valued, say ⟨x,y⟩ = reiϕ. We define b := e−iϕ

and observe that b⟨x,y⟩ = r is real valued and |b| = 1. Using the real case of the
Cauchy-Schwarz inequality we find

|⟨x,y⟩| = |b⟨x,y⟩| = |⟨bx,y⟩| ≤ ∥bx∥∥y∥ = ∥x∥∥y∥

which proves the inequality also in the complex case. We have equality if and only
if x+ ay = 0 which means that x and y are linearly dependent.

Theorem A.41 (Triangle Inequality) For any x,y in a real or complex inner
product space

∥x+ y∥ ≤ ∥x∥+ ∥y∥.

Proof. From the Cauchy-Schwarz inequality it follows that Re⟨x,y⟩ ≤ ∥x∥∥y∥.
Using this on the inner product term in (A.12) with a = 1 we get

∥x+ y∥2 ≤ ∥x∥2 + 2∥x∥∥y∥+ ∥y∥2 = (∥x∥+ ∥y∥)2.

Taking square roots completes the proof.

A.6. Orthogonality 223

Theorem A.42 (Parallelogram Identity) For all x,y in a real or complex in-
ner product space

∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2.

Proof. We set a = ±1 in the inner product expansion (A.12) and add the two
equations.

In the real case the Cauchy-Schwarz inequality implies that −1 ≤ ⟨x,y⟩
∥x∥∥y∥ ≤ 1

for nonzero x and y so there is a unique angle θ in [0, π] such that

cos θ =
⟨x,y⟩
∥x∥∥y∥

. (A.14)

This defines the angle between vectors in a real inner product space.

Exercise A.43 Suppose A ∈ Rm,n has linearly independent columns. Show that
⟨x,y⟩ := xTATAy defines an inner product on Rn.

Exercise A.44 Show (A.11)

Exercise A.45 Show (A.10) and (A.12).

Exercise A.46 Show (A.13)

Exercise A.47 Show that in the complex case there is a unique angle θ in [0, π/2]
such that

cos θ =
|⟨x,y⟩|
∥x∥∥y∥

. (A.15)

A.6 Orthogonality
As in the previous section we assume that (V,F, ⟨·, ·,)⟩ is an inner product space
with F = R or F = C. Also ∥·∥ denotes the inner product norm.

Definition A.48 (Orthogonality) Two vectors x,y in a real or complex inner
product space are called orthogonal or perpendicular, denoted as x ⊥ y, if
⟨x,y⟩ = 0. The vectors are orthonormal if in addition ∥x∥ = ∥y∥ = 1.

For orthogonal vectors it follows from (A.12) that the Pythagorean theorem
holds

∥x+ y∥2 = ∥x∥2 + ∥y∥2, if x ⊥ y.

224 Appendix A. Vectors

Definition A.49 (Orthogonal- and Orthonormal Bases) A set of vectors {v1,
. . . ,vk} in a subspace S of a real or complex inner product space is called an or-
thogonal basis for S if it is a basis for S and ⟨vi,vj⟩ = 0 for i ̸= j. It is an
orthonormal basis for S if it is a basis for S and ⟨vi,vj⟩ = δij for all i, j.

A basis for an inner product space can be turned into an orthogonal- or or-
thonormal basis for the subspace by the following construction.

Theorem A.50 (Gram-Schmidt) Let {s1, . . . , sk} be a basis for a real or com-
plex inner product space (S,F, ⟨·, ·⟩). Define

v1 := s1, vj := sj −
j−1∑
i=1

⟨sj ,vi⟩
⟨vi,vi⟩

vi, j = 2, . . . , k. (A.16)

Then {v1, . . . ,vk} is an orthogonal basis for S and the normalized vectors

{u1, . . . ,uk} := { v1

∥v1∥
, . . . ,

vk

∥vk∥
}

is an orthonormal basis for S.

Proof. To show that {v1, . . . ,vk} is an orthogonal basis for S we use induction on k.
Let Sj := span{s1, . . . , sj} for j = 1, . . . , k. Clearly v1 = s1 is an orthogonal basis
for S1. Suppose for some j ≥ 2 that v1, . . . ,vj−1 is an orthogonal basis for Sj−1 and
let vj be given by (A.16) as a linear combination of sj and v1, . . . ,vj−1. Replacing

each of these vi by a linear combination of s1, . . . , sj−1 we obtain vj =
∑j

i=1 aisi
for some a0, . . . , aj with aj = 1. Since s1, . . . , sj are linearly independent and aj ̸= 0
we deduce that vj ̸= 0. By the induction hypothesis

⟨vj ,vl⟩ = ⟨sj ,vl⟩ −
j−1∑
i=1

⟨sj ,vi⟩
⟨vi,vi⟩

⟨vi,vl⟩ = ⟨sj ,vl⟩ −
⟨sj ,vl⟩
⟨vl,vl⟩

⟨vl,vl⟩ = 0

for l = 1, . . . , j − 1. Thus v1, . . . ,vj is an orthogonal basis for Sj .
If {v1, . . . ,vk} is an orthogonal basis for S then clearly {u1, . . . ,uk} is an

orthonormal basis for S.

Theorem A.51 (Orthogonal Projection) Let S be a subspace of a finite dimen-
sional real or complex inner product space (V,F, ⟨·, ·,)⟩. To each x ∈ V there is a
unique vector p ∈ S such that

⟨x− p, s⟩ = 0, for all s ∈ S. (A.17)

If (v1, . . . ,vk) is an orthogonal basis for S then

p =

k∑
i=1

⟨x,vi⟩
⟨vi,vi⟩

vi. (A.18)

A.6. Orthogonality 225

Proof. Define p by (A.18). Then

⟨p,vj⟩ =
k∑

i=1

⟨x,vi⟩
⟨vi,vi⟩

⟨vi,vj⟩ =
⟨x,vj⟩
⟨vj ,vj⟩

⟨vj ,vj⟩ = ⟨x,vj⟩

so that by linearity ⟨x − p,vj⟩ = 0 for j = 1, . . . , k. But then ⟨x − p, s⟩ = 0 for
all s ∈ S. This shows existence of a p satisfying (A.17). For uniqueness suppose
p1,p2 ∈ S and ⟨x− p1, s⟩ = ⟨x− p2, s⟩ = 0 for all s ∈ S. Then ⟨x− p1, s⟩ − ⟨x−
p2, s⟩ = ⟨p2−p1, s⟩ = 0 for all s ∈ S and in particular ⟨p2−p1,p2−p1⟩ = 0 which
implies that p2 − p1 = 0 or p1 = p2.

Theorem A.52 (Best Approximation) Let S be a subspace of a finite dimen-
sional real or complex inner product space (V,F, ⟨·, ·,)⟩. Let x ∈ V, and p ∈ S. The
following statements are equivalent

1. ⟨x− p, s⟩ = 0, for all s ∈ S.

2. ∥x− s∥ > ∥x− p∥ for all s ∈ S with s ̸= p.

Proof. Suppose 1. holds and that s ̸= p. Using Pythagoras for inner products we
have

∥x− s∥2 = ∥(x− p) + (p− s)∥2 = ∥x− p∥2 + ∥p− s∥2 > ∥x− p∥2.

Conversely, suppose 2. holds. Pick any nonzero s ∈ S and define the scalar
a := −Re⟨x− p, s⟩/∥s∥2. Using (A.12) and the minimality of p we obtain

∥x− p∥2 ≤ ∥x− p+ as∥2 = ∥x− p∥2 + 2aRe⟨x− p, s⟩+ a2∥s∥2

= ∥x− p∥2 −
(
Re⟨x− p, s⟩

)
/∥s∥2.

This can only be true if Re⟨x − p, s⟩ = 0 for all s ∈ S. Since s ∈ S implies that
is ∈ S, where i =

√
−1, we have

0 = Re⟨x− p, is⟩ = Re
(
− i⟨x− p, s⟩

)
= Im⟨x− p, s⟩

and hence ⟨x− p, s⟩ = 0 for all s ∈ S.

The vector p is called the orthogonal projection of x into S with respect
to ⟨·, ·⟩., and denoted by p = PSx.

In terms of an orthogonal basis (v1, . . . ,vk) for S we have the representation

s =

k∑
i=1

⟨s,vi⟩
⟨vi,vi⟩

vi, all s ∈ S. (A.19)

226 Appendix A. Vectors

x

x

x - p

p=P
S

S

Figure A.1. The orthogonal projection of x into S.

A.7 Projections and Orthogonal Complements
Theorem A.53 Let S be a subspace in a real or complex inner product space
(V,F, ⟨·, ·,)⟩ and let PS : Rn → S be the operator mapping a vector x ∈ V into
the orthogonal projection p in S. Then PS is a linear projection operator, i.e.

1. PS(αx+ βy) = αPSx+ βPSy for all x,y ∈ V and all α, β ∈ F.
2. P 2

S = PS , i.e. PS(PSx) = PSx for all x ∈ V.

Proof.

1. Let p := PSx and q := PSy. Then ⟨x − p, s⟩ = 0 and ⟨y − q, s⟩ = 0 for all
s ∈ S, and by linearity of the inner product

⟨αx+ βy − (αp+ βq), s⟩ = α⟨x− p, s⟩+ β⟨y − q, s⟩ = 0.

But then αp + βq = αPSx + βPSy is the orthogonal projection of αx + βy
into S and 1. follows.

2. Since p = PSx ∈ S the uniqueness implies that PSp = p which gives 2.

Definition A.54 (Orthogonal Complement) Let S be a subspace in a real or
complex inner product space (V,F, ⟨·, ·,)⟩. The Orthogonal Complement of S , which
is denoted by S⊥, consists of all vectors in V that are orthogonal to every s ∈ S. In
other words

x ∈ S⊥ ⇐⇒ ⟨x, s⟩ = 0, for all s ∈ S.

Clearly S⊥ is a subspace of V.

Theorem A.55 (Orthogonal Decomposition) For each subspace S of a real or
complex inner product space we have the direct sum decomposition V = S ⊕ S⊥. If
(s1, . . . , sk) is a basis for S and (t1, . . . , tn) is a basis for S⊥ then (s1, . . . , sk, t1, . . . , tn)
is a basis for S ⊕ S⊥. In particular, any orthonormal basis for S can be extended
to an orthonormal basis for V.

A.7. Projections and Orthogonal Complements 227

Proof. If x ∈ S ∩ S⊥ then ⟨x,x⟩ = 0 so x = 0.This means that S ∩ S⊥ = {0} and
S ⊕S⊥ is a direct sum. Every x ∈ Rn can be decomposed as x = PSx+(x−PSx)
where PSx ∈ S and x−PSx ∈ S⊥. Since we are dealing with a direct sum it follows
from Theorem A.29 that any basis (s1, . . . , sk) for S and any basis (t1, . . . , tn) for
S⊥ can be combined into a basis for V. If (s1, . . . , sk) is an orthonormal basis for
S then we apply the Gram-Schmidt process to (t1, . . . , tn) to obtain a combined
orthonormal basis for V.

Exercise A.56 Show that
(
S⊥)⊥ = S for any subspace S of a real or complex

inner product space.

228 Appendix A. Vectors

Appendix B

Matrices

In this chapter we review some topics related to matrices. In Section B.1 we study
block-multiplication, a basic tool in matrix analysis. We then review the transpose
matrix, linear systems, and inverse matrices. We end the chapter with some basic
facts about orthonormal-, and unitary matrices.

Some matrices with many zeros have names indicating their ”shape”. Suppose
A ∈ Rn,n or A ∈ Cn,n. Then A is

• diagonal if aij = 0 for i ̸= j.

• upper triangular or right triangular if aij = 0 for i > j.

• lower triangular or left triangular if aij = 0 for i < j.

• upper Hessenberg if aij = 0 for i > j + 1.

• lower Hessenberg if aij = 0 for i < j + 1.

• tridiagonal if aij = 0 for |i− j| > 1.

• lower banded with bandwidth p if aij = 0 for i > j + p.

• upper banded with bandwidth q if aij = 0 for i < j + q.

• banded with bandwidth p+ q+1 if A is both lower banded with bandwidth
p and upper banded with bandwidth q.

• block upper triangular if there is an integer k such that aij = 0 for i =
k + 1, . . . , n and j = 1, . . . , k.

• block lower triangular if AT is block upper triangular.

B.1 Arithmetic Operations and Block Multiplication
The arithmetic operations on rectangular matrices are

• matrix addition C = A + B if cij = aij + bij for all i, j and A,B,C are
matrices of the same dimension.

• multiplication by a scalar C = αA, where cij = αaij for all i, j.

229

230 Appendix B. Matrices

• multiplication by another matrix C = AB, C = A ·B or C = A ∗B,
where A ∈ Cm,p, B ∈ Cp,n, C ∈ Cm,n, and cij =

∑p
k=1 aikbkj for i =

1, . . . ,m, j = 1, . . . , n.

• entry-by-entry matrix operations(add a dot) C = A.∗B and D = A./B,
and E = A.∧ r where all matrices are of the same dimension and cij = aijbij ,
dij = aij/bij and eij = arij for all i, j and suitable r. The entry-by-entry
product C = A.∗B is known as the Schur product and also the Hadamard
product.

Example B.1 (The Vector Space of m× n matrices) On the set Cm,n of m×
n matrices we define vector addition as matrix addition and scalar multiplication
as a scalar times a matrix. Then Cm,n = (Cm,n,C) is a vector space. Of course
Rm,n = (Rm,n,R) is also a vector space.

A rectangular matrix A can be partitioned into submatrices by drawing hori-
zontal lines between selected rows and vertical lines between selected columns. For
example, the matrix

A =

1 2 3
4 5 6
7 8 9


can be partitioned as

(i)

[
A11 A12

A21 A22

]
=

 1 2 3
4 5 6
7 8 9

 , (ii)
[
a:1,a:2,a:3

]
=

 1 2 3
4 5 6
7 8 9

 ,

(iii)

aT
1:

aT
2:

aT
3:

 =

 1 2 3
4 5 6
7 8 9

 , (iv)
[
A11,A12

]
=

 1 2 3
4 5 6
7 8 9

 .

In (i) the matrix A is divided into four submatrices

A11 =
[
1
]
, A12 =

[
2, 3

]
, A21 =

[
4
7

]
, and A22 =

[
5 6
8 9

]
,

while in (ii) and (iii) A has been partitioned into columns and rows, respectively.
The submatrices in a partition is often referred to as blocks and a partitioned
matrix is sometimes called a block matrix.

We will make heavily use of block multiplication of matrices. In the follow-
ing we assume that A ∈ Cm,p and B ∈ Cp,n. We have the following rules and
observations for block multiplication.

1. If B =
[
b:1, . . . , b:n

]
is partitioned into columns then the partition of the

product AB into columns is

AB =
[
Ab:1,Ab:2, . . . ,Ab:n

]
.

B.1. Arithmetic Operations and Block Multiplication 231

In particular, if I is the identity matrix of order p then

A = AI = A
[
e1, e2, . . . , ep

]
=

[
Ae1,Ae2, . . . ,Aep

]
and we see that column j of A can be written Aej for j = 1, . . . , p.

2. Similarly, if A is partitioned into rows then

AB =


aT1:
aT2:
...

aTm:

B =


aT1:B
aT2:B
...

aTm:B


and taking A = Ip it follows that row i of B can be written eTi B for i =
1, . . . , p.

3. It is often useful to write the matrix-vector productAx as a linear combination
of the columns of A

Ax = x1a:1 + x2a:2 + · · ·+ xpa:p.

One way to see that this is correct is to partition A into columns and x into
rows.

4. If B =
[
B1,B2

]
, where B1 ∈ Cp,r and B2 ∈ Cp,n−r then

A
[
B1,B2

]
=

[
AB1,AB2

]
.

This follows from Rule 1. by an appropriate grouping of the columns of B.

5. If A =

[
A1

A2

]
, where A1 ∈ Ck,p and A2 ∈ Cm−k,p then

[
A1

A2

]
B =

[
A1B
A2B

]
.

This follows from Rule 2. by a grouping of the rows of A.

6. If A =
[
A1,A2

]
and B =

[
B1,B2

]
, where A1 ∈ Cm,s, A2 ∈ Cm,p−s, B1 ∈

Cs,n and B2 ∈ Cp−s,n then

[
A1,A2

] [B1

B2

]
=

[
A1B1 +A2B2

]
.

Indeed, (AB)ij =
∑p

j=1 aikbkj =
∑s

j=1 aikbkj +
∑p

j=s+1 aikbkj = (A1B1)ij +
(A2B2)ij = (A1B1 +A2B2)ij .

7. If A =

[
A11 A12

A21 A22

]
and B =

[
B11 B12

B21 B22

]
then

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=

[
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

]
,

232 Appendix B. Matrices

provided the vertical partition in A matches the horizontal one in B, i.e. the
number of columns in A11 and A21 equals the number of rows in B11 and
B12. To show this we use Rule 4. to obtain

AB =

[[
A11 A12

A21 A22

] [
B11

B21

]
,

[
A11 A12

A21 A22

] [
B12

B22

]]
.

We complete the proof using Rules 5. and 6.

8. Consider finally the general case. If all the matrix products in

Cij =
s∑

k=1

AikBkj , i = 1, . . . , p, j = 1, . . . , q

are well defined thenA11 · · · A1s

...
...

Ap1 · · · Aps


B11 · · · B1q

...
...

Bs1 · · · Bsq

 =

C11 · · · C1q

...
...

Cp1 · · · Cpq

 ,

where

Cij =
s∑

k=1

AikBkj , i = 1, . . . , p, j = 1, . . . , q.

The requirements are that

• the number of columns in A is equal to the number of rows in B.

• the position of the vertical partition lines in A has to mach the position
of the horizontal partition lines in B. The horizontal lines in A and the
vertical lines in B can be anywhere.

B.2 The Transpose Matrix
The transpose of A ∈ Cm,n is a matrix B ∈ Cn,m, where bij = aji for all i, j.
Thus the rows of A are the columns of B and vice versa. The transpose of A is
denoted AT . Three important properties of the transpose are

1. (A+B)T = AT +BT .

2. (AC)T = CTAT .

3. (AT)T = A.

Here A,B ∈ Cm,n and C ∈ Cn,k, where k,m, n are any positive integers.
Consider now the real case A ∈ Rm,n. A useful characterization is the follow-

ing:

Theorem B.2 Let ⟨x, y⟩ := xTy =
∑m

i=1 xiyi be the usual inner product on Rm

For any A ∈ Rm,n we have ⟨x,Ay⟩ = ⟨ATx,y⟩, all x ∈ Rm, y ∈ Rn. If ⟨x,Ay⟩ =
⟨Bx,y⟩ holds for some B ∈ Rn,m and all x ∈ Rm, y ∈ Rn then B = AT .

B.3. Linear Systems 233

Proof. For any x ∈ Rm and y ∈ Rn

⟨x,Ay⟩ =
m∑
i=1

xi

(n∑
j=1

aijyj
)
=

n∑
j=1

(m∑
i=1

xiaij
)
yj =

n∑
j=1

(ATx)jyj = ⟨ATx,y⟩.

If we choose x = ei and y = ej then aij = ⟨ei,Aej⟩ = ⟨Bei, ej⟩ = bji for

i = 1, . . . ,m and j = 1, . . . , n so B = AT .

The Hermitian transpose or conjugate transpose of A ∈ Cm,n is the
matrix B ∈ Cn,m given by B = (A)T Here z = x − iy denotes the complex
conjugate of z = x + iy, where i =

√
−1 is the imaginary unit and x, y ∈ R.

Moreover A is obtained from A by taking the complex conjugate of all its entries.
The Hermitian transpose of A is denoted AH . The Hermitian transpose enjoys the
same properties as the transpose:

1. (A+B)H = AH +BH .

2. (AC)H = CHAH .

3. (AH)H = A.

Again A,B ∈ Cm,n and C ∈ Cn,k, where k,m, n are any positive integers.
We obtain the same characterization in the complex case.

Theorem B.3 Let ⟨x, y⟩ := xHy =
∑m

i=1 xiyi be the usual inner product in Cm

For any A ∈ Cm,n we have ⟨x,Ay⟩ = ⟨AHx,y⟩, all x ∈ Cm, y ∈ Cn. If ⟨x,Ay⟩ =
⟨Bx,y⟩ holds for some B ∈ Cn,m and all x ∈ Cm, y ∈ Cn then B = AH .

Exercise B.4 Use Theorem B.3 to show that (AC)H = CHAH and (AH)H = A.

B.3 Linear Systems
Consider a linear system

a11x1 + a12x2+ · · · + a1nxn = b1
a21x1 + a22x2+ · · · + a2nxn = b2
...

...
...

...
am1x1 + am2x2+ · · · + amnxn = bm

of m equations in n unknowns. Here for all i, j, the coefficients aij , the unknowns
xj , and the components of the right hand sides bi, are real or complex numbers.
The system can be written as a vector equation

x1a1 + x2a2 + · · ·+ xnan = b,

where aj =
[
a1j , . . . ,amj

]T ∈ Cm for j = 1, . . . , n and b =
[
b1, . . . , bm

]T
. It can

also be written as a matrix equation

Ax =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn



x1

x2

...
xn

 =


b1
b2
...
bm

 = b.

234 Appendix B. Matrices

The system is homogenous if b = 0 and it is said to be underdetermined,
square, or overdetermined if m < n, m = n, or m > n, respectively.

A linear system may have a unique solution, infinitely many solutions, or no
solution. To discuss this we first consider a homogenous underdetermined system.

Lemma B.5 Suppose A ∈ Rm,n(Cm,n) with m < n. Then there is a nonzero
x ∈ Rn(Cn) such that Ax = 0.

Proof. SupposeA ∈ Rm,n(Cm,n) withm < n. The n columns ofA span a subspace
of Rm(Cm). Since Rm(Cm) has dimension m the dimension of this subspace is at
most m. By Lemma A.14 the columns of A must be linearly dependent. It follows
that there is a nonzero x ∈ Rn(Cn) such that Ax = 0.

Consider now a square linear system. The following definition is essential.

Definition B.6 A square matrix A is said to be non-singular if the only solution
of the homogenous system Ax = 0 is x = 0. The matrix is singular if it is not
non-singular.

Theorem B.7 Suppose A ∈ Rn,n(Cn,n). The linear system Ax = b has a unique
solution x ∈ Rn(Cn) for any b ∈ Rn(Cn) if and only if the matrix A is non-singular.

Proof. Suppose A is non-singular. We define B =
[
A b

]
∈ Rn,n+1(Cn,n+1) by

adding a column to A. By Lemma B.5 there is a nonzero z ∈ Rn+1(Cn+1) such

that Bz = 0. If we write z =

[
z̃

zn+1

]
where z̃ =

[
z1, . . . , zn

]T ∈ Rn(Cn) and

zn+1 ∈ R(C), then

Bz = [A b]

[
z̃

zn+1

]
= Az̃ + zn+1b = 0.

We cannot have zn+1 = 0 for then Az̃ = 0 for a nonzero z̃ contradicting the
non-singularity of A. Define x := −z̃/zn+1. Then

Ax = −A
(z̃

zn+1

)
= − 1

zn+1
Az̃ = − 1

zn+1

(
− zn+1b

)
= b

so x is a solution.
Suppose Ax = b and Ay = b for x,y ∈ Rn(Cn). Then A(x − y) = 0 and

since A is non-singular we conclude that x− y = 0 or x = y. Thus the solution is
unique.

Conversely, if Ax = b has a unique solution for any b ∈ Rn(Cn) then Ax = 0
has a unique solution which must be x = 0. Thus A is non-singular.

B.4. The Inverse matrix 235

B.4 The Inverse matrix
Suppose A ∈ Rn,n(Cn,n) is a square matrix. A matrix B ∈ Rn,n(Cn,n) is called
a right inverse of A if AB = I. A matrix C ∈ Rn,n(Cn,n) is said to be a left
inverse of A if CA = I. We say that A is invertible if it has both a left- and a
right inverse. If A has a right inverse B and a left inverse C then

C = CI = C(AB) = (CA)B = IB = B

and this common inverse is called the inverse of A and denoted A−1. Thus the
inverse satisfies A−1A = AA−1 = I.

We want to characterize the class of invertible matrices and start with a lemma.

Lemma B.8 If A,B,C ∈ Rn,n(Cn,n) with AB = C then C is non-singular if
and only if both A and B are non-singular.

Proof. Suppose both A and B are non-singular and let Cx = 0. Then ABx = 0
and since A is non-singular we see that Bx = 0. Since B is non-singular we have
x = 0. We conclude that C is non-singular.

For the converse suppose first that B is singular and let x ∈ Rn(Cn) be a
nonzero vector so that Bx = 0. But then Cx = (AB)x = A(Bx) = A0 = 0 so C
is singular. Finally suppose B is non-singular, but A is singular. Let x̃ be a nonzero
vector such that Ax̃ = 0. By Theorem B.7 there is a vector x such that Bx = x̃
and x is nonzero since x̃ is nonzero. But then Cx = (AB)x = A(Bx) = Ax̃ = 0
for a nonzero vector x and C is singular.

Theorem B.9 A square matrix is invertible if and only if it is non-singular.

Proof. Suppose first A is a non-singular matrix. By Theorem B.7 each of the linear
systems Abi = ei has a unique solution bi for i = 1, . . . , n. Let B =

[
b1, . . . , bn

]
.

Then AB =
[
Ab1, . . . ,Abn

]
=

[
e1, . . . , en

]
= I so that A has a right inverse B.

By Lemma B.8 B is non-singular since I is non-singular and AB = I. Since B is
non-singular we can use what we have shown for A to conclude that B has a right
inverse C, i.e. BC = I. But then AB = BC = I so B has both a right inverse
and a left inverse which must be equal so A = C. Since BC = I we have BA = I
so B is also a left inverse of A and A is invertible.

Conversely, if A is invertible then it has a right inverse B and since AB = I
and I is non-singular we again use Lemma B.8 to conclude that A is non-singular.

The theorem shows that we can use the terms ”non-singular” and ”invertible”
interchangeably. If B is a right inverse or a left inverse of A then it follows from
Lemma B.8 that A is non-singular. Thus to verify that some matrix B is an inverse
of another matrix A it is enough to show that B is either a left inverse of a right
inverse of A. This calculation also proves that A is non-singular. We use this
observation to give simple proofs of the following results.

236 Appendix B. Matrices

Corollary B.10 Suppose A,B ∈ Rn,n(Cn,n) are non-singular and c is a nonzero
constant.

1. A−1 is non-singular and (A−1)−1 = A.

2. C = AB is non-singular and C−1 = B−1A−1.

3. AT is non-singular and (AT)−1 = (A−1)T =: A−T .

4. cA is non-singular and (cA)−1 = 1
cA

−1.

Proof.

1. Since A−1A = I the matrix A is a right inverse of A−1. Thus A−1 is non-
singular and (A−1)−1 = A.

2. We note that (B−1A−1)(AB) = B−1(A−1A)B = B−1B = I. Thus AB is
invertible with the indicated inverse since it has a left inverse.

3. Now I = IT = (A−1A)T = AT (A−1)T showing that (A−1)T is a right inverse
of AT .

4. The matrix 1
cA

−1 is a one sided inverse of cA.

Exercise B.11 Show that[
a b
c d

]−1

= α

[
d −b
−c a

]
, α =

1

ad− bc
,

for any a, b, c, d such that ad− bc ̸= 0.

Exercise B.12 Find the inverse of

A =

[
cos θ − sin θ
sin θ cos θ

]
.

Exercise B.13 Suppose A ∈ Cn,n, and B,C ∈ Rn,m for some n,m ∈ N. If
(I +CTA−1B)−1 exists then

(A+BCT)−1 = A−1 −A−1B(I +CTA−1B)−1CTA−1.

B.5 Rank, Nullity, and the Fundamental Subspaces
Recall that the column space (or span) and the null space (kernel) of a matrix
A ∈ Cm,n are defined by

spanA := {y ∈ Cm : y = Ax, x ∈ Rn}
kerA := {x ∈ Cn : Ax = 0}.

B.5. Rank, Nullity, and the Fundamental Subspaces 237

These sets are subspaces of Cm and Cn, respectively. The four subspaces spanA,
kerA, spanA∗ and kerA∗ are known as the four fundamental subspaces of a
matrix. The dimension of the column space of A is called the rank of A and
denoted rankA. The dimension dimkerA of the null space is called the nullity of
A and denoted nullA.

Recall that the orthogonal complement S⊥ of a subspace S of Cn is {t ∈ Cn :
⟨s, t⟩ = 0 for all s ∈ S}. For S = spanA we have

Theorem B.14 The orthogonal complement of the column space of a matrix A ∈
Cm,n is the null space of A∗. We have the orthogonal decomposition

Cm = spanA⊕ kerA∗. (B.1)

Proof. We first show that

span(A)⊥ = ker(A∗) := {y ∈ Rm : A∗y = 0}.

Suppose c ∈ span(A). Then c = Ax for some x ∈ Rn. If y ∈ ker(A∗) then
⟨y, c⟩ = ⟨y,Ax⟩ = ⟨A∗y,x⟩ = 0. Thus ker(A∗) ⊂ span(A)⊥. To show that
span(A)⊥ ⊂ ker(A∗) we pick any y ∈ span(A)⊥. Then ⟨A∗y,x⟩ = ⟨y,Ax⟩ = 0
for all x ∈ Rn which means that y ∈ ker(A∗). The orthogonal decomposition (B.1)
now follows from Theorem A.55.

The following formula for the rank of a product of two matrices will also be
useful.

Lemma B.15 If A ∈ Cm,n and B ∈ Cn,p for some m,n, p ∈ N then

rank(AB) = rankB − dim(kerA ∩ spanB).

Proof. Pick a basis {s1, . . . , sk} for kerA ∩ spanB and extend it to a basis
{s1, . . . , sk,xk+1, . . . ,xl} for spanB. The result will follow if we can show that
Y := {Axk+1, . . . ,Axl} is a basis for span(AB).

(i) Y is linearly independent. For if
∑

cjAxj :=
∑l

j=k+1 cjAxj = 0 thenA
(∑

cjxj

)
=

0, and hence
∑

cjxj ∈ kerA ∩ spanB. But then
∑l

j=k+1 cjxj =
∑k

j=1 cjsj
for some c1, . . . , ck, and by linear independence we have c1 = · · · = cl = 0.

(ii) span Y ⊂ span(AB). Suppose y =
∑

cjAxj ∈ span Y . Since xj ∈ span(B)
we have xj = Bzj , for some zj , j = k+1, . . . , l. But then y =

∑
j cjABzj ∈

span(AB).

(iii) span(AB) ⊂ span Y . If y ∈ span(AB) then y = Ax for some x ∈ spanB.

Since {s1, . . . , sk,xk+1, . . . ,xl} is a basis for spanB we have x =
∑k

j=1 cjsj+∑l
j=k+1 cjxj for some c1, . . . , cl and sj ∈ ker(A). But then

y = Ax =
k∑

j=1

cjAsj +
l∑

j=k+1

cjAxj =
l∑

j=k+1

cjAxj ∈ span(Y).

238 Appendix B. Matrices

Consider now the four fundamental subspaces.

Theorem B.16 For any matrix A ∈ Cm,n we have

1. rankA+ nullA = n,

2. rankA+ nullA∗ = m,

3. rankA = rankA∗.

Proof.
1. Taking B to be the identity matrix in Lemma B.15 we obtain rank(A) =
rank I − dim(kerA ∩ span I) = n− dim(kerA ∩ Cn) = n− dimkerA.
2. This follows from Theorems A.55 and B.14.
3. If we apply 2. to A∗ we obtain dim spanA∗+dimkerA = n. But then rankA =

dim spanA
1.
= n − dimkerA = n − (n − dim spanA∗) = dim spanA∗ = rank(A∗).

To derive some further results about rank and nullity we start with a definition:

Definition B.17 (Equivalent matrices) Suppose A,B ∈ Cm,n. We say that A
is equivalent to B, denoted A ∼ B, if B = XAY for some non-singular matrices
X ∈ Cm,m and Y ∈ Cn,n.

Exercise B.18 Show that ∼ is an equivalence relation, i. e.,

(i) A ∼ A,

(ii) if A ∼ B then B ∼ A,

(iii) if A ∼ B and B ∼ C then A ∼ C.

For any subspace S of Cn and B ∈ Cm,n we define BS := {Bs : s ∈ S}.

Exercise B.19 Show that BS is a subspace of Cm.

Exercise B.20 Suppose A ∈ Cm,n and that X ∈ Cm,m and Y ∈ Cn,n are non-
singular. Show that

1. span(A) = span(AY) = X−1 span(XA),

2. kerA = Y ker(AY) = ker(XA),

3. rank(XAY) = rank(A),

4. null(XAY) = nullA.

For the rank of a general product we have

B.6. Linear Transformations and Matrices 239

Theorem B.21 Suppose A ∈ Cm,n and B ∈ Cn,p for some m,n, p ∈ N. Then

rank(AB) ≤ min{rank(A), rank(B)}.

Proof. Since span(AB) ⊂ span(A) we have rank(AB) ≤ rank(A). Now span(B∗A∗) ⊂
span(B∗). Therefore rank(AB) = rank((AB)∗) = rank(B∗A∗) ≤ rank(B∗) =
rank(B).

We end this section with the following useful result.

Theorem B.22 If the matrix A ∈ Cm,n has rank r then there is at least one non-
singular r × r submatrix in A. Moreover there are no non-singular submatrices of
larger order.

Proof. We use Theorem A.16 twice. There is a subset {a·j1 , . . . ,a·jr} of the
columns of A which forms a basis for span(A). Consider the matrix B∗ ∈ Cm,r,
where B = [a·j1 , . . . ,a·jr]. Since r = rank(B) = rank(B∗) there is a subset
{i1, . . . , ir} of {1, . . . ,m} such that columns i1, . . . , ir ofB

∗ form a basis for span(B∗).
But then rows i1, . . . , ir of B are linearly independent, defining a non-singular r× r
submatrix in A. Suppose M is a non-singular submatrix in A of order k. The
columns in A corresponding to the columns in M are linearly independent and
hence k ≤ r.

B.6 Linear Transformations and Matrices
Let (X ,F) and (Y,F) be vector spaces over the same field F. A mapping T : X → Y
is called linear if for all x,y ∈ X and all a ∈ F we have

1. T (x+ y) = Tx+ Ty, (additivity)

2. T (ax) = aTx. (homogeneity)

If Y is the vector space of all functions f : R → R and X is the space of all
differentiable functions f : R → R, then the mapping T : X → Y given by T f :=
df/dx is a linear transformation from X to Y. The mapping T given by (T f)(x) :=∫ x

0
f(t)dt is a linear transformation from the space X of all continuous functions

f : R → R into X .
Linear transformations are not the main emphasis of this text and we will

only consider briefly the special case where X = Rn and Y = Rm. The same results
hold for the complex case X = Cn and Y = Cm. Suppose A ∈ Rm,n. The mapping
T : Rn → Rm given by Tx = Ax is clearly additive and homogenous. Thus it is
a linear mapping. It turns out that all linear mappings T : Rn → Rm are of this
form.

Theorem B.23 Every linear map from Rn → Rm can be written in the form T =
Ax for some A ∈ Rm,n.

240 Appendix B. Matrices

Proof. Suppose x ∈ Rn. Then x =
∑n

j=1 xjej and by linearity

Tx = T
(n∑
j=1

xjej
)
=

n∑
j=1

xjTej =
n∑

j=1

xjaj = Ax,

where A = [a1, . . . ,an] = [Te1, . . . ,Ten] ∈ Rm,n.

Let

spanT := {y ∈ Rm : y = Tx for some x ∈ Rn},
kerT := {x ∈ Rn : Tx = 0},

(B.2)

be the span and kernel of the linear transformation T . The sets spanT and kerT
are subspaces of Rm and Rn, respectively.

Theorem B.24 Suppose T : Rn → Rm is a linear transformation. Then For any
matrix A ∈ Cm,n we have

dim spanT + dimkerT = n.

Proof. This follows from Theorem B.16 since Tx = Ax for some matrix A.

Much more can be said about linear transformations and matrices. We refer
to any book on linear algebra.

B.7 Orthonormal and Unitary Matrices
Definition B.25 A matrix Q ∈ Rn,n is said to be orthonormal if QTQ = I.

Since the columns of an orthonormal matrix are orthonormal, we have chosen
the term ”orthonormal matrix” although ”orthogonal matrix” is more common in
the classical literature.

Theorem B.26 Suppose Q ∈ Rn,n. The following is equivalent:

1. Q is orthonormal,

2. the columns of Q form an orthonormal basis for Rn.

3. Q−1 = QT

4. QQT = I

5. the columns of QT (rows of Q) form an orthonormal basis for Rn,

6. ⟨Qx,Qy⟩ = ⟨x,y⟩ for all x,y ∈ Rn, where ⟨x,y⟩ = xTy is the usual inner
product on Rn.

We also have

(i) The product Q1Q2 of two orthonormal matrices is orthonormal.

(ii) If Q is orthonormal then ∥Qx∥2 = ∥x∥2 for all x ∈ Rn.

B.7. Orthonormal and Unitary Matrices 241

Proof. Let q1, . . . , qn be the columns of Q.

1⇔ 2 This follows since (QTQ)ij = ⟨qi, qj⟩ for all i, j.

1⇔ 3 SinceQT is a left inverse ofQ it follows from the discussion after Theorem B.9
that Q is invertible and Q−1 = QT .

3⇔ 4 Since QT = Q−1 the definition of the inverse matrix implies that QT is a
right inverse of Q so that QQT = I.

4⇔ 5 This follows since QT is orthonormal and (QT)T = Q

1⇔ 6 If Q is orthonormal then by Theorem B.2 we have ⟨x,y⟩ = ⟨QTQx,y⟩ =
⟨Qx,Qy⟩ for all x,y ∈ Rn. Conversely, taking x = ei and y = ej we find

(QTQ)ij = ⟨QTQei, ej⟩ = ⟨Qei,Qej⟩ = ⟨ei,ej⟩ = δij for all i, j = 1, . . . , n.

Suppose Q1 and Q2 are orthonormal. Then (Q1Q2)
TQ1Q2 = QT

2 Q
T
1 Q1Q2 = I so

the product Q1Q2 is orthonormal. Using 6. with y = x we obtain (ii).

Consider now the complex case.

Definition B.27 A matrix U ∈ Cn,n is said to be unitary if U∗U = I.

Note that a real unitary matrix is orthonormal.

Theorem B.28 Suppose U ∈ Cn,n. The following is equivalent:

1. U is unitary,

2. the columns of U form an orthonormal basis for Cn.

3. U−1 = U∗

4. UU∗ = I

5. the columns of U∗ (rows of U) form an orthonormal basis for Cn,

6. ⟨Ux, Uy⟩ = ⟨x,y⟩ for all x,y ∈ Cn, where ⟨x,y⟩ = x∗y is the usual inner
product on Cn.

7. ∥Ux∥2 = ∥x∥2 for all x ∈ Cn.

The product U1U2 of two unitary matrices is unitary.

Proof. That 1-6 are equivalent is similar to the proof of the real case. Clearly 6
implies 7. That 7 implies 6 follows from the fact that we can write a complex inner
product as a sum of norms. (Cf. (A.13).)

Exercise B.29 Show in Theorem B.28 that 7. implies 6.

242 Appendix B. Matrices

Appendix C

Determinants

The first systematic treatment of determinants was given by Cauchy in 1812. He
adopted the word “determinant” which was introduced by Gauss in 1801. The first
use of determinants was made by Leibniz in 1693 in a letter to De L’Hôspital. By
the beginning of the 20th century the theory of determinants filled four volumes
of almost 2000 pages (Muir, 1906–1923. Historic references can be found in this
work). The main use of determinants in this text will be to study the characteristic
polynomial of a matrix.

In this section we give the elementary properties of determinants that we need.

C.1 Permutations
For n ∈ N, let Nn = {1, 2, . . . , n}. A permutation is a function σ : Nn → Nn

which is one-to-one and onto. That is, {σ(1), σ(2), . . . , σ(n)} is a rearrangement of
{1, 2, . . . , n}. If n = 2, there are two permutations {1, 2} and {2, 1}, while for n = 3
we have six permutations {1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2} and {3, 2, 1}.
We denote the set of all permutations on Nn by Sn. There are n! elements in Sn.

If σ, τ are two permutations in Sn, we can define their product στ as

στ = {σ(τ(1)), σ(τ(2)), . . . , σ(τ(n))}.

For example if σ = {1, 3, 2} and τ = {3, 2, 1}, then στ = {σ(3), σ(2), σ(1)} =
{2, 3, 1}, while τσ = {τ(1), τ(3), τ(2)} = {3, 1, 2}. Thus in general στ ̸= τσ. It
is easily shown that the product of two permutations σ, τ is a permutation, i.e.
στ : Nn → Nn is one-to-one and onto.

The permutation ϵ = {1, 2, . . . , n} is called the identity permutation in Sn.
We have ϵσ = σϵ = σ for all σ ∈ Sn.

Since each σ ∈ Sn is one-to-one and onto, it has a unique inverse σ−1. To
define σ−1(j) for j ∈ Nn, we find the unique i such that σ(i) = j. Then σ−1(j) = i.
We have σ−1σ = σσ−1 = ϵ. As an example, if σ = {2, 3, 1} then σ−1 = {3, 1, 2},
and σ−1σ = σσ−1 = {1, 2, 3} = ϵ.

243

244 Appendix C. Determinants

With each σ ∈ Sn we can associate a + or − sign. We define

sign(σ) =
g(σ)

|g(σ)|
,

where

g(σ) =
n∏

i=2

(σ(i)− σ(1))(σ(i)− σ(2)) · · · (σ(i)− σ(i−1)).

For example if ϵ = {1, 2, 3, 4} and σ = {4, 3, 1, 2}, then

g(ϵ) = (2−1)(3−1)(3−2)(4−1)(4−2)(4−3) = 1! · 2! · 3! > 0,

g(σ) = (3−4)(1−4)(1−3)(2−4)(2−3)(2−1)

= (−1)(−3)(−2)(−2)(−1) · 1 = −1! · 2! · 3! < 0.

Thus sign(ϵ) = +1 and sign(σ) = −1.
g(σ) contains one positive factor (2−1) and five negative ones. The negative

factors are called inversions. The number of inversions equals the number of times
a bigger integer precedes a smaller one in σ. That is, in {4, 3, 1, 2} 4 precedes 3,
1 and 2 (three inversions corresponding to the negative factors (3−4), (1−4) and
(2−4) in g(σ)), and 3 precedes 1 and 2 ((1−3) and (2−3) in g(σ)). This makes it
possible to compute sign(σ) without actually writing down g(σ).

In general, the sign function has the following properties

1. sign(ϵ) = 1.

2. sign(στ) = sign(σ)sign(τ) for σ, τ ∈ Sn.

3. sign(σ−1) = sign(σ) for σ ∈ Sn.

Since all factors in g(ϵ) are positive, we have g(ϵ) = |g(ϵ)| and sign(ϵ) = 1. This
proves 1. To prove 2 we first note that for any Sn

sign(σ) =
g(σ)

g(ϵ)
.

Since g(σ) and g(ϵ) contain the same factors apart from signs and g(ϵ) > 0, we have
|g(σ)| = g(ϵ). Now

sign(στ) =
g(στ)

g(ϵ)
=

g(στ)

g(τ)

g(τ)

g(ϵ)
=

g(στ)

g(τ)
sign(τ).

We have to show that g(στ)/g(τ) = g(σ)/g(ϵ). We write g(σ)/g(ϵ) in the form

g(σ)

g(ϵ)
=

n∏
i=2

i−1∏
j=1

rσ(i, j), rσ(i, j) =
σ(i)− σ(j)

i− j
.

Now

g(στ)

g(τ)
=

∏n
i=2(σ(τ(i))− σ(τ(1))) · · · (σ(τ(i))− σ(τ(i−1)))∏n

i=2(τ(i)− τ(1)) · · · (τ(i)− τ(i−1))
=

n∏
i=2

i−1∏
j=1

rσ(τ(i), τ(j)).

C.2. Basic Properties of Determinants 245

τ is a permutation so g(σ)/g(ϵ) and g(στ)/g(τ) contain the same factors. Moreover,
the sign of the factors are the same since r(i, j) = r(j, i) for all i ̸= j. Thus
g(σ)/g(ϵ) = g(στ)/g(τ), and 2 is proved. Finally, 3 follows from 1 and 2; 1 =
sign(ϵ) = sign(σσ−1) = sign(σ)sign(σ−1) so that σ and σ−1 have the same sign.

Exercise C.1 Show that ρ(στ) = (ρσ)τ for ρ, σ, τ ∈ Sn, i.e. multiplication of
permutations is associative. (In fact, we have

1. Multiplication is associative.

2. There exists an identity permutation ϵ.

3. Every permutation has an inverse.

Thus the set Sn of permutations is a group with respect to multiplication. Sn is
called the symmetric group of degree n).

C.2 Basic Properties of Determinants
For any A ∈ Cn,n the determinant of A is defined the number

det(A) =
∑
σ∈Sn

sign(σ)aσ(1),1aσ(2),2 · · · aσ(n),n. (C.1)

This sum ranges of all n! permutations of {1, 2, . . . , n}. We also denote the deter-
minant by (Cayley, 1841) ∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣ .
From the definition we have∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11a22 − a21a12.

The first term on the right corresponds to the identity permutation ϵ given by
ϵ(i) = i, i = 1, 2. The second term comes from the permutation σ = {2, 1}. For
n = 3 ∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11a22a33 − a11a32a23 − a21a12a33

+ a21a32a13 + a31a12a23 − a31a22a13.

The following is a list of properties of determinants.

1. Triangular matrix The determinant of a triangular matrix is the product of
the diagonal elements. det(A) = a11a22 · · · ann. In particular det(I) = 1.

246 Appendix C. Determinants

2. Transpose det(AT) = det(A).

3. Homogeneity For any βi ∈ C, i = 1, 2, . . . , n, we have

det
([

β1a1, β2a2, . . . , βnan)
])

= β1β2 · · ·βn det
([

a1,a2, . . . ,an)
])

.

4. Permutation of columns If τ ∈ Sn then

det(B) := det[(aτ(1),aτ(2), . . . ,aτ(n))] = sign(τ) det[(a1,a2, . . . ,an)].

5. Additivity

det
([

a1, . . . ,ak−1,ak + a′
k,ak+1, . . . ,an

])
= det

([
a1, . . . ,an

])
+ det

([
a1, . . . ,a

′
k . . . ,an

])
.

6. Singular matrix det(A) = 0 if and only if A is singular.

7. Product rule If A,B ∈ Cn,n then det(AB) = det(A) det(B).

8. Block triangular If A is block triangular with diagonal blocks B and C then
det(A) = det(B) det(C).

Proof.

1. If σ ̸= ϵ, we can find distinct integers i and j such that σ(i) > i and σ(j) < j.
But then aσ(i),i = 0 if A is upper triangular and aσ(j),j = 0 if A is lower
triangular. Hence

det(A) = sign(ϵ)aϵ(1),1aϵ(2),2 · · · aϵ(n),n = a1,1a2,2 · · · an,n.

Since the identity matrix is triangular with all diagonal elements equal to one,
we have that det(I) = 1.

2. By definition of AT and the det-function

det(AT) =
∑
σ∈Sn

sign(σ)a1,σ(1)a2,σ(2) · · · an,σ(n).

Consider an element ai,σ(i). If σ(i) = j then

ai,σ(i) = aσ−1(j),j .

Since σ(1), σ(2), . . . , σ(n) ranges through {1, 2, . . . , n}, we obtain

det(AT) =
∑

σ∈Sn
sign(σ)aσ−1(1),1aσ−1(2),2 · · · aσ−1(n),n

=
∑

σ∈Sn
sign(σ−1)aσ−1(1),1aσ−1(2),2 · · · aσ−1(n),n

=
∑

σ−1∈Sn
sign(σ−1)aσ−1(1),1aσ−1(2),2 · · · aσ−1(n),n

= det(A).

3. This follows immediately from the definition of det[(β1a1, β2a2, . . . , βnan)].

C.2. Basic Properties of Determinants 247

4. We have

det(B) =
∑
σ∈Sn

sign(σ)aσ(1),τ(1)aσ(2),τ(2) · · · aσ(n),τ(n).

Fix i in {1, 2, . . . , n}. Let k = σ(i) and m = τ(i). Then τ−1(m) = i and
σ(τ−1(m)) = k. Hence

aσ(i),τ(i) = ak,m = aστ−1(m),m.

Moreover, sign(σ) = sign(τ)sign(στ−1). Thus

det(B) = sign(τ)
∑
σ∈Sn

sign(στ−1)aστ−1(1),1aστ−1(2),2 · · · aστ−1(n),n.

But as σ ranges over Sn, στ
−1 also ranges over Sn. Hence

det(B) = sign(τ) det[(a1,a2, . . . ,an)].

5. This follows at once from the definition.

6. We observe that the determinant of a matrix is equal to the product of the
eigenvalues and that a matrix is singular if and only if zero is an eigenvalue
(cf. Theorems D.6, D.7). But then the result follows.

7. To better understand the general proof, we do the 2 × 2 case first. Let A =
(a1,a2), B = (b1, b2). Then

AB = (Ab1,Ab2) = (b1,1a1 + b2,1a2, b1,2a1 + b2,2a2).

Using the additivity, we obtain

det(AB) = det(b1,1a1, b1,2a1) + det(b2,1a2, b1,2a1)
+ det(b1,1a1, b2,2a2) + det(b2,1a2, b2,2a2).

Next we have by homogeneity

det(AB) = b1,1b1,2 det(a1,a1) + b2,1b1,2 det(a2,a1)
+ b1,1b2,2 det(a1,a2) + b2,1b2,2 det(a2,a2).

Property 6 implies that det(a1,a1) = det(a2,a2) = 0. Using Property 4, we
obtain det(a2,a1) = −det(a1,a2) and

det(AB) = (b1,1b2,2 − b2,1b1,2) det(a1,a2) = det(B) det(A).

The proof for n > 2 follows the n = 2 case step by step. LetC = (c1, c2, . . . , cn) =
AB. Then

ci = Abi = b1,ia1 + b2,ia2 + · · ·+ bn,ian, i = 1, 2, . . . , n.

Using the additivity, we obtain

det(AB) =
n∑

i1=1

n∑
i2=1

· · ·
n∑

in=1

det[(bi1,1ai1 , bi2,2ai2 , . . . , bin,nain)].

248 Appendix C. Determinants

Next we have by homogeneity

det(AB) =

n∑
i1=1

n∑
i2=1

· · ·
n∑

in=1

bi1,1bi2,2 · · · bin,n det[(ai1 ,ai2 , . . . ,ain)].

Property 6 implies that det[(ai1 , . . . ,ain)] = 0 if any two of the indices
i1, . . . , in are equal. Therefore we only get a contribution to the sum whenever
i1, . . . , in is a permutation of {1, 2, . . . , n}. Thus

det(AB) =
∑
σ∈Sn

bσ(1),1 · · · bσ(n),n det[(aσ(1), . . . ,aσ(n))].

By Property 4 we obtain

det(AB) =
∑
σ∈Sn

sign(τ)bσ(1),1 · · · bσ(n),n det[(a1, . . . ,an)].

According to the definition of det(B) this is equal to det(B) det(A).

8. Suppose A is block upper triangular. Let

Sn,k = {σ ∈ Sn : σ(i) ≤ k if i ≤ k, and σ(i) ≥ k+1 if i ≥ k+1}.

We claim that aσ(1),1 · · · aσ(n),n = 0 if σ ̸∈ Sn,k, because if σ(i) > k for some
i ≤ k then aσ(i),i = 0 since it lies in the zero part of A. If σ(i) ≤ k for some
i ≥ k+1, we must have σ(j) > k for some j ≤ k to make “room” for σ(i), and
aσ(j),j = 0. It follows that

det(A) =
∑

σ∈Sn,k

sign(σ)aσ(1),1 · · · aσ(n),n.

Define

ρ(i) =

{
σ(i) i = 1, . . . , k
i i = k+1, . . . , n,

τ(i) =

{
i i = 1, . . . , k
σ(i) i = k+1, . . . , n.

If σ ∈ Sn,k, ρ and τ will be permutations. Moreover, σ = ρτ . Define ρ̂ and τ̂
in Sk and Sn−k respectively by ρ̂(i) = ρ(i), i = 1, . . . , k, and τ̂(i) = τ(i+k)−k
for i = 1, . . . , n−k. As σ ranges over Sn,k, ρ̂ and τ̂ will take on all values in
Sk and Sn−k respectively. Since sign(ρ̂) = sign(ρ) and sign(τ̂) = sign(τ), we
find

sign(σ) = sign(ρ)sign(τ) = sign(ρ̂)sign(τ̂).

Then

det(A) =
∑

ρ̂∈Sk

∑
τ̂∈Sn−k

sign(ρ̂)sign(τ̂)bρ̂(1),1 · · · bρ̂(k),kdτ̂(1),1 · · · dτ̂(n−k),n−k

= det(B) det(D).

C.3. The Adjoint Matrix and Cofactor Expansion 249

C.3 The Adjoint Matrix and Cofactor Expansion
We start with a useful formula for the solution of a linear system.

Let Aj(b) denote the matrix obtained from A by replacing the jth column of
A by b. For example,

A =

(
1 2
2 1

)
, b =

(
3
6

)
, A1(b) =

(
3 2
6 1

)
, A2(b) =

(
1 3
2 6

)
,

I =

(
1 0
0 1

)
, x =

(
x1

x2

)
, I1(x) =

(
x1 0
x2 1

)
, I2(x) =

(
1 x1

0 x2

)
.

Theorem C.2 (Cramers rule (1750)) Suppose A ∈ Cn,n with det(A) ̸= 0 and
b ∈ Cn. Let x = [x1, x2, . . . , xn]

T be the unique solution of Ax = b. Then

xj =
det(Aj(b))

det(A)
, j = 1, 2, . . . , n.

Proof. Since 1 = det(I) = det(AA−1) = det(A) det(A−1) we have det(A−1) =
1/det(A). Then

det(Aj(b))

det
(
A)

= det(A−1Aj(b))

= det([A−1a1, . . . ,A
−1aj−1,A

−1b,A−1aj+1, . . . ,A
−1an]

)
= det([e1, . . . , ej−1,x,ej+1, . . . ,en]

)
= xj ,

where we used Property 8 for the last equality.

Exercise C.3 Solve the following system by Cramers rule:[
1 2
2 1

] [
x1

x2

]
=

[
3
6

]
Let Ai,j denote the submatrix of A obtained by deleting the ith row and jth

column of A. For example,

A =

 1 2 3
4 5 6
7 8 9

 , A1,1 =

[
5 6
8 9

]
, A1,2 =

[
4 6
7 9

]
,

A2,1 =

[
2 3
8 9

]
, A2,2 =

[
1 3
7 9

]
, etc.

Definition C.4 (Cofactor and Adjoint) For A ∈ Cn,n and 1 ≤ i, j ≤ n the
determinant det(Aij) is called the cofactor of aij. The matrix adj(A) ∈ Cn,n

with elements (−1)i+j det(Aj,i) is called the adjoint of A.

250 Appendix C. Determinants

Exercise C.5 Show that if

A =

 2 −6 3
3 −2 −6
6 3 2

 ,

then

adj(A) =

 14 21 42
−42 −14 21
21 −42 14

 .

Moreover,

adj(A)A =

 343 0 0
0 343 0
0 0 343

 = det(A)I.

Theorem C.6 (The inverse as an adjoint) If A ∈ Cn,n is nonsingular then

A−1 =
1

det(A)
adj(A).

Proof. LetA−1 = [x1, . . . ,xn], where xj = [x1j , . . . , xnj]
T . The equationAA−1 =

I implies that Axj = ej for j = 1, . . . , n and by Cramer’s rule

xij =
det(Ai(ej))

det(A)
= (−1)i+j det(Aji)

det(A)
, j = 1, 2, . . . , n.

For the last equality we first interchange the first and ith column of Ai(ej). By
Property 4 it follows that det(Ai(ej)) = (−1)i−1 det

(
[ej ,a1, . . . ,ai−1,ai+1, . . . ,an]

)
.

We then interchange row j and row 1. Using Property 8 we obtain

det(Ai(ej)) = (−1)i+j−2 det(Aji) = (−1)i+j det(Aji).

Corollary C.7 For any A ∈ Cn,n we have

A adj(A) = adj(A)A = det(A)I. (C.2)

Proof. If A is nonsingular then (C.2) follows from Theorem C.6. We simply
multiply by A from the left and from the right. Suppose next that A is singular
with m zero eigenvalues λ1, . . . , λm and nonzero eigenvalues λm+1, . . . , λn. We
define ϵ0 := minm+1≤j≤n|λj |. For any ϵ ∈ (0, ϵ0) the matrix A + ϵI has nonzero
eigenvalues ϵ, . . . , ϵ, λm+1+ϵ, . . . , λn+ϵ and hence is nonsingular. By what we have
proved

(A+ ϵI) adj(A+ ϵI) = adj(A+ ϵI)(A+ ϵI) = det(A+ ϵI)I. (C.3)

Since the elements in A + ϵI and adj(A + ϵI) depend continuously on ϵ we can
take limits in (C.3) to obtain (C.2).

C.4. Computing Determinants 251

Corollary C.8 (Cofactor expansion) For any A ∈ Cn,n we have

det(A) =
n∑

j=1

(−1)i+jaij det(Aij) for i = 1, . . . , n, (C.4)

det(A) =

n∑
i=1

(−1)i+jaij det(Aij) for j = 1, . . . , n. (C.5)

Proof. By (C.2) we haveA adj(A) = det(A)I. But then det(A) = eTi Aadj(A)ei =∑n
j=1(−1)i+jaij det(Aij) which is (C.4). Applying this row expansion to AT we

find det(AT) =
∑n

j=1(−1)i+jaji det(Aji). Switching the roles of i and j proves
(C.5).

C.4 Computing Determinants
A determinant of an n-by-n matrix computed from the definition can contain up to
n! terms and we need other methods to compute determinants.

A matrix can be reduced to upper triangular form using elementary row oper-
ations. We can then use Property 1. to compute the determinant. The elementary
operations using either rows or columns are

1. Interchanging two rows(columns).

2. Multiply a row(column) by a scalar α.

3. Add a constant multiple of one row(column) to another row(column).

Let B be the result of performing an elementary operation on A. For the three
elementary operations the numbers det(A) and det(B) are related as follows.

1. det(B) = −det(A) (from Property 4.)

2. det(B) = α det(A) (from Property 3.)

3. det(B) = det(A)(from Properties 5., 7.)

It follows from Property 2. that it is enough to show this for column operations.
The proof of 1. and 2. are immediate. For 3. suppose we add α times column k to
column i for some k ̸= i. Then using Properties 5. and 7. we find

det(B) = det
([

a1, . . . ,ai−1,ai + αak,ai+1, . . . ,an

])
5.
= det(A) + det

([
a1, . . . ,ai−1, αak,ai+1, . . . ,an

]) 7.
= det(A)

To compute the value of a determinant it is often convenient to use row- or
column operations to introduce zeros in a row or column of A and then use one of
the cofactor expansions in Corollary C.8.

Example C.9 The equation for a straight line through two points (x1, y1) and

252 Appendix C. Determinants

(x2, y2) in the plane can be written as the equation

det(A) :=

∣∣∣∣∣∣
1 x y
1 x1 y1
1 x2 y2

∣∣∣∣∣∣ = 0

involving a determinant of order 3. We can compute this determinant using row
operations of type 3. Subtracting row 2 from row 3 and then row 1 from row 2 we
obtain∣∣∣∣∣∣

1 x y
1 x1 y1
1 x2 y2

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 x y
0 x1 − x y1 − y
0 x2 − x1 y2 − y1

∣∣∣∣∣∣ = (x1 − x)(y2 − y1)− (y1 − y)(x2 − x1).

Rearranging the equation det(A) = 0 we obtain

y − y1 =
y2 − y1
x2 − x1

(x− x1)

which is the slope form of the equation of a straight line.

Exercise C.10 Show that the equation for the plane through the points (x1, y1, z1),
(x2, y2, z2) and (x3, y3, z3) is ∣∣∣∣∣∣∣∣

x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

∣∣∣∣∣∣∣∣ = 0.

Exercise C.11 Let Pi = (xi, yi), i = 1, 2, 3, be three points in the plane defining a
triangle T . Show that the area of T is

A(T) =
1

2

∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3
1 1 1

∣∣∣∣∣∣
Hint: A(T) = A(ABP3P1) +A(P3BCP2)−A(P1ACP2), c.f. Figure C.12.

Exercise C.13 Show that∣∣∣∣∣∣∣∣∣
1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2
...

...
...

...
1 xn x2

n · · · xn−1
n

∣∣∣∣∣∣∣∣∣ =
∏
i>j

(xi − xj),

where
∏

i>j(xi − xj) =
∏n

i=2(xi − x1)(xi − x2) · · · (xi − xi−1). This determinant

is called the Van der Monde determinant. Hint: Subtract xk
n times column k from

column k+1 for k = n−1, n−2, . . . , 1.

C.4. Computing Determinants 253

A B C

P
1

P
2

P
3

Figure C.12. The triangle T defined by the three points P1, P2 and P3.

Exercise C.14 (Cauchy 1842). Let α = [α1, . . . , αn]
T , β = [β1, . . . , βn]

T be in
Rn.

a) Consider the matrix A ∈ Rn,n with elements ai,j = 1/(αi+βj), i, j = 1, 2, . . . , n.
Show that

det(A) = Pg(α)g(β)

where P =
∏n

i=1

∏n
j=1 aij, and for γ = [γ1, . . . , γn]

T

g(γ) =
n∏

i=2

(γi − γ1)(γi − γ2) · · · (γi − γi−1)

Hint: Multiply the ith row of A by
∏n

j=1(αi + βj) for i = 1, 2, . . . , n. Call the
resulting matrix C. Each element of C is a product of n−1 factors αr + βs.
Hence det(C) is a sum of terms where each term contain precisely n(n−1)
factors αr + βs. Thus det(C) = q(α, β) where q is a polynomial of degree at
most n(n−1) in αi and βj. Since det(A) and therefore det(C) vanishes if
αi = αj for some i ̸= j or βr = βs for some r ̸= s, we have that q(α,β)
must be divisible by each factor in g(α) and g(β). Since g(α) and g(β) is a
polynomial of degree n(n−1), we have

q(α,β) = kg(α)g(β)

for some constant k independent of α and β. Show that k = 1 by choosing
βi + αi = 0, i = 1, 2, . . . , n.

b) Notice that the cofactor of any element in the above matrix A is the determi-
nant of a matrix of similar form. Use the cofactor and determinant of A to
represent the elements of A−1 = (bj,k). Answer:

bj,k = (αk + βj)Ak(−βj)Bj(−αk),

254 Appendix C. Determinants

where

Ak(x) =
∏
s ̸=k

(
αs − x

αs − αk

)
, Bk(x) =

∏
s ̸=k

(
βs − x

βs − βk

)
.

Exercise C.15 Let Hn = (hi,j) be the n×n matrix with elements hi,j = 1/(i+j−1).
Use Exercise C.14 to show that the elements tni,j in T n = H−1

n are given by

tni,j =
f(i)f(j)

i+ j − 1
,

where

f(i+1) =

(
i2 − n2

i2

)
f(i), i = 1, 2, . . . , f(1) = −n.

C.5 Some Useful Determinant Formulas
Suppose A ∈ Cm,n and suppose for an integer r ≤ min{m,n} that i = {i1, . . . , ir}
and j = {j1, . . . , jr} are integers with 1 ≤ i1 < i2 < · · · < ir ≤ m and 1 ≤ j1 <
j2 < · · · < jr. We let

A(i, j) =

ai1,j1 · · · ai1,jr
...

...
air,j1 · · · air,jr


be the submatrix of A consisting of rows i1, . . . , ir and columns j1, . . . , jr. The fol-
lowing formula bears a strong resemblance to the formula for matrix multiplication.

Theorem C.16 (Cauchy-Binet formula) Let A ∈ Cm,p, B ∈ Cp,n and C =
AB. Suppose 1 ≤ r ≤ min{m,n, p} and let i = {i1, . . . , ir} and j = {j1, . . . , jr} be
integers with 1 ≤ i1 < i2 < · · · < ir ≤ m and 1 ≤ j1 < j2 < · · · < jr ≤ n. Then

det
(
C(i, j)

)
=

∑
k

det
(
A(i,k)

)
det

(
B(k, j)

)
, (C.6)

where we sum over all k = {k1, . . . , kr} with 1 ≤ k1 < k2 < · · · < kr ≤ p.

Appendix D

Eigenvalues and
Eigenvectors

Suppose A ∈ Cn,n is a square matrix, λ ∈ C and x ∈ Cn. We say that (λ,x)
is an eigenpair for A if Ax = λx and x is nonzero. The scalar λ is called an
eigenvalue and x is said to be an eigenvector. If (λ,x) is an eigenpair then
(λ, αx) is an eigenpair for any α ∈ C with α ̸= 0. An eigenvector is a special vector
that is mapped by A into a vector parallel to itself. The length is increased if |λ| > 1
and decreased if |λ| < 1. The set of distinct eigenvalues is called the spectrum of
A and is denoted by σ(A).

D.1 The Characteristic Polynomial

D.1.1 The characteristic equation

Lemma D.1 For any A ∈ Cn,n we have λ ∈ σ(A) ⇐⇒ det(A− λI) = 0.

Proof. Suppose (λ,x) is an eigenpair for A. The equation Ax = λx can be written
(A − λI)x = 0. Since x is nonzero the matrix A − λI must be singular with a
zero determinant. Conversely, if det(A − λI) = 0 then A − λI is singular and
(A−λI)x = 0 for some nonzero x ∈ Cn. Thus Ax = λx and (λ,x) is an eigenpair
for A.

We observe that det(A−λI) = 0 if and only if det(λI−A) = 0.The equation
det(A − λI) = 0 or equivalently det(λI − A) = 0 is called the characteristic
equation of A.

Definition D.2 The function πA : C → C given by πA(λ) = det(A− λI) is called
the characteristic polynomial of A.

255

256 Appendix D. Eigenvalues and Eigenvectors

To see that πA is in fact a polynomial let us take a closer look at this function.
For n = 3 we have

det(A− λI) =

∣∣∣∣∣∣
a11 − λ a12 a13
a21 a22 − λ a23
a31 a32 a33 − λ

∣∣∣∣∣∣ .
Expanding this determinant by the first column we find

det(A− λI) = (a11 − λ)

∣∣∣∣ a22 − λ a23
a32 a33 − λ

∣∣∣∣− a21

∣∣∣∣ a12 a13
a32 a33 − λ

∣∣∣∣
+ a31

∣∣∣∣ a12 a13
a22 − λ a23

∣∣∣∣ = (a11 − λ)(a22 − λ)(a33 − λ) + r(λ)

for some polynomial r of degree at most one. In general

det(A− λI) = (a11 − λ)(a22 − λ) · · · (ann − λ) + r(λ), (D.1)

where each term in r(λ) has at most n − 2 factors containing λ. It follows that r
is a polynomial of degree at most n− 2, πA is a polynomial of exact degree n, and
the eigenvalues are the roots of this polynomial.

By the fundamental theorem of algebra an n×n matrix has precisely n eigen-
values λ1, . . . , λn some of which might be complex even if A is real. The com-
plex eigenpairs of a real matrix occur in complex conjugate pairs. Indeed, taking
the complex conjugate on both sides of the equation Ax = λx with A real gives
Ax = λx.

The following result will be useful.

Theorem D.3 Suppose (µ,x) is an eigenpair for A ∈ Cn,n. Then

1. If A is nonsingular then (µ−1,x) is an eigenpair for A−1.

2. (µk,x) is an eigenpair for Ak for k ∈ N.
3. If p given by p(t) = a0 + a1t+ a2t

2 + · · ·+ akt
k is a polynomial, then (p(µ),x)

is an eigenpair for the matrix p(A) := a0I + a1A+ a2A
2 + · · ·+ akA

k.

4. µ is an eigenvalue for AT , in fact πAT = πA.

5. µ is an eigenvalue for A∗, in fact πA∗(λ) = πA(λ) for all λ ∈ C.
6. If A = [B C

0 D] is block triangular then πA = πB · πD.

Proof.

1. Ax = µx =⇒ A−1x = µ−1x.

2. We use induction on k. The case k = 1 is trivial and if Ak−1x = µk−1x then
Akx = AAk−1x = µk−1Ax = µkx.

3. p(A)x =
∑k

j=0 ajA
jx

2.
=

∑k
j=0 ajµ

jx = p(µ)x.

D.1. The Characteristic Polynomial 257

4. Since det(BT) = det(B) for any matrix B we find for any λ ∈ C

πAT (λ) = det(AT − λI) = det
(
(A− λI)T

)
= det(A− λI) = πA(λ).

Thus AT and A have the same characteristic polynomial and hence the same
eigenvalues.

5. We have πA∗(λ)
4
= πA(λ) = det(A − λI) = det(A− λI) = πA(λ). Thus

πA(λ) = 0 ⇔ πA∗(λ) = 0 and the result follows.

6. By Property 8 of determinants

πA(λ) =

∣∣∣∣B − λI C
0 D − λI

∣∣∣∣ = det(B − λI) det(D − λI) = πB(λ) · πD(λ).

In general it is not easy to find all eigenvalues of a matrix. One notable
exception is a triangular matrix.

Theorem D.4 The eigenvalues of a triangular matrix are given by its diagonal
elements.

Proof. If A ∈ Cn,n is triangular then A − λI is also triangular with diagonal
elements aii−λ for i = 1, . . . , n. But then the roots of det(A−λI) =

∏n
i=1(aii−λ) =

0 are λi = aii for i = 1, . . . , n.

To find the eigenvectors of a triangular matrix requires more work. Indeed,
the eigenvectors are nontrivial solutions of a homogenous triangular linear system
with at least one zero on the diagonal.

Example D.5 The 3 × 3 matrix A =
[
1 1 0
0 1 1
0 0 1

]
has the eigenvalue λ = 1. The

homogenous triangular linear system for an eigenvector x = [x1, x2, x3]
T is

(A− I)x = 0 or

0 1 0
0 0 1
0 0 0

x1

x2

x3

 =

00
0

 .

We find x2 = x3 = 0 so any eigenvector must be a multiple of e1.

There are two useful relations between the elements of a matrix A ∈ Cn,n and
its eigenvalues λ1, . . . , λn.

Theorem D.6 For any A ∈ Cn,n

trace(A) = λ1 + λ2 + · · ·+ λn, det(A) = λ1λ2 · · ·λn, (D.2)

where the trace of A ∈ Cn,n is the sum of its diagonal elements

trace(A) := a11 + a22 + · · ·+ ann (D.3)

and det(A) is the determinant of A.

258 Appendix D. Eigenvalues and Eigenvectors

Proof. We compare two different expansion of πA. On the one hand from (D.1)
we find

πA(λ) = (−1)nλn + cn−1λ
n−1 + · · ·+ c0,

where cn−1 = (−1)n−1 trace(A) and c0 = πA(0) = det(A). On the other hand

πA(λ) = (λ1 − λ) · · · (λn − λ) = (−1)nλn + dn−1λ
n−1 + · · ·+ d0,

where dn−1 = (−1)n−1(λ1 + · · ·+ λn) and d0 = λ1 · · ·λn. Since cj = dj for all j we
obtain (D.2).

For a 2× 2 matrix the characteristic equation takes the convenient form

λ2 − trace(A)λ+ det(A) = 0. (D.4)

Thus, if A = [2 1
1 2] then trace(A) = 4, det(A) = 3 so that πA(λ) = λ2 − 4λ+ 3.

In terms of eigenvalues we have an additional characterization of a singular
matrix.

Theorem D.7 The matrix A ∈ Cn,n is singular if and only if zero is an eigenvalue.

Proof. Zero is an eigenvalue if and only if πA(0) = det(A) = 0 which happens if
and only if A is singular.

Exercise D.8 Find eigenvalues and eigenvectors of A =

 1 2 3
0 2 3
0 0 2

.
Exercise D.9 Let λ ∈ σ(A) where A2 = A ∈ Cn,n. Show that λ = 0 or λ = 1. (A
matrix is called idempotent if A2 = A).

Exercise D.10 Let λ ∈ σ(A) where Ak = 0 for some k ∈ N. Show that λ = 0. (A
matrix A ∈ Cn,n such that Ak = 0 for some k ∈ N is called nilpotent).

Exercise D.11 Let λ ∈ σ(A) where AHA = I. Show that |λ| = 1.

Exercise D.12 Suppose A ∈ Cn,n is singular. Then we can find ϵ0 > 0 such that
A + ϵI is nonsingular for all ϵ ∈ (0, ϵ0). Hint: det(A) = λ1λ2 · · ·λn, where λi are
the eigenvalues of A.

Exercise D.13 For qi ∈ C let f(λ) = λn + qn−1λ
n−1 + · · · + q0 be a polynomial

of degree n in λ. We derive two matrices which have (−1)nf as its characteristic
polynomial.

D.2. Similarity Transformations 259

a) Show that f = (−1)nπA where

A =


−qn−1 −qn−2 · · · −q1 −q0

1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
0 0 · · · 1 0

 .

A is called the companion matrix of f .

b) Show that f = (−1)nπA′ where

A′ =


0 0 · · · 0 −q0
1 0 · · · 0 −q1
0 1 · · · 0 −q2
...

...
...

...
0 0 · · · 1 −qn−1

 .

Thus A′ can also be regarded as a companion matrix for f .

D.2 Similarity Transformations
Row operations can be used to reduce a matrix to triangular form, but row opera-
tions change the eigenvalues of a matrix. We need a transformation which can be
used to simplify a matrix without changing the eigenvalues.

Definition D.14 Two matrices A,B ∈ Cn,n are said to be similar if there is a
nonsingular matrix S ∈ Cn,n such that B = S−1AS. The transformation A → B
is called a similarity transformation.

A similarity transformation does not change the eigenvalues.

Theorem D.15 Similar matrices have the same characteristic polynomial and there-
fore the same eigenvalues.

Proof. Let B = S−1AS. By properties of determinants

πB(λ) = det(S−1AS − λI) = det
(
S−1(A− λI)S

)
= det(S−1) det(A− λI) det(S) = det(S−1S) det(A− λI) = πA(λ).

But then A and B have the same characteristic polynomial and hence the same
eigenvalues.

Consider next what a similarity transformation does to the eigenvectors.

Theorem D.16 1. (λ,x) is an eigenpair for B = S−1AS if and only if (λ,Sx)
is an eigenpair for A.

260 Appendix D. Eigenvalues and Eigenvectors

2. The columns of S are eigenvectors of A if and only if B is diagonal.

Proof.

1. Bx = λx ⇔ S−1ASx = λx ⇔ A(Sx) = λ(Sx), and Sx ̸= 0 since S is
nonsingular.

2. Suppose A has eigenvalues λ1, . . . , λn and let s1, . . . , sn be the columns of S.
If B is diagonal then (λi,ei) is an eigenpair for B and (λi,Sei) = (λi, si)
is an eigenpair for A for i = 1, . . . , n. Conversely, if B = S−1AS and the
columns s1, . . . , sn of S are eigenvectors of A then Asi = λisi for i = 1, . . . , n.
But then AS = SC, where C = diag(λ1, . . . , λn) is diagonal. Thus C =
S−1AS = B is diagonal.

The following result is sometimes useful.

Theorem D.17 For any A ∈ Cm,n and B ∈ Cn,m the matrices AB and BA have
the same spectrum. More precisely,

λnπAB(λ) = λmπBA(λ), λ ∈ C.

Proof. Define block matrices of order n+m by

E =

[
AB 0
B 0

]
, F =

[
0 0
B BA

]
, S =

[
Im A
0 In

]
.

By Property 6. of Theorem D.3 we have πE(λ) = λnπAB(λ) and πF (λ) = λmπBA(λ).
But ES = SF so E and F are similar and have the same characteristic polynomial
by the proof of Theorem D.15.

D.3 Linear Independence of Eigenvectors
Definition D.18 A square matrix A is diagonalizable if it is similar to a diag-
onal matrix, S−1AS = diag(λ1, . . . , λn).

Since S is nonsingular its columns are eigenvectors of A, and Theorem D.16
implies the following result.

Theorem D.19 A matrix is diagonalizable if and only if its eigenvectors form a
basis for Rn or Cn.

A matrix with distinct eigenvalues can be diagonalized.

Theorem D.20 Eigenvectors corresponding to distinct eigenvalues are linearly in-
dependent.

D.3. Linear Independence of Eigenvectors 261

Proof. Suppose (λ1,x1), . . . , (λk,xk) are eigenpairs for A ∈ Cn,n with λi ̸= λj

for i ̸= j. Suppose x1, . . . ,xk are linearly dependent. Let m ≤ k be the smallest
positive integer so that x1, . . . ,xm are linearly dependent. Since x1 ̸= 0 we see that
m ≥ 2. For some nonzero (c1, . . . , cn) we have

m∑
j=1

cjxj = 0. (D.5)

Applying A to this equation we obtain by linearity
∑m

j=1 cjλjxj = 0. From this

relation we subtract λm times (D.5) and find
∑m−1

j=1 cj(λj − λm)xj = 0. But since
λj − λm ̸= 0 for j = 1, . . . ,m − 1 and at least one cj ̸= 0 for j < m we see that
{x1, . . . ,xm−1} is linearly dependent, contradicting the minimality of m.

Corollary D.21 If A ∈ Cn,n has distinct eigenvalues then the corresponding eigen-
vectors form a basis for Cn.

Proof. By the previous theorem the n eigenvectors are linearly independent. Since
n is the dimension of Cn the eigenvectors form a basis.

For a matrix with multiple eigenvalues the situation is more complicated. We

have seen that any eigenvector of the 3× 3 matrix A =
[
1 1 0
0 1 1
0 0 1

]
is a multiple of e1.

Thus this matrix does not have a set of linearly independent eigenvectors. On the
other hand the unit matrix has a basis of eigenvectors, namely the unit vectors.

In order to characterize the matrices with eigenvectors which form a basis
we have to count carefully the multiplicity of the eigenvalues. We consider two
kinds of multiplicities called algebraic and geometric multiplicities. The algebraic
multiplicity of an eigenvalue λ is simply the multiplicity of λ as a root in the
characteristic polynomial. More formally we state:

Definition D.22 We say that an eigenvalue λ of A has algebraic multiplicity
a = a(λ) = aA(λ) if πA(z) = (z − λ)ap(z), where p(z) ̸= 0. The eigenvalue λ is
simple (double, triple) if a is equal to one (two, three). A complex number z which
is not an eigenvalue is defined to have algebraic multiplicity aA(z) = 0.

To define the second kind of multiplicity we consider for each λ ∈ σ(A) the
nullspace

ker(A− λI) := {x ∈ Rn : (A− λI)x = 0} (D.6)

of A−λI. This set consists of all eigenvectors of A corresponding to the eigenvalue
λ. If x,y ∈ ker(A− λI) and α, β are scalars then αx+ βy ∈ ker(A− λI). So this
nullspace is a subspace of Cn. The dimension of the subspace must be at least one
since A− λI is singular.

Definition D.23 The geometric multiplicity g = g(λ) = gA(λ) of an eigenvalue
λ of A is the dimension of the nullspace ker(A− λI).

262 Appendix D. Eigenvalues and Eigenvectors

Example D.24 The n× n identity matrix has the eigenvalue λ = 1 with πI(λ) =
(1 − λ)n. Since I − λI is the zero matrix when λ = 1, the nullspace of I − λI is
all of n-space and it follows that a = g = n. On the other hand the 3 × 3 matrix

A =
[
1 1 0
0 1 1
0 0 1

]
has the eigenvalue λ = 1 with a = 3 and g = 1.

The geometric multiplicity of an eigenvalue is always bounded above by the
algebraic multiplicity of the eigenvalue.

Theorem D.25 For any square matrix A and any λ ∈ σ(A) we have gA(λ) ≤
aA(λ).

Proof. Let {v1, . . . ,vg} with g := gλ(A), be an orthonormal basis for ker(A−λI)
and extend this set to an orthonormal basis {v1, . . . ,vn} for Cn. Then the matrix
V := [v1, . . . ,vn] ∈ Cn,n is unitary and V −1 = V ∗. Partition V as V = [V 1,V 2],
where V 1 := [v1, . . . ,vg] and V 2 := [vg+1, . . . ,vn]. Then AV 1 = λV 1, V

∗
1V 1 =

Ig, V
∗
2V 1 = 0, and

B := V ∗AV =

[
V ∗

1

V ∗
2

]
A

[
V 1 V 2

]
=

[
V ∗

1AV 1 V ∗
1AV 2

V ∗
2AV 1 V ∗

2AV 2

]
=

[
λIg V ∗

1AV 2

0 V ∗
2AV 2

]
.

Since B is block triangular Property 6 of Theorem D.3 implies that πB(z) = (z −
λ)gπV ∗

2AV 2(z). But then aB(λ) ≥ g. Since A and B are similar they have the
same characteristic polynomial, and it follows that aA(λ) = aB(λ) ≥ gA(λ).

Definition D.26 An eigenvalue where gA(λ) < aA(λ) is said to be defective . A
matrix is defective if at least one of its eigenvalues is defective.

Theorem D.27 A matrix A ∈ Cn,n has n linearly independent eigenvectors if and
only if the algebraic and geometric multiplicity of all eigenvalues are the same.

Proof. Suppose A has distinct eigenvalues µ1, . . . , µr with algebraic multiplicities
a1, . . . , ar and geometric multiplicities g1, . . . , gr. Suppose {vj1, . . . ,vj,gj} is a basis
for ker(A− µjI) for j = 1, . . . , r. We claim that the combined set {vjk}

gj ,r
k=1,j=1 is

linearly independent. We show this using induction on r. Suppose {vjk}
gj ,r−1
k=1,j=1 is

linearly independent and assume

r∑
j=1

gj∑
k=1

ajkvjk = 0 for some scalars ajk. (D.7)

We multiply this equation by (A− µrI) and obtain by linearity

0 =
r∑

j=1

gj∑
k=1

ajk(A− µrI)vjk =
r∑

j=1

gj∑
k=1

ajk(µj − µr)vjk =
r−1∑
j=1

gj∑
k=1

ajk(µj − µr)vjk.

D.4. Left Eigenvectors 263

By the induction hypothesis all these ajk vanish and in (D.7) we are left with∑gr
k=1 arkvrk = 0. Since these v′s form a basis for ker(A − µrI) we also have

ark = 0 for k = 1, . . . , gr. (This also proves the induction hypothesis for r = 1.)
Thus {vjk}

gj ,r
k=1,j=1 is linearly independent and it follows that the number of linearly

independent eigenvectors is equal to
∑

j gj . Since gj ≤ aj for all j and
∑

j aj = n
we have

∑
j gj = n if and only if aj = gj for j = 1, . . . , r.

D.4 Left Eigenvectors
Definition D.28 A nonzero vector y ∈ Cn corresponding to an eigenvalue λ of
A is called a left eigenvector of A if y∗A = λy∗. We say that (λ,y) is a left
eigenpair of A.

Note that y∗A = λy∗ if and only if A∗y = λy. It follows from Theorem D.3 that
if y∗A = λy∗ then λ must be an eigenvalue for A, while a left eigenvector y is an
eigenvector for A∗. If we need to make a distinction then an ordinary eigenvector,
eigenpair is called a right eigenvector and right eigenpair, respectively.

Left- and right eigenvectors corresponding to distinct eigenvalues are orthog-
onal.

Theorem D.29 Suppose (µ,y) and (λ,x) are left and right eigenpairs of A ∈ Cn,n.
If λ ̸= µ then y∗x = 0.

Proof. Using the eigenpair relation in two ways we obtain y∗Ax = λy∗x = µy∗x
and we conclude that y∗x = 0.

The case where λ = µ is more complicated. For example, the matrix A :=
[1 1
0 1] has one eigenvalue λ = 1 of algebraic multiplicity two, one right eigenvector
x = e1 and one left eigenvector y = e2. Thus y∗x = 0. Two sufficient conditions
guaranteeing that y∗x ̸= 0 are given in the following theorem.

Theorem D.30 Suppose y and x are left- and right eigenvectors corresponding to
the same eigenvalue λ of A ∈ Cn,n. Then y∗x ̸= 0 in the following two cases:

1. A can be diagonalized.

2. The algebraic multiplicity of λ is equal to one.

Proof.

1. Suppose Y AX = D = diag(λ1, . . . , λn), where Y = X−1. Partition Y by
rows and X by columns as

Y =

[
y∗
1

...
y∗
n

]
, X = [x1, . . . ,xn].

264 Appendix D. Eigenvalues and Eigenvectors

Since Y A = DY and AX = XD, we see that yi is a left eigenvector and xi

is a right eigenvector corresponding to λi for i = 1, . . . , n. But since Y X = I
we have y∗

ixi = 1 for all i.

2. Assume that ∥x∥2 = 1. We have (cf. (6.1))

V ∗AV =

[
λ z∗

0 M

]
,

where V is unitary and V e1 = x. Let u := V ∗y. Then

(V ∗A∗V)u = V ∗A∗y = λV ∗y = λu,

so (λ,u) is an eigenpair of V ∗A∗V . But then y∗x = u∗V ∗V e1. Suppose
that u∗e1 = 0, i. e., u = [0v] for some nonzero v ∈ Cn−1. Then

V ∗A∗V u =

[
λ 0∗

z M∗

] [
0
v

]
=

[
0

M∗v

]
= λ

[
0
v

]
and by Theorem D.3 it follows that λ is an eigenvalue of M . But this is
impossible since λ has algebraic multiplicity one and the eigenvalues of A are
the union of λ and the eigenvalues of M .

Corollary D.31 If A ∈ Cn,n has linearly independent right eigenvectors x1, . . . ,xn

then A, also has linearly independent left eigenvectors y1, . . . ,yn. For any v ∈ Cn

we have

v =

n∑
j=1

(y∗
jv)xj =

n∑
k=1

(x∗
kv)yk. (D.8)

Proof. From the proof of the previous theorem we have y∗
kxj = δkj for all j, k. So

if v =
∑n

j=1 cjxj , then y∗
kv =

∑n
j=1 cjy

∗
kxj = ck for k = 1, . . . , n. The proof of the

second formula is similar.

Appendix E

Gaussian Elimination

Gaussian elimination is the classical method for solving n linear equations in n
unknowns. In component form the system is

a11x1 + a12x2+ · · · + a1nxn = b1,
a21x1 + a22x2+ · · · + a2nxn = b2,
...

...
...

...
an1x1 + an2x2+ · · · + annxn = bn,

and in matrix form

Ax =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann



x1

x2

...
xn

 =


b1
b2
...
bn

 = b.

We recall (see Definition B.6 and Theorem B.7) that the square systemAx = b
has a unique solution for all right hand sides b if and only if A is nonsingular, i. e.,
the homogeneous system Ax = 0 only has the solution x = 0. We recall (cf.
Theorem B.9) that a square matrix is invertible if and only if A is nonsingular, and
the solution of Ax = b can be written x = A−1b, where A−1 is the inverse of A.
However, for large systems it is inefficient to compute x in this way. For an example
see (2.10) and the discussion about the matrix T there. We also note (Lemma B.8)
that if A = BC, where A,B,C are square matrices, then A is nonsingular if and
only if both B and C are nonsingular and in that case A−1 = C−1B−1.

The entries of A and b can be either real or complex numbers. For simplicity
and ease of exposition we assume real entries.

In Gaussian elimination with no row interchanges we compute a triangular
factorization of the coefficient matrix A. This factorization is known as an LU
factorization3 of A . In this chapter we discuss some theoretical and algorithmic

3We normally denote an upper triangular matrix by R, but we respect common practice and
most often we refer to the factorization A = LR as an LU factorization of A

265

266 Appendix E. Gaussian Elimination

1

1

k-1

k-1

k

k

n

n

A
2

A
1

A
k

A
n

Figure E.1. Gaussian elimination

aspects of Gaussian elimination We consider also Gaussian elimination with row
interchanges.

E.1 Gaussian Elimination and LU factorization
In Gaussian elimination without row interchanges we start with a linear system
Ax = b and generate a sequence of equivalent systemsA(k)x = b(k) for k = 1, . . . , n,
where A(1) = A, b(1) = b, and A(k) has zeros under the diagonal in its first k − 1
columns. Thus A(n) is upper triangular and the system A(n)x = b(n) is easy to
solve. The process is illustrated in Figure E.1.

The matrix A(k) takes the form

A(k) =



a11,1 · · · a11,k−1 a11,k · · · a11,j · · · a11,n
. . .

...
...

...
...

ak−1
k−1,k−1 ak−1

k−1,k · · · ak−1
k−1,j · · · ak−1

k−1,n

akk,k · · · akk,j · · · akk,n
...

...
...

aki,k · · · aki,j · · · aki,n
...

...
...

akn,k · · · akn,j · · · akn,n


. (E.1)

The process transformingA(k) intoA(k+1) for k = 1, . . . , n−1 can be described
as follows.

for i = k + 1 : n

lkik = akik/a
k
kk

for j = k : n

ak+1
ij = akij − lkika

k
kj

(E.2)

For j = k it follows from (E.2) that ak+1
ik = akik − ak

ik

ak
kk

akkk = 0 for i = k +

1, . . . , n. Thus A(k+1) will have zeros under the diagonal in its first k columns and

E.1. Gaussian Elimination and LU factorization 267

the elimination is carried one step further. The numbers lkik in (E.2) are called
multipliers.

Alternatively, we can describe the transformation A(k) → A(k+1) as a multi-
plication of A(k) by a matrix known as an elementary lower triangular matrix
.

Definition E.1 For 1 ≤ k ≤ n − 1 and lk = [lk+1,k, . . . , ln,k]
T ∈ Rn−k we define

the matrix Mk ∈ Rn,n by

Mk := I −
[
0
lk

]
eTk =



1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

. . .
...

...
...

0 0 · · · 1 0 · · · 0
0 0 · · · −lk+1,k 1 · · · 0
...

...
...

. . .
...

0 0 · · · −ln,k 0 · · · 1


, (E.3)

where 0 is the zero vector in Rk. We call Mk an elementary lower triangular
matrix.

We have
A(k+1) = MkA

(k), for k = 1, . . . , n− 1, (E.4)

where Mk ∈ Rn,n is an elementary lower triangular matrix of the form (E.3) with
lik = lkik given by (E.2) for i = k + 1, . . . , n.

Exercise E.2 Show (E.4).

Gaussian elimination with no row interchanges is valid if and only if the pivots
akkk are nonzero for k = 1, . . . , n− 1.

Theorem E.3 We have akk,k ̸= 0 for k = 1, . . . , n − 1 if and only if the leading
principal submatrices

Ak =

a11 . . . a1k
...

...
ak1 . . . akk


of A are nonsingular for k = 1, . . . , n− 1.

Proof. Let Bk = A
(k)
k−1 be the upper left k − 1 corner of A(k) given by (E.1).

Observe that the entries of the matrix Bk is computed from A by using only
entries fromAk−1 and that only row-operations preserving non-singularity are used.
It follows that Ak−1 is nonsingular if and only if Bk is nonsingular. By Lemma

2.8 Bk is nonsingular if and only if a
(i)
ii ̸= 0, i = 1, . . . , k − 1. We conclude that

A1, . . . ,An−1 are nonsingular if and only if B2, . . . ,Bn are nonsingular which is

equivalent to a
(k)
kk ̸= 0 for k = 1, . . . , n− 1.

268 Appendix E. Gaussian Elimination

Gaussian elimination is a way to compute the LU factorization of the coeffi-
cient matrix.

Theorem E.4 Suppose A ∈ Rn,n and that Ak is nonsingular for k = 1, . . . , n− 1.
Then Gaussian elimination with no row interchanges results in an LU factorization
of A ∈ Rn,n. In particularA = LR, where

L =


1
l121 1
...

. . .

l1n1 l2n2 · · · 1

 , R =

a
1
11 · · · a11n

. . .
...

annn

 , (E.5)

where the ljij and aiij are given by (E.2).

Proof. From (E.2) we have for all i, j

lika
k
kj = akij − ak+1

ij for k < min(i, j), and lija
j
jj = ajij for i > j.

Thus for i ≤ j we find

(LR)ij =

n∑
k=1

likukj =

i−1∑
k=1

lika
k
kj + aiij =

i−1∑
k=1

(
akij − ak+1

ij

)
+ aiij = a1ij = aij ,

while for i > j

(LR)ij =
n∑

k=1

likukj =

j−1∑
k=1

lika
k
kj + lija

j
jj =

j−1∑
k=1

(
akij − ak+1

ij

)
+ ajij = aij .

Note that this Theorem holds even if A is singular. Since L is nonsingular
the matrix R is singular, and we must have annn = 0 when A is singular.

E.1.1 Algoritms

Consider next an algorithm to find the LU factorization of A using Gaussian elim-
ination with no row interchanges. Storing both the entries ljij and aiij in A we can
write (E.2) as follows for k = 1, . . . , n− 1.

for i = k + 1 : n

aik = aik/akk

for j = k + 1 : n

aij = aij − aikakj

(E.6)

We can write (E.6) using outer product notation. We haveak+1,k+1 · · · ak+1,n

...
...

an,k+1 · · · an,n

 =

ak+1,k+1 · · · ak+1,n

...
...

an,k+1 · · · an,n

−

ak+1,k

...
an,k

 [
ak,k+1 · · · ak,n

]
.

E.1. Gaussian Elimination and LU factorization 269

The result is a matrix of order n− k.
This leads to the following algorithm.

Algorithm E.5 (lufactor) Given A ∈ Rn,n with Ak ∈ Rk,k nonsingular for
k = 1, . . . , n − 1. This algorithm computes an LU factorization of A using
Gaussian elimination without row interchanges.

function [L,R]= lufactor(A)

n=length(A); for k=1:n-1

kn=k+1:n;

A(kn,k)=A(kn,k)/A(k,k);

A(kn,kn)=A(kn,kn)-A(kn,k)*A(k,kn);

end

L=eye(n,n)+tril(A,-1);

R=triu(A);

Once we have an LU factorization of A the system Ax = b is solved easily in
two steps. Since LRx = b we have Ly = b, where y := Rx. We first solve Ly = b
for y and then Rx = y for x. Consider solving a system Ax = b, where A is lower
triangular with nonzero diagonal entries. For n = 3 we have

a11 0 0
a21 a22 0
a31 a32 a33

x1

x2

x3

 =

b1b2
b3

 .

From the first equation we find x1 = b1/a11. Solving the second equation for x2 we
obtain x2 = (b2 − a21x1)/a11. Finally the third equation gives x3 = (b3 − a31x1 −
a32x2)/a33. This process is known as forward substitution and we arrive at the
following algorithm.

Algorithm E.6 (forwardsolve) Given a nonsingular lower triangular matrix
A ∈ Rn,n and b ∈ Rn. An x ∈ Rn is computed so that Ax = b.

function x=forwardsolve(A,b)

n=length(b); x=b(:);

for k=1:n

x(k)=(x(k)-A(k,1:k-1)*x(1:k-1))/A(k,k);

end

A system Ax = b, where A is upper triangular must be solved ’bottom-up’.
We first find xn from the last equation and then move upwards for the remaining
unknowns. We have the following algorithm.

270 Appendix E. Gaussian Elimination

Algorithm E.7 (backsolve) Given a nonsingular upper triangular matrix
A ∈ Rn,n and b ∈ Rn. An x ∈ Rn is computed so that Ax = b.

function x=backsolve(A,b)

n=length(b); x=b(:);

for k=n:-1:1

x(k)=(x(k)-A(k,k+1:n)*x(k+1:n))/A(k,k);

end

E.1.2 Operation count

We define a flop (floating point operation) as one of the floating point arithmetic
operations, ie. multiplication, division, addition and subtraction. We denote by
nflops the total number of flops in an algorithm, i.e. the the sum of all multipli-
cations, divisions, additions and subtractions. For a problem of size n the number
nflops will often be a polynomial in n. For example, we will show below that an LU
factorization requires 2

3n
3 − 1

2n
2 − n

6 flops. For large values of n the highest term
2
3n

3 dominates and we usually say that nflops = O(23n
3) ignoring lower order terms.

We sometimes say that nflops = O(n3) if we do not bother with the constant (in
this case 2/3) in front of the n3 term.

In many implementations the computing time TA for an algorithm A applied
to a large problem is proportional to NA := nflops. If this is true then we typically
have TA = αNA, where α is in the range 10−12 to 10−9 on a modern computer.

Consider now NLU := nflops for LU factorization. Let M,D,A, S be the
number of multiplications, divisions, additions, and subtractions. We first do an
exact count. From (E.6) we find

• M =
∑n−1

k=1(n− k)2 =
∑n−1

m=1 m
2 = 1

3n(n− 1)(n− 1
2)

• D =
∑n−1

m=1 m = 1
2n(n− 1), S = M, A = 0.

Thus

NLU = M +D +A+ S =
2

3
n3 − 1

2
n2 − 1

6
n = O(

2

3
n3)

There is a quick way to arrive at the leading term 2n3/3. We only consider the
arithmetic operations contributing to the leading term. Then we replace sums by
integrals letting the summation indices be continuous variables and adjust limits
of integration in an insightful way to simplify the calculation. In the Gaussian
elimination case the contribution to the leading term only comes from M and S
and we find

M + S = 2

n−1∑
k=1

(n− k)2 ≈ 2

∫ n−1

1

(n− k)2dk ≈ 2

∫ n

0

(n− k)2dk =
2

3
n3.

This is the correct leading term and we obtain NLU = O(2n3/3) which is reasonably
correct for large values of n.

E.2. Pivoting 271

Consider next forward and backward substitution. Counting flops and letting
NS := NF +NB we find

NS ≈
∫ n

1

2(k − 1)dk +

∫ n

1

2(n− k)dk ≈
∫ n

0

2kdk +

∫ n

0

2(n− k)dk = 2n2.

Comparing NLU and NS we see that LU factorization is an O(n3) process
while the solution stage only require O(n2) flops. This leads to dramatic differences
in computing time as illustrated in the following table:

n TLU TS

103 1s 0.003s
104 17min. 0.3s
106 32 years 51min

Here we have assumed that the computing time for the LU factorization is
TLU = 10−9n3 and the computing time for the forward and bacwards substittution
is TS = 3× 10−9n2 corresponding to α = 3× 10−9/2.

To further illustrate the difference between n3 and n2 for large n suppose we
want to solve m systems Ajxj = bj for j = 1, . . . ,m, where Aj ∈ Rn,n and bj ∈ Rn.
We need m(23n

3 + 2n2) flops for this. Thus if n = 104 and m = 100 the table gives
a computing time of approximately 1700min. Suppose now Aj = A, i.e. we have
the same coefficient matrix in all systems. We can then write the m systems more
compactly as AX = B, where A ∈ Rn,n, B ∈ Rn,m and the matrix X ∈ Rn,m is
the unknown. To solve AX = B we first compute the LU factorization of A and
then apply forward and backward substitution to the columns of B. If n = 104 the
computing time for this would be 17min for the LU factorization and 30s for the
solution phase.

E.2 Pivoting
We have seen that Gaussian elimination without row interchanges is only well de-
fined if the leading principal minors Ak ∈ Rk,k are nonsingular for k = 1, . . . , n− 1.

Suppose now A ∈ Rn,n is nonsingular. We can still solve a linear system
with A if we incorporate row interchanges. Interchanging two rows (and/or two
columns) during Gaussian elimination is known as pivoting. The entry which is
moved to the diagonal position (k, k) is called the pivot entry or pivot for short.
Gaussian elimination with row interchanges can be described as follows.

1. Choose rk ≥ k so that akrk,k ̸= 0.

2. Interchange rows rk and k of A(k).

3. Eliminate by computing lkik and ak+1
ij using (E.2).

We have seen that the elimination step can be described as multiplying the
current matrix by an elementary transformation matrix Mk given by (E.3). But
before we can multiply by Mk we have to interchange rows. This can be described
in terms of permutation matrices.

272 Appendix E. Gaussian Elimination

E.2.1 Permutation matrices

Definition E.8 A permutation matrix is a matrix of the form

P = I(:,p) = [ei1 ,ei2 , . . . ,ein] ∈ Rn,n,

where ei1 , . . . , ein is a permutation of the unit vectors e1, . . . ,en ∈ Rn.

Every permutation p = [i1, . . . , in]
T of the integers 1, 2, . . . , n gives rise to a

permutation matrix and vice versa. Post-multiplying a matrix A by a permuta-
tion matrix results in a permutation of the columns, while pre-multiplying by a
permutation matrix gives a permutation of the rows. In symbols

AP = A(:,p), P TA = A(p, :). (E.7)

Indeed, AP = (Aei1 , . . . ,Aein) = A(:,p) and P TA = (ATP)T = (AT (:,p))T =
A(p, :).

Since P TP = I the inverse of P is equal to its transpose, P−1 = P T and
PP T = I as well. Thus a permutation matrix is an orthonormal matrix.

We will use a particularly simple permutation matrix.

Definition E.9 We define a (j,k)-Interchange Matrix Ijk by interchanging col-
umn j and k of the identity matrix.

Since Ijk = Ikj , and we obtain the identity by applying Ijk twice, we see
that I2

jk = I and an interchange matrix is symmetric and equal to its own inverse.
Pre-multiplying a matrix by an interchange matrix interchanges two rows of the
matrix, while post-multiplication interchanges two columns.

E.2.2 Gaussian elimination works mathematically

The process going from A(k) to A(k+1) can be written

A(k+1) = MkP kA
(k), for k = 1, . . . , n− 1, (E.8)

where P k = Irk,k ∈ Rn,n is a permutation matrix interchanging rows k and rk of

A(k) and Mk ∈ Rn,n is an elementary lower triangular matrix of the form (E.3)
with lik = lkik given by (E.2) for i = k + 1, . . . , n.

If A is nonsingular then Gaussian elimination can always be carried to com-
pletion by using suitable row interchanges. To show this, suppose by induction on
k that A(k) is nonsingular. Since A(1) = A this holds for k = 1. By Lemma 2.7
the lower right diagonal block in A(k) is nonsingular. But then at least one entry
in the first column of that block must be nonzero and it follows that rk exists so
that akrk,k ̸= 0. But then the matrices P k and Mk in (E.8) are well defined. By
Lemma 2.8 the matrix Mk is nonsingular and since a permutation matrix is non-
singular it follows from Lemma B.8 that A(k+1) is nonsingular. We conclude that
A(k) is nonsingular for k = 1, . . . , n.

E.2. Pivoting 273

E.2.3 Pivot strategies

Rp to now we have said nothing about what rows in A to interchange during the
elimination. We start with an example illustrating that small pivots should be
avoided.

Example E.10 Applying Gaussian elimination without row interchanges to the lin-
ear system

10−4x1 + 2x2 = 4

x1 + x2 = 3

we obtain the upper triangular system

10−4x1 + 2x2 = 4

(1− 2× 104)x2 = 3− 4× 104

The exact solution is

x2 =
−39997

−19999
≈ 2, x1 =

4− 2x2

10−4
=

20000

19999
≈ 1.

Suppose we round the result of each arithmetic operation to three digits. The solu-
tions fl(x1) and fl(x2) computed in this way is

fl(x2) = 2, fl(x1) = 0.

The computed value 0 of x1 is completely wrong. Suppose instead we apply Gaussian
elimination to the same system, but where we have interchanged the equations. The
system is

x1 + x2 = 3

10−4x1 + 2x2 = 4

and we obtain the upper triangular system

x1 + x2 = 3

(2− 10−4)x2 = 4− 3× 10−4

Now the solution is computed as follows

x2 =
3.9997

1.9999
≈ 2, x1 = 3− x2 ≈ 1.

In this case rounding each calculation to three digits produces fl(x1) = 1 and fl(x2) =
2 which is quite satisfactory since it is the exact solution rounded to three digits.

We briefly describe the two most common pivoting strategies. The choice

akrk,k := max{|aki,k| : k ≤ i ≤ n}

274 Appendix E. Gaussian Elimination

with rk the smallest such index in case of a tie, is known as partial pivoting. It
is possible to interchange both rows and columns. The choice

akrk,sk := max{|aki,j | : k ≤ i, j ≤ n}

with rk, sk the smallest such indices in case of a tie, is known as complete pivoting.
Complete pivoting is known to be more stable, but requires a lot of search and is
seldom used in practice.

E.3 The PLU-Factorization
Consider now Gaussian elimination with row pivoting. We can keep track of the
row interchanges using pivot vectors pk. We define

p := pn, where p1 := [1, 2, . . . , n]T , and pk+1 := Irk,kpk for k = 1, . . . , n− 1.
(E.9)

We obtain pk+1 from pk by interchanging the entries rk and k in pk. In particular
the first k − 1 components in pk and pk+1 are the same.

There is a close relation between the pivot vectors pk and the corresponding
interchange matrices P k := Irk,k. Since P kI(pk, :) = I(P kpk, :) = I(pk+1, :) we
obtain

P T := P n−1 · · ·P 1 = I(p, :), P := P 1P 2 · · ·P n−1 = I(:,p). (E.10)

Instead of interchanging the rows of A during elimination we can keep track
of the ordering of the rows using the pivot vectors pk. The Gaussian elimination in
Section E.1 with entries a1ij can be described as follows:

p = [1, . . . , n]T ;

for k = 1 : n− 1

choose rk ≥ k so that akprk
,k ̸= 0.

p = Irk,kp

for i = k + 1 : n

akpi,k = akpi,k/a
k
pk,k

for j = k : n

ak+1
pi,j

= akpi,j − akpi,ka
k
pk,j

(E.11)

This leads to the following factorization:

Theorem E.11 Gaussian elimination with row pivoting on a nonsingular matrix
A ∈ Rn,n leads to a factorization A = PLR, where P is a permutation matrix,
L is lower triangular with ones on the diagonal, and R is upper triangular. More

E.4. An Algorithm for Finding the PLU-Factorization 275

explicitly, P = I(:,p), where p = Irn−1,n−1 · · · Ir1,1[1, . . . , n]
T , and

L =


1

a1p2,1 1
...

. . .

a1pn,1 a2pn,2 · · · 1

 , R =

a
1
p1,1 · · · a1p1,n

. . .
...

anpn,n

 , (E.12)

Proof. The proof is analogous to the proof for LU factorization without pivoting.
From (E.11) we have for all i, j

akpi,ka
k
pk,j

= akpi,j − ak+1
pi,j

for k < min(i, j), and akpi,ja
j
pj ,j

= ajpi,j
for i > j.

Thus for i ≤ j we find

(LR)ij =

n∑
k=1

li,kukj =

i−1∑
k=1

akpi,ka
k
pk,j

+ aipi,j

=

i−1∑
k=1

(
akpi,j − ak+1

pi,j

)
+ aipi,j = a1pi,j = api,j =

(
P TA

)
ij
,

while for i > j

(LR)ij =
n∑

k=1

likukj =

j−1∑
k=1

akpi,ka
k
pk,j

+ akpi,ja
j
pj ,j

=

j−1∑
k=1

(
akpi,j − ak+1

pi,j

)
+ ajpi,j

= a1pi,j = api,j =
(
P TA

)
ij
.

E.4 An Algorithm for Finding the PLU-Factorization
Using pivot vectors we can compute the PLU factorization of A without physically
interchanging the entries akij . As is clear from (E.12) we can store the entries of L
and R in A and work with A(pk, :). At the end the entries of L and R will be
located under and above the diagonal.

In the following algorithm we use partial pivoting.

276 Appendix E. Gaussian Elimination

Algorithm E.12 (PLU factorization) Given a nonsingular A ∈ Rn,n. This
algorithm computes a PLU factorization of A using Gaussian elimination with
partial pivoting. The permutation matrix P can be recovered form the pivot
vector p as P = I(:,p).

function [p,L,R] = plufactor(A)

n = length(A);

p = 1:n;

for k=1:n-1

[maxv ,r] = max(abs(A(p(k:n),k)));

p([k r+k-1]) = p([r+k-1 k]);

ps=p(k+1:n);

A(ps ,k) = A(ps ,k)/A(p(k),k);

A(ps ,k+1:n) = A(ps ,k+1:n) - A(ps ,k)*A(p(k),k+1:n);

end

L = eye(n,n) + tril(A(p,:),-1);

R = triu(A(p ,:));

Once we have a PLU factorization of A the system Ax = b is solved easily in
three steps. Since PLRx = b we have Pz = b, Ly = z, and Rx = y. Using the
output [p,L,R] of Algorithm E.12 the solution can be found from Algorithms E.6
and E.7 in two steps.

1. y=forwardsolve(L,b(p));

2. x=backsolve(R,y);

Exercise E.13 In this exercise we develop column oriented vectorized versions of
forward and backward substitution. Suppose L ∈ Rn,n is lower triangular and
R ∈ Rn,n is upper triangular. Consider the system Lx = b. Suppose after k − 1
steps of the algorithm we have a reduced system in the form

1 0 · · · 0
lk+1,k 1 · · · 0

...
. . .

...
lnk · · · 1




xk

xk+1

...
xn

 =


bk

bk+1

...
bn

 .

This system is of order n− k + 1. The unknowns are xk, . . . , xn.

a) We see that xk = bk and eliminating xk from the remaining equations show
that we obtain a system of order n− k with unknowns xk+1, . . . , xn

1 0 · · · 0
lk+2,k+1 1 · · · 0

...
. . .

...
ln,k+1 · · · 1


xk+1

...
xn

 =

bk+1

...
bn

− xk

lk+1,k

...
ln,k

 .

E.4. An Algorithm for Finding the PLU-Factorization 277

Thus at the kth step, k = 1, 2, . . . n we set xk = bk and update b as follows:

b(k + 1 : n) = b(k + 1 : n)− x(k) ∗ L(k + 1 : n, k).

b) Suppose now L ∈ Rn,n is lower triangular, R ∈ Rn,n is upper triangular
and b ∈ Rn. Justify the following column oriented vectorized algorithms for solving
Lx = b and Rx = b.

Algorithm E.14 (Forward Substitution (column oriented))

for k = 1 : n

x(k) = b(k)/L(k, k);

b(k+1:n) = b(k+1:n)− L(k+1:n, k) ∗ x(k);
end

Algorithm E.15 (Backward Substitution (column oriented))

for k = n : −1 : 1

x(k) = b(k)/R(k, k);

b(1:k−1) = b(1:k−1)−R(1:k−1, k) ∗ x(k);
end

Each algorithm requires n2 flops.

278 Appendix E. Gaussian Elimination

Appendix F

Computer Arithmetic

F.1 Absolute and Relative Errors
Suppose a and b are real or complex scalars. If b is an approximation to a then
there are different ways of measuring the error in b.

Definition F.1 (Absolute Error) The absolute error in b as an approximation
to a is the number ϵ := |a− b|. The number e := b− a is called the error in b as an
approximation to a. This is what we have to add to a to get b.

Note that the absolute error is symmetric in a and b, so that ϵ is also the
absolute error in a as an approximation to b

Definition F.2 (Relative Error) If a ̸= 0 then the relative error in b as an ap-
proximation to a is defined by

ρ = ρb :=
|b− a|
|a|

.

We say that a and b agree to approximately − log10 ρ digits.

As an example, if a := 31415.9265 and b := 31415.8951, then ρ = 0.999493 ∗
10−6 and a and b agree to approximately 6 digits.

We have b = a(1 + r) for some r if and only if ρ = |r|.
We can also consider the relative error ρa := |a−b|/|b| in a as an approximation

to b.

Lemma F.3 If a, b ̸= 0 and ρb < 1 then ρa ≤ ρb/(1− ρb).

Proof. Since |a|ρb = |b − a| ≥ |a| − |b| we obtain |b| ≥ |a| − |a − b| = (1 − ρb)|a|.
Then

ρa =
|b− a|
|b|

≤ |b− a|
(1− ρb)|a|

=
ρb

1− ρb
.

279

280 Appendix F. Computer Arithmetic

If ρb is small then ρa is small and it does not matter wether we choose ρa or
ρb to discuss relative error.

Exercise F.4 Compare ρa and ρb when a := 3.1415.9265 and b := 31415.8951.

F.2 Floating Point Numbers
We shall assume that the reader is familiar with different number systems (binary,
octal, decimal, hexadecimal) and how to convert from one number system to an-
other. We use (x)β to indicate a number written to the base β. If no parenthesis
and subscript are used, the base 10 is understood. For instance,

(100)2 = 4,

(0.1)2 = 0.5,

0.1 = (0.1)10 = (0.0001100110011001 . . .)2.

In general,

x = (cmcm−1 . . . c0.d1d2 . . . dn)β

means

x =
m∑
i=0

ciβ
i +

n∑
i=1

diβ
−i, 0 ≤ ci, di ≤ β − 1.

We can move the decimal point by adding an exponent:

y = x · βe,

for example

(0.1)10 = (1.100110011001 . . .)2 · 2−4.

We turn now to a description of the floating-point numbers. We will only
describe a standard system, namely the binary IEEE floating-point standard.
Although it is not used by all systems, it has been widely adopted and is used in
Matlab. For a more complete introduction to the subject see [8],[17].

We denote the real numbers which are represented in our computer by F . The
set F are characterized by three integers t, and e, e. We define

ϵM := 2−t, machine epsilon, (F.1)

and

F := {0} ∪ S ∪ N ,where

N := N+ ∪N−, N+ := ∪e
e=eNe, N− := −N+,

Ne :=
{
(1.d1d2 · · · dt)2

}
∗ 2e = {1, 1 + ϵM , 1 + 2ϵM , . . . , 2− ϵM} ∗ 2e,

S := S+ ∪ S−, S+ := {ϵM , 2ϵM , 3ϵM , . . . , 1− ϵM} ∗ 2e, S− := −S+.

(F.2)

F.2. Floating Point Numbers 281

-

1

4
0

1

4

1

2
1 2 4

S- S+ N-2 N-1 N0 N1

Figure F.1. Distribution of some positive floating-point numbers

Example F.5 Suppose t := 2, e = 3 and e := −2. Then ϵM = 1/4 and we find

N−2 = {1
4
,
5

16
,
3

8
,
7

16
}, N−1 = {1

2
,
5

8
,
3

4
,
7

8
}, N0 = {1, 5

4
,
3

2
,
3

4
,
7

4
},

N1 = {2, 5
2
, 3,

7

2
}, N2 = {4, 5, 6, 7}, N3 = {8, 10, 12, 14},

S+ = { 1

16
,
1

8
,
3

16
}, S− = {− 3

16
,−1

8
,− 1

16
}.

The position of some of these sets on the real line is shown in Figure F.1

1. The elements of N are called normalized (floating-point) numbers. They
consists of three parts, the sign +1 or -1, the mantissa (1.d1d2 · · · dt)2, and
the exponent part 2e.

2. the elements in N+ has the sign +1 indicated by the bit σ = 0 and the
elements in N− has the sign bit σ = 1. Thus the sign of a number is (−1)σ.
The standard system has two zeros +0 and −0.

3. The mantissa is a number between 1 and 2. It consists of t+ 1 binary digits.

4. The number e in the exponent part is restricted to the range e ≤ e ≤ e.

5. The positive normalized numbers are located in the interval [rm, rM], where

rm := 2e, rM := (2− ϵM) ∗ 2e. (F.3)

6. The elements in S are called subnormal or denormalized. As for normalized
numbers they consists of three parts, but the mantissa is less than one in size.
The main use of subnormal numbers is to soften the effect of underflow. If a
number is in the range (0, (1− ϵM/2) ∗ 2e), then it is rounded to the nearest
subnormal number or to zero.

7. Two additional symbols ”Inf” and ”NaN” are used for special purposes.

8. The symbol Inf is used to represent numbers outside the interval [−rM , rM]
(overflow), and results of arithmetic operations of the form x/0, where x ∈
N . Inf has a sign, +Inf and -Inf.

9. The symbol NaN stands for ”not a number”. a NaN results from illegal
operations of the form 0/0, 0 ∗ Inf, Inf/Inf, Inf− Inf and so on.

10. The choices of t, e, and e are to some extent determined by the architecture
of the computer. A floating-point number, say x, occupies n := 1+ τ + t bits,

282 Appendix F. Computer Arithmetic

where 1 bit is used for the sign, τ bits for the exponent, and t bits for the
fractional part of the mantissa.

τ t

σ exp frac

Here σ = 0 if x > 0 and σ = 1 if x < 0, and exp ∈ {0, 1, 2, 3, . . . , 2τ − 1} is
an integer. The integer frac is the fractional part d1d2 · · · dt of the mantissa.
The value of a normalized number in the standard system is

x = (−1)σ ∗ (1.frac)2 ∗ 2exp−b, where b := 2τ−1 − 1. (F.4)

The integer b is called the bias.

11. To explain the choice of b we note that the extreme values exp = 0 and
exp = 2τ − 1 are used for special purposes. The value exp = 0 is used for
the number zero and the subnormal numbers, while exp = 2τ − 1 is used
for Inf and NaN. Since 2b = 2τ − 2, the remaining numbers of exp, i. e.,
exp ∈ {1, 2, . . . , 2τ − 2} correspond to e in the set {1 − b, 2 − b, . . . , b}. Thus
in a standard system we have

e = 1− b, e = b := 2τ−1 − 1. (F.5)

12. The most common choices of τ and t are shown in the following table

precision τ t b ϵM = 2−t rm = 21−b rM
half 5 10 15 9.8× 10−4 6.1× 10−5 6.6× 104

single 8 23 127 1.2× 10−7 1.2× 10−38 3.4× 1038

double 11 52 1023 2.2× 10−16 2.2× 10−308 1.8× 10308

quad 15 112 16383 1.9× 10−34 3.4× 10−4932 1.2× 104932

Here b is given by (F.5) and rM by (F.3) The various lines correspond to
a normalized number occupying half a word of 32 bits, one word (single
precision), two words (double precision), and 4 words (quad precision).

Exercise F.6 Check the results of the following operations on your computer. 1Inf,
2Inf, e−Inf, Inf0, log 0, sin (Inf), arctan (−Inf).

F.3 Rounding and Arithmetic Operations
The standard system is a closed system. Every x ∈ R has a representation as either
a floating-point number, or Inf or NaN, and every arithmetic operation produces a
result. We denote the computer representation of a real number x by fl(x).

F.4. Backward Rounding-Error Analysis 283

F.3.1 Rounding

To represent a real number x there are three cases.

fl(x) =


Inf, if x > rM ,

−Inf, if x < −rM ,

round to zero, otherwise.

To represent a real number with |x| ≤ rM the system chooses a machine number
fl(x) closest to x. This is known as rounding. When x is midway between two
numbers in F we can either choose the one of larger magnitude (round away from
zero), or pick the one with a zero last bit (round to zero). The standard system
uses round to zero. As an example, if x = 1 + ϵM/2, then x is midway between
1 and 1 + ϵM . Therefore fl(x) = 1 + ϵM if round away from zero is used, while
fl(x) = 1 if x is rounded to zero. This is because the machine representation of 1
has frac = 0.

The following lemma gives a bound for the relative error in rounding.

Theorem F.7 If rm ≤ |x| ≤ rM then

fl(x) = x(1 + δ), |δ| ≤ uM :=
1

2
ϵM = 2−t−1.

Proof. Suppose 2e < x < 2e+1. Then fl(x) ∈ {1, 1 + ϵM , 1 + 2ϵM , . . . , 2− ϵM} ∗ 2e.
These numbers are uniformly spaced with spacing ϵM ∗2e and therefore |fl(x)−x| ≤
1
2ϵM2e ≤ 1

2ϵM ∗ |x|. The proof for a negative x is similar.

The number uM is called the rounding unit.

Exercise F.8 Show that the upper bound for δ is attained for x = (1 + ϵM/2) ∗ 2e
when round to zero is used. Compute δ when x = (2− ϵM/2) ∗ 2e.

F.3.2 Arithmetic Operations

Suppose x, y ∈ N . In a standard system we have

fl(x ◦ y) = (x ◦ y)(1 + δ), |δ| ≤ uM , ◦ ∈ {+,−, ∗, /,√}, (F.6)

where uM is the rounding unit of the system. This means that the computed value
is as good as the rounded exact answer. This is usually achieved by using one or
several extra digits known as guard digits in the calculation.

F.4 Backward Rounding-Error Analysis
The computed sum of two numbers α1, α2 ∈ N satisfy fl(α1 ◦α2) = (α1+α2)(1+δ),
where |δ| ≤ uM , the rounding unit. If we write this as fl(α1 ◦ α2) = α̃1 + α̃2, where
α̃i := αi(1 + δ) for i = 1, 2, we see that the computed sum is the exact sum
of two numbers which approximate the exact summands with small relative error,

284 Appendix F. Computer Arithmetic

|δ| ≤ uM . The error in the addition has been boomeranged back on the data α1, α2,
and in this context we call δ the backward error. A similar interpretation is valid
for the other arithmetic operations −, ∗, /,√ , and we assume it also holds for the
elementary functions sin, cos, exp, log and so on.

Suppose more generally we want to compute the value of an expression ϕ(α1,
. . . , αn) Here α1, . . . , αn ∈ N are given data, and we are using the arithmetic
operations, and implementations of the standard elementary functions, in the com-
putation. A backward error analysis consists of showing that the computed
result is obtained as the exact result of using data β := [β1, . . . βn]

T instead of
α := [α1, . . . , αn]. In symbols

ϕ̃(α1, . . . , αn) = ϕ(β1, . . . , βn).

If we can show that the relative error in β as an approximation to α is O(uM)
either componentwise or norm-wise in some norm, then we say that the algorithm
to compute ϕ(α1, . . . , αn) is backward stable. Normally the constant K in the
O(uM) term will grow with n. Typically K = p(n) for some polynomial p is
acceptable, while an exponential growth of K can be problematic.

F.4.1 Computing a Sum

We illustrate this discussion by computing the backward error in the sum of n
numbers s := α1 + · · · + αn, where αi ∈ N for all i. We have the following
algorithm.

s1 := α1

for k = 2 : n

sk := fl(sk−1 + αk)

end

s̃ := sn

Using a standard system we obtain for n = 3

s2 = fl(α1 + α2) = α1(1 + δ2) + α2(1 + δ2),

s3 = fl(s2 + α3) = s2(1 + δ3) + α3(1 + δ3) = α1(1 + η1) + α2(1 + η2) + α3(1 + η3),

η1 = η2 = (1 + δ2)(1 + δ3), η3 = (1 + δ3), |δi| ≤ uM .

In general, with δ1 := 0,

s̃ =
n∑

i=1

αi(1 + ηi). ηi = (1 + δi) . . . (1 + δn), |δi| ≤ uM , i = 1, . . . , n. (F.7)

With ϕ(α1, . . . , αn) := α1 + · · ·+ αn this shows that

s̃ = ϕ̃(α1, . . . , αn) = ϕ(β1, . . . , βn), βi = αi(1 + ηi). (F.8)

The following lemma gives a convenient bound on the η factors.

F.4. Backward Rounding-Error Analysis 285

Lemma F.9 Suppose for integers k,m with 0 ≤ m ≤ k and k ≥ 1 that

1 + ηk :=
(1 + δ1) · · · (1 + δm)

(1 + δm+1) · · · (1 + δk)
, |δj | ≤ uM , j = 1, . . . , k.

If kuM ≤ 1
11 then

|ηk| ≤ ku′
M , where u′

M := 1.1uM . (F.9)

Proof. We first show that

kuM ≤ α < 1 =⇒ |ηk| ≤ k
uM

1− α
. (F.10)

For convenience we use u := uM in the proof. Since u < 1 we have 1/(1 − u) =
1 + u+ u2/(1− u) > 1 + u and we obtain

(1− u)k ≤ (1− u)m

(1 + u)k−m
≤ 1 + ηk ≤ (1 + u)m

(1− u)k−m
≤ (1− u)−k.

The proof of (F.10) will be complete if we can show that

1− ku ≤ (1− u)k, (1− u)−k ≤ 1 + ku′.

The first inequality is an easy induction on k. If it holds for k, then

(1− u)k+1 = (1− u)k(1− u) ≥ (1− ku)(1− u) = 1− (k+1)u+ ku2 ≥ 1− (k+1)u.

The second inequality is a consequence of the first,

(1− u)−k ≤ (1− ku)−1 = 1 +
ku

1− ku
≤ 1 +

ku

1− α
= 1 + ku′.

Letting α = 1
11 in (F.10) we obtain (F.9).

The number u′
M := 1.1uM , corresponding to α = 1/11, is called the adjusted

rounding unit . In the literature many values of α can be found. [17] uses α = 1/10
giving u′

M = 1.12uM , while in [8] the value α = 0.01 can be found. In the classical
work [25] one finds 1/(1− α) = 1.06.

Let us return to the backward error (F.8) in a sum of n numbers. Since δ1 = 0
we see that

|η1| ≤ (n− 1)u′
M , |ηi| ≤ (n− i+ 1)u′

M , for i = 2, . . . , n.

or more simply

|ηi| ≤ (n− 1)u′
M , for i = 1, . . . , n. (F.11)

This shows that the algorithm for computing a sum is backward stable.
The bounds from a backward rounding-error analysis can be used together

with a condition number to bound the actual error in the computed result. To see

286 Appendix F. Computer Arithmetic

this for the sum, we subtract the exact sum s = α1 + · · ·+ αn from the computed
sum s̃ = α1(1 + η1) + · · ·+ αn(1 + ηn), to get

|s̃− s| = |α1η1 + · · ·+ αnηn| ≤ (|α1|+ · · ·+ |αn|)(n− 1)u′
M .

Thus the relative error in the computed sum of n numbers is bounded as follows

| s̃− s

s
| ≤ κ(n− 1)u′

M , where κ :=
|α1|+ · · ·+ |αn|
α1 + · · ·+ αn

. (F.12)

This bound shows that the backward error can be magnified by at most κ. The
number κ is called the condition number. for the sum.

The condition number measures how much a relative error in each of the
components in a sum can be magnified in the final sum. The backward error shows
how large these relative perturbations can be in the actual algorithm we used to
compute the sum. Using backward error analysis and condition number separates
the process of estimating the error in the final result into two distinct jobs.

A problem where small relative changes in the data leads to large relative
changes in the exact result is called ill conditioned. We see that computing a sum
can be ill-conditoned if the exact value of the sum is close to zero and some of the
individualterms have large absolute values with opposite signs.

F.4.2 Computing an Inner Product

Computing an inner product p := α1γ1 + · · ·+ αnγn is also backward stable using
the standard algorithm

p1 := fl(α1γ1)

for k = 2 : n

pk := fl
(
pk−1 + fl(αkγk)

)
end

p̃ := pn

For a backward error analysis of this algorithm we only need to modify (F.7) slightly.
All we have to do is to add terms fl(αkγk) = αkγk(1 + πk) to the terms of the sum.
The result is

p̃ =

n∑
k=1

αkγk(1 + ηk), ηk = (1 + πk)(1 + δk) · · · (1 + δn), k = 1, . . . , n,

where δ1 = 0. Thus for the inner product of n terms we obtain

| p̃− p

p
| ≤ κnuM , κ :=

|α1γ1|+ · · ·+ |αnγn|
|α1γ1 + · · ·+ αnγn|

. (F.13)

The computation can be ill conditioned if the exact value is close to zero and some
of the components are large in absolute value.

F.4. Backward Rounding-Error Analysis 287

F.4.3 Computing a Matrix Product

Using matrix norms we can bound the backward error in matrix algorithms. Sup-
pose we want to compute the matrix product C = A ∗B. Let n be the number of
columns of A and the number of rows of B. Each element in C is the inner product
of a row of A and a column of B. Thus if C̃ is the computed product then from
(F.13)

| c̃ij − cij
cij

| ≤ κijnu
′
M , κij :=

|a1b1|+ · · ·+ |anbn|
|a1b1 + · · ·+ anbn|

, all i, j. (F.14)

We write this as |c̃ij − cij | ≤ κij |cij |nu′
M . Using the infinity matrix norm we find∑

j

|c̃ij − cij | ≤ nu′
M

∑
j

κij |cij | ≤ κnu′
M

∑
j

|cij | ≤ κnu′
M∥C∥∞, all i,

where κ := maxij κij . Maximizing over i we obtain

∥C̃ −C∥∞
∥C∥∞

≤ κnu′
M . (F.15)

The calculation of a matrix product can be ill conditioned if one or more of the
product elements are small and the corresponding inner products have large terms
of opposite signs.

288 Appendix F. Computer Arithmetic

Appendix G

Differentiation of Vector
Functions

For any sufficiently differentiable f : Rn → R we recall that the partial derivative
with respect to the ith variable of f is defined by

Dif(x) :=
∂f(x)

∂xi
:= lim

h→0

f(x+ hei)− f(x)

h
, x ∈ Rn,

where ei is the ith unit vector in Rn. For each x ∈ Rn we define the gradient
∇f(x) ∈ Rn, and the hessian ∇∇T f(x) ∈ Rn,n of f by

∇f :==

D1f
...

Dnf

 , Hf := ∇∇T f :=

D1D1f · · · D1Dnf
...

...
DnD1 · · · DnDnf

 , (G.1)

where ∇T f := (∇f)T is the row vector gradient. The operators ∇∇T and ∇T∇
are quite different. Indeed, ∇T∇f = D2

1f + · · ·+D2
nf =: ∇2 the Laplacian of f ,

while ∇∇T can be thought of as an outer product resulting in a matrix.

Exercise G.1 For f, g : Rn → R show the product rules

1. ∇(fg) = f∇g + g∇f, ∇T (fg) = f∇T g + g∇T f,

2. ∇∇T (fg) = ∇f∇T g +∇g∇T f + f∇∇T g + g∇∇T f .

3. ∇2(fg) = 2∇T f∇g + f∇2g + g∇2f .

We define the Jacobian of a vector function f = [f1, . . . fm]T : Rn → Rm as
the m,n matrix

∇Tf :=

D1f1 · · · Dnf1
...

...
D1fm · · · Dnfm

 .

289

290 Appendix G. Differentiation of Vector Functions

As an example, if f(x) = f(x, y) = x2 − xy + y2 and g(x, y) := [f(x, y), x − y]T

then

∇f(x, y) =

[
2x− y
−x+ 2y

]
, ∇Tg(x, y) =

[
2x− y −x+ 2y

1 −1

]
,

Hf(x, y) =

[
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

]
=

[
2 −1

−1 2

]
.

The second order Taylor expansion in n variables can be expressed in terms
of the gradient and the hessian.

Lemma G.2 Suppose f ∈ C2(Ω), where Ω ∈ Rn contains two points x,x+h ∈ Ω,
such that the line segment L := {x+ th : t ∈ (0, 1)} ⊂ Ω. Then

f(x+ h) = f(x) + hT∇f(x) +
1

2
hT∇∇T f(c)h, for some c ∈ L. (G.2)

Proof. Let g : [0, 1] → R be defined by g(t) := f(x + th). Then g ∈ C2[0, 1] and
by the chain rule

g(0) = f(x) g(1) = f(x+ h),

g′(t) =
n∑

i=1

hi
∂f(x+ th)

∂xi
= hT∇f(x+ th),

g′′(t) =
n∑

i=1

n∑
j=1

hihj
∂2f(x+ th)

∂xi∂xj
= hT∇∇T f(x+ th)h.

Inserting these expressions in the second order Taylor expansion

g(1) = g(0) + g′(0) +
1

2
g′′(u), for some u ∈ (0, 1),

we obtain (G.2) with c = x+ uh.

The gradient and hessian of some functions involving matrices can be found
from the following lemma.

Lemma G.3 For any m,n ∈ N, B ∈ Rn,n, C ∈ Rm,n, and x ∈ Rn,y ∈ Rm we
have

1. ∇(yTC) = ∇T (Cx) = C,

2. ∇(xTBx) = (B +BT)x, ∇T (xTBx) = xT (B +BT),

3. ∇∇T (xTBx) = B +BT .

Proof.

291

1. We find Di(y
TC) = limh→0

1
h

(
(y + hei)

TC − yTC
)
= eTi C and Di(Cx) =

limh→0
1
h (C(x+ hei)−Cx) = Cei and 1. follows.

2. Here we find

Di(x
TBx) = lim

h→0

1

h

(
(x+ hei)

TB(x+ hei)− xTBx
)

= lim
h→0

(
eTi Bx+ xTBei + heTi ei

)
= eTi (B +BT)x,

and the first part of 2. follows. Taking transpose we obtain the second part.

3. Combining 1. and 2. we obtain 3.

292 Appendix G. Differentiation of Vector Functions

Appendix H

Some Inequalities

In this appendix we derive an inequality for convex functions called Jensen’s in-
equality and use it to show H”older’s and Minkowski’s inequaltiies.

H.1 Convexity
Definition H.1 (Convex function) Let I ⊂ R be an interval. A function f :
I → R is called convex if

f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y)

for all x, y ∈ I and all λ ∈ [0, 1]. The sum
∑n

j=1 λjzj is called a convex combi-

nation of z1, . . . , zn if λj ≥ 0 for j = 1, . . . , n and
∑n

j=1 λj = 1.

The condition is shown graphically in Figure H.1.

�����������������������

x z y

6

?

f(z)

f

λf(x) + (1− λ)f(y)

A L U

Figure H.1. A convex function.

It then follows that the function − log x is convex on I = (0,∞).

293

294 Appendix H. Some Inequalities

H.2 Inequalities
Theorem H.2 (Jensen’s Inequality) Suppose I ∈ R is an interval and f : I →
R is convex. Then for all n ∈ N, all λ1, . . . , λn with λj ≥ 0 for j = 1, . . . , n and∑n

j=1 λj = 1, and all z1, . . . , zn ∈ I we have

f(
n∑

j=1

λj) ≤
n∑

j=1

λjf(zj).

Proof. We use induction on n. The result is trivial for n = 1. Let n ≥ 2, assume
the inequality holds for k = n− 1, and let λj , zj for j = 1, . . . , n be given as in the
theorem. Since n ≥ 2 we have λi < 1 for at leas one i so assume without loss of
generality that λ1 < 1. Define u by u :=

∑n
j=2

λj

1−λ1
zj . Since

∑n
j=2 λj = 1 − λ1

this is a convex combination of k terms and the induction hypothesis implies that
f(u) ≤

∑n
j=2

λj

1−λ1
f(zj). But then by the convexity of f

f(

n∑
j=1

λj) = f(λ1z1 + (1− λ1)u) ≤ λ1f(z1) + (1− λ1)f(u) ≤
n∑

j=1

λjf(zj)

and the inequality holds for k + 1 = n.

Corollary H.3 (Weighted geometric/arithmetic mean inequality) Suppose∑n
j=1 λjaj is a convex combination of nonnegative numbers a1, . . . , an. Then

aλ1
1 aλ2

2 · · · aλn
n ≤

n∑
j=1

λjaj , (H.1)

where 00 := 0.

Proof. The result is trivial if one or more of the aj ’s are zero so assume aj > 0
for all j. We use Jensen’s inequality with the convex function f(x) = − log x on
I = (0,∞). Then

− log
(n∑
j=1

λjaj
)
≤ −

n∑
j=1

λj log(aj) = − log
(
aλ1
1 · · · aλn

n

)
and since the log function is monotone the inequality follows.

Taking λj = 1
n for all j in (H.1) we obtain the classical geometric/arith-

metic mean inequality

(a1a2 · · · an)
1
n ≤ 1

n

n∑
j=1

aj . (H.2)

H.2. Inequalities 295

Corollary H.4 (Hölder’s inequality) For x,y ∈ Cn and 1 ≤ p ≤ ∞

n∑
j=1

|xjyj | ≤ ∥x∥p∥y∥q, where
1

p
+

1

q
= 1.

Proof. We leave the proof for p = 1 and p = ∞ as an exercise so assume 1 < p < ∞.
For any a, b ≥ 0 the weighted arithmetic/geometric mean inequality implies that

a
1
p b

1
q ≤ 1

p
a+

1

q
b, where

1

p
+

1

q
= 1. (H.3)

If x = 0 or y = 0 there is nothing to prove so assume that both x and y are
nonzero. Using H.3 on each term we obtain

1

∥x∥p∥y∥q

n∑
j=1

|xjyj | =
n∑

j=1

(
|xj |p

∥x∥pp

) 1
p
(
|yj |q

∥y∥qq

) 1
q

≤
n∑

j=1

(
1

p

|xj |p

∥x∥pp
+

1

q

|yj |q

∥y∥qq

)
= 1

and the proof of the inequality is complete.

Corollary H.5 (Minkowski’s inequality) For x,y ∈ Cn and 1 ≤ p ≤ ∞

∥x+ y∥p ≤ ∥x∥p + ∥y∥p.

Proof. We leave the proof for p = 1 and p = ∞ as an exercise so assume 1 < p < ∞.
We write

∥x+ y∥pp =
n∑

j=1

|xj + yj |p ≤
n∑

j=1

|xj ||xj + yj |p−1 +
n∑

j=1

|yj ||xj + yj |p−1.

We apply Hölder’s inequality with exponent p and q to each sum. In view of the
relation (p− 1)q = p the result is

∥x+ y∥pp ≤ ∥x∥p∥x+ y∥p/qp + ∥x∥p∥x+ y∥p/qp .

Since p− p
q = 1 the inequality follows.

296 Appendix H. Some Inequalities

Appendix I

The Jordan Form

I.1 The Jordan Form
We have seen that any square matrix can be triangularized by a unitary similarity
transformation. Moreover, any nondefective matrix can be diagonalized. The fol-
lowing question arises. How close to a diagonal matrix can we reduce a defective
matrix by a similarity transformation?

Definition I.1 A Jordan block, denoted Jm(λ) is an m×m matrix of the form

Jm(λ) :=


λ 1 0 ··· 0 0
0 λ 1 ··· 0 0
0 0 λ ··· 0 0
...

...
0 0 0 ··· λ 1
0 0 0 ··· 0 λ


A 3 × 3 Jordan block has the form J3(λ) =

[
λ 1 0
0 λ 1
0 0 λ

]
. We see that λ is an

eigenvalue of Jm(λ) and any eigenvector must be a multiple of e1. Thus, the
eigenvectors of Jm(λ) have algebraic multiplicity m and geometric multiplicity one.

The Jordan canonical form is a decomposition of a matrix into Jordan blocks.

Theorem I.2 Suppose A ∈ Cn,n has k distinct eigenvalues λ1, . . . , λk of algebraic
multiplicities a1, . . . , ak and geometric multiplicities g1, . . . , gk. There is a nonsin-
gular matrix S ∈ Cn,n such that

J := S−1AS = diag(U1, . . . ,Uk), with U i ∈ Cai,ai , (I.1)

where each U i is block diagonal having gi Jordan blocks along the diagonal

U i = diag(Jmi,1(λi), . . . ,Jmi,gi
(λi). (I.2)

Here mi,1, . . . ,mi,gi are unique integers so that mi,1 ≥ mi,2 ≥ · · · ≥ mi,gi and
ai =

∑gi
j=1 mi,j for all i.

297

298 Appendix I. The Jordan Form

The matrix J in (I.1) is called the Jordan form ofA. As an example consider
the Jordan form

J := diag(U1,U2) =


2 1 0
0 2 1
0 0 2

2 1
0 2

2
3 1
0 3

 ∈ R8,8. (I.3)

The eigenvalues together with their algebraic and geometric multiplicities can be
read off directly from the Jordan form.

• U1 = diag(J3(2),J2(2),J1(2)) and U2 = J2(3).

• 2 is an eigenvalue of algebraic multiplicity 6 and geometric multiplicity 3.

• 3 is an eigenvalue of algebraic multiplicity 2 and geometric multiplicity 1.

EachU i is upper triangular with the eigenvalue λi on the diagonal and consists
of gi Jordan blocks. These Jordan blocks can be taken in any order and it is
customary to refer to any such block diagonal matrix as the Jordan form of A.
Thus in the example the matrix

J :=


3 1
0 3

2 1
0 2

2
2 1 0
0 2 1
0 0 2


is also a Jordan form of A. In any Jordan form of this A the sizes of the 4 Jordan
blocks J3(2),J2(2),J1(2),J2(3) are uniquely given.

The columns of S are called principal vectors. They satisfy the matrix
equation AS = SJ . As an example, in (I.3) we have S = [s1, . . . , s8] and we find

As1 = 2s1, As2 = 2s2 + s1,

As3 = 2s3,

As4 = 2s4, As5 = 2s5 + s4, As6 = 2s6 + s5,

As7 = 3s7, As8 = 3s8 + s7,

We see that the first principal vector in each Jordan block is an eigenvector of A.
The remaining principal vectors are not eigenvectors.

Exercise I.3 For the Jordan form of the matrix A =
[

3 0 1
−4 1 −2
−4 0 −1

]
we have J =[

1 1 0
0 1 0
0 0 1

]
. Find S.

Exercise I.4 Find the Jordan form of the matrix

A =
1

9


10 16 −8 −5 6 1 −3 4
−7 32 −7 −10 12 2 −6 8
−6 12 12 −15 18 3 −9 12
−5 10 −5 −2 24 4 −12 16
−4 8 −4 −16 30 14 −15 20
−3 6 −3 −12 9 24 −9 24
−2 4 −2 −8 6 −2 15 28
−1 2 −1 −4 3 −1 −6 41

 . (I.4)

I.1. The Jordan Form 299

The following lemma is useful when studying powers of matrices.

Lemma I.5 Let J be the Jordan form of a matrix A ∈ Cn,n as given in Theo-
rem I.2. Then for r = 0, 1, 2, . . ., m = 2, 3, . . ., and any λ ∈ C

1. Ar = SJrS−1,

2. Jr = diag(U r
1, . . . ,U

r
k),

3. U r
i = diag(Jmi,1(λi)

r, . . . ,Jmi,gi
(λi)

r),

4. Er
m =

[
0 Im−r

0 0

]
for 1 ≤ r ≤ m− 1, where Em := Jm(λ)− λIm,

5. Em
m = 0.

6. Jm(λ)r = (Em + λIm)r =
∑min{r,m−1}

k=0

(
r
k

)
λr−kEk

m

Proof.

1. We have A2 = SJS−1SJS−1 = SJ2S−1 and 1. follows by induction on r.

2. This follows since J is block diagonal.

3. Each Jmi,j is block diagonal.

4. We have

Em =


0 1 0 ··· 0 0
0 0 1 ··· 0 0
0 0 0 ··· 0 0
...

...
0 0 0 ··· 0 1
0 0 0 ··· 0 0

 =
[
0 Im−1

0 0T

]
. (I.5)

The result follow for r = 1 and for general r ≤ m− 1 by induction.

5. Em
m = Em−1

m Em = 0.

6. This follows from the binomial theorem since Im and Em commute and Em =
0.

Exercise I.6 Determine Jr
3 for r ≥ 1.

Exercise I.7 Find J100 and A100 for the matrix in Exercise I.3.

300 Appendix I. The Jordan Form

I.1.1 The Minimal Polynomial

Let J be the Jordan form of A given in Theorem I.2. Since A and J are similar
they have the same characteristic polynomial, and since the Jordan form of A is
upper triangular with the eigenvalues of A on the diagonal we have

πA(λ) = πJ (λ) =
k∏

i=1

gi∏
j=1

(λi − λ)mij .

The polynomials pij(λ) := (λi − λ)mij are called the elementary divisors of A.
They divide the characteristic polynomial.

Definition I.8 Suppose A = SJS−1 is the Jordan canonical form of A. The
polynomial

µ(z) :=
k∏

i=1

(λi − z)mi where mi := max
1≤j≤gi

mij ,

is called the minimal polynomial of A.

Since each factor in µ(z) is also a factor in πA(z), we have the factorization πA(z) =
µ(z)ν(z) for some polynomial ν(z).

Exercise I.9 What is the characteristic polynomial and the minimal polynomial of
the matrix J in (I.3)?

To see in what way the minimal polynomial is minimal, we consider two ma-
trices defined from the characteristic polynomial πA and the minimal polynomial.
Substituting a matrix for the independent variable in these polynomial we obtain

πA(A) :=
k∏

i=1

gi∏
j=1

(λiI −A)mij , µ(A) :=
k∏

i=1

(λiI −A)mi . (I.6)

By induction it is easy to see that µ(A) and πA(A) are polynomials in the matrix

A. Moreover, µ(A) =
∏k

i=1(λiI − SJS−1)mi = Sµ(J)S−1, so that µ(A) = 0 if
and only if µ(J) = 0. Now,

µ(J) =
k∏

i=1

(λiI − J)mi =
k∏

i=1

diag
(
(λiI −U1)

mi , . . . , (λiI −Uk)
mi

)
= diag

(k∏
i=1

(λiI −U1)
mi , . . . ,

k∏
i=1

(λiI −Uk)
mi

)
= 0,

since (λrI −U r)
mr = 0 for r = 1, . . . , k. To show the latter we observe that

(λrI −U r)
mr = diag

(
(λrI − Jmr1)

mr , . . . , (λrI − Jmr,gr
)mr

)
= diag(Emr

mr1
, . . . , Emr

mr,gr
) = 0,

I.1. The Jordan Form 301

by Lemma I.5 and the maximality of mr.
We have shown that a matrix satisfies its minimal polynomial equation µ(A) =

0. Moreover, the degree of any polynomial p such that p(A) = 0 is at least as large

as the degree d =
∑k

i=1 mi of the minimal polynomial µ. This follows from the
proof since any such polynomial must contain the elementary divisors (λi − λ)mi

for i = 1, . . . , k. Since the minimal polynomial divides the characteristic polynomial
we obtain as a corollary theCayley-Hamilton Theorem which says that a matrix
satisfies its characteristic equation πA(A) = 0.

Exercise I.10 Show that p(B) = S−1p(A)S for any polynomial p and any similar
matrices B = S−1AS.

Exercise I.11 What is the minimal polynomial of the unit matrix and more gen-
erally of a diagonalizable matrix?

302 Appendix I. The Jordan Form

Bibliography

[1] Beckenbach, E. F, and R. Bellman, Inequalities, Springer Verlag, Berlin, Fourth
Printing, 1983.

[2] Björck, Åke, Numerical Methods for Least Squares Problems, SIAM, Philadel-
phia, 1995.

[3] Golub, G. H., and C. F. Van Loan, Matrix Computations, John Hopkins Uni-
versity Press, Baltimore, MD, third edition, 1996.

[4] Greenbaum, Anne, Iterative Methods for Solving Linear Systems, SIAM,
Philadelphia, 1997.

[5] Hackbush, Wolfgang, Iterative Solution of Large Sparse Systems of Equations,
Springer-Verlag, Berlin, 1994.

[6] Hestenes, Magnus, Conjugate Direction Methods in Optimization, Springer-
Verlag, Berlin, 1980.

[7] Hestenes, M. and E. Stiefel, Methods of conjugate gradients for solving linear
systems, Journal of Research of the National Bureau of Standards 29(1952),
409–439.

[8] Higham, Nicloas J., Accuracy and Stability of Numerical Algorithms, SIAM,
Philadelphia, 1996.

[9] Horn, Roger A. and Charles R. Johnson, Matrix Analysis, Cambridge Univer-
sity Press, Cambridge, UK, 1985.

[10] Horn, Roger A. and Charles R. Johnson, Topics in Matrix Analysis, Cambridge
University Press, Cambridge, UK, 1991.

[11] Kato, Perturbation Theory for Linear Operators, Pringer.

[12] Lawson, C.L. and R. J. Hanson, Solving Least Squares Problems, Prentice-Hall,
Englewood Cliffs, N.J, 1974.

[13] Lax, Peter D., Linear Algebra, John Wiley & Sons, New York, 1997.

[14] Leon, Steven J., Linear Algebra with Applications, Prentice Hall, NJ, Seventh
Edition, 2006.

303

304 Bibliography

[15] Meyer, Carl D., Matrix Analysis and Applied Linear Algebra , Siam Philadel-
phia, 2000.

[16] Steel, J. Michael, The Cauchy-Schwarz Master Class, Cambridge University
Press, Cambridge, UK, 2004.

[17] Stewart, G. G., Matrix Algorithms Volume I: Basic Decompositions, Siam
Philadelphia, 1998.

[18] Stewart, G. G., Matrix Algorithms Volume II: Eigensystems, Siam Philadel-
phia, 2001.

[19] Stewart, G. G. and Ji-guang Sun,Matrix Perturbation Theory, Academic Press,
San Diego, 1990.

[20] Stewart, G. G., Introduction to Matrix Computations, Academic press, New
York, 1973.

[21] Trefethen, Lloyd N., and David Bau III, Numerical Linear Algebra, Siam
Philadelphia, 1997.

[22] Tveito, A., and R. Winther, Partial Differential Equations, Springer, Berlin.

[23] Van Loan, Charles, Computational Frameworks for the Fast Fourier Transform,
Siam Philadelphia, 1992.

[24] Varga, R. S., Matrix Iterative Analysis/ 2nd Edn., Springer Verlag, New York,
2000.

[25] Wilkinson, J. H., The Algebraic Eigenvalue Problem, Clarendon Press, Oxford,
1965.

[26] Young, D. M.,Iterative Solution of Large Linear Systems, Academic Press, New
York, 1971.

Index

(leading) principal minor, 26
1D test matrix, 44
2D test matrix, 44

A-norm, 131
A-orthogonal, 131
abelian group, 210
absolute error, 99, 277
adjoint matrix, 247
adjusted rounding unit, 283
algebraic multiplicity, 259
averaging matrix, 44

backward error, 282
backward stable, 282
banded matrix, 227

symmetric LU factorization,
38

banded symmetric LU factoriza-
tion, 38

biharmonic equation, 51
fast solution method, 62
nine point rule, 62

Cauchy sequence, 103, 217
Cauchy-Binet formula, 252
Cauchy-Schwarz inequality, 220
Cayley Hamilton Theorem, 299
characteristic equation, 253
characteristic polynomial, 253
Chebyshev polynomial, 137
Cholesky factorization, 33
cofactor, 247
column operations, 249
companion matrix, 257
complete pivoting, 272
computer arithmetic, 277

condition number, 284
ill-conditioned, 99

congruent matrices, 192
conjugate gradient method, 127

A-norm, 131
convergence, 135
derivation, 131
energy norm, 131
Krylov subspace, 131
least squares problem, 134
preconditioning, 143
preconditioning algorithm, 145
preconditioning convergence,

145
convergence

absolute, 218
convex combination, 291
convex function, 291
Courant-Fischer theorem, 70
Cramers rule, 247
cubic spline, 17
cubic Hermite interpolation poly-

nomial, 16
cubic spline interpolant, 17

defective eigenvalue, 260
defective matrix, 260
deflation, 66
determinant, 243

additivity, 244
block triangular, 244
Cauchy-Binet, 252
cofactor, 247
cofactor expansion, 249
homogeneity, 244
permutation of columns, 244
product rule, 244

305

306 Index

singular matrix, 244
transpose, 244
triangular matrix, 243
Van der Monde, 250

direct sum, 215
Discrete Fourier Transform, 57

Fourier matrix, 57
Discrete Sine Transform, 56
double precision, 280

eigenpair, 253
left eigenpair, 261
orthonormal eigenpairs, 65
right eigenpair, 261

eigenvalue, 253
algebraic multiplicity, 259
characteristic equation, 253
characteristic polynomial, 253
Courant-Fischer theorem, 70
defective, 260
geometric multiplicity, 259
Hoffman-Wielandt theorem,

72
Kronecker sum, 47
location, 185
Rayleigh quotient, 69
Schur form, real, 72
spectral theorem, 68
spectrum, 253

eigenvector, 253
Kronecker sum, 47
left eigenvector, 261
right eigenvector, 261

elementary divisors, 298
elementary lower triangular ma-

trix, 265
elementary reflector, 156
Elsner’s theorem, 184
energy norm, 131
exchange matrix, 39

Fast Fourier Transform, 58
recursive FFT, 60

field, 209
fill-inn, 54
finite difference method, 11

fixed-point, 115
fixed-point iteration, 115
floating-point number

bias, 280
denormalized, 279
double precision, 280
exponent part, 279
guard digits, 281
half precision, 280
Inf, 279
mantissa, 279
NaN, 279
normalized, 279
overflow, 279
quadruple precision, 280
round away from zero, 281
round to zero, 281
rounding, 281
rounding unit, 281
single precision, 280
subnormal, 279

flops, 268
Fourier matrix, 57
Fredholm’s alternative, 168
fundamental subspaces, 235

Gaussian elimination, 264
complete pivoting, 272
elementary lower triangular

matrix, 265
flops, 268
interchange matrix, 270
partial pivoting, 272
pivot, 269
pivot vector, 272
pivoting, 269

geometric multiplicity, 259
Gerschgorin’s theorem, 185
Given’s rotation, 162
gradient, 287
group, 209
guard digits, 281

Hölder’s inequality, 90, 293
Hadamard’s inequality, 154
half precision, 280

Index 307

hessian, 287
Hilbert matrix, 252
Hoffman-Wielandt theorem, 72
Householder transformation, 156

identity matrix, 3
ill-conditioned, 284
ill-conditioned problem, 99
inequality, 291

geometric/arithmetic mean,
292

Hölder, 293
Jensen, 291
Minkowski, 293

Inf, 279
inner product, 219

inner product norm, 219
standard inner product in Cn,

219
standard inner product in Rn,

219
inner product space

linear projection operator, 224
orthogonal basis, 222
orthogonal complement, 224
orthogonal decomposition, 224
orthonormal basis, 222

interchange matrix, 270
inverse power method, 200
iterative method

convergence, 115
Gauss-Seidel, 110
Jacobi, 110
SOR, 110
SOR, convergence, 121
SSOR, 110

iterative methods, 109

Jacobian, 287
Jensen’s inequality, 291
Jordan form, 296

elementary divisors, 298
Jordan block, 295
Jordan canonical form, 295
principal vectors, 296

Kronecker product, 45

eigenvalues, 46
eigenvectors, 46
inverse, 47
left product, 45
mixed product rule, 46
nonsingular, 47
positive definite, 47
right product, 45
symmetry, 47
transpose, 46

Kronecker sum, 45
eigenvalues, 47
eigenvectors, 47
nonsingular, 47
positive definite, 47
symmetry, 47

Krylov subspace, 131

Laplacian, 287
leading principal block submatri-

ces, 28
leading principal submatrices, 26
least squares

error analysis, 176
normal equations, 170

left eigenpair, 261
left eigenvector, 261
left triangular, 25
linear combination, 211
linear mapping, 237
linear system

homogenous, 232
overdetermined, 232
residual vector, 102
square, 232
underdetermined, 232

linear transformation
kernel, 238
span, 238

LU factorization, 25
symmettric, 29

LU factorization, see also LR fac-
torization, 263

mantissa, 279
matrix

308 Index

addition, 2, 227
adjoint, 247
block lower triangular, 227
block matrix, 8, 228
block upper triangular, 227
blocks, 8, 228
companion matrix, 257
conjugate transpose, 231
defective, 260
deflation, 66
diagonal, 227
diagonalizable, 258
diagonally dominant, 13
element-by-element operations,

2
entry-by-entry operations, 228
equivalent, 236
fundamental subspaces, 235
Hadamard product, 2, 228
Hermitian transpose, 231
Hilbert, 252
ill-conditioned, 100
inverse, 233
invertible, 233
leading principal submatrices,

26
left inverse, 233
left triangular, 227
lower banded, 227
lower Hessenberg, 227
lower triangular, 227
multiplication, 2, 228
nilpotent, 256
non-singular, 232
normal, 65, 67
nullity, 235
outer product expansion, 9
permutation, 270
pseudo-inverse, 165
quasi-triangular, 67
rank, 235
right inverse, 233
right triangular, 227
scalar multiplication, 2, 227
Schur factorization, 66
Schur product, 2, 228

second derivative, 12
similar matrices, 257
similarity transformation, 257
singular, 232
spectral radius, 102, 103
strictly diagonally dominant,

14
test matrix,1D , 44
test matrix,2D , 44
trace, 255
transpose, 230
tridiagonal, 227
unitary similar, 65
upper banded, 227
upper Hessenberg, 227
upper triangular, 227
well-conditioned, 100

matrix norm
consistent norm, 93
Frobenius norm, 91
max norm, 91
operator norm, 94
spectral norm, 95
subordinate norm, 93
sum norm, 91
two-norm, 95

Minkowski’s inequality, 90, 293
mixed product rule, 46

NaN, 279
natural ordering, 42
negative (semi)definite, 30
Neumann Series, 105
nflops, 268
nilpotent matrix, 256
norm

l1-norm, 90
l2-norm, 90
l∞-norm, 90
absolute norm, 98
Euclidian norm, 90
infinity-norm, 90
max norm, 90
monotone norm, 98
one-norm, 90
triangle inequality, 89

Index 309

two-norm, 90
normal equations, 170
normal matrix, 65, 67
nullity, 235

operation count, 268
optimal relaxation parameter, 120
orthogonal matrix, see orthonor-

mal matrix, 238
orthogonal projection, 223
orthonormal eigenpairs, 65
orthonormal matrix, 238
overflow, 279

paraboloid, 142
partial pivoting, 272
permutation, 241

identity, 241
inversion, 242
sign, 242
symmetric group, 243

permutation matrix, 39, 270
perpendicular vectors, 221
pivot vector, 272
pivots, 265
plane rotation, 162
PLU factorization, 27, 39
Poisson matrix, 43
Poisson problem, 41

five point stencil, 42
nine point scheme, 51
Poisson matrix, 43
variable coefficients, 146

Poisson problem (1D), 11
positive definite, 30
positive semidefinite, 30
power method, 197

inverse, 200
Rayleigh quotient iteration,

200
shifted, 200

pp representation, 18
preconditioning, 143
principal submatrix, 26
principal vectors, 296
pseudo-inverse, 165

QR algorithm
implicit shift, 206
Rayleigh quotient shift, 205
shifted, 205
Wilkinson shift, 205

QR decomposition, 153
QR factorization, 153
quadratic form, 30
quadruple precision, 280
quotient space, 216

rank, 235
rate of convergence, 116
Rayleigh quotient, 69
Rayleigh quotient iteration, 200
relative error, 99, 277
residual vector, 102
right eigenpair, 261
right eigenvector, 261
right triangular, 25
rotation in the i, j-plane, 163
rounding unit, 281
rounding-error analysis

adjusted rounding unit, 283
backward error, 282
backward stable, 282
condition number, 284
ill-conditioned, 284

row operations, 249
RTR factorization, 33

scalar product, 219
Schur factorization, 66
Schur form, real, 72
second derivative matrix, 12
semi-Cholesky factorization, 33
sequence

bounded sequence of vectors,
218

subsequence, 218
Sherman-Morrison formula, 234
shifted power form, 18
shifted power method, 200
similar matrices, 257
similarity transformation, 257
single precision, 280

310 Index

singular value
Courant-Fischer theorem, 86
error analysis, 179
Hoffman-Wielandt theorem,

86
singular values, 76
singular vector

left singular vectors, 82
right singular vectors, 82

spectral radius, 102, 103
spectral theorem, 68
spectrum, 253
steepest descent, 143
stencil, 42
Sylvester’s inertia theorem, 192
symmetric positive semidefinite,

30

trace, 255
triangle inequality, 89
triangular matrix

left triangular, 25
right triangular, 25

unit vectors, 3
unitary similar, 65

vector
addition, 209
angle, 221
linearly dependent, 212
linearly independent, 212
orthogonal, 221
orthonormal, 221
scalar multiplication, 209

vector space, 210
basis, 212
complementary, 215
complete, 217
complex inner product space,

219
dimension, 213
direct sum, 215
finite dimensional, 211
intersection, 214
normed, 89

quotient space, 216
real inner product space, 219
subspace, 210
sum, 214
trivial, 210
union, 214

vectorization, 42
vectornorm, 89

Wilkinson diagram, 160

