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Preface

These lecture notes contains the text for a course in matrix analysis and
numerical linear algebra given at the beginning graduate level at the University of
Oslo. In the appendix we give a review of basis linear algebra. Each of the chapters
correspond approximately to one week of lectures.

Oslo, 12 August, 2010
Tom Lyche
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Chapter 1

Introduction

1.1 Notation

The following sets will be used throughout these notes.

1.

The set of natural numbers, integers, rational numbers, real numbers, and
complex numbers are denoted by N, Z,Q, R, C, respectively.

. We use the ”colon equal” symbol v := e to indicate that the symbol v is

defined by the expression e.

R™ is the set of n-tuples of real numbers which we will represent as column
vectors. Thus € R" means

T
T
T = ,
In
where x; € R for i = 1,...,n. Row vectors are normally identified using the

transpose operation. Thus if £ € R™ then « is a column vector and =7 is a
row vector.

Addition and scalar multiplication are denoted, and defined by
T+ ary
x+y= : , ac=| |, z,yeR", aelk

Tn + Yn ATy

. R™™ is the set of m x n matrices with real elements represented as

ail a2 - A1n

a21 a2 -+ Q2n
A=

Aml Am2 - Omn



Chapter 1. Introduction

The element in the ith row and jth column of a matrix A will be denoted by
a; j, a;j, A(i,7) or (A); ;. We use the notations

T
aij ai.
az; a%“
T :
(L;j = . ) a; = [ailaai27"'aa/in]7 A= [a’:laa:27-~-a':n] - .
T
Qmj Ao

for the columns a.; and rows al of A. We often drop the colon and write
a; and al when no confusion can arise. If m = 1 then A is a row vector, if
n = 1 then A is a column vector, while if m = n then A is a square matrix. In
this text we will denote matrices by boldface capital letters A, B,C --- and
vectors most often by boldface lower case letters x,y, z,---.

6. The imaginary unit /—1 is denoted by i. The complex conjugate and the
modulus of a complex number z is denoted by Z and |z|, respectively. Thus if
2z =1 +iy =re'® = r(cos ¢ + isin ¢) is a complex number then z := x — iy =
re”" = cos¢ —ising and |z| := /22 +y2 = r. Re(z) := x and Im(z) =y
denote the real and imaginary part of the complex number z.

7. For matrices and vectors with complex elements we use the notation A € C™"
and € C". We identify complex row vectors using either the transpose T' or
the conjugate transpose operation &* := Z! = [Ty,...,Tp).

8. For &,y € C" and a € C the operations of vector addition and scalar multi-
plication is defined by component operations as in the real case. (Cf. 4).

9. The arithmetic operations on rectangular matrices are

® matrix addition C = A+ B if ¢;; = a;; + b;; for all ¢,j and A, B,C
are matrices of the same dimension.

® multiplication by a scalar C = a A, where ¢;; = aa;; for all ¢, 5.

¢ multiplication by another matrix C = AB,C = A-Bor C = AxB,
where A € C™?, B € CP", C € C™", and ¢;; = > p_, aixby; for
t=1,....m,j7=1,...,n.

¢ element-by-element matrix operations C = Ax B and D = A/B,
and ' = A Ar where all matrices are of the same dimension and ¢;; =
aijbij, dij = aq; /bij and e;; = afj for all 4, j and suitable r. The element-
by-element product C = A x B is known as the Schur product and
also the Hadamard product.

10. Let A € R™™ or A € C™". The transpose A, and conjugate transpose
A" are n, m matrices with elements a;f'; = aj; and a;; = @j;, respectively. If
B is an n, p matrix then (AB)T = BT AT and (AB)* = B*A™.
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11. The unit vectors in R™ and C™ are denoted by
1 0 0 0
0 1 0 0
61_0762:20563_17 ’en:O)
0 0 0 1
while I, = I =:[0;;]7;_;, where
1 ifi=j,
(Sij = .
0 otherwise,
is the identity matrix of order n. Both the columns and the transpose of
the rows of I are the unit vectors e, e, ..., e,.
12. We use the following notations for diagonal- and tridiagonal n x n matrices
d 0 - 0
0 do - 0 dy
diag(d;) = diag(dy,...,dn) :== | . . = )
0o 0 - d, dn
dl C1
ag dg Co
B = tridiag(a;, d;, ¢;) = tridiag(a, d, ¢) :=
Gp—1 dnfl Cpn—1
an  dy
Here b“ = dl for i = 1,...,n, bz‘+1,i = Qj41, bi,i+1 = C; for i = 1,...,’17, — 1,
and b;; = 0 otherwise.
13. Suppose A e C™" and 1 < i1 <ig < -+ < <m, 1 < j1 < jo <+ <

Je < n. The matrix A(z,7) € C™° is the submatrix of A consisting of rows

i :=[i1,...,1,] and columns j := [j1,. .., j|
Qiy,gr Qig,go =t Qig g,
. . I TP
.. 1 1 (3 12,J1 12,2 12,])c
A(1’7]) =A . - .T’ = . . .
Jur o J2 o Je

Qipji o Qipygo " Qigje
For the special case of consecutive rows and columns we use the notation

Qry ey Qryci+1 e Qry co

Qri+l,cr Ari+lei+1 70 Gritlies
A(’I’l i To,C1 02) = . . .

Ary,cy Qry,ci+1 e Ary co
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Special Structure






Chapter 2

Examples of Linear
Systems

Many problems in computational science involves linear systems where the coeffi-
cient matrix has a special structure. In this chapter we present two problems that
lead to a linear system with a tridiagonal coefficient matrix. Such linear systems can
be solved by a version of Gaussian elimination adapted to the special structure. We
first consider block multiplication and some useful facts about triangular matrices.

2.1 Block Multiplication and Triangular Matrices
2.1.1 Block Multiplication

A rectangular matrix A can be partitioned into submatrices by drawing horizon-
tal lines between selected rows and vertical lines between selected columns. For
example, the matrix

1 2 3
A=14 5 6
7 8 9
can be partitioned as
112 3 11213
(Z) |:311 i12:| = 415 6 ) (“) I:a:laa':Qaa:?)} = 4156 )
A 718 9 7189
aj, 123 12 3
(i) |a3 | =14 5 6|, (iv) [Ai1,Ax]=| 4|5 6
al 7 8 9 718 9

In (7) the matrix A is divided into four submatrices
4 5 6
All = [1} ) A12 = [273] ) A21 = |:7:| ) and A22 = |:8 9:| )

7
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while in (i7) and (#i7) A has been partitioned into columns and rows, respectively.
The submatrices in a partition are often referred to as blocks and a partitioned
matrix is sometimes called a block matrix.

In the following we assume that A € C™P and B € CP'". Here are some rules

and observations for block multiplication.

1.

If B = [b:l, .. .,bm} is partitioned into columns then the partition of the
product AB into columns is

AB = [Ab;l,Ab:g, .. .,Ab:n] .
In particular, if I is the identity matrix of order p then
A=AI=A [el,ez,...,ep] = [Ael,Aeg,...,Aep]

and we see that column j of A can be written Ae; for j =1,...,p.
Similarly, if A is partitioned into rows then

al, aI'B
al, al B
AB=| | | B=
T T
am: amB

and taking A = I it follows that row i of B can be written el B for i =
1,...,p.

It is often useful to write the matrix-vector product A« as a linear combination
of the columns of A

Ax = 2101 + T2a:0 + - - + Tpap.
If B= [Bl,Bg], where B; € CP" and By € CP"~" then
A[B:1,B;] = [ABy,AB,].

This follows from Rule 1. by an appropriate grouping of columns.
If A= {i;], where A; € CK? and Ay € C™ %P then

ER]
This follows from Rule 2. by a grouping of rows.
If A=Ay, Ay] and B = {gj where A, € C™5, A, € C™=s, By € C5n
and By € CP~%" then

Indeed, (AB)i; = 320 awbij = 325 aibij + 351y aikbr; = (A1B1)i; +
(A2B3);; = (A1B1 + A3 By);;.
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o A11 A12 _ Bll BlZ
7.1t A= {Am Aoy and B = By By then

Ay Agp| |Bin Bip| _ |[AnBii+ABy A Bio + A1y By
Ay A |Bai B A By + A By Ao Bio + Ay Bas

provided the vertical partition in A matches the horizontal one in B, i.e. the
number of columns in A;; and As; equals the number of rows in By; and
B> and similar for the other blocks. To show this we use Rule 4. to obtain

AB = All A12 Bll All A12 BlQ
A21 A22 B21 ’ A21 A22 B22 ’

We complete the proof using Rules 5. and 6.

8. For the general case see Section B.1.

Exercise 2.1 For any matrix A show that a;; = el Ae; for all 4, j.

Exercise 2.2 Let B = AT A. Explain why this product is defined for any matrix.
Show that b;; = (a.;, a.;) == ala.; for all i, .

Exercise 2.3 For A € R™"™ and B € RP™ show that

AB” = a.b] + asbh + -+ a.,bl.

This is called the outer product expansion of the columns of A and B.

Exercise 2.4 Suppose A € R™"™ B € R"™P and X € R™P. Show that

Exercise 2.5 Suppose A = [Al,Ag} and B = [

AX =B <= Aw:j:b:j,jzl,...,p.

B,

0 ] When is AB = A1B;”?

Exercise 2.6 Suppose A, B,C € R™" are given in block form by

A aTf 1 of 1 oF
A'—[o Al]’ B'_{o BJ’ C'_[o CJ’

where Ay, B;,C; € R*1»~1 Show that

T
CAB—[)‘ a B ]

0 ClAlBl
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2.1.2 Triangular matrices

Recall that a matrix R is upper- or right triangular if r;; = 0 for ¢ > j, and a
matrix L is lower- or left triangular if I;; = 0 for ¢ < j. If R is upper triangular
then R’ is lower triangular.

We need some basic facts about triangular matrices and we start with

Lemma 2.7 Suppose

_|Ann Age
A=A

where A, A11 and Aso are square matrices. Then A is nonsingular if and only if
both A11 and Ass are nonsingular. In that case

—1 A1 -1
A*:[Aél Al;‘:fA”] (2.1)

Proof. If Aj; and Ajs are nonsingular then

Al —AARAL [An Ap _ | 0f_ I

0 A2_21 0 Aso 0 I
and A is nonsingular with the indicated inverse. Conversely, let B be the inverse
of the nonsingular matrix A. We partition B conformally with A and have

_ |Bui Bia| |[Aun A  |I 0] _
BA= [321 322] [ 0 Azz] N {0 I} =1

Using block-multiplication we find
B1Ann =1, B21A;1 =0, By App+ BypAyp=1.

The first equation implies that A1 is nonsingular, this in turn implies that Bo; = 0
in the second equation, and then the third equation simplifies to By Ags = I. We
conclude that also Ass is nonsingular. O

Consider now a triangular matrix.

Lemma 2.8 An upper (lower) triangular matriz A = [a;;] € C™™ is nonsingular
if and only if the diagonal elements a;;, i = 1,...,n are nonzero. In that case the
inverse is upper (lower) triangular with diagonal elements a i=1,...,n.

Proof. We use induction on n. The result holds for n = 1. The 1-by-1 matrix
A = [aj1] is nonsingular if and only if a;; # 0 and in that case A7t = [aﬁl}.
Suppose the result holds for n = k and let A € CFT1**1 be upper triangular. We
partition A in the form

off

0 Gpt1k+1
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and note that A; € CH* is upper triangular. By Lemma 1.1 A is nonsingular if
and only if Ay and (ag41,k+1) are nonsingular and in that case

-1 -1 -1

Al — AT —AL alkakﬂ,kﬂ

0 Apt1,k+1
By the induction hypothesis Ay is nonsingular if and only if the diagonal elements
aii,...,agr of Ay are nonzero and in that case A,;l is upper triangular with diag-
onal elements a;;', i = 1,...,k. The result for A follows. 0O

1

Lemma 2.9 The product C = AB = (c;;) of two upper (lower) triangular matrices
A = (a;5) and B = (b;;) is upper (lower) triangular with diagonal elements c;; =
a“b” fO’I‘ all i.

Proof. Exercise. 0O

A matrix is unit triangular if it is triangular with 1’s on the diagonal.
Lemma 2.10 For a unit upper (lower) triangular matriz A € C™":
1. A is nonsingular and the inverse is unit upper(lower) triangular.

2. The product of two unit upper (lower) triangular matrices is unit upper (lower)
triangular.

Proof. 1. follows from Lemma 2.8, while Lemma 2.9 implies 2. 0O

2.2 The Second Derivative Matrix

Consider the simple two point boundary value problem
—u(x) = f(z), z€]0,1, u(0)=0, u(l)=0, (2.2)

where f is a given continuous function on [0, 1]. This problem is also known as the
one-dimensional (1D) Poisson problem . In principle it is easy to solve (2.2)
exactly. We just integrate f twice and determine the two integration constants
so that the homogeneous boundary conditions «(0) = u(1) = 0 are satisfied. For
example, if f(x) = 1 then u(x) = z(x — 1)/2 is the solution. However, many
functions f cannot be integrated exactly, and in such cases a numerical method can
be used.

(2.2) can be solved approximately using the finite difference method. For
this we choose a positive integer m, define the discretization parameter h := 1/(m+
1), and replace the interval [0, 1] by grid points x; := jh for j =0,1,...,m+1. We
then use the following finite difference approximation of the second derivative:

() ~ u(x — h) — 2u(x) + u(x + h)
h? '
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We obtain approximations v; to the exact solution u(z;) for j =1,...,m by
replacing the differential equation by the difference equation

—Vj—1+ 2Uj — Vj+1

e =f(jh), j=1,....m, vg=7vms1 =0.

Moving the h? factor to the right hand side this can be written as an m x m linear
system

2 -1 0
. . (%1 f(h)
Loz B 7(2n)
Ty = o - . o | =h? : = b.
Vpp— f((m —=1)h)
oo o e f(mh)

(2.3)
The matrix T is called the second derivative matrix and will occur frequently
in these notes.

2.3 LU Factorization of a Tridiagonal System

Consider the linear system Tv = b given by (2.3). We show in Theorem 2.14 below
that this system has a unique solution and that the algorithm we now describe is
well defined.

The matrix T is an instance of a tridiagonal matrix A = tridiag(a,, d;,¢;) €
C™™. An economical way to solve a tridiagonal system Ax = b is to construct, if
possible, triangular matrices L and R such that the product A = LR has the form

z; Cci; co 1 T1 C1
o 1
Gn—1 dn—l Cn—1 ’ I ’ 1 -t C;i_l
an dn n n
(2.4)
Once L and R are determined we can find x by solving two simpler systems Ly = b

and Rx = y.

To find L and R we note that L and R are bidiagonal, L has ones on the
diagonal, and that we have the same ¢; elements on the super-diagonals of A and
R. By equating elements in (2.4) we find

d1:7”1, ak:lkrk_l, dr = lpcp—1 + 7k, k:2,3,...,n.

Solving for I and 7 leads to

71 :dl, lk: T:k s Tk:dkflkck_l, k:2,3,...,n. (25)
-1
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We can then solve Ly = b and Rx =y
ylzblv yk:bk_lkykflv k:2737"‘7n7

(2.6)
xn:yn/rna Ik:(ykfckxk+1)/rka k:nflw"a27]-'

We formulate this as two algorithms.

Algorithm 2.11 (trifactor) Vectors I, € C™ are computed from a,c,d €
C™. This implements the LU factorization of a tridiagonal matrix. The first
(dummy) component in a and last component of ¢ are not used.

function [1l,r]=trifactor(a,d,c)

r=d; 1l=d;

for k=2:length(d)
1(k)=a(k)/r(k-1);
r(k)=d(k)-1(k)*c(k-1);

end

Algorithm 2.12 (trisolve) The solution x of the tridiagonal system LRx =
b is found from (2.6). Here I, 7, ¢,b € C™ . The vectors I, r are typically output
from trifactor.

function x=trisolve(l,r,c,b)

x=b; n=length(b);

for k=2:n
x(k)=b(k)-1(k)*x(k-1);

end

x(n)=x(n)/r(n);

for k=n-1:-1:1
x(k)=(x(k)-c(k)*x(k+1))/r(k);

end

The number of floating point operations (flops) to compute the LU factoriza-
tion of a tridiagonal matrix using Algorithm 2.11 is only 3n — 3, while the number
of flops for Algorithm 2.12 is 5n — 4. This means that the number of flops (the
complexity) to solve a tridiagonal system is O(n), or more precisely 8n — 7, and this
number only grows linearly with n. This should be compared to Gaussian elimi-
nation on a full n x n system which is an O(n?) process, i.e., it is proportional to

n3.

2.3.1 Diagonal Dominance

We show that Algorithms 2.11, 2.12 are well defined for a class of tridiagonal linear
systems. Moreover, these linear systems have a unique solution.

Definition 2.13 The matriz A = [a;;] € C™" is diagonally dominant if

\aii\ EZ\aijL i=1,...,n. (27)

J#i
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It is strictly diagonally dominant if strict inequality holds fori=1,...,n.

Recall that a square matrix A is singular if Az = 0 for a nonzero vector . A

diagonally dominant matrix can be singular. For example the matrices A; = [é % (11)]

and As = [é § ﬂ are both diagonally dominant and singular. Indeed, A5 has a zero

row, and for A; column two is the sum of columns one and three. In the literature
diagonal dominance is therefore most often defined by including some additional
condition(s). Here we prove the following result.

Theorem 2.14 Suppose A = tridiag(a;,d;, c;) € C™™ is tridiagonal and diagonally
dominant. If |d1| > |c1| and a; # 0 fori=2,...,n—1, then A has a unique LU
factorization (2.4). If in addition d,, # 0, then A is nonsingular.

Proof. The matrix A has an LU factorization if the r4’s in (2.5) are nonzero for
k=1,...,n —1. We show by induction on k that |rg| > |cx| for k=1,...,n — 1.
Clearly |r1| = |d1]| > |c1]. Suppose |ck—1|/|rk—1] < 1 for some 2 < k < n —1. By
(2.5)

A Cl— Qg ||Ch—

k] = |dy — lpcg1| = |dp — =21 > |dk|—w. (2.8)
Tk—1 |7“k—1|

Since a # 0 and by diagonal dominance |rg| > |dg| — |ag| > |cg|. Thus |rg| >

lek| >0, for k=1,...,n — 1 and an LU factorization exists. It is unique since any

LU factorization must satisfy (2.5). If d,, # 0 then by (2.8) |r,| > 0 regarless of
wether a,, is zero or nonzero, so both L and R have nonzero diagonal elements. By
Lemma 2.8 the product A = LR is nonsingular. 0

Consider the system Tw = b. The matrix T is diagonally dominant and
satisfies the additional conditions in Theorem 2.14. Thus it is nonsingular and we
can solve the system in O(n) arithmetic operations using Algorithms 2.11,2.12.

Alternatively, we could solve the system T = b by using the inverse T 1 of
T and simply compute the matrix vector product v = T *b. However this is not
a good idea. In fact, all elements in 7! are nonzero and the calculation of T b
requires O(n?) operations. See Exercise 2.16.

Exercise 2.15 Show that T = LR, where

1 0 0 2 -1 0 - 0
-1 0 32 -1
L= 0 *% 1 R = ’ 0 (2.9)
. . . . 0 . : m—1 -1
0 -~ 0 _mTfl 1] L0 - - 0 mTJrl_

Thus, T = LR is the LU factorization of T'.
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Exercise 2.16 Let S € R"™™ have elements s;; given by

Sij = Sji= jm+1-i), 1<j<i<m. (2.10)

m+1
Show that ST = I and conclude that T™' = S.

Exercise 2.17 We consider a finite difference method for the two point boundary
value problem

—u"(z) +r(z)u'(x) + g(x)u(z) = f(z), forx € [a,b],

u(@) = g0, ulb) = g1. (211)

We assume that the given functions f,q and r are continuous on [a,b] and that
q(z) >0 for x € [a,b]. It can then be shown that (2.11) has a unique solution u.

To solve (2.11) numerically we choose m € N, h = (b—a)/(m+1), z; = a+jh
for 7 =0,1,...,m+ 1 and solve the difference equation

—vj_1 + 205 —vj41 Vi1 — Vj—1
J J J+ +T(.Z‘) J+ J

% j 57 +q(zj)v; = f(z;), j=1,...,m, (2.12)

with vo = go and V41 = g1-

(a) Show that (2.12) leads to a tridiagonal linear system Av = b, where A =
tridiag(a;,d;j.c;) € R™™ has elements

h
(z;), dj =2+ h*q(x;),

aj = —1— 77“(33]‘), cj=—1+ 57‘

2
and
h2f($1) — a14o, ij = 17
by = q h*f(z)), if2<j<m-1,
W2 f(zm) — cmgr, if j =m.

(b) Show that the linear system satisfies the conditions in Theorem 2.1/ if the
spacing h is so small that %|r(z)| < 1 for all z € [a,b].

(c) Propose a method to find v1,...,Vpm.

Exercise 2.18 (a) Consider the problem (2.11) with r = 0, f = ¢ = 1 and
boundary conditions u(0) = 1, u(l) = 0. The exact solution is u(x) = 1 —
sinhz:/sinh 1. Write a computer program to solve (2.12) for h = 0.1,0.05,0.025,0.0125,
and compute the error” maxi<j<m|u(x;) — vj| for each h.

(b) Make a combined plot of the solution u and the computed points vj, j =
0,...,m+1 for h=0.1.

(c) One can show that the error is proportional to h? for some integer p. Estimate
p based on the error for h = 0.1,0.05,0.025,0.0125.
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L _
05— 10 15 2.0

Figure 2.1. The cubic Hermite interpolation polynomial interpolating
f(x) =a2* on [0,2].

2.4 Cubic Spline Interpolation

We next consider another problem leading to a tridiagonal linear system. Given
n > 2 interpolation sites * = [z1,...,7,]|T with a := 2; < --- < x,, =: b, real
y values y = [y1,...,yn|T, and derivative values o4, 05. We seek a function g :
[a,b] — R such that

g(x))=y;, fori=1,....,n, ¢ (a)=o04, g(b) =0y (2.13)

The derivative conditions are known under various names as first derivative, clamped,
or Hermite boundary conditions.

Since there are n + 2 interpolation conditions in (2.13) a natural choice for a
function g is a polynomial with n + 2 coefficients, i.e., a polynomial of degree at
most n + 1. As shown in many books on numerical methods such a ¢ is uniquely
defined and there are good algorithms for computing it. For example, when n = 2
the interpolant is known as the cubic Hermite interpolation polynomial.

Example 2.19 (Cubic Hermite interpolation) Let f : [0,2] — R be given by
f(x) = . The cubic polynomial g given by g(z) = 423 — 422 satisfies

9(0) = £(0), ¢(2)=f(2), ¢'(0)=[(0), 42 =Ff(2).
We show g and f in Figure 2.1

The polynomial g of degree < n + 1 = 15 interpolating the function f given
by f(z) = arctan(10x) + 7/2, x € [—1,1] at the points z; = -1 +2(i — 1)/(n — 1),
i =1,...,n with ¢’(-1) = f'(-1), ¢'(1) = f'(1) is shown in Figure 2.2. The
interpolant has large oscillations near the end of the range.

2.4.1 (C? Cubic Splines

When n is large a polynomial interpolant can have undesirable oscillations (cf.
Figure 2.2 and in this section we consider an alternative which often leads to better
results.
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Figure 2.2. The polynomial of degree 15 interpolating f(z) =
arctan(10z) 4+ 7/2 on [—1,1]. See text

Definition 2.20 Letn > 3, and a = 21 < 22 < ... < z, = b. A function
g : la,b] = R of the form
p1(x), ifa <z < xs,
p2(x), if 1o < < 13,
g(@) == <" (2.14)

pn72(x)a Zf Tn—2 S T < Tp—1,
pnfl(x)a ifﬂ?n,]_ S T S b7

is called a cubic spline with knots x = [z1,...,7,]|T provided

(i) FEach p; is a polynomial of degree < 3.

(1) pi—1(wi) = piws), Py (i) = pi(wi), piy(zi) =pi(2s), i=2,...,n—1
We note that.

1. By requirement (ii) the polynomials p; are ”glued” together with C? conti-
nuity, i.e., g, ¢’ and ¢’ are continuous on [a, b].

2. Each of the n — 1 cubic polynomials p; has 4 coefficients and there are 3
continuity conditions at each of the n — 2 interior knots. Thus, a cubic spline
appears to have 4(n — 1) — 3(n — 2) = n + 2 degrees of freedom. This is the
number of interpolation conditions in (2.13). We show in Theorem 2.22 below
that there is a unique cubic spline of the form (2.14) satisfying (2.13). We
call this function the cubic spline interpolant. A cubic spline interpolant
to the function f(x) = arctan(10z) 4+ 7/2 us shown in Figure 2.3 for n = 14
using the same uniform x;’s as in Figure 2.2. The spline interpolant is quite
close to f. In fact it is hard to distinguish the two curves.

Example 2.21 Show that g given by

= —a? + 227 fo<z<l1
o) = {pl(x) x° + 227, if0<z <1, (2.15)

pa(x) = =4+ 122 — 1322 + 623, if 1 <x <2,



18 Chapter 2. Examples of Linear Systems

i I I I
-1.0 -0.5 0.5 1.0

Figure 2.3. A cubic spline interpolating f(x) = arctan(10z) + 7/2 on
[—1,1]. See text

is a cubic spline interpolant to the data
T = [071a2]Ta Yy = [Oa174]T7 Oq :0; Op = 32.

Discussion: Clearly g is in the form (2.14) with knots © and p1,ps are cubic poly-
nomials. Since p1(1) = 1 = pa(1), pi(1) =4 = ph(1), p{(1) = 32 = pf(1) we see
that g is a cubic spline. Moreover, g(x1) = p1(0) =0 =y, g(x2) = p2(1) = 1 = ys,
g(x3) = p2(2) = 16 = y3, ¢'(0) = pi(0) = 0 = 0,4, ¢'(2) = p5(2) = 32 = 03, and
so g interpolates the data. The data is sampled from the function given by the rule
f(x) = a*. A plot of f and g is shown in Figure 2.4. It is hard to distinguish the
two curves.

2.4.2 Finding the Interpolant

For reasons of numerical accuracy it is convenient to use a representation called the
shifted power form for each p;.

pi(ﬂf) = C1; =+ CQi(l’ — .’ﬂl) —+ Cgi((ﬂ — Ii)Q + C4i(.’£ — 1'2')3. (216)

A cubic spline is completely determined by the shift vector £, € R”~! and the
coefficient matrix C

i1 C12 -+ Clk
C21 C22 -+ C2k ,
xs = [r1,...,2]7, C:= FleRY k=n—-1. (217
€31 €32 -+ C3k
Ca1 C42 +++ C4k

We call (2.17) the pp representation of g (with respect to x;).

As an example, consider (2.15). With x5 = 1 we obtain py(z) = —4 + 122 —
1322 +62% = 1+4(z—1) +5(x — 1)+ 6(x — 1)® and since x; = 0 the shifted power
form takes the form

(2) p1(x) = —22 + 223, if0<z <1,
xXr) .=
g pa(@) =1+ 4(x—1) +5(x—1)2+6(z—1)%. ifl<z<2
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16+

1 2

Figure 2.4. A two piece cubic spline interpolant to f(z) = x*.

The pp representation is

o O

xz, = 0,17, C= (2.18)

o L
[ R N

The following Theorem shows how to determine the pp form of the cubic spline
interpolant.

Theorem 2.22 Givena =21 < ... <z, =b, y; € R, i =1,...,n, and 04,0p.
Suppose the pp form x5, C = [c;;] of a cubic spline g is given by xL = [z1,...,Tp_1]
and
C1i ‘= Yi, C2¢ = Si,
C3; ‘= (351 — 281' — 8i+1)/hi, (219)
Cyq4 = (—2(51 + S; + Si+1)/h?,
where 8 = [s1,...,5,|7 is the solution of the linear system
1 0 S1 Oq
Ao 4 L2 S2 B2
Ns= SRR =] ;| =0 (2.20)
/\n—l 4 Hn—1 Sn—1 5n—1
0 1 Sn Op
and where
hi =z — x5, 0i = w,
2, %1 (2.21)

Ai = Bi = 3(Nidiz1 + 1:0;),

hi—1+h;’ Hi= hi—1+h;’
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Then g is a cubic spline interpolant and s; := ¢'(x;) for i = 1,...,n. Moreover,
(2.20) has a unique solution 8 = [s1,...,8,]T, so the cubic spline interpolant is
unique.

Proof. Taking derivatives in (2.16) give

pi(@) = c1i + c2i(w — m;) + esi(w — 23)” + cai(w — 3;)°,
Pi(x) = coi + 2¢35(x — ) + 3eai(z — 24)?, (2.22)
pi(x) = 2¢3; + 6cgi(x — 24).
Suppose p; is given by (2.16) where the ¢;; are given by (2.19) fori=1,...,n—1,
s$1 = 04 and s, = op, and So,...,8,_1 are at this point undetermined. Then for
i=1,....,n—1
pi(zi) = yi, DPi(Tiy1) = Yit1,
p:(mz) = Si, p;(l‘i-u) = Si+1-
Thus g(z;) = y; and ¢'(z;) = s; for i = 1,...,n and it follows that (2.13) holds.
Moreover, by (2.23)

(2.23)

pi1(@) = piw),  Piy(@) =pi(z), i=2,...,n—1L
Thus, g is a cubic spline interpolant if and only if
il (xi) =pf (), i=2,...,n—1. (2.24)

By (2.22)
pi_1(zs) = 2¢3,-1 + 6ca—1hi—1, pi(z;) = 2c3;.
Thus, (2.24) holds if and only if for i =2,...,n —1
1 /! 1 //
0= hz‘—lhi(§Pi_1(ﬂ%) — 5P (2:))

= hi—1hi(cs,i—1 + 3cai—1hi—1 — ¢3,1)

= hi(30i—1 — 2s;_1 — ;) + 3hi(—20;—1 + Si—1 + i) — hi—1(30; — 25, — s541)

=hiSi—1 +2(hi—1 + hi)si + hi—1Si11 — 3(Ridi—1 + hi—10;).

Multiplying the last expression by 2/(h;—1 + h;) leads to the equations
Aisi—1 +4s; + 1iSip1 = Bi, 1=2,...,n—1, (2.25)

and (2.20) follows. The matrix N is nonsingular since A; + u; = 2 < 4 and \; # 0,
so that the conditions in Theorem 2.14 hold. For uniqueness suppose g; and gy are
two cubic splines interpolating the same data (2.13). Then g := g; — g2 is a cubic
spline interpolating zero data. The unique solution of (2.20) is then s = 0, and
since (2.19) must hold for any cubic spline interpolant it easily follows that C = 0.
Thus g=0and g1 =¢go. O
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—1F

Figure 2.5. Cubic spline interpolation to the data in Example 2.25. The
breakpoints (z;,v;), ¢ = 2,3,4 are marked with dots on the curve.

2.4.3 Algorithms

To find the cubic spline interpolant we first solve (2.20) for s using Algorithms 2.11,
2.12. Then we determine the pp representation from (2.19).

To plot a cubic spline g we need to compute y values ¢; = g(r;) at a number of
x values r = [r1,...,7r,] € R™ for some reasonably large integer m. To determine
g(r;) for some j we need to find an integer i; so that g(r;) = p;;(r;). The following
Matlab function determines 4 = [i1,...,%,;,]. It uses the built in Matlab functions
length, min, sort, find.

Algorithm 2.23 (findsubintervals) Given shifts x, = [x1, ..., ;] and a real
number 7, an integer ¢ is computed so that ¢ = 1 if r < 2(2), i = k if r > xy,
and z; < r < z;41 otherwise. If r is a vector then a vector ¢ is computed, such
that the jth component of ¢ gives the location of the jth component of r.

function i=findsubintervals(xs,r)
k=length(xs); m=length(r);
xs (1)=min(r)-1;
[sorted,j] = sort([xs(:)’ r(:)’1);
i = find(j>k)-(1:m);

Here is the algorithm that was used to compute points for the plot in Fig-
ure 2.4. It uses Algorithm 2.23.
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Algorithm 2.24 (cubppeval) Given a pp representation (x5, C) of a cubic
spline g together with x values r € R™. The vector g = g(r) is computed.

function g=cubppeval (xs,C,r)
i=findsubintervals(xs,r); q=r;
for j=1:length(r)
k=i(j); t=r(j)-xs(k);
q(j)=[1 t t72 t°3]1*C(:,k);
end

Example 2.25 Consider the data x = [-1,—-1/2,0,1/2,1]7, y = [~1,-0.9,0,0.9,1]7
and 0, = op = 1/10. By (2.20)

100 0 0][s 1
1410 0| [s2] |60
01 4 1 0| |ss|=— [108
00 1 4 1| |ss| 10160
000 0 1| |ss 1
We find
1 0 0 00 10 0 0 0
1 1 0 00 04 1 0 0
L=|0 14 1 00|, R=|0 o0 154 1 0],
0 0 4/15 1 0 00 0 5615 1
0O 0 0 01 00 0 0 1

y = [1,59,373/4,527/15,1]T /10, and solution s = [7,64, 157,64, 7|7 /70. A straight-
forward calculation gives the coefficients in the pp representation

—-70 —63 0 63
7 64 157 64
C= —72 186 0 —186 /70.

172 —124 -—-124 172

The cubic spline interpolant is shown in Figure 2.5. Here Algorithm 2.2/ was used
with 200 uniform plot points.

The name spline is inherited from the ”physical uncle”, i.e., an elastic ruler
that is used to draw smooth curves. Heavy weights, called ducks, are used to force
the physical spline to pass through, or near given locations. (Cf. Figure 2.6).

Exercise 2.26 In many cases the knots are uniformly spaced, i.e., h; = h for all
i. Show that (2.20) takes the form

1 0 S1 Oq

1 4 1 59 3(ys —y1)/h
o | = : . (2.26)
1 4 1| s, 3(Yn — Yn—2)/h
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Figure 2.6. A physical spline with ducks.

Exercise 2.27 Show that

flx+h) = flz—h)
2h

h2
=f'($)+§f(3)(77), r—h<n<z+h.

This is known as the central difference approximation to the first derivative.
Exercise 2.28 Derive the pp representation of g in Example 2.25.

Exercise 2.29 (Give me a Moment) In this problem we determine the cubic
spline interpolant with 1. derivative boundary conditions using the unknown second
derivatives (sometimes called moments) m; == ¢"(x;), i = 1,...,n as parameters
in the shifted power representation (2.16) of g. Show the following theorem.

Theorem 2.30 Givena =x1 < ... <z, =b,y; e R, i =1,...,n, and g4,0p.
Suppose the pp form x5, C = [cj;] of a cubic spline g is given by xL = [z1,...,Tp_1]
and
m; m;
Cli i=Yi,  Ci i=0i — ?th - %H hs,
Cai =i )2, cyp = M1l 7 Wi (2.27)
6h;

hi = xip1 — x5, 0= (Yiy1 — ¥i) /I,
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where m = [myq,...,my]7 is the solution of the linear system

2 1 mi 71
U2 4 )\2 ma Y2
N21m = e = =: b217 (228)
Hn—1 4 Ao Mp—1 Tn—1
1 2 My, Yn
and where
2h; 2hi—1
Ni=—, W= ;
hi—1 4 h; hi—1 4 h;
0; — 0i—1 (2.29)
=12 "L 0 p— 1, :
7 hi—1+ h; ' "

Y1 :=6(01 —0a)/h1, Y :=6(0b — On-1)/hn-1.

Then g is the unique cubic spline interpolant to the data (2.13) and m; = g"(x;)
fori=1,...,n. Moreover, (2.28) has a unique solution.

Hint: Show that g(x;) = y;, ¢"(x;) = m; fori = 1,...,n, and g € C? if
i1 (x;) = pi(z;) fori=2,...,n—1. The requirements ¢'(a) = o4, g'(b) = op lead
to the first and last equation in (2.28).

Exercise 2.31 Not-a-knot boundary condition. Suppose n > 5 and consider
finding a cubic spline g such that

g(‘rl):y“ i:la"'vnv P1 =DP2,Pn—2 = Pn—1-
Since xo and x,_1 are no longer knots we refer to this as the not-a-knot condition.
The spline g now consists of only n — 3 pieces

p2(£)7 ifa§$<$3,
p3(z), if 13 < T < w4,
o) = (2.30)
pn—3($)7 lf Tn—3 S T < Tp—2,
p?L—Q(x)a Zf Tp—2 <z <b
With the shifted power form (2.16) we obtain the pp representation
Ci12 (13 Cl,n—2
c c Com— _
Ts = [x2,...,Tp_0], C:= 20 Zn=21 ¢ R4n-3,
C32 €33 €3,n—2
C42 C43 Cqn—2
Show, using pa(a) = y1 and pp_2(b) = yp, in addition to (2.25) for i =3,...,n —2
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that we obtain the linear system

2 e S2 Va
A3 4 ps 83 B3
Ngsi= | o =] |, (2.31)
/\n—2 4 Hn—2 Sp—2 Bn—Q
/\n—l 2 Sn—1 Vp—1

where \;, wi, B; is given by (2.21) and

1 1
vy 1= 5)\351 + 5#%(2 + 3ha/h1)d2,
2 . (2.32)
Up—1 = 5/1%71571—1 + 5)\%71(2 + 3hn*2/h"*1)5"*2’

Ezxplain why N3 is nonsingular. Note that s,_1 is not needed for the pp represen-
tation of g.
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Chapter 3
LU Factorizations

In Chapter 2 we saw how an LU factorization of the coefficient matrix can be used to
solve certain tridiagonal systems efficiently. In this chapter we consider the general
theory of LU factorizations'. We consider some related factorizations called block
LU, PLU, symmetric LU, and Cholesky.

3.1 The LU Factorization

We say that A = LR is an LU factorization of A € C™" if L € C™" is lower
triangular (left triangular )) and R € C™" is upper triangular (right triangu-
lar). In addition we will assume that L is unit triangular, i.e., it has ones on the
diagonal. The LU factorization of the 2. derivative matrix T was given in (2.9).
But not every nonsingular matrix has an LU factorization.

Example 3.1 An LU factorization of A = [{ 1] must satisfy the equations

0 1 . 1 0 L T3] _ T1 T3
1 1 |y 1110 7o  |Liri lLrg+7
for the unknowns /; in L and r1, 79,73 in R. Comparing (1, 1) elements we see that

r1 = 0, which makes it impossible to satisfy the condition 1 = l;r; for the (2,1)
element. We conclude that A has no LU factorization.

We will make use of some special submatrices.
Definition 3.2 For k =1,...,n the matrices Ay, € C** given by

aip - Gkl
A=Al k1: k)=

agr - Okk

n the literature an upper triangular matrix is denoted by U in an LU factorization and R
in a QR factorization. (see Chapter 12). We have chosen to use R to denote an upper triangular
matrix both for LU and QR factorizations.

27
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are called the leading principal submatrices of A = A,, € C™"™. More generally,
a matriz B € C** is called a principal submatrix of A if B = A(r,r), where
r=|[ry,...,rx] for some 1 <r; <---<rp <n. Thus

bi,j =0rr;y L) = 13"'7k7

The determinant of a (leading) principal submatriz is called o (leading) principal
minor.

A principal submatrix is leading if r; = j for j = 1,...,k. Also a principal

submatrix is special in that it uses the same rows and columns of A. For example,
for k£ =1 the only principal submatrices are the diagonal elements of A .

Example 3.3 The principal submatrices of A = [

=
0o U

3
6| are
9

[, (6], [, [33], [73]. [88], A

The leading principal submatrices are

[, 18], A

Theorem 3.4 Suppose the leading principal submatrices Ay of A € C™™ are non-
singular fork=1,...,n—1. Then A has a unique LU factorization.

Proof. We use induction on n to show that A has a unique LU factorization.
The result is clearly true for n = 1, since the unique LU factorization of a 1-by-1
matrix is [a11] = [1][a11]. Suppose that A, _; has a unique LU factorization A,,_1 =
L, 1R, 1, and that A;,..., A,_1 are nonsingular. Since A,,_; is nonsingular it
follows that L, _; and R, _; are nonsingular. But then

_ An—l b o Ln—l 0 Rn—l v _
4= |: CT a’nn:| B |:cTRn11 1:| |: 0 Gnn _CTR,;il'U - LR’ (31)

where v = L,:ilb, and this is an LU factorization of A. Since L,_; and R,,_;
are nonsingular the block (2,1) element in L and the block (1,2) element in R are
uniquely given in (3.1), and then r,,, is also determined uniquely. Thus the LU
factorization is unique by construction. 0O

The following observation is useful.

Lemma 3.5 Suppose A = LR is an LU factorization of A € C™™. For k =
1,...,n let Ay, L, Ry be the leading principal submatrices of A, L, R, respectively.
Then Ay = LRy, is an LU factorization of Ay fork=1,... n.

Proof. For k=1,...,n— 1 we partition A = LR as follows:

_|Arx By| |Lp, O | |Ry S| _
A A A = B (32)
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where Dy, N, T), € C"~%7=k_ Using block multiplication we find A, = L;Rj.
Since Ly is unit lower triangular and Ry is upper triangular we see that this gives
an LU factorization of A;. 0O

There is a converse of Theorem 3.4.

Theorem 3.6 Suppose A € C™" has an LU factorization. If A is nonsingular
then the leading principal submatrices Ay are nonsingular for k=1,...,n — 1.

Proof. Suppose A is nonsingular with the LU factorization A = LR. Since A
is nonsingular it follows that L and R are nonsingular. Let 1 < k < n. By
Lemma 3.5 it follows that Ay = LiRy. Since Ly is unit lower triangular it is
nonsingular. Moreover Ry, is nonsingular since its diagonal elements are among the
nonzero diagonal elements of R. But then Ay is nonsingular.

|

The following lemma shows that the LU factorization of a nonsingular matrix
is unique.

Corollary 3.7 The LU factorization of a nonsingular matriz is unique whenever
1t exists.

Proof. By Theorem 3.6 the leading principal submatrices are nonsingular for k =
1,...,n — 1. But then by Theorem 3.4 the LU factorization is unique. 0O

Remark 3.8 Theorem 3.6 is not true in general if A is singular. An LU factor-
ization of an upper triangular matrix A is A = I A, and if A is singular it can
have zeros anywhere on the diagonal. By Lemma 2.8, if some ayy is zero then Ay
is singular.

Remark 3.9 The LU factorization of a singular matriz need not be unique. In
particular, for the zero matrix any unit lower triangular matriz can be used as L in
an LU factorization.

Remark 3.10 We have shown that a nonsingular matriz A € R™"™ has an LU
factorization if and only if the leading principle submatrices Ay are nonsingular for
k=1,...,n—1. This condition seems fairly restrictive. However, for a nonsingular
matriz A there always is a permutation of the rows so that the permuted matrix has
an LU factorization. We obtain a factorization of the form P A = LR or equiva-
lently A = PLR, where P is a permutation matriz, L is unit lower triangular, and
R is upper triangular. We call this « PLU factorization of A. (Cf. Section 3.7
and Appendiz E.)

Exercise 3.11 Show that A = [} 1] has an LU factorization. Note that we have
only interchanged rows in Example 3.1
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Exercise 3.12 Find an LU factorization of the singular matriz [11]. Is it unique?

Exercise 3.13 Suppose A has an LU factorization A = LR. Show that det(Ay) =
11T Tk for k=1,...,n.

Exercise 3.14 Suppose A € C™™ and Ay, is nonsingular fork=1,...,n—1. Use
Exercise 3.13 to show that the diagonal elements 1y in the LU factorization are

det(Ak)

= =" k=2,...,n. 3.3
11 = a11, Tkk det(Ag_1)’ for yeees T (3.3)
3.2 Block LU Factorization
Suppose A € R™"™ is a block matrix of the form
Ay 0 Ay
A= : : , (3.4)
Aml e Amm

where each (diagonal) block A;; is square. We call the factorization

1 Ry, o Ry
L21 I R21 e R2m

A=LR=| | _ . . (3.5)
Lml e Lm,m—l I Rmm

a block LU factorization of A. Here the ith diagonal blocks I and R;; in L and
R have the same order as A;;, the ith diagonal block in A.

The results for elementwise LU factorization carry over to block LU factoriza-
tion as follows.

Theorem 3.15 Suppose A € R™"™ is a block matriz of the form (3.4), and the
leading principal block submatrices

A o A
Api=| 5
A - Agk
are nonsingular for k=1,...,m —1. Then A has a unique block LU factorization

(3.5). Conwversely, if A is nonsingular and has a block LU factorization then Ay is
nonsingular for k=1,...,m — 1.

Proof. Suppose Ay is nonsingular for £k = 1,...,m — 1. Following the proof in
Theorem 3.4 suppose A,,_1 has a unique LU factorization A,,_1 = L,,_1R,,_1,
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and that Aq,..., A,,_1 are nonsingular. Then L,,_; and R,,_; are nonsingular
and
A= Am—l B _ Lm—l 0 Rm—l L;LI,]_B
ct Anm C'R,)', I|| 0 A,.—-CT'R,' L)' B|’
(3.6)

is a block LU factorization of A. It is unique by derivation. Conversely, suppose A
is nonsingular and has a block LU factorization A = LR. Then as in Lemma 3.5 it
is easily seen that Ay = Li Ry is a block LU factorization of Ay for k =1,...,m.
By Lemma 2.7 and induction a block triangular matrix is nonsingular if and only
if the diagonal blocks are nonsingular and we see that L and Ry are nonsingular,
and hence Ay is nonsingular for k=1,...,m—1. 0O

Remark 3.16 The number of flops for the block LU factorization is the same as for
the ordinary LU factorization. An advantage of the block method is that it combines
many of the operations into matrix operations.

Remark 3.17 Note that (3.5) is not an LU factorization of A since the R;;’s are
not upper triangular in general. To relate the block LU factorization to the usual LU
factorization we assume that each R;; has an LU factorization R;; = i“Ru Then
A = LR, where L := Ldiag(Ly;) and R := diag(i;I)R, and this is an ordinary
LU factorization of A.

Exercise 3.18 Show that L is unit lower triangular and R is upper triangular.

3.3 The Symmetric LU Factorization

We consider next LU factorization of a real symmetric matrix.

Definition 3.19 Suppose A € R™". A factorization A = LDL™, where L is unit
lower triangular and D is diagonal is called a symmetric LU factorization of
A.

A matrix which has a symmetric LU factorization must be symmetric since
AT = (LDL™T = LDL" = A.

Theorem 3.20 Suppose A € R™" is nonsingular. Then A has a symmetric LU
factorization if and only if A = AT and Ay is nonsingular for k = 1,...,n — 1.
The symmetric LU factorization is unique.

Proof. If Ay,...,A,_1 are nonsingular then Theorem 3.4 implies that A has a
unique LU factorization A = LR. Since A is nonsingular it follows that R is
nonsingular and since R is triangular the diagonal matrix D := diag(ri1, ..., )
is nonsingular (cf. Lemma 2.8). But then A = LDM?”, where M* = D™'R is
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unit upper triangular. By symmetry A = L(DM™') = M(DL") = A" are two LU
factorizations of A, and by uniqueness M = L. Thus A has a unique symmetric
LU factorization.

Conversely, if A = LDL" is the symmetric LU factorization of A then A is
symmetric since LDL” is symmetric, and A has an LU factorization A = LR with
R = DL"”. By Theorem 3.6 we conclude that Ai,..., A,_; are nonsingular. 0

3.4 Positive Definite- and Positive Semidefinite
Matrices

Symmetric positive definite matrices occur often in scientific computing. For ex-
ample, the second derivative matrix is symmetric positive definite, see Lemma 3.21
below. For symmetric positive definite and symmetric positive semidefinite matri-
ces there is a special version of the symmetric LU factorization. Before considering
this factorization we study some properties of positive (semi)definite matrices. We
study only real matrices, but consider also the nonsymmetric case..

3.4.1 Definition and Examples

Suppose A € R™™ is a square matrix. The function f : R™ — R given by
n n
f(x) =2 Ax = Z Zaijmixj
i=1j=1
is called a quadratic form. We say that A is
(i) positive definite if 7 Az > 0 for all nonzero x € R”.
(ii) positive semidefinite if z7 Az > 0 for all z € R".
(iii) negative (semi)definite if — A is positive (semi)definite.

(iv) symmetric positive (semi)definite if A is symmetric in addition to being
positive (semi)definite.

(v) symmetric negative (semi)definite if A is symmetric in addition to being
negative (semi)definite.

We observe the following.

e A matrix is positive definite if it is positive semidefinite and in addition

T Az =0=2x=0. (3.7)

e The zero-matrix is symmetric positive semidefinite, while the unit matrix is
symmetric positive definite.
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e A positive definite matrix must be nonsingular. Indeed, if Ax = 0 for some
x € R" then 7 Az = 0 which by (3.7) implies that = = 0.

Lemma 3.21 The second derivative matriz T = tridiag(—1,2,—1) € R™" is sym-
metric positive definite.

Proof. Clearly T is symmetric. For any € R"”

n n—1 n
zTTe =2 E x? — E TiTip1 — E Ti_1%;

=1 =1 =2

n—1 n—1 n—1
2 2 2 2
= E €r; — E TiTi41 + g :Ci-‘,-l + Ty + Ty

=1 1=1 =1

n—1

= {,C% + xi + Z(l’iJrl — xi)Q.
i=1

Thus 2’Tx > 0 and if «’Tx = 0 then 1 = z, = 0 and 2; = 2,41 for i =
1,...,n — 1 which implies that & = 0. Hence T is positive definite. 0O

Example 3.22 Consider (cf. (G.1)) the gradient Vf and hessian VVTf of a
function f: Q C R > R

of (=) % f () 9% f (=)
oxq Ox10x1 ce Ox10x,
Vi(x) = : cR", VVTf(z)= : : € R™™.
of(x) % f(x) 9% f (=)
Oy, 0z, 0xq ce Ox, 0Ty,

We assume that f has continuous first and second partial derivatives on Q.

Under suitable conditions on the domain € it is shown in advanced calculus
texts that if Vf(x) = 0 and VVT f(x) is positive definite then x is a local minimum
for f. This can be shown using the second-order Taylor expansion (G.2). Moreover,
x is a local mazimum if Vf(x) = 0 and VVT f(x) is negative definite.

3.4.2 Some Criteria for the Nonsymmetric Case

We treat the positive definite and positive semidefinite cases in parallel.

Theorem 3.23 Let m,n be positive integers. If A € R™™ is positive semidefinite
and X € R™™ then B := XTAX € R™™ is positive semidefinite. If in addition
A is positive definite and X has linearly independent columns then B is positive
definite.

Proof. Let y € R™ and set « := Xy. Then y" By = 7 Az > 0. If A is positive
definite and X has linearly independent columns then « is nonzero if y is nonzero
and y"By =x"Ax >0. O
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Taking A := I and X := A we obtain

Corollary 3.24 Let m,n be positive integers. If A € R™" then AT A is posi-
tive semidefinite. If in addition A has linearly independent columns then AT A is
positive definite.

Theorem 3.25 Any principal submatriz of a positive (semi)definite matriz is pos-
itive (semi)definite.

Proof. Suppose the submatrix B is defined by the rows and columns rq,...,7%
of A. Then B := X7 AX, where X = [e,,,...,e,] € R™*, and B is positive
(semi)definite by Theorem 3.23. O

If A is positive definite then the leading principal submatrices are nonsingular
and we obtain:

Corollary 3.26 A positive definite matriz has a unique LU factorization.

Theorem 3.27 A positive (semi)definite matriz A has positive (nonnegative) eigen-
values. Conversely, if A has positive (nonnegative) eigenvalues and orthonormal
eigenvectors then it is positive (semi)definite.

Proof. Consider the positive definite case. Suppose Ax = Ax with & # 0. Multi-
plying both sides by 2 and solving for A we find A = “”wTTAmm > 0. Suppose conversely
that A € R™" has eigenpairs (A\;,u;), j =1,...,n. Let U := [uq,...,u,] € R™"
and D := diag(A1,...,A\). Since ulu; = d;5, 4,5 = 1,...,n, it follows that
U'U =T and U™' = U”. But then UUT = I as well. Now Au; = \ju; for
j=1,...,nimplies AU = UD and therefore U' AU = UTUD = D. Let € R"
be nonzero and define ¢ := U” @ = [cy,...,cp|T. Then Ue = UU” & = x, and so

xTAx = (Ue)TAUc = "UTAUc = " Dc = Z )\jc?.
j=1

But UT nonsingular implies ¢ = UTa # 0, and since Aj >0forj=1,...,nit

follows that 7 Ax > 0 so that A is positive definite. The positive semidefinite case
is similar. 0O

Theorem 3.28 If A is positive (semi)definite then det(A) > 0 (det(A) >0).

Proof. Since the determinant of a matrix is equal to the product of its eigenvalues
this follows from Theorem 3.27. 0O
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3.5 The Symmetric Case and Cholesky Factorization

For symmetric positive definite matrices there is an alternative to the symmetric
LU factorization known as the Cholesky factorization. We consider also a closely
related factorization of symmetric positive semidefinite matrices.

We need the following necessary conditions for symmetric positive semidefinite
matrices.

Lemma 3.29 If A is symmeltric positive semidefinite then for all i, j
1. Jai;| < (i + az5)/2,
2. |aij| < \Jaiag;,
3. max; j|a;;| = max; a;;,
4. a3 = 0= a;; = a;; =0, fizred ¢, all j.
Proof. 3. follows from 1. and 4. from 2. Now
0 < (ae; + pe;)T A(ae; + Be;) = oay; + B2a;; + 2aBay, alli,j, o, €R, (3.8)

since A is symmetric positive semidefinite. Taking o = 1, 8 = +1 we obtain
ai; + aj; £ 2a;; > 0 and this implies 1. 2. follows trivially from 1. if a;; = a;; = 0.
Suppose one of them, say a;; is nonzero. Note that a; = eiTAei > (0. Taking
a = —a;j, f = a; in (3.8) we find

2 2 2 2
0 S aijaii + QiG55 — 2aija“ = aii(aiiajj — aij).

But then a;;a;; — a3; > 0 and 2. follows. O

As an illustration consider the matrices
0 1 1 2 -2 1
et R R PO B
None of them is positive semidefinite, since neither 1. nor 2. hold.

Definition 3.30 A factorization A = RTR where R is upper triangular with
positive diagonal elements is called a Cholesky factorization. A factorization
A = RT R where R is upper triangular with nonnegative diagonal elements is called
a semi-Cholesky factorization.

Note that a semi-Cholesky factorization of a symmetric positive definite ma-
trix is necessarily a Cholesky factorization. For if A is positive definite then it is
nonsingular and then R must be nonsingular. Thus the diagonal elements of R
cannot be zero.

Exercise 3.31 Show that a symmetric matriz has a Cholesky factorization if and
only if it has a symmetric LU factorization with positive diagonal elements in D.
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Theorem 3.32 A matriz A € R™" has a Cholesky factorization A = RT R if and
only if it is symmetric positive definite.

Proof. If A = RT R is a Cholesky factorization then A is symmetric. Since R has
positive diagonal elements it is nonsingular. Thus A is symmetric positive definite
by Corollary 3.24. The proof of the converse will lead to an algortihm. We use
induction on n. A positive definite matrix of order one has a Cholesky factorization
since the one and only element in A is positive. Suppose any symmetric positive
definite matrix of order n — 1 has a Cholesky factorization and suppose A € R™"
is symmetric positive definite. We partition A as follows

a vl n1 n—1l,n—1
A= |2 "], acR veR™! BeRInL (3.9)

Clearly a = el Ae; > 0. We claim that C := B — vv’ /a is symmetric positive
definite. C is symmetric. To show that C is positive definite we let y € R"~! be

nonzero and define 7 := [-vTy/a,y?] € R”. Then = # 0 and
T T
T _7_.T T |0 U —viy/a
O<z Aw—[vy/my][v B}[ y }
T
— 0.~y o+ y"B] |V Y (310

= —(vTy)(v"y)/a+y" By =y Cy,
since (viy)vTy = (v'y)Tvly = yTvvTy. So C € R~ 1"~ is symmetric positive

definite and by the induction hypothesis it has a Cholesky factorization C' = RlTRl.
The matrix

R .= [/g ”;/1 } 8= a, (3.11)

is upper triangular with positive diagonal elements and

w1y 2]k W[ 3]

is a Cholesky factorization of A. O

‘We can now show

Theorem 3.33 The following is equivalent for a symmetric matriv A € R™".
1. A is positive definite.
2. A has only positive eigenvalues.
3. All leading principal minors are positive.

4. A= BTB for a nonsingular B € R™™.
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Proof. A symmetric matrix has a set of eigenvectors that form an orthonormal
basis for R™ (Cf. Theorem 6.5). Therefore, by Theorem 3.27 we know that 1 < 2.
We show that 1 =3 =4 = 1.

1 = 3: By Theorem 3.25 the leading principal submatrix A; of A is positive
definite, and has a positive determinant by Theorem 3.28.

3 = 4: Since all principal minors of A are positive the principal submatrices Ay,
are nonsingular for all £ and therefore A has a symmetric LU factorization. By
Exercise 3.31 A has a Cholesky factorization and we can take B = R.

4 = 1: This follows from Corollary 3.24. 0O

Consider next the semi-Cholesky factorization.

Theorem 3.34 A matriz A € R™™ has a semi-Cholesky factorization A = RTR
if and only if it is symmetric positive semidefinite.

Proof. If A = RTR is a semi-Cholesky factorization then A is symmetric and it
is positive semidefinite by Corollary 3.24. Suppose A € R™"™ is symmetric positive
semidefinite. A symmetric positive semidefinite matrix of order one has a semi-
Cholesky factorization since a1 is nonnegative. Suppose by induction on n that
any symmetric positive semidefinite matrix C' of order n — 1 has a semi-Cholesky
factorization. We partition A as in (3.9). There are two cases. If @ > 0 then
we obtain a semi-Cholesky factorization of A as in the proof of Theorem 3.32
since C is symmetric positive semidefinite. This follows as in (3.10) since now
0 < zTAx = y"Cy. If a = 0 then it follows from 4. in Lemma 3.29 that v = 0.
Moreover, B € R*~1n=1 in (3.9) is positive semidefinite and therefore has a semi-
0 o”

Cholesky factorization R;. But then R =
0 R;

] is a semi-Cholesky factorization

of A. Indeed, R is upper triangular and

r [0 0710 o] fo o] _
RR_[O R{HO R| |0 B| =4

Theorem 3.35 The following is equivalent for a symmetric matrix A € R™™.
1. A is positive semidefinite.
2. A has only nonnegative eigenvalues.
3. A= B"B for some B € R"".

4. All principal minors are nonnegative.

Proof. The proof of 1. < 2 follows as in the proof of Theorem 3.33. 1. < 3.
follows from Theorem 3.34 while 1. = 4. is a consequence of Theorem 3.25. To
prove 4. = 1. one first shows that eI + A is symmetric positive definite for all € > 0
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(Cf. page 567 of [15]). But then 7 Az = lim._,oz (eI + A)x > 0 for all z € R".
a

In 4. of Theorem 3.35 we require nonnegativity of all principal minors, while
only positivity of leading principal minors was required for positive definite matrices
(cf. Theorem 3.33). To see that nonnegativity of the leading principal minors is
not enough consider the matrix A := [8 _OJ. The leading principal minors are

nonnegative, but A is not positive semidefinite.

3.6 An Algorithm for SemiCholesky Factorization of
a Banded Matrix

Recall that a matrix A has bandwidth d > 0 if a;; = 0 for |[i — j| > d. A
(semi)Cholesky factorization preserves bandwidth.

Theorem 3.36 The Cholesky factor R given by (3.11) has the same bandwidth as
A.

Proof. Suppose A € R™" has bandwidth d > 0. Then v” = [u”,07] in (3.9),
where u € R?, and therefore C := B —vv” /« differs from B only in the upper left
d x d corner. It follows that C has the same bandwidth as B and A. By induction
on n, C = R Ry, where R; has the same bandwidth as C. But then R in (3.11)
has the same bandwidth as A. O

Consider now implementing an algorithm based on the previous discussion.
Since A is symmetric we only need to use the upper part of A. The first row of R
is [3,v1 /8] if a > 0. If a = 0 then by 4 in Lemma 3.29 the first row of A is zero
and this is also the first row of R.

Suppose we store the first row of R in the first row of A and the upper part
of C = B —vv” /a in the upper part of A(2:n,2:n). The first row of R and the
upper part of C can be computed as follows.

if A(1,1) >0
A(1,1) = /A(1,1)
A(1,2:n) = A(1,2 : n)/A(1,1) (3.12)

fori=2:n
A(i,i:n) = A(i,i:n) — A(L,4) * A(1,i:n)

The code can be made more efficient when A is a band matrix. If the band-
width is d we simply replace all occurrences of n by min(i + d, n).
Continuing the reduction we arrive at the following algorithm.
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Algorithm 3.37 (bandcholesky) Suppose A is symmetric positive semidef-
inite. An upper triangular matrix R is computed so that A = RTR. This
is the Cholesky factorization of A if A is symmetric positive definite and a
semi-Cholesky factorization of A otherwise. The algorithm uses the Matlab
command triu.

function R=bandcholesky(A,d)
n=length (A);
for k=1:n
if A(k,k)>0
kp=min(n,k+d);
A(k,k)=sqrt(A(k,k));
A(k,k+1:kp)=A(k,k+1:kp)/A(k,k);
for i=k+1:kp
ACi,i:kp)=A(i,i:kp)-A(k,i)*A(k,i:kp);
end
else
A(k,k:kp)=zeros(1l,kp-k+1);
end
end
R=triu(A);

In the algorithm we overwrite the upper triangle of A with the elements of R.
Row k of R is zero for those k where 7, = 0. We reduce round-off noise by forcing
those rows to be zero. In the semidefinite case no update is necessary and we ”do
nothing”.

There are many versions of Cholesky factorizations, see [3]. Algorithm 3.37 is
based on outer products vv”. An advantage of this formulation is that it can be
extended to symmetric positive semidefinite matrices.

Consider next forward and backward substitution. Since R” is lower triangu-
lar and banded the kth component of Ry = b is Z?;rlnax@k_d) TikYj T TeEYE = bk,
and solving for yy

k—1

yr = (bx — Z TikY;)/ Tk, for k=1,...,n, (3.13)
j=max(1,k—d)

Similarly the kth component of Rx = y is rppxr + Z;n:izgfll’k+d) TkiT; = Yk, and

solving for xy,
min(n,k+d)
xr = (yr — Z TriTi)/Tkk, for k=n,n—1,... 1 (3.14)

i=k+1

This give the following algorithms
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Algorithm 3.38 (bandforwardsolve) Solves the lower triangular system
RTy =b. R is upper triangular and banded with rg; =0for j —k > d.

function y=bandforwardsolve(R,b,d)
n=length(b); y=b(:);
for k=1:n

km=max (1,k-d);

y(k)=(y(k)-R(km:k-1,k) ’*y(km:k-1))/R(k,k);
end

Algorithm 3.39 (bandbacksolve) Solves the upper triangular system Rx =
y. R is upper triangular and banded with r; = 0 for j — k > d.

function x=bandbacksolve(R,y,d)
n=length(y); x=y(:);
for i=n:-1:1
kp=min(n,k+d);
x(k)=(x(k)-R(k,k+1:kp)*x(k+1:kp))/R(k,k);
end

For a full matrix (d = n) the number of flops needed for the Cholesky factor-
ization including n square roots is given by

Z, (1—|—ZZ)+n:§n(n—|—§)(n+l)zn3/3.
k=1i=k+1 j=i
The number n3/3 is half the number of flops needed for Gaussian elimination of an
arbitrary matrix. We obtain this reduction since the Cholesky factorization takes
advantage of the symmetry of A.

The number of flops for the banded algorithms is given approximately by

n  k+d k+d
Y 14> 2) +n=0(nd
k=1i=k+1 j=i

for Algorithm 3.37 and O(2nd) for each of Algorithms 3.38 and 3.39. When d is
small compared to n we see that these numbers are considerably smaller than the
O(n?/3) and O(2n?) counts for the factorization of a full symmetric matrix.

There is also a banded version of the symmetric LU factorization which re-
quires approximately the same number of flops as the Cholesky factorization. The
choice between using a symmetric LU factorization or an R” R factorization depends
on several factors. Usually an LU or a symmetric LU factorization is preferred for
matrices with small bandwidth (tridiagonal, pentadiagonal), while the RT R factor-
ization is restricted to symmetric positive semidefinite matrices and is often used
when the bandwidth is larger.
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3.7 The PLU Factorization

Suppose A is nonsingular. We show existence of a factorization A = PLR, where
P is a permutation matrix, L is a unit lower triangular, and R is upper triangular.
Recall that a permutation matrix is a matrix of the form

n,n
P=le;,ei,,...,e; ] € R™",

where e;,,...,e;, is a permutation of the unit vectors ej,...,e, € R™. Since
PTP = T the inverse of P is equal to its transpose, P~' = PT and PPT =T
as well. A special case is an (j,k)-Exchange Matrix I;;, obtained by exchanging
column j and k of the identity matrix. Since I;;, = I};, and we obtain the identity
by applying I ;. twice, we see that I?k = I and an exchange matrix is symmetric
and equal to its own inverse. Pre-multiplying a matrix by an exchange matrix
interchanges two rows of the matrix, while post-multiplication interchanges two
columns.

Theorem 3.40 (The PLU theorem) A nonsingular matriz A has a factoriza-
tion A = PLR, where P is a permutation matriz, L is unit lower triangular, and
R is upper triangular.

Proof. We use induction on n. The result is obvious for n = 1. Suppose any
nonsingular matrix of order n—1 has a PLU factorization and consider a nonsingular
matrix A of order n. Since A is nonsingular one of the elements, say a,1, in the
first column of A must be nonzero. Let B := I,.; A and set
b b
M;:=1-mel, m= [O,E,...,Ll]T.
b1 b11
Note that M is unit lower triangular and therefore nonsingular. We have M ! =
I + me? since
(I + mel)(I —mel) =T - mel + mel —m(ef'm)el =1.
The first column of M B is
M1361 = 361 — me?Bel = 361 — b11m = [bu,() ey O]T

and we can write

T
b11 62

M,B=MI A= { o D,

} , with Dy e R 171 (3.15)
The matrix M 1,1 A is a product of nonsingular matrices and therefore nonsingular.
By Lemma 2.7 the matrix D5 is nonsingular and by the induction hypothesis we
have Dy = PyLyRy or P Dy = LyRy, where Py € R 171 is a permutation
matrix, Lo is unit lower triangular and Ry is upper triangular. Define matrices
Q,, M, R of order n by

10 {10 b L
Q2_{0 Pg]’ MQ_[O LQ]’ R_[o R,
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Then
T o 1 0 bll Cg _ b11 Cg
QQMlI“A_{o PI|0 Dy |0 PID,
. b11 Cg o 1 0 b11 Cg o
_{0 LRy ~ |0 L) |0 R, = MR
and hence
A=I,M{'Q,M>R= (I.Q,)(Q) M;'Q,)M:R.
Now
_ 1 0 1 0 1 0 1 0
T 1 _ T _ T
2 M@, = {0 PQT] (I +me;) {0 PJ =1 {o PQT] el [0 PJ
_ 0 T
I+ [Pgm@ : n)} €1

Thus QgM;lQQ is unit lower triangular and we have A = PLR, where P = I,.1Q,
is a permutation matrix, L = QTM lezM 2 is unit lower triangular, and R is
upper triangular. 0O

To find the PLU factorization of a matrix we can use Gaussian elimination
with row interchanges (pivoting). See Appendix E for details.
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The Kronecker Product

Matrices arising from 2D and 3D problems sometimes have a Kronecker product
structure. Identifying a Kronecker structure can be very rewarding since it simplifies
the study of such matrices.

4.1 Test Matrices

In this section we introduce some matrices which we will use to compare various
algorithms in later chapters.

4.1.1 The 2D Poisson Problem
Consider the problem

2 2
~Viu = L0 Ou =fonQ:=(0,1)2={(r,y):0<x<1,0<y<1}, (41)

0z2 dy®
u := 0 on 0.

Here 2 is the open unit square while 0f2 is the boundary of 2. The function f is
given and continuous on 2 and we seek a function u = u(x,y) such that (4.1) holds
and which is zero on 9f.

Let m be a positive integer. We solve the problem numerically by finding
approximations v; i ~ u(jh, kh) on a grid of points given by

Qp = {(jh,kh): j,k=0,1,...,m+1}, where h=1/(m+1).

The points 2, := {(jh,kh) : j,k =1,...,m} are the interior points, while €, \ Q,
are the boundary points. The solution is zero at the boundary points. For an
interior point we insert the difference approximations

82u(jh, kih) ~ Vj—1,k — 2Uj7k + Uitk 82u(jh, kh) L Vik—1 — 2’l)j,1C + V) k+1
0x? h? ’ Oy? - h?

43
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in (4.1) and multiply both sides by h? to obtain

(=vj-1k + 2056 = Vi) + (=01 + 205k = Vin1) = B2 fie (42)
or

4Uj7k — Ujflyk — UjJrLk - 'Uj’k,1 — ’Uj’k»Jrl = h2fjk = h2f(]h, kh) (43)
From the boundary conditions we have in addition

Vok = Um41,k = V5,0 = Vjms1 =0, 5,k=0,1,...,m+1. (4.4)

The equations (4.3) and (4.4) define a linear set of equations for the unknowns
V = [vjk] e R™™,
Observe that (4.2) can be written as a matrix equation in the form

TV + VT =h’F with h=1/(m+1), (4.5)

where T = tridiag(—1,2, —1) € R™™ is the second derivative matrix given by (2.3),
V = (vjr) € R™™, and F = (fjx) = (f(jh, kh)) € R™™. Indeed, the (j, k) element
in TV 4+ VT is given by

m m
E T;,v;r+ E V5T ks
i=1 i=1

and this is precisely the left hand side of (4.2).

To write (4.3) and (4.4) in standard form Ax = b we need to order the
unknowns v; 5, in some way. The following operation of vectorization of a matrix
gives one possible ordering.

Definition 4.1 For any B € R™" we define the vector
UGC(B) = [b117 ey bmh b12, ey bmg, ey b1n7 - ,bmn]T S Rmn
by stacking the columns of B on top of each other.

Let n = m? and = := vec(V) € R". Note that forming = by stacking the
columns of V' on top of each other means an ordering of the grid points which for
m = 3 is illustrated in Figure 4.1. We call this the natural ordering. The location
of the elements in (4.3) form a 5-point stencil, as shown in Figure 4.2.

To find the matrix A we note that for values of j, k where the 5-point stencil
does not touch the boundary, (4.3) takes the form

4 — Ti—1 — Tit1 — Timm — Titm = b4,

where z; = v, and b; = h? fjr- This must be modified close to the boundary. We
obtain the linear system

Ax=b, AcR™, becR" n=m? (4.6)
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1,1 12 13 13 213 33 7 8 9
2,1 22 23 - 112 212 312 > -l 5i (&)
31 32 33 11 211 3i1 1 2 3
VK inV - matix v, in grid X; ingrid

Figure 4.1. Numbering of grid points

Vikel Xitm
Viak  Vik Vierk  Xia X, Xirl
Vik-1 Xi-m

Figure 4.2. The 5-point stencil

where & = vec(V),
matrix given by

a;; =4,

Qi1 = Qii41 = —1,
Qipmyi = Qi itm = —1,
Qi = 0,

t=1,...,n
1=1,...,n
1=1,...,n
otherwise.

For m = 3 we have the following matrix

4
—1

Exercise 4.2 Write down the Poisson matriz for m = 2

diagonally dominant.

-1
4
-1
0
-1
0

o O O

-1
0

o

cCoOOoOrROO KRR O
|
—_

b = h*vec(F) with F = (fj;) € R™™ and A is the Poisson

-1, i#£m,2m,...,(m—1)m
o (4.7)
0 0 0 0 0
-1 0 0 0 0
0 -1 0 0 0
-1 0 -1 0 0
4 -1 0 -1 0
-1 4 0 0 -1
0 0 4 -1 0
—1 0 -1 4 -1
0 -1 0 —1 4|

and show that it is strictly
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e = 460

Figure 4.3. Band structure of the 2D test matriz, n =9, n = 25, n = 100

4.1.2 The test Matrices

The second derivative matrix T' = tridiag(—1,2,—1) is a special case of the tridi-
agonal matrix

d a 0
a d a
Tl* 0 ’ (48)
0
a d a
0 a d

where a,d € R. We call this the 1D test matrix. It is strictly diagonally dominant
if |d| > 2|al.

The (2 dimensional) Poisson matrix is a special case of the matrix Ty = [a;;] €
R™™ with elements

Qiit1 =Qit1; = a, t=1,...,n—1, i#m,2m,...,(m—1)m,
Qjitm = Gigms = a, 1=1,...,n—m,
. (4.9)
a; = 2d, i=1,...,n,
a;; = 0, otherwise,

and where a, d are real numbers. We will refer to this matrix as simply the 2D test
matrix. The 2D test matrix is

e symmetric,
e a banded matrix with bandwidth m = \/n, (Cf. Figure 4.3).
o strictly diagonally dominant if |d| > 2|al,

e the Poisson matrix given by (4.7) when a = —1 and d = 2, This matrix is
strictly diagonally dominant for m = 2,n = 4, but only diagonally dominant
for m > 2.
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o called the averaging matrix when a = 1/9 and d = 5/18. This matrix is
strictly diagonally dominant for all n.

Properties of T's can be derived from properties of T'; by using properties of
the Kronecker product.

4.2 The Kronecker Product

Definition 4.3 For any positive integers p,q,r, s we define the Kronecker product
of two matrices A € RP? and B € R™* as a matriz C € RP™9® gijven in block form
as

Abiy Abio - Abis

Abg,l Ab272 cee Ab27s
C= . . .

Abr,l AbT,Q o Abr,s

We denote the Kronecker product of A and B by C = A® B.

This definition of the Kronecker product is known more precisely as the left
Kronecker product. In the literature one often finds the right Kronecker product
which in our notation is given by B ® A.

As examples of Kronecker products which are relevant for our discussion, if

d a 1 0
T1—|:ad:| and I—|:01:|
then
0
T,o1= and T®T, = 5
d
Also note that the Kronecker product u ® v = [uTvl, e ,uTUT]T of two column

vectors u € RP and v € R" is a column vector of length p x r.
The 2D test matrix T's can be written as a sum of two Kronecker products.
We see that

T, dI ol
T, al dI oI
— ) =T, QI+IRT.
T al dI ol
T al dI
Definition 4.4 Let for positive integers r,s,k, A € R™", B € R*® and I}, be the

identity matrix of order k. The sum AR I+ I, ® B is known as the Kronecker
sum of A and B.
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In other words, the 2D test matrix is the Kronecker sum of two identical 1D
test matrices.
The following simple arithmetic rules hold for Kronecker products. For scalars
A, v and matrices A, Ay, Ao, B, B, By, C of dimensions such that the operations
are defined we have
(AA) ® (uB) = \u(A® B),
(A1 +A;)®B=A; 9B+ A, ® B,
A®(B1+B;) =A® B, +A® Bo, (4.10)
(AB)®C=A® (B (),
(A® B)T = A" @ BT,
Note however that in general we have A ® B # B ® A, but it can be shown that
there are permutation matrices P, @ such that B® A = P(A ® B)Q, see [10].

Exercise 4.5 Prove (4.10).

The following mized product rule is an essential tool for dealing with Kronecker
products and sums.

Lemma 4.6 Suppose A, B,C, D are rectangular matrices with dimensions so that
the products AC and BD are defined. Then the product (A® B)(C ® D) is defined
and

(A® B)(C® D)= (AC)® (BD). (4.11)

Proof. If B € R™ and D € R"® for some integers r, s, then

Abyq -0 Abiy Cdip - Cdys
(AeB(CoD) = | z z z
Ab. - Abqy Cd,y -+ Cds

Thus for all 4, j

(A®B)(C® D)), ; = AC) bidy; = (AC)(BD);; = ((AC) ® (BD)), .
k=1

|

The eigenvalues and eigenvectors of a Kronecker product can easily be de-
termined if one knows the corresponding quantities for each of the factors in the
product.

Lemma 4.7 Suppose A and B are square matrices. Then the eigenvalues of AQ B
are products of eigenvalues of A and B, and the eigenvectors of AQB are Kronecker
products of eigenvectors of A and B. More precisely, if A € R™" and B € R*® and

Aui:)\iui, 1=1,...,m7, B'vj:,uj'uj, jZl,...,S,
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then
(A® B)(u; ®v;) = \ipj(u; @vj), i=1,...,mr, j=1,...,s. (4.12)
Proof. Using (4.10) and (4.11) the proof is a one liner. For all ¢, j
(A®@ B)(u; ©v;) = (Au;) @ (Bvj) = (Aiwg) @ (p5) = (Aig) (wi @ v5).
0
Consider next a Kronecker sum.

Lemma 4.8 For positive integers r,s let A € R™" and B € R%®. Then the eigen-
values of the Kronecker sum A ® Is + I, ® B are all sums of eigenvalues of A
and B, and the eigenvectors of A ® I, + I, ® B are all Kronecker products of
eigenvectors of A and B. More precisely, if

Aul:/\zuz, 7::1,...,’/‘, B'l)j:,l,tj’l)j7 jzl,...,s,
then
(ARIA+I,2B)(u;®v;) = (Ni+p)(w;®v;), i=1,...,r, j=1,...,s (413)

Proof. Since I,v; =wv; for j =1,...,s and I,u; = u; for ¢ = 1,...,7 we obtain
by Lemma 4.7 for all 4, j

(AR I)(u; ®v;) = Xi(u; ®@v;), and I, ® B)(u; ® v;) = pj(u; @ vj).
The result now follows by summing these relations. 0O

In many cases the Kronecker product and sum inherit properties of their
factors.

Lemma 4.9

1. If A and B are nonsingular then A® B is nonsingular. Moreover (AQB)™! =
A teBh

2. If A and B are symmetric then A® B and A® I + 1 ® B are symmetric.

3. If one of A, B is symmetric positive definite and the other is symmetric
positive semidefinite then A ® I + I ® B is symmetric positive definite.

Proof. Suppose that A € R™" and B € R**. 1. follows from the mixed product
rule giving

(AeB)(A'®@B ") = (AA Y@ (BB ) =I,01,=1,,.

Thus (A ® B) is nonsingular with the indicated inverse. 2. and the symmetry
part of 3. follow immediately from (4.10). Suppose A is positive definite and B
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is positive semidefinite. Then A has positive eigenvalues and B has nonnegative
eigenvalues. By Lemma 4.8 the eigenvalues of A ® I + I ® B are all positive and
3. follows. O

In (4.5) we derived the matrix equation TV + VT = h?F for the unknowns
V in the discrete Poisson problem. With some effort we converted this matrix
equation to a linear system in standard form Ax = b, where A=T QI+ 1T,
x = vec(V), and b = vec(F'). This conversion could have been carried out with less
effort using the following result.

Lemma 4.10 Suppose A € R™", B € R** and F,V € R™*. Then we have

(A® B)vec(V) =vec(F) < AVB'=F, (4.14)
(ARI,+ 1,2 B)vec(V)=vec(F) < AV +VB'=F. (4.15)

Proof. We partition V, F, and BY by columns as V = [vy,...,v,], F =
(f1,...,fs) and BT = [by,...,b,]. Then we have

(A ® B)vec(V) = vec(F)
Abir - Abss U1 J1

Absl et Abss Vs fs

= A[Zblj’ljj,...,Zij’vj]Z[fl,...,fs]
J J
&  A[Vb,...,Vb]=F < AVBT=F.
This proves (4.14). (4.15) follows immediately from (4.14) as follows

(A®I,+ I, ® B)vec(V) = vec(F)
& (AvVIf+1,vB")=F < AV +VB'=F.

For more on Kronecker products see [10].

4.3 Properties of the 1D and 2D Test Matrices

We can apply these results to the 2D test matrix T'5. We first consider the 1D test
matrix. The eigenvectors of T'; are the columns of the sine matrix defined by

jkm
m+ 1]1”’“:1

m

S = [sin € R™™, (4.16)
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For m =3
sin 7 sin%r sin?jf t 1 t 1
_ _ .27 s 4 i 67 _ .
S =[s1, 82,83] = S}I’l?’j S}HGT S}ngj =1 0 -=1f, t:= E
sin =& sin = sin 7 t —1 t

Lemma 4.11 Suppose Ty = (t;)r,; = tridiag(a,d,a) € R™™ with m > 2, a,d €
R, and let h =1/(m +1).

1. We have T1s; = \js; for j=1,...,m, where

s; = [sin (j7h),sin (2j7h), . .., sin (mjmh)]", (4.17)
Aj = d+ 2acos(jmh). (4.18)

2. The eigenvalues are distinct and the eigenvectors are orthogonal

1
STSk

Jsh=gpbine dk=1...m. (4.19)

Proof. We find

(T18))k = Ztk’l sin (Ijwh) = a[sin ((k — 1)j7h) + sin ((k + 1)jwh)] + dsin (kjmh)
1=1
= (d+ 2acos(jrh)) sin (kjmh) = \;jsk ;.

and 1. follows. Since jmh = jn/(m + 1) € (0,7) for j = 1,...,m and the cosine
function is strictly monotone decreasing on (0, 7) the eigenvalues are distinct, and
since T'; is symmetric it follows from Lemma 4.12 below that the eigenvectors s;
are orthogonal. To finish the proof of (4.19) we compute the square of the Euclidian
norm of each s; as follows:

m m 1 m
T, _ 20 N 20 1N (DL
5j8; = Zbln (kjmh) = Zbln (kjmh) = 3 Z(l — cos(2kjmh))
k=1 k=0 k=0
m+1 1 m+1
=——— - cos(2kjmh)) = ——,
2 2 P 2

since the last cosine sum is zero. We show this by summing a geometric series of
complex exponentials. With i = v/—1 we find

eZi(m+1)j7Th -1 e2idm _ 1

m m m
];)COS(%JWh)‘H kZoSln<2k]7Th) = kzoe = e2ijth —1  e2imh _1 0

and (4.19) follows. O

Lemma 4.12 The eigenvalues of a Hermitian matrix are real. Moreover, eigen-
vectors corresponding to distinct eigenvalues are orthogonal.
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Proof. Suppose A* = A and Az = Az with  # 0. We multiply both sides of

Ax = Ax by «* and divide by *x to obtain A = mwAmm Taking complex conjugates

= A o R _
we find A = \* = (:(Emmm),)‘ = mmﬁ‘mw = Zw:?f = )\, and X is real.

Suppose in addition that (u,y) is another eigenpair for A with p £ A. Multi-
plying Ax = Az by y* gives

ANy'w =y Az = (" A'y)" = (z"Ay)" = (uz'y)" = py'z,

using that p is real. Since A # p it follows that y*x = 0 which means that x and
y are orthogonal. [

It is now easy to find the eigenpairs of the 2D test matrix and determine when
it is positive definite.

Theorem 4.13 For fited m > 2 let Ty be the matriz given by (4.9) and let h =
1/(m+1).

1. We have Toxj ), = Ajpxjk for j,k=1,...,m, where
Zjk = 85 & Sk, (4.20)
s; = [sin (jwh),sin (2j7h), . .., sin (mjmh)]?, (4.21)
Ajk = 2d + 2acos(jmh) + 2a cos(kmh). (4.22)

2. The eigenvectors are orthogonal

1 .
wfk:cpﬂ = m6j7p5k7q, g kp,g=1,...,m. (4.23)

3. Ty is symmetric positive definite if d > 0 and d > 2|al.
4. The Poisson and averaging matrix are symmetric positive definite.

Proof.
1. follows from Lemma 4.11 and Lemma 4.8 since Ty = Ty I+ I®T;. Using
the transpose rule, the mixed product rule and (4.19) we find for j,k,p,g=1,...,m

1
(50 50)" (s, 8) = (7 @ 87) (5 © 5,) = (78, @ (sF33) = 71500

and 2. follows. Since T'5 is symmetric 3. will follow if the eigenvalues are positive.
But this is true if d > 0 and d > 2|a| and this holds both for both choices a = —1,
d=2and a =1/5,d =5/18. Thus the matrices in 4. are positive definite. 0O

Exercise 4.14 Write down the eigenvalues of T = tridiag(—1,2, —1) using Lemma 4.11
and conclude that T is symmetric positive definite.
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Exercise 4.15 Use Lemma 4.11 to show that the matriz T = tridiag(a,d,a) €
R™™ is symmetric positive definite if d > 0 and d > 2|al.

Exercise 4.16 For m = 2 the matriz (4.9) is given by
2d a a O

a 2d 0 a
A= a 0 2d a
0 a a 2d
Show that A = 2a + 2d is an eigenvalue corresponding to the eigenvector x =

[1,1,1,1)T.  Verify that apart from a scaling of the eigenvector this agrees with

) ) )

(4.22) and (4.21) for j=k=1 and m = 2.

Exercise 4.17 Consider the following 9 point difference approximation to the
Poisson problem —V?u = f, u = 0 on the boundary of the unit square (cf. (4.1))

(a) —Owv)je = ik Jk=1,....m

(b) Vo,k = Um+1,k = V5,0 = Ujm+1 = 07 ]7k 20717"-7m+17

(C) *(th)j,k = [QOUj,k —_ 41)]'_1’}6 — 4Uj,k_1 — 41)]'_,_1’]@ — 4Uj,k+1
—Vj1k-1— Vj41 k-1 — Vjo1k+1 — Uji1ki1)/(6R),

(d) whir = Bfir+ fimin + fir—1+ firin + fir]/12.

(4.24)
a) Write down the 4-by-4 system we obtain for m = 2.

b) Find vj, for j,k = 1,2, if f(z,y) = 27?sin (7x)sin (7y) and m = 2. Answer:
vj 1 = 52 /66.

It can be shown that (4.24) defines an O(h?) approximation to (4.1).

Exercise 4.18 Counsider the nine point difference approximation to (4.1) given by
(4.24) in Problem 4.17.

a) Show that (4.24) is equivalent to the matrix equation

1
TV + VT — 6TVT = h?uF. (4.25)

Here pF has elements (uf); 5 given by (4.24d).

b) Show that the standard form of the matrix equation (4.25) is Az = b, where
A=TRI+I®T - }T®T, x=vec(V), and b = h’vec(uF).

Exercise 4.19 Consider the biharmonic equation

Viu(s,t) = V2(V2u(s,t)) = f(s,t) (s,t) € Q,

u(s,t) =0, VZu(s,t) =0 (s.1) € O (4.26)

Here (2 is the open unit square. The condition V2u = 0 is called the Navier boundary
condition. Moreover, V*u = Uyzzp + 2Upgyy + Uyyyy-



54 Chapter 4. The Kronecker Product

a) Let v = —V?u. Show that (4.26) can be written as a system

~V2u(s,t) = f(s,t) (s,t) € Q
—V2u(s,t) = wv(s,t) (s,t) € Q (4.27)
u(s,t) = wv(s,t) =0 (s,t) € 0.

b) Discretizing, using (4.2), with T' = diag(—1,2,—1) e R™™ 5 =1/(m + 1), and
F = (f(jh,kh))}}—, we get two matrix equations

TV + VT =h*F, TU+UT =h*V.
Show that
(TRI+1I®T)vec(V) = h*vec(F), (T®I+1I®T)vec(U) = hvec(V).

and hence A = (T ® I + I ® T)? is the matrix for the standard form of the
discrete biharmonic equation.

¢) Show that with n = m? the vector form and standard form of the systems in b)
can be written

T?U +2TUT + UT? =h*F and Az =b, (4.28)
where A = T* QT +2T@T+I®T? € R™", & = vec(U), and b = h* vec(F).

d) Determine the eigenvalues and eigenvectors of the matrix A in ¢) and show that
it is symmetric positive definite. Also determine the bandwidth of A.

e) Suppose we want to solve the standard form equation Ax = b. We have two
representations for the matrix A, the product one in b) and the one in c).
Which one would you prefer for a basis of an algorithm? Why?



Chapter 5

Fast Direct Solution of a
Large Linear System

5.1 Algorithms for a Banded Positive Definite
System

In this chapter we present a fast method for solving Ax = b, where A is the Poisson
matrix (4.7). Thus for n =3

4 -1 0]-1 0 0ol 0 0 0
-1 4 -1 0 -1 0] 0 0 0
0 -1 4/ 0 0 -1 0 0 0
1 0 0] 4 -1 0[-1 0 0
A=| 0 -1 0|-1 4 —-1| 0 -1 0
0 0 -1] 0 -1 4] 0 0 -1
0 0 0[-1 0 0| 4 -1 0
0 0 0| 0 -1 o0|-1 4 -1
. 0 0 0] 0 0 -1 0 -1 4|
[ T +2I -1 0
= I T+2I -1 |,
I 0 -1 T+21

where T = tridiag(—1, 2, —1). For this matrix we know by now that
1. It is symmetric positive definite.
2. It is banded.
3. It is block-tridiagonal.
4. We know the eigenvalues and eigenvectors of A.

5. The eigenvectors are orthogonal.

55
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Figure 5.1. Fill-inn in the Cholesky factor of the Poisson matriz (n = 100).

5.1.1 Cholesky Factorization

Since A is symmetric positive definite we can use the Cholesky factorization Al-
gorithm 3.37. Since A is banded with bandwidth d = /n the complexity of this
factorization is O(nd?) = O(n?). We need to store A possibly in sparse form.

The nonzero elements in R are shown in Figure 5.1. Note that the zeros
between the diagonals in A have become nonzero in R. This is known as fill-inn.

5.1.2 Block LU Factorization of a Block Tridiagonal Matrix

The Poisson matrix has a block tridiagonal structure. Consider finding the block
LU factorization of a block tridiagonal matrix. We are looking for a factorization
of the form

D1 Cl

A; D> Cs I
= . . ’ ° . T . . 5-1

Lot Ry—1 Cpm—1 ( )

Ly I R

Ry Cy

) Anl'—l D7n.—1 Cmfl
Here Dq,...,D,, and Rq,..., R,, are square matrices while Ao,..., A,, and C1,
.., Cp,_1 can be rectangular.
Using block multiplication the formulas (2.5) generalize to

R =D, L,=AR;',, R,=D;-L.Cy_1, k=2,3,....m. (52)

To solve the system Ax = b we partition b conformaly with A in the form b’ =
[blT, ey bﬁ] The formulas for solving Ly = b and Rx = y are as follows:

yl:bla yk:bk’kayk—h k:2737"'7m7 (5 3)
:BmzR,_nlym7 T :R,Zl(yk—CkwkH), k=m-1,...,2,1. '

The solution is then 7 = [zT,...,2L]. To find Lj in (5.2) we solve the linear
systems LRy 1 = Aj. Similarly we need to solve a linear system to find xj in
(5.3).

The number of arithmetic operations using block factorizations is O(n?),
asymptotically the same as for Cholesky factorization. However we only need to

store the m x m blocks and using matrix operations can be an advantage.
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5.1.3 Other Methods

Other methods include
e Iterative methods. We study this in Chapters 9, 10, 11.
e Multigrid. See [5].

e Fast solvers based on diagonalization and the Fast Fourier Transform. See
Sections 5.2, 5.3.

5.2 A Fast Poisson Solver based on Diagonalization

The algorithm we now derive will only require O(ng/ 2) flops and we only need to
work with matrices of order m. Using the Fast Fourier Transform the number of
flops can be reduced further to O(nlogn).

To start we recall that Az = b can be written as a matrix equation in the
form (cf. (4.5))

TV +VT =h’F with h=1/(m+1),

where T' = tridiag(—1, 2, —1) € R"™™ is the second derivative matrix, V' = (v;x) €
R™™ are the unknowns, and F = (f;x) = (f(jh,kh)) € R™™ contains function
values.

Recall that the eigenpairs of T' are given by

Ts; = Ajs;, j=1,...,m,
s; = [sin (jwh),sin (2§7h), . .., sin (mjmh)]’,
\j =2 —2cos(jmh) = 4sin® (j7h/2), h=1/(m+1),
sJTs;c = d;1/(2h) for all j, k.
Let
S:=[s1,...,8m] = [sin(jknh)] [, € R™™, D =diag(Ai,..., An).  (5.4)

Then TS = SD and 878 = §% = I/(2h). Define X € R™™ by V = SX S, where
V is the solution of TV + VT = h2F. Then

TV + VT = h?F
V=SXS

=°TSXS+SXST =h’F

08 eTSXS? + S°XSTS = h2SFS

TP s2px 82 + 82X 82D = h2SFS
2__
SZUEM px + XD = 4h'SFS.

An equation of the form DX + XD = B, where D is diagonal is easy to solve.
If D= diag()\j) we obtain for each element the equation A\;x;i + xjpAr = bji so
T = bjk/(/\j + )\k) for all 7, k.
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We now get the following algorithm to find the exact solution of TV + VT =
h2F.
Algorithm 5.1 (Fast Poisson Solver) We solve the Poisson problem
—V2u = fonQ = (0,1)2 and v = 0 on 9 using the 5-point scheme, i.e.,
let m € N, h = 1/(m+ 1), and F = (f(jh,kh)) € R™™. We compute
V € R™™ where vj; ~ u(jh,kh) by solving the equation TV + VT = h*F
using diagonalization of T = tridiag(—1,2,—1) € R™™.

function V=fastpoisson (F)

m=length(F); h=1/(m+1); hv=pi*h*(1:m)’;
sigma=sin(hv/2)."2;

S=sin(hv*(1:m));

G=S*FxS;

X=h"4%G./(sigma*ones (1,m)+ ones(m,1)*sigma’);
V=zeros (m+2,m+2) ;

V(2:m+1,2:m+1)=S*xX*S;

The formulas are fully vectorized and for convenience we have used o; := \;/4
instead of \;. Since the statement ”"X=h**G./(sigma*ones(1,m)+ ones(m,1)*sigma’)”
only requires O(m?) flops the complexity of this algorithm is for large m determined
by the 4 m-by-m matrix multiplications and is given by O(4 x 2m?) = O(8n?/?). 2

5.3 A Fast Poisson Solver based on the Discrete Sine
and Fourier Transforms

In Algorithm 5.1 we need to compute the product of the sine matrix § € R™™
given by (5.4) and a matrix A € R"™™. Since the matrices are m-by-m this will
normally require O(m?) operations. In this section we show that it is possible to
calculate the products SA and AS in O(m?log, m) operations.

We need to discuss certain transforms known as the Discrete Sine Transform,
the Discrete Fourier Transform and the Fast Fourier Transform. These transforms
are of independent interest. They have applications to signal processing and image
analysis, and are often used when one is dealing with discrete samples of data on a
computer.

5.3.1 The Discrete Sine Transform (DST)

Given v = [v1,...,0,]|T € R™ we say that the vector w = [w1,...,w,,]T given by

<N Jkm ‘
wj:Zsm P Vg, J=1,....m
k=1

is the Discrete Sine Transform (DST) of v. In matrix form we can write the DST
as the matrix times vector w = Swv, where S is the sine matrix given by (5.4). We

2Tt is possible to compute V using only two matrix multiplications and hence reduce the
complexity to O(4n3/2). This is detailed in Problem 5.4.
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can then identify the matrix B = S A as the DST of A € R"™", i.e. as the DST of
the columns of A. The product B = AS can also be interpreted as a DST. Indeed,
since S is symmetric we have B = (SA”)7 which means that B is the transpose
of the DST of the rows of A. It follows that we can compute the unknowns V' in
Algorithm 5.1 by carrying out Discrete Sine Transforms on 4 m-by-m matrices in
addition to the computation of X.

5.3.2 The Discrete Fourier Transform (DFT)

The fast computation of the DST is based on its relation to the Discrete Fourier
Transform (DFT) and the fact that the DFT can be computed by a technique known
as the Fast Fourier Transform (FFT). To define the DFT let for N € N

wy = exp 2N = cos(2r/N) — isin(2r/N), (5.5)
where i = y/—1 is the imaginary unit. Given y = [y1,...,yn]T € RY we say that
z=[21,...,2n]T given by

N

zj = ng_l)(k_l)yk, ji=1...,N
k=1

is the Discrete Fourier Transform (DFT) of y. We can write this as a matrix
times vector product z = F' yy, where the matrix F'y is given by
. N
Fy = (w%‘”(’“‘”) e CNY, (5.6)
Gok=1
This matrix is known as the Fourier matrix. If A € RM"™ we say that B = Fy A
is the DFT of A.
As an example, since

wy = exp 24 = cos(w/2) — isin(n/2) = —i
we find
1 1 1 1 1 1 1 1
T wg owi w1 = -1 1
Fa=1 W owh WS -1 1 -1 (5.7)
1 wi w§ W) 1 1 =1 —i

The following lemma shows how the Discrete Sine Transform of order m can be
computed from the Discrete Fourier Transform of order 2m + 2.

Lemma 5.2 Given a positive integer m and a vector x € R™. Component k of S
is equal to i/2 times component k + 1 of Fap, 22z where

T 2m+2
z:[0’I17"'7xm,7077'rm77‘rm—17"'77‘I1} GR mt .
In symbols

(Sz), = 5 (Famt22),y,, k=1,...,m.

N | .
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Proof. Let w = wyp 1o = e~ 27/ (2m+2) — o=mi/(m+1)  Component k+ 1 of Fg,, 402
is given by

m m

ik 2m+2—j)k

(Fomi22)kt1 ijoﬂ —Zx]—w( m+2-j)
=1 j=1

J

zj(w’® — w™Ik)

.
I
=

= —22‘;%— sin (W‘Z I1> = —2i(Sma).
Dividing both sides by —2i proves the lemma. [

It follows that we can compute the DST of length m by extracting m compo-
nents from the DFT of length N = 2m + 2.

5.3.3 The Fast Fourier Transform (FFT)

From a linear algebra viewpoint the Fast Fourier Transform is a quick way to com-
pute the matrix- vector product F nyy. Suppose N is even. The key to the FFT is
a connection between F'n and F/p which makes it possible to compute the FFT
of order N as two FFT’s of order N/2. By repeating this process we can reduce the
number of flops to compute a DFT from O(N?) to O(N log, N).

Suppose N is even. The connection between F'y and F'y /o involves a permu-

tation matrix Py € RV given by
Py =lei,e3,...,en—1,€2,€4,...,eN],
where the e, = (J, ) are unit vectors. If A is a matrix with N columns [a1,...,an]
then
APy =[a1,a3,...,aN-1,02,0Q4,...,aN],

i.e. post multiplying A by Py permutes the columns of A so that all the odd-
indexed columns are followed by all the even-indexed columns. For example we
have from (5.7)

1 000 1 1] 1 1

001 0 1 =1 —i i
Pi=leresesea=| o o | FaPa= |57 |

00 01 1 =1 i —i

where we have indicated a certain block structure of F4P4. These blocks can be
related to the 2-by-2 matrix F's. We define the diagonal scaling matrix Dy by

—1

D,y = diag(1l,wy) = { 1 0 } .
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Since wy = exp~2™/2 = —1 we find
1 1 1 1
F2—[1 1], Dze—[i i}’

and we see that

F4P4:[F2 D2F2].

Fy | —DsF,
This result holds in general.

Theorem 5.3 If N = 2m is even then

F,| D.F,
Fy,,Po,, = , 5.8
2 2 |:Fm_DmFm:| ( )
where
D,, = diag(1,wn,wk, ..., wh ). (5.9)
Proof. Fix integers j,k with 0 < j,k <m —1andset p=j+1and ¢ =k + 1.
Since w™ = 1, W = Wy, and WY = —1 we find by considering elements in the four

sub-blocks in turn

(F2mP2m)p,q = wg\;%) = wgvlzc = (Fm)thv
(FamP2m)ptm.q = W%+m)(2k) = W$£+m)k = (Fn)pa
(F2mP2m)p,g+m = w%%H) = wg\,w{f = (DunFm)pg
(F2mP2m)p+m,q+m = wg\],+m)(2k+l) = —w%2k+1) = (_DWLF77L)p7q.

It follows that the four m-by-m blocks of F's,, Ps,, have the required structure. 0O

Using Theorem 5.3 we can carry out the DFT as a block multiplication. Let
y € R? and set w = P21y = [wy, ws]”, where w1, wy € R™. Then
F2my = F27r1P2mP§my = F2mP2mw

Fm ‘ DmFm w1 _ q, + q;
Fo | —DpFp | | w @ —4qz |

where
q; = Fw, and q; = Dm(meZ)-

In order to compute F'5,,y we need to compute F,,w; and F,,ws. Note that

wi = [y1,y3,...,yn_1], while w] = [y2,v4,...,yn]. This follows since w? =
[wT,wl] = yT Py, and post multiplying a vector by P3,, moves odd indexed

components to the left of all the even indexed components.

We have seen that by combining two FFT’s of order m we obtain an FFT of
order 2m. If N = 2¥ then this process can be applied recursively as in the following
Matlab function:
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Algorithm 5.4 (Recursive FFT) For y € C" we compute the Fourier trans-
form z = F,y.

function z=fftrec(y)
n=length(y);
if n==
z=y;
else
ql=fftrec(y(1:2:n-1));
q2=exp (-2*pixi/n) .~ (0:n/2-1) . xfftrec(y(2:2:n));
z=[ql+q2 ql1-q92];
end

Such a recursive version of FFT is useful for testing purposes, but is much too
slow for large problems. A challenge for FFT code writers is to develop nonrecursive
versions and also to handle efficiently the case where N is not a power of two. We
refer to [23] for further details.

The complexity of the FFT is given by vN log, N for some constant v inde-
pendent of N. To show this for the special case when NN is a power of two let xj
be the complexity (the number of flops) when N = 2*. Since we need two FFT’s of
order N/2 = 2¥~1 and a multiplication with the diagonal matrix D N/2, it is reason-
able to assume that zj, = 2z4_, +72F for some constant v independent of k. Since
xo = 0 we obtain by induction on k that z;, = vk2%. Indeed, this holds for k = 0
and if 1 = y(k — 1)271 then zp, = 2251 + 72" = 2y(k — 1)2F71 4+ 42F = yk2Fk,
Reasonable implementations of FFT typically have v = 5, see [23].

The efficiency improvement using the FFT to compute the DFT is spectacular
for large N. The direct multiplication Fny requires O(8n?) flops since complex
arithmetic is involved. Assuming that the FFT uses 5N log, N flops we find for
N =220 ~ 106 the ratio

SN2
5N logy N

Thus if the FFT takes one second of computing time and the computing time
is proportional to the number of flops then the direct multiplication would take
something like 84000 seconds or 23 hours.

~ 84000.

5.3.4 A Poisson Solver based on the FFT

We now have all the ingredients to compute the matrix products S A and AS using
FFT’s of order 2m + 2 where m is the order of S and A. This can then be used
for quick computation of the exact solution V' of the discrete Poisson problem in
Algorithm 5.1. We first compute H = SF' using Lemma 5.2 and m FFT’s, one for
each of the m columns of F'. We then compute G = HS by m FFT’s, one for each
of the rows of H. After X is determined we compute Z = SX and V = ZS by
another 2m FFT’s. In total the work amounts to 4m FFT’s of order 2m + 2. Since
one FFT requires O(v(2m + 2) log,(2m + 2) flops the 4m FFT’s amount to

8ym(m + 1) logy(2m + 2) ~ 8ym? log, m = 4ynlogyn,
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where n = m? is the size of the linear system Ax = b we would be solving if
Cholesky factorization was used. This should be compared to the O(8n3/2) flops
used in Algorithm 5.1 requiring 4 straightforward matrix multiplications with S.
What is faster will depend heavily on the programming of the FFT and the size of
the problem. We refer to [23] for other efficient ways to implement the DST.

5.4 Problems

Exercise 5.1 Show that the Fourier matrix F'y is symmetric, but not Hermitian.
Exercise 5.2 Verify Lemma 5.2 directly when m = 1.

Exercise 5.3 Show that the exact solution of the discrete Poisson equation (4.3)
and (4.4) can be written V' = (v; ;)" _;, where

1 momon 2 sin nip” sin gf” sin Tffm sin nlf”
ey G R )
(m+ 1)1 = £ pr . -
p=1r—=1k=1I1=1 {sm (2(m+1))} + [bm (2(m+1))}

Exercise 5.4 Algorithm 5.1 involves multiplying a matrix by S four times. In this
problem we show that it is enough to multiply by S two times. We achieve this by
diagonalizing only the second T in TV + VT = h’F.

(a) Show that

TX + XD =C, where X =V S, and C = h’FS8S.

(b) Show that
(T+>\JI)CBJ =Cj j: 1,...,m, (510)

where X = [1,...,@,) and C = [c1,...,¢,) and \; = 4sin? (jrh/2). Thus we
can find X by solving m linear systems, one for each of the columns of X. Recall
that a tridiagonal m x m system can be solved by (2.5) and (2.6) in 8m — 7 flops.
Give an algorithm to find X which only requires O(6m?) flops for some constant §
independent of m.

(c¢) Describe a method to compute V' which only requires O(4m?) = O(4n?/?)
flops.

(d) Describe a method based on the Fast Fourier Transform which requires
O(ynlogyn) where v is the same constant as mentioned at the end of the last
section.

Exercise 5.5 Consider the equation

1
TV +VT — 6TVT = h2uF,
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that was derived in Exercise 4.18 for the 9-point scheme. Define the matrix X by
V =8XS = (z;) where V is the solution of (4.25). Show that

1
DX + XD — 6DXD = 4h*G, where G = SuFS,

and that

hig;
Tjk = #, where 0; = sin? ((jmh)/2) for j,k =1,2,...,m.
0j + 0 — 5050k
Show that o; + op, — gajak > 0 for j,k = 1,2,...,m. Conclude that the
matrix A in Exercise 4.18 b) is symmetric positive definite and that (4.24) always
has a solution V.

Exercise 5.6 Derive an algorithm for solving (4.24) which for large m requires
essentially the same number of operations as in Algorithm 5.1. (We assume that
uF already has been formed).

Exercise 5.7 For the biharmonic problem we derived in Exercise 4.19 the equation
T°U +2TUT + UT? = h*F.

Define the matrix X = (z,) by U = SXS where U is the solution of (4.28).
Show that
D?*X +2DXD + XD? = 4h°QG, where G = SF'S,

and that

h6gj,k

s + on)?’ where o; = sin® ((jmh)/2) for j,k=1,2,...,m.
gj O

Tk =
Exercise 5.8 Use Exercise 5.7 to derive an algorithm

function U=simplefastbiharmonic (F)

which requires only O(dn?/2) operations to find U in Problem 4.19. Here & is some
constant independent of n.

Exercise 5.9 In Exercise 5.8 compute the solution U corresponding to F' = ones(m,m).
For some small m’s check that you get the same solution obtained by solving the
standard form Ax = b in (4.28). You can use x = A\b for solving Az = b. Use
F(:) to vectorize a matrix and reshape(x,m,m) to turn a vector « € R™ into an

m X m matrix. Make a plot of U for say m = 50.

Exercise 5.10 Repeat Exercises 4.19, 5.8 and 5.9 using the nine point rule (4.24)
to solve the system (4.27).
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Chapter 6

Orthonormal Eigenpairs
and the Schur Form

A matrix is said to have orthonormal (orthogonal) eigenpairs if the eigenvec-
tors are orthonormal (orthogonal). Two examples are the 2. derivative matrix T in
(2.3) and the discrete Poisson matrix, cf. Lemma 4.13. In this chapter we charac-
terize the family of matrices that have orthonormal eigenpairs. These matrices are
called normal matrices and they contain the symmetric, Hermitian, and unitary
matrices among their members.

If B=S1'A8 and § = U € C™" is unitary, then §™' = U* and B =
U*AU. In this case we say that B is unitary similar to A. In the real case
where A and U are real matrices and U is orthogonal, we have S~ = U7 and
B = U" AU. Unitary and orthogonal transformations are important in numerical
algorithms since they are insensitive to noise in the elements of the matrix.

If B=U"AU then AU = UB. If B = diag(});) is diagonal and U =
[w1,...,uy], then Au; = A\ju; for j =1,...,n, and it follows that the columns of U
are orthonormal eigenvectors of A. Conversely, if A has orthonormal eigenvectors
Uy,..., Uy, then AU = UB or B = U*AU, where the columns of U are the
eigenvectors of A and B is diagonal. Thus A is unitary similar to a diagonal
matrix if and only if A has a set of orthonormal eigenvectors.

6.1 The Schur Form

Not every matrix can be diagonalized by a similarity transformation, see Theo-
rems D.19, D.20, and D.27. But it can be triangularized, even by a unitary similarity
transformation.

Theorem 6.1 (Schur Triangularization) For each A € C™" there exists a uni-
tary matriz U € C™™ such that R := U" AU 1is upper triangular.

Proof. We use induction on n. For n = 1 the matrix U is the 1 x 1 identity
matrix. Assume that the theorem is true for matrices of order k and suppose

A € C™"™ where n := k+ 1. Let (A1, v1) be an eigenpair for A with ||vy]2 = 1. By

67
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Theorem A.55 we can extend v; to an orthonormal basis {vy,vs,...,v,} for C".
The matrix V' := [v1,...,v,] € C™" is unitary, and the first column of the product
V*AV is

V*AV61 = V*A’Ul = )\1V*’Ul = )\161.
It follows that

)\1 x*

VAV:{O M

} , for some M € C** and « € C*. (6.1)

By the induction hypothesis there is a unitary matrix W, € C** such that Wi MW
is upper triangular. Define

1] 0"

W_{o W,

} and U =VW.

Then W and U (cf. Theorem B.26) are unitary and

U*AU:W*(V*AV)WZ{l 0* H/\llw\/IH(l’ 0* ]

0| Wi 0 | | W
_ )\1 ‘ (L‘*Wl
L0 [ WiMW, |’

is upper triangular. 0O

By using the unitary transformation V' on the n x n matrix A, we obtain a
matrix M of order n — 1. M has the same eigenvalues as A except A\. Thus we can
find another eigenvalue of A by working with a smaller matrix M and where one
occurrence of A has been eliminated. This is an example of a deflation technique
which is very useful in numerical work.

If A has complex eigenvalues then U will be complex even if A is real. The
following is a real version of Theorem 6.1.

Theorem 6.2 For each A € R™™ with real eigenvalues there exists an orthogonal
matriz U € R™" such that UT AU is upper triangular.

Proof. Consider the proof of Theorem 6.1. Since A and \; are real the eigenvector
v1 is real and the matrix W is real and orthogonal. By the induction hypothesis
V is real and orthogonal. But then also U = VW is real and orthogonal. 0O

Exercise 6.3 Show that the Schur triangulation of A = [} 3] isU"T AU = (o 2]
where U = % [41]-

From the Schur triangulation R = U* AU we obtain the Schur factorization
A =URU". The matrices U and R are called the Schur factors.

A real matrix with complex eigenvalues cannot be reduced to triangular form
by an orthogonal similarity transformation. Indeed, if R = UT AU is triangular,



6.1. The Schur Form 69

one of the diagonal elements of R (one of the eigenvalues of A) will be complex. But
then U cannot be real. How far can we reduce a real matrix A by an orthogonal
similarity transformation? To study this we note that the complex eigenvalues of
A occur in conjugate pairs, A = p + iv, A = pu — iv, where p, v are real. The real
2 X 2 matrix

M = [ gV } (6.2)

v u

has eigenvalues A\ and A. We say that a matrix is quasi-triangular if it is block
triangular with only 1 x 1 and 2 x 2 blocks on the diagonal. Moreover, no 2 x 2
block should have real eigenvalues. As an example consider

2 1134 5
-1 24| 3 2
R = 0 o012 3
0 0|0 3 2
0 0(0|-1 1

R has three diagonal blocks:

o[ 4 ] me e[ 2]

By Theorem D.3 the eigenvalues of R are the union of the eigenvalues of Dy, Do
and Dg3. The eigenvalues of D, are 244 and 2—i, while D5 has eigenvalue 1, and D3
has the same eigenvalues as D;. Thus R has one real eigenvalue 1 corresponding to
the 1 x 1 block and complex eigenvalues 2+i, 2—¢ with multiplicity 2 corresponding
to the two 2 x 2 blocks.

For a proof that any A € R™"™ can be brought to quasi-triangular form by a
real orthogonal similarity transformation see Section 6.4.

6.1.1 The Spectral Theorem

The special cases where A is Hermitian or real and symmetric deserve special at-
tention.

Theorem 6.4 Suppose A € C™" is Hermitian. Then A has real eigenvalues
A, ..oy An. Moreover, there is a unitary matric U € C™" such that U*AU =
diag(A1,...,An). For the columns {u1,...,un} of U we have Au; = \ju; for
j=1,...,n. Thus {uy,...,u,} are orthonormal eigenvectors of A.

Proof. That the eigenvalues are real was shown in Lemma 4.12. By Theorem 6.1
there is a unitary matrix U € C™" so that B = U* AU is upper triangular. Since
A" = A, we have B* = B. But then B must be diagonal. The columns w1, ..., u,
of U satisfies Au; = A\ju; for all j and are orthonormal eigenvectors of A. 0

The following real version is known as the Spectral Theorem.
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Theorem 6.5 Suppose A € R™" and AT = A. Then A has real eigenvalues
A1y A2, ..oy An. Moreover, there is an orthogonal matriz U € R™™ such that

UT AU = diag(A, A2, ..., \n).

For the columns {u1,...,un} of U we have Au; = \ju; for j =1,...,n. Thus
{u1,...,u,} are orthonormal eigenvectors of A.

Proof. The proof is similar to Theorem 6.4. Since A* = A it follows from
Theorem 6.4 that the eigenvalues are real. By Theorem 6.2 there is a matrix U €
R™" with UTU = I so that B = UT AU is upper triangular. Since AT = A,
we have BT = B. But then B must be diagonal. The columns u,, ..., u, of U
satisfies Au; = Aju; for all j and are orthonormal eigenvectors of A. 0O

Example 6.6 The orthogonal diagonalization of A = [31 _21] isUT AU = diag(1,3),

where U = % H _11].

Exercise 6.7 Suppose C = A +iB, where A, B € R™™. Show that C is skew-
Hermitian if and only if AT = —A and BT = B.

Exercise 6.8 Show that any eigenvalue of a skew-Hermitian matriz is purely imag-
mary.

6.2 Normal Matrices

It is possible to characterize matrices that have a diagonal Schur form.

Definition 6.9 (Normal Matrix) A matriz A € C™" is said to be normal if
AA" = A"A.

Examples of normal matrices are

1. A¥=A, (Hermitian)
2. A" =-A, (Skew-Hermitian)
3. A =A1 (Unitary)
4. A=D. (Diagonal)

For real matrices "Hermitian” and ”symmetric” are synonyms.
The following theorem says that a matrix has orthonormal eigenpairs if and
only if it is normal.

Theorem 6.10 A matric A € C™" is unitary similar with o diagonal matriz if
and only if it is normal.
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Proof. If B=U"AU, with B diagonal, and U*U = I, then
AA* = (UBU*)(UB*U") = UBB*U* and
A*A = (UB'U*)(UBU") = UB*BU".

Now BB* = B*B since B is diagonal, and A is normal.
Suppose A*A = AA*. By Theorem 6.1 we can find U with U*U = I such
that B = U™* AU is upper triangular. Since A is normal B is normal. Indeed,

BB*=U"AUU"A'U =U"AA'U =U"A*AU = B*B.

The proof is complete if we can show that an upper triangular normal matrix B
must be diagonal. The diagonal elements in E := B*B and F := BB™ are given
by

€ii = ngibki = Z|bki|2 and fi; = Zbikgik = Z |bir |2
k=1 k=1 k=1 k=i

The result now follows by equating e;; and f;; for i = 1,2,...,n. In particular for
i =1 we have |b11]? = |b11|? + |b12]® + -+ + [b1n|?, 50 b1x = 0 for k = 2,3,... n.
Suppose b, =0 for j=1,...,i—1, k=j+1,...,n. Then

i n
ei = 3 |bwil® = [bis> =D |bir]* = fis
k=1 k=i

so by, =0, k =4i+1,...,n. By induction on the rows we see that B is diagonal.
]

6.3 The Rayleigh Quotient and Minmax Theorems
6.3.1 The Rayleigh Quotient
The Rayleigh quotient is an important tool when studying eigenvalues.

Definition 6.11 For A € C™" and any x € C" the quantity R(x) = Ra(x) :=
" Ax

% is called a Rayleigh quotient for A.

If (\, ) is an eigenpair for A then R(z) = A2 — )

xT*T

Exercise 6.12 More generally for A € C™" and any y,x € C™ with y*x # 0 the
quantity R(y,x) = Ra(y, ) := yyAa:” is also called a Rayleigh quotient for A.
Show that if (A, x) is a (right) eigenpair for A then R(y,x) = X\ for any y with
y*x #£ 0. Also show that if (\,y) is a left eigenpair for A then R(y,x) = X for any
x with y*x # 0.

The following lemma gives some useful formulas.
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Lemma 6.13 Suppose A € C™™ and let {uy,...,ur} be an orthonormal basis for
a subspace S C C". If x,y € S with x = Z?Zl cjuj and y = Zle d;u;, then

k
(x,y) =x"y = Zéjdj, (6.3)
j=1
k 2 k
oAz D1 AlGl .
R(x) = == = Nileil?, if ||| = 1. 6.4
@)= e T e Ezj sleil? if el (6.4)

Proof. We have
k

k k k
(@) = ) e,y djug) = > d;(ui,ug) =Y ¢d;
i=1 j=1 i=1 j=1

and (6.3) follows. Since Az = ijl cjAu; = Z?Zl ¢;jAju; we obtain from (6.3)
that (z, Az) = Z?Zl Ajlej? and also ||z||3 = (z, x) = Z?Zl\cj\z. This shows both
equalities in (6.4). O

The Rayleigh quotient is especially useful when the matrix A is Hermitian.

Since A is normal it has orthonormal eigenpairs {(A1,u1),...,( Ay, uy)} and the
eigenvalues are real and can be ordered, say Ay > Ag > -+ > \,,. In this case we
have for any ¢ < k and ¢, ..., cx not all zero
k 2
SN des
/\k<7zj_z slei| <Ay A 2> A > 2 A (6.5)

= k
Zj:i|cj |2
Indeed, to show the lower (upper) bound we replace all X’s in the numerator
Zf:i Ajlei)? by Ak (Ai). From (6.5) it follows that the value of the Rayleigh quotient
for a Hermitian matrix must lie between the smallest and largest eigenvalue. Since

R(u1) = A1 and R(uy,) = A, we can express the smallest and largest eigenvalue in
terms of extrema of the Rayleigh quotient.

Ar = min R(z) < max R(x) = A\ (6.6)
xzeC” xzeC”
x#£0 x#0

6.3.2 Minmax and Maxmin Theorems

More generally we have a minmax and maxmin characterization of the eigenvalues
of a Hermitian matrix. In the following theorem S is a subspace of C™ of the
indicated dimension.

Theorem 6.14 (The Courant-Fischer Theorem) Suppose A € C™" is Her-
mitian with eigenvalues A1, Ao, ..., N\, ordered so that \y > --- > X\,. Then for
k=1,....n

A = min max R(x) = max minR(x). (6.7)
dim(S)=n—k+1 =S dim(S)=k €S
x#0 x#0
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Proof. We prove the maxmin version and leave the minmax version as an exercise.
Let {(A1,u1),..., (An,un)} be orthonormal eigenpairs for A. Fix k. We will show
that maxmin R < A\; and maxmin R > Ag, where maxmin R is shorthand for
the expression after the second equality in (6.7). Let S be any subspace of C"
of dimension k and define 8’ = span{uy,...,u,}. Since S + S’ C C™ we have
dim(S + 8’) < n and we can use (A.6) to find

dim(SNS&’) =dim(S) + dim(S") —dim(S+ 8 ) > k+(n—k+1)—n=1,

n

and it follows that S NS’ is nonempty. Let y € SNS" = > 7, dju;. By (6.4)
applied to S’ we find
2 Ajldsl?

n = Ak
Zj:k|dj‘2

This implies that minges R(x) < A, and therefore, since S is arbitrary, max min R <
x#0

R(y) =

Ak- To show the inequality in the opposite direction we use the subspace Sy :=
span{uy, ..., u;}. Suppose x = ijl cju; is any nonzero element in Sj. Then
k
i1 Ailegl?
E 5 =
Ej:l‘cj‘

Since x is arbitrary we obtain minges, R(x) > Ar and therefore maxmin R > Aj.
x#£0
0O

R(x) =

Exercise 6.15 Modify the proof of the mazmin verson of the Courant-Fischer the-
orem to prove the minmax version.

Using Theorem 6.14 we can prove inequalities of eigenvalues without knowing
the eigenvectors and we can get both upper and lower bounds.

Corollary 6.16 Let A,B,C € C™" be Hermitian with eigenvalues oy > g >
>, f1> 02> > B, and y1 > 2 > -+ > p, respectively. If C = A+ B
then

;i + Bn <7y <a;+ B, fori=1,2,... n. (6.8)

Proof. Let uq,...,u, be orthonormal eigenvectors for A and let for fixed i, S :=
span{u1,...,Up—;+1}. By Theorem 6.14 and (6.5) we obtain

; < < = o < v
i < I;leaécRc(w) < max Ra(x)+ I;leagRB(w) o + max Rp(z) < a; + b1,
x#0 x#0 x#0 x#0

and this proves the upper inequality. For the lower one we define D := —B and
observe that —f3,, is the largest eigenvalue of D. Since A = C + D it follows from
the result just proved that «; < ~; — 5, which is the same as the lower inequality.
0
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In many applications of this result the matrix B will be small and then the
theorem states that the eigenvalues of C are close to those of A. Moreover, it
associates a unique eigenvalue of A with each eigenvalue of C.

Exercise 6.17 Show that in Corollary 6.16, if B is symmetric positive semidefinite
then v; > «;.

6.3.3 The Hoffman-Wielandt Theorem

We can also give a bound involving all eigenvalues.

Theorem 6.18 (Hoffman-Wielandt Theorem) Suppose A, B € C™" are both

normal matrices with eigenvalues A1,..., A, and p1,..., iy, respectively. Then
there is a permutation iq,...,1, of 1,2,...,n such that
n n n
D iy = NP <D0 ai; — b (6.9)
j=1 i=1 j=1

Taking B = A + FE this shows, in terms of absolute error, that as long as
A + F is normal, i.e., we perturb in a "normal way”, then the eigenvalue problem
for a normal matrix is well conditioned. Small perturbation in the elements of A
lead to small changes in the eigenvalues.

For a proof of this theorem see [[19], p. 190]. For a Hermitian matrix we can
use the identity permutation if we order both set of eigenvalues in nonincreasing or
nondecreasing order.

Exercise 6.19 Show that (6.9) does not hold for the matrices A = [39] and
B .= [711 711}. Why does this not contradict the Hoffman-Wielandt theorem?

6.4 Proof of the Real Schur Form

In this section we prove the following theorem.

Theorem 6.20 Suppose A € R™"™. Then we can find U € R™"™ with vl =1
such that UT AU is quasi-triangular.

Proof. If A has only real eigenvalues, Theorem 6.2 gives the result. Suppose
A =p+iv, p,v € R, is an eigenvalue of A with v # 0. Let z = ¢ + iy, ¢,y € R,
be an eigenvector of A corresponding to A. Since

Az = Az +iy) = (n+ w)(x +iy) = px — vy + i(ve + py),
we find by comparing real and imaginary parts
Az = px —vy, Ay =vze+ py. (6.10)

We claim that & and y are linearly independent. First we note that v # 0 implies
x #0, y # 0. For if = 0 then (6.10) implies that 0 = —vy, and hence y = 0 as
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well, contradicting the nonzeroness of the eigenvector. Similarly, if ¥y = 0 then 0 =
v, again resulting in a zero eigenvector. Suppose y = ax for some «. Replacing
y by az in (6.10), we find Az = (u — av)x and Az = Ay/a = (p+v/a)z. But
then yu — av = u+v/a or a? = —1. Since & and y are real, we cannot have both
y = ax and a® = —1. We conclude that = and y are linearly independent.

(6.10) can be written in matrix form as

AX| =X M, X,=(x,y)cR"? (6.11)
where M is given by (6.2). By Theorem 12.3 we can find an orthogonal matrix

Q € R™" such that
R

where R € R?? is upper triangular. Since X; has linearly independent columns,
R is nonsingular. Let Q = [qy,4s,-- -, q,,] and define

X:[XlaXQ]:[m7yaq37"'aqn}'
We find
R 0
QX:[Qlequvaqn]:{ 0 1_2]‘

Since R is nonsingular, @ X and X are nonsingular. Moreover, using (6.11)

X TAX = [ X 'AX |, X 'AX, ] = [X 'X M, X 'AX,] = [ ]‘6" g }

for some matrices B € R2"~2 C € R""2"~2, Now

B ~ R 0 M B|[R' o
QAQ" = (@X)X 'AX(QX) 1=[ 0 I, H 0 CH In—z}’

or

1
RME™ EB ] . (6.12)

QAQ" = { 0 C

By Theorem D.15 the 2 x 2 matrix RM R ™" has the same eigenvalues A and X as
M. The remaining n—2 eigenvalues of A are the eigenvalues of C.

To complete the proof we use induction on n. The theorem is trivially true
for n =1 and n = 2. Suppose n > 3 and it holds for matrices of order < n—1. Let

[I, 0
V—[ov}

where V € Rn=2n-2, VTV =1, 5 and VTCV is quasi-triangular. Let U = QV'.
Then U € R*", UTU = I and UT AU is quasi-triangular. 0O
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Chapter 7

The Singular Value
Decomposition

The singular value decomposition is useful both for theory and practice. Some
of its applications include solving over-determined equations, principal component
analysis in statistics, numerical determination of the rank of a matrix, algorithms
used in search engines, and the theory of matrices.

7.1 Singular Values and Singular Vectors

We know from Theorem 6.10 that a square matrix A can be diagonalized by a
unitary similarity transformation if and only if it is normal. In particular, if A €
C™™ is normal with eigenvalues A1, ..., A, then

U*AU = D = diag(\1,...,\,) or A =UDU?*, where U*U = I. (7.1)

In this section we show that any matrix, even a rectangular one, can be diagonalized
provided we allow two different unitary matrices. Thus

A=UXV" where X is a diagonal matrix, UU = I, and V'V =1. (7.2)

The diagonal elements of 3, are called singular values and the columns of U and
V are singular vectors. The formula A = UXV™ is known as the singular value
decomposition of A.

7.1.1 SVD and SVF

Every matrix has a singular value decomposition (SVD) and a reduced form called
the singular value factorization (SVF). To derive these we start with a lemma and
a theorem.

Lemma 7.1 Suppose m,n € N and A € C™". The matriz A*A has eigenpairs

(Aj,v;) forj=1,...,n, where vjvg = Ojk and A\p > Ay > -+ > X\, > 0. Moreover,
05 = \/)\j:HA’UjHQ, fOT‘jzl,...,’ﬂ. (73)

7
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Proof. The matrix A*A € C™" is Hermitian, and by Theorem 6.4 it has real
eigenvalues \; and orthonormal eigenvectors v; for 7 = 1,...,n. For each j
|Av;[5 = (Av;)*Av; = viA"Av; = vi\jv; = ), since viv; = 1, and (7.3)
follows. 0O

The nonnegative square roots of the n eigenvalues of A*A are called the
singular values of A € C™". They are usually ordered so that

012"‘20r>020r+1:"'20n- (74)

We will show that the number r of positive singular values equals the rank of A.
Moreover, the eigenvectors of A*A determine orthonormal bases for the column
space span(A) and null space ker(A) of A.

Theorem 7.2 Suppose A € C™" and let (ajz,vj) for 5 =1,...,n be orthonormal
eigenpairs for A* A with oy,...,0, ordered as in (7.4). Then {Avy,..., Av,.} is
an orthogonal basis for the column space span(A) of A and {vr41,...,v,} is an
orthonormal basis for the nullspace ker(A) of A.

Proof. The proof will be complete if we can show
1. Av; #0ifand only if 1 < 5 <r.
2. x=370 cvj= Az =30 ¢jAv;.
{Awvy,..., Av,} is orthogonal and nonzero.

span(A) = span{Avy,..., Av, }.

cvoE

ker(A) = span{v,41,...,v,}.
1 follows by combining (7.3) and (7.4). 2 is a consequence of 1. 1 and the calculation
(Av;)"Avy, = v] A" Avy, = v;-‘a,%vk =0,j#k

implies 3. Clearly Av; € span(A) for j =1,...,r and v; € ker(A) by 1. 3 implies
4. Finally, by 3 {Awvy,..., Av,} are linearly independent. So if € ker(A) then
by 2 ¢ =---=c¢. =0 and 5 follows. 0

Every matrix has a singular value decomposition.

Theorem 7.3 (SVD) Let m,n € N and suppose A € C™" has rank r. Then A
has exactly v positive singular values o1 > --- > o, > 0. Moreover, A has the
singular value decomposition

A=UXV*, UeC™, TeR™", VecC"",
where U and V' are unitary and

21 Or,n—r

Om—r,r Om—r,n—r

Y= € R™", where ¥, := diag(oq,...,0r). (7.5)
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Here 0y, € R*! is the zero matriz and 0, =[] is the empty matriz, if k =0 or
l=0.

If A is real then A =UXVT, where U € R™™ and V € R™™ are orthonor-
mal, and 3 is again given by (7.5).

Proof. Suppose (A;,v;) for j = 1,...,n are orthonormal eigenpairs for A*A and
define X by (7.5), where o; = /A, for all j. By Theorem 7.2 the set { Avy,..., Av,}
is an orthogonal basis for the column space of A and it follows that r is the number

of positive singular values. We turn {Awvi,..., Av,} into an orthonormal basis
{uq,...,u,} for span(A) by setting (cf. (7.3))
A’Uj 1
u; = ————=—Av,;, forj=1,...,r.
T lAvslle o

By Theorem 7.2

Avj=ojuj, j=1,...,rand Av; =0, j=r+1,...,n (7.6)
We extend {uq,...,u,} to an orthonormal basis {u1,...,un} for C™ and define

U:=[uy,...,up] €C™ and V :=[vy,...,v,] € C™".

Since U and V have orthonormal columns they are unitary matrices, and from (7.5)
and (7.6)

UX =Uloey,...,00€.,0,...,0] = [01u1,...,0.u.,0,...,0] = [Avy,..., Av,].

Thus UX = AV and since V is unitary we find UXV* = AVV" = A,
For a matrix with real elements the eigenvectors of AT A are real and the
singular value decomposition takes the stated form. 0O

From the singular value decomposition we obtain a reduced factorization called
the singular value factorization and an outer product form of this factorization.

Corollary 7.4 (SVF) Suppose A = UXV™ is a singular value decomposition of
a rank r matric A € C™". Then A has the singular value factorization

A=U3Vi=> omwv], U eC™, X eR", VieC",

i=1

where
3 = diag(Jh ERRE) UT)7

U= [Ul,. .. ,um] = [U17[]'2]7 U, € (C’m,’r’7 U, e (CWL,rn—'r7 (77)
V= [/Ulw : -avn] = [V17V2}, Ve (Cn,r7 Vs, e (Cn,nfr’

Proof. We find

A=UXV* = [Uy,U,] ﬁl 8} B;j =U S, V=) o).
i=1
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SVF and SVD are not unique. The singular values are unique since they are
the nonnegative square roots of the eigenvalues of A*A. However the matrices U
and V are in general not uniquely given.

7.1.2 Examples
Example 7.5 (Nonsingular matrix) Derive the following SVD.

1 [11 48] r 1[3 —4][3 0]1[3 4
A'25L83JUEV SL 3]% JSL-%} 9

Discussion: The eigenpairs of B := AT A = [J% 951 /25 are

sl =ofi =[3]-15]

Taking square roots and normalizing we find oy = 3, 09 = 1, v; = [3]/5, vy =
[ 4] /5. Thuswy = Avi /o1 = [1] /5 and uy := Avy/os = [ 3] /5 and this shows
(7.8). Sincem =n =r we have U; = U, ¥1 =X and V1 = V. In general the
SVD and SVF are the same for a nonsingular matriz. See also Example 7.11 for
some further discussion.

Example 7.6 (Full row rank) Find the singular value decomposition of

114 4 16] .y
A'_15[2 22 13}ER :

Discussion: The eigenpairs of B .= AT A = [120 %491 %%} /9 are
1 1 2 2 2 2
B|2| =42, B|-2|=1|-2(, B| 1| =0] 1
2 2 1 1 -2 -2

Thus r =2 and
1 2 2
1
E::B (1) 8}, V::§2 -2 1
2 1 -2

From (7.6) we find uy = Avy /oy = [3,4]7/5, and us = Avs/oe = [4,-3|T/5 and

113 4]
v-ilt )
Since r = 2 it follows that rank(A) = 2, {u1,uz} is an orthonormal basis for

span(A) and {vs} is an orthonormal basis for ker(A). The SVF and outer product
form of A are

A=L[3_4]029]

5 [21[122]+1i[_§][2—21],

1 227 _
[2—21]*2 15

1
15

Wl =
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Example 7.7 (Full column rank) Find the SVD of

BERE
A, = s 4 22| e R?2,
5116 13

Since Ay = AT where A is the matriz in Example 7.6 we can simply transpose the
SVD of A in that example. Thus

o2 220y
A1:(U2VT)T:VETUT:§ 2 -2 1|0 1 5{4 _3]. (7.9)
2 1 —=2[]0 0

Alternatively we can follow the recipe from the previous examples. The eigenpairs
of

1 [52 36
B, =ATA, = [ }

25 136 73

sl =+ sla]= L]

Thus 01 =2, 09 = 1. Now

are

u; = Al’l)l/O'l = [1,272]T/3, Uz = Al’Ug/O'l = [2, 7271]T/3.
Since m = 3 we also need wz which should be orthogonal to u; and uy. uz =
[2,1,—2]T is such a vector and we obtain (7.9).

Example 7.8 (r <n <m) Consider

A:

(e e
S =

For this matriz all the zero matrices in (7.5) are nonempty. The eigenpairs of

AT a2 2
poara-l ]

sl =[] s )=o)

and we find 01 =2, 00 =0, Thusr =1, m =3, n =2 and

are

31 0
1 |1 1
E: 0 O B 2:2’ Vzi .
0 0 ! H \/5[1 _1]
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Now (7.6) implies uy = Avy /o1 = 81/V/2, where s1 = [1,1,0]7. To find the other
columns of U we extend s to a basis {s1, 82,83} for R, apply the Gram-Schmidt
orthogonalization process to {s1, S2, 83}, and then normalize. Choosing the basis

81 = So = 83 =
1 0l 2 ol 3 il

we find from (A.16)

32Tw1 -1/2 sgwl sg:wg 0
wi = 81, Wy = S2— % wi = 1/2 |, W3 = 83— —= Wy ——x wo = (1) .
wi w 0 wi wy w5 W

Normalizing the w;’s we obtain u; = s1/||s1]l2 = [1/v2,1/3v/2,0]7, ug = s2/||82]|2 =
[—1/v/2,1/v/2,0], and uz = s3/||s3]|2 = [0,0,1]T. Therefore, A = USV', where

1/v/2 —=1/v/2 0
= 1/v2 —1/v/2

1/v2 1/@0] eR*, ¥:= [é%] eR>? V.= [”ﬂ ”ﬂ} € R22,
0 0 1

Exercise 7.9 Find the singular value decomposition of the following matrices

(a)A{ﬂ.

1
(b) A=| 2
2

NN

Exercise 7.10 Find the singular value decomposition of the following matrices

(a) A = ey the first unit vector in R™.

(b) A= el the last unit vector in R™.

() A=[755]

The method we used to find the singular value decomposition in the previous exam-
ples and exercises can be suitable for hand calculation with small matrices, but it is
not appropriate as a basis for a general purpose numerical method. In particular,
the Gram-Schmidt orthogonalization process is not numerically stable, and forming
A™ A can lead to extra errors in the computation. State of the art computer imple-
mentations of the singular value decomposition use an adapted version of the QR
algorithm where the matrix A* A is not formed. The QR algorithm is discussed in
Chapter 15.
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7.1.3 Singular Values of Normal and Positive Semidefinite
Matrices

The singular values of a normal matrix are the absolute values of its eigenvalues.
For if A € C™™ is normal with eigenvalues A1, ..., A, ordered so that |[A;| > --- >
[An|, then it follows from Theorem 6.10 that A = UDU™, where U*U = I, and
D = diag(\1,...,\,) is a diagonal matrix. We find A*A = UD*DU”, where
D*D = diag(|\1]?, . . ., [An|?). Tt follows that 02 = |\;|? or o; = || fori =1,...,n.

For a symmetric positive semi-definite matrix A € R™" the singular values
are identical to the eigenvalues. The factorization A = UDU™ above is both
a SVD decomposition and factorization provided we have sorted the nonnegative
eigenvalues in nondecreasing order.

Example 7.11 The matriz A in Example 7.5 is normal so that the singular values
of A are equal to the absolute value of the eigenvalues of A. The eigenvalues of A
are Ay =3 and Ay = —1. Thus Ay # 03.

7.1.4 A Geometric Interpretation

The singular value decomposition gives insight into the geometry of a linear trans-
formation. Consider the linear transformation T' : R® — R™ given by z — Az. The
function T maps the unit sphere S := {z € R" : ||z||2 = 1} onto an ellipsoid in R™.
The singular values are the length of the semiaxes. We describe this in the square
nonsingular case. Suppose A = USXV7 is the singular value decomposition of A.
Since A has rank n we have ¥ = diag(oy,...,0,), witho; > 09 > -+ > 0, > 0 and
A =vET'UT. Let £ := AS C C" be the image of S under the transformation
T. If x € £ then x = Az for some z € S and we find

1= |zl3 = A7 Az = A7 2|3 = [VET'U 2|3

I U 212 = |2 Lyl2 = iﬁ ﬁ
= | el =1E"ylz= "5+ +
1

o2’
where y := U’z and we used ||[Vv|s = ||v||2 for a vector v. The equation 1 =
2 2
% 4+ % describes an ellipsoid in R™ with semiaxes of length o; along the unit

vectors e; for j=1,...,n. Since the orthogonal transformation Uy — « preserves
length, the image &€ = AS is an ellipsoid with semiaxes along the left singular
vectors u; = Ue; of length ;. Since Av; = o;u;, the right singular vectors are
orthogonal points in S that are mapped onto the semiaxes of £.

Example 7.12 Consider the transformation A : R? — R? given by the matriz
1 {11 48
A= 5 {48 39]

in Ezample 7.5. Recall that o1 = 3, 09 = 1, uy = [3,4]7/5 and uy = [—4,3]1 /5.
The ellipsoids y3 /o3 +y3/o5 = 1 and & = AS are shown in Figure 7.1. Since
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y=U"x = [3/5x1 +4/5x0, —4/5x1 +3/522)T, the equation for the ellipsoid on the
right is

(Bo1+3522)°  (“gmt3ae)®
9 1 -

Figure 7.1. The ellipse y?/9+y3 =1 (left) and the rotated ellipse AS (right).

7.2 Singular Vectors

The columns w1, ..., u,, of U are called left singular vectors. and the columns
v1,...,v, of V are called right singular vectors. These vectors satisfy the
following relations.

Theorem 7.13 If A =UXV7 is the singular value decomposition of A then
AV =UX and A"U = VX" (7.10)
IfU and V' are partitioned as in (7.7) then

1. AV, =U13y, orAv,=ou; fori=1,...,r,

2. AV, =0, or Av;, =0 fori=r+1,...,n, (711)
3. A*Ul = V121, or A*’U/Z = 0;V; fOT’i = 1,...,7‘, '
4. A*U, =0, or A"u; =0 fori=r+1,...,m.

Proof. Since AV = UXV"V = UZX the first equation in (7.10) follows. Taking
conjugate transposes and multiplying by U we have A*U = VE*U*U = VX* and
the second relation follows. In terms of partitioned matrices, (7.10) gives

Aviva]=[00:] [ 0], AT [Unwe] = [vive] [319],

and this leads to the equations in (7.11). 0O
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Theorem 7.14 The singular vectors of A € C™™ are orthonormal bases for the
four fundamental subspaces of A. In particular

1. Uy is an orthonormal basis for span(A),
2. V4 is an orthonormal basis for ker(A), (712)
3. V1 is an orthonormal basis for span(A*), ’

4. U, is an orthonormal basis for ker(A™).

Proof. Since uj = Av;/o; for j = 1,...,r it follows from Theorem 7.2 that the
first r left singular vectors of A form an orthonormal basis for span(A) and the last
n — r right singular vectors of A form an orthonormal basis for ker(A). The same
holds for A* and we have seen that the left and right singular vectors for A* are
the columns of V' and U, respectively. O

By counting the number of columns in the four submatrices U1, U2, V1, Vo,
we obtain from Theorem 7.14 a new proof of the following fundamental result (Cf.
Theorem B.16).

Corollary 7.15 Suppose A € C™"™. Then
1. rank(A) + null(A) = n,
2. rank(A) + null(A™) = m,

3. rank(A) = rank(A").

Exercise 7.16 Let A and B be as in Example 7.7. Give orthonormal bases for
span(B) and ker(B)and explain why span(B) @ ker(mA) is an orthogonal decom-
position of R3.

7.2.1 The SVD of A*A and AA*

The singular value decomposition of A*A and AA™ is related to the spectral de-
composition of these matrices.

Theorem 7.17 Suppose A =UXV™* =U X, V] is the singular value decomposi-
tion and factorization of A. Then a singular value decomposition and factorization
of the matrices A*A and AA" are given by

A*"A=VE'ZV* =V 33V} and AA* =UZZ'U* = U, XU;. (7.13)

Moreover,
A*AV, =V 32 A*AV,=0, (7.14)

and

AA'U, =U, 33, AA'U, =0, (7.15)
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Proof. We compute A*A = VZ'U'UXV* =VI*IV”* and

vEEV' =V vl [38] (3 8] [Vi] = visivi

with an analogous computation for AA*. The equation (7.15) follows from the
computation AA*U, = U, Z3U U, = U133, AA*U, = U; ;U U, = 0. The
proof of (7.14) is analogous. O

Theorem 7.17 leads to

Theorem 7.18 For any A € C™" we have

1. rank A = rank(A*A) = rank(AA"),
2. null(A*A) =null A, and null(AA*) = null(A"),
3. span(A*A) = span(A”) and ker(A*A) = ker(A).

Proof. The three matrices A, A*A, and AA" have the same number of nonzero
singular values and we obtain 1. Moreover, 2. and 3. follow from Corollary 7.15
and (7.12), respectively, applied to A*A and AA*. O

Exercise 7.19 Let A € C™" with m > n have singular values o1, ...,0,, left
singular vectors wy,...,u,, € C™, and right singular vectors vi,...,v, € C™.
Show that the matriz
0 A
C:= [A* 0]
has the n +m eigenpairs

{(e1,p1),- - (00 Pu) b (=01, 1) -+ (=00, G,) 1, {0, Prg 1) -5 (0,7

where

p, = [u%]’ q;, = [ul], T = [%J},fori—l,...,n and j=n+1,...,m.

7.3 Determining the Rank of a Matrix

In many elementary linear algebra courses a version of Gaussian elimination, called
Gauss-Jordan elimination, is used to determine the rank of a matrix. To carry this
out by hand for a large matrix can be a Herculean task and using a computer and
floating point arithmetic the result will not be reliable. Entries, which in the final
result should have been zero, will have nonzero values because of round-off errors.
As an alternative we can use the singular value decomposition to determine rank.
Although success is not at all guaranteed, the result will be more reliable than if
Gauss-Jordan elimination is used.

By Theorem 7.3 the rank of a matrix is equal to the number of nonzero singular
values and if we have computed the singular values, then all we have to do is to count
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the nonzero ones. The problem however is the same as for Gaussian elimination.
Due to round-off errors none of the computed singular values are likely to be zero.

The following discussion can be used to decide how many of the computed
singular values one can set equal to zero. Suppose A € C"™"™ with m > n has
singular value decomposition A = U [§]|V", where ¥ = diag(oy,...,0,) with
o1 > o9 > -+ > o0,. We choose ¢ > 0 and let 1 < r < n be the smallest
integer such that o2,, + -+ 4+ 02 < €. Define A" := U [Z'| V", where &' :=
diag(oy,...,0,,0,...,0) € R*". By Theorem 8.11

b 3/
la-ale=1| g |- |5 |le=yotarai<e

Thus A is near a matrix A’ of rank 7. This can be used to determine rank numer-
ically. We choose an r such that /o2, | +---+ 02 is "small”. Then we postulate

that rank(A) = r since A is close to a matrix of rank r.
The following theorem shows that of all m x n matrices of rank r, A’ is closest
to A measured in the Frobenius norm.

Theorem 7.20 (Best low rank approximation) Suppose A € R™" has singu-
lar values oy > -+ > 0, > 0. For any r < rank(A) we have

JA-Alp= min A= Blp=/o2,++o2

rank(B)=r
For the proof of this theorem we refer to p. 322 of [20].

Exercise 7.21 Consider the singular value decomposition

0 3 3 i1 1 1 6 0 0 L.
A-—41—1f%—%—%% 06 0| 3 3 3
T4 1 1| s -2 2 —= 00 0 33 3

03 3 %%—2—% 00 0 3 ~3 %

(a) Give orthonormal bases for span(A), span(AT), ker(A), ker(AT) and span(A)+L.
(b) Ezplain why for all matrices B € R*? of rank one we have |A — B||r > 6.

(c) Give a matriz Ay of rank one such that |A — A1||p = 6.

Exercise 7.22 Let A be the n X n matriz that for n = 4 takes the form
1-1-1-1
_]lo 1-1-1
A= {0 0 1 —1} :
0 0 0 1

Thus A is upper triangular with diagonal elements one and all elements above the
diagonal equal to —1. Let B be the matriz obtained from A by changing the (n,1)
element from zero to —22~™.
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(a) Show that Bx = 0, where = := [2"72,2n=3 .. 29 1]T. Conclude that B is
singular, det(A) = 1, and ||A — Bl|r = 227". Thus even if det(A) is not
small the matriz A is very close to being singular for large n.

(b) Use Theorem 7.20 to show that the smallest singular vale o, of A is bounded
above by 227™.

7.4 The Minmax Theorem for Singular Values and
the Hoffman-Wielandt Theorem

We have a minmax and maxmin characterization for singular values.

Theorem 7.23 (The Courant-Fischer Theorem for Singular Values) Suppose
A € C™" has singular values 01,09, ...,0, ordered so that oy > -+ > o,. Then
fork=1,...,n
. | el _ A,
dim(8)=n—k+1 g% |zl dim(S)=k ii‘g IEZIP

(7.16)

Proof. Since
|Az|3 _ (Az,Az) (z, A"Az)

=3 (z2)  (x@)

denotes the Rayleigh quotient Ra-a(x) of A* A, and since the singular values of A
are the nonnegative square roots of the eigenvalues of A* A, the results follow from
the Courant-Fischer Theorem for eigenvalues, see Theorem 6.14. 0O

By taking k = 1 and k = n in (7.16) we obtain for any A € C™"
|Az|l _ Al

NT 2 all, T T weer [l
ma:E?ﬁO |2 w:):E#O |2

(7.17)

This follows since the only subspace of C™ of dimension n is C" itself.
The Hoffman-Wielandt Theorem for eigenvalues of Hermitian matrices, The-
orem 6.18 can be written

n n n
Dol = NP <A =BlfF =YY lai; — byl (7.18)
Jj=1 i=1 j=1
where A, B € C™" are both Hermitian matrices with eigenvalues A\y > --- > A\,

and pq > - > uy, respectively.
For singular values we have a similar result.

Theorem 7.24 (Hoffman-Wielandt Theorem for singular values) Foranym,n €
N and A, B € C™" we have

n
> 18— a;* < ||A - B} (7.19)

j=1
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where a;y > -+ > ay and By > -+ > B, are the singular values of A and B,
respectively.

Proof. We apply the Hoffman-Wielandt Theorem for eigenvalues to the Hermitian

matrices
0o A 0 B

A* 0 B* 0
If C and D has eigenvalues A\ > -+ > Ay and g1 > -+« > lyy4n, respectively
then

C = [ ] and D := [ ] e cmtnmtn,

m—+n
> 1N =l <€ - D3 (7.20)
Jj=1

Suppose A has rank r and SVD UXV*. We use (7.11) and determine the eigenpairs
of C as follows.

0 A_ 'Uzi_ _ [ A’Ui oug| 4 u; _
A 0_ v, | o _A*ui T v, = oy v | 1=1,...,7
0 A [ u; | _ -—A'Ui || ‘ w; o
|:A* 0] |~V N _A*ui:| - |: v | —Qy —v; |’ 1=1,...,7,
0 Alfu) [0 ] _fo] _ fu] . _ .,
A* 0_ 0 - _A*Ui - O - 0 5 1=7rT yeee My,

0 A]fo] _[Aw] _J[o] _ fo] ,_ .,
A* o) lv] o] |of T u) T

Thus C has the 2r eigenvalues ay, —aq, .. ., ., —a, and m +n — 2r additional zero
eigenvalues. Similarly, if B has rank s then D has the 2s eigenvalues 51, —f31, ..., Bs, —Bs
and m + n — 2s additional zero eigenvalues. Let

t := max(r, s).

Then
M2 2Apqn=01 220 20=--=02> -4y > -+ > —0vy,
12 g =P 22 >20=---=0>-3>---> -5
We find
m—+n t t t
SN =l =Y e = BilP ) i+ BilP =2 |ai — Bif?
J=1 i=1 i=1 i=1
and

0 A—-B "
0Dl =l 4 © g 5 B IE= 1B - AL+ 1B - A1 =215 - AL,

But then (7.20) implies E§:1|ai —Bi|> < ||B— Al||%. Since t <n and a; = 3; =0
fori=t+1,...,n we obtain (7.19). O
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Chapter 8
Matrix Norms

To measure the size of a matrix we can use a matrix norm. In this chapter we give
a systematic study of matrix norms. We start with vector norms. For simplicity we
consider only norms on R™ and C™.

8.1 Vector Norms

To measure the size of a vector we use norms.

Definition 8.1 (Norm) A norm in R"(C") is a function ||-|| : R*(C") — R that
satisfies for all &,y in R™(C") and all a in R(C)

1. ||z|| > 0 with equality if and only if x = 0. (positivity)
2. |laz| = |a ||z (homogeneity)
3. e +yll < llzll + [yl (subadditivity)

The triples (R™, R, ||-|) and (C™,C,||-||) are examples of normed vector spaces
and the inequality 3. is called the triangle inequality.

Since |1z = [l —y + 9l < = — gl + il we obtain [z — y]| > ] - .

By symmetry ||z — y|| = [y — | > |ly|| — ||=| and we obtain the inverse triangle
inequality

& —yll = |z -yl |, =,y cC" (8.1)

Consider now some specific vector norms. We define for p > 1 the p-norms by

n 1/’

lllp = (D7) (8.2)
j=1

||l oo := max |z;|. (8.3)

1<j<n

The most important cases are:

91
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1. ||x]: = Z?Zl\xﬂ , (the one-norm or l;-norm)

2. ||z|l2 = (Z?Zl\xj|2)l/2, the two-norm, ls-norm, or Euclidian norm)
3. ||z]co = maxi<;<nl|z;|, (the infinity-norm, [.,-norm, or max norm.)
The infinity norm is related to the other p-norms by

lim ||z|, = ||z||« for all x € C". (8.4)
—00

This clearly holds for & = 0. For x # 0 we write

n

el o= llzlloe (37 (220 yr)r

2 el

Now each term in the sum is not greater than one and at least one term is equal to
one and we obtain
|2l < llllp < n'/7ll2llo, »=>1. (8.5)

Since lim, o, n'/? =1 for any n € N we see that (8.4) follows.

It can be shown (cf. Appendix H) that the p-norm are norms in R"™ and in C”
for any p with 1 < p < co. The triangle inequality ||z +y||, < |||/, + ||y|l, is called
Minkowski’s inequality . To prove it one first establishes Holder’s inequality

n

11 N
> lziysl < lllpllyllg, ST =L myelh (8.6)

j=1

The relation % + % = 1 means that if p = 1 then ¢ = oo and if p = 2 then ¢ = 2.
(8.5) shows that the infinity norm and any other p-norm can be bounded in
terms of each other. We define

Definition 8.2 Two norms ||| and ||||' on C™ are equivalent if there are positive
constants m and M (depending only on n such that for all vectors € C™ we have

mllz|| < flz||” < M|z (8.7)
The following result is proved in Appendix H.
Theorem 8.3 All vector norms in C" are equivalent.

The inverse triangle inequality (8.1) shows that a norm is a continuous function
C" = R.

Exercise 8.4 Show that ||-||p is a vector norm in R™ for p =1, p = co.

Exercise 8.5 The set
Sp={x e R" : [|z|, = 1}

is called the unit sphere in R™ with respect to p. Draw S, forp =1,2,00 forn = 2.
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Exercise 8.6 Let1 < p. Produce a vector x; such that |||/ = |||, and another
vector ,, such that ||z, |, = n/?||x,|,00. Thus the inequalities in (8.4) are sharp.

Exercise 8.7 If1 <q<p< oo then
], < llly < 09722, = eC™

Hint: For the rightmost inequality use Jensen’s inequality Cf. Theorem H.2 with
f(z) = 2P/% and z; = |z5|9. For the left inequality consider first y; = x; /||| c0»
i=1,2,...n.

8.2 Matrix Norms

For simplicity we consider only matrix norms on the vector space (C™" C). All
results also holds for (R™" R).

Definition 8.8 (Matrix Norms) Suppose m,n are positive integers. A function
[I-: C™"™ — R is called a matrix norm on C™" if for all A,B € C™" and all
ceC

1. ||A|| > 0 with equality if and only if A =0. (positivity)
2. ||cAll = || |A]l- (homogeneity)
3. ||A+ B < ||Al + || B]- (subadditivity)

A matrix norm is simply a vector norm on the finite dimensional vector space
(C™n" C) of m x n matrices. Adapting Theorem 8.3 to this special situation gives

Theorem 8.9 All matriz norms are equivalent. Thus, if ||| and ||-||" are two matriz
norms on C™™ then there are positive constants p and M such that

pl Al < [IA]" < MA]

holds for all A € C™™. Moreover, a matriz norm is a continuous function.

8.2.1 The Frobenius Norm

From any vector norm || ||y on C™" we can define a matrix norm on C™" by ||A|| :=
[lvec(A)||v, where vec(A) € C™" is the vector obtained by stacking the columns
of A on top of each other. In particular, to the p vector norms for p = 1,2, co, we
have the corresponding sum norm, Frobenius norm, and max norm defined by

lAlls =" lagl. 14l = (3D lagP)'", Al = maxlay].  (88)
i=1 j=1 i=1 j=1 ’

Of these norms the Frobenius norm is the most useful. It satisfies the following
properties.
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Lemma 8.10 For any matriz A € C™" we have

Lo D =~

SNy

1A = A7,

IAlE = Y- llasg 3 = 322 a3,

IUA|r = ||AV]||r = ||Allr for any unitary matrices U € C™™ and V €
(Cn,n’

IAB|F < || Allp|BllF for any B € C™F,

|Az|2 < ||All7||x||2, for all x € C™.

Proof.

1.

2.

JA™(5 = 320 2o @ [ = 200 Y00 lay)? = | All%.
Obvious.

Recall that |Uz|2 = |||z for all x € C™ if U*U = I. Applying this to each
2. n n 2.

column a.; of A we find [|UA|% = 37, [[Uayll5 = 377, lla; 3 = [|Al%.

Similarly, since VV* =T we find |AV||p = [|[V*A*||p = [|A*||F & |A||p.

Using Cauchy-Schwarz’ inequality and 2. we obtain

n k n k
IABIZ =375 (al,)” <37 S law 216,113 = 1A% B3
i=1 j=1

i=1 j=1

. Since ||v||F = ||v||2 for a vector this follows by taking k =1 and B = x in 4.

There is a relation between the Frobenius norm and the singular values.

Theorem 8.11 We have |A||p = /0% + - + 02, where 01, ...,0, are the singu-
lar values of A.

Proof. Using Lemma 8.10 we find ||A|| ¢ & \[U"AV || p = |Z|lFp = /o} + -+ 02.

O

8.2.2 Consistent and Subordinate Matrix Norms

Since matrices can be multiplied it is useful to have an analogue of subadditivity
for matrix multiplication. For square matrices the product AB is defined in a fixed
space C™™_ while in the rectangular case matrix multiplication combines matrices
in different spaces. The following definition captures this distinction.
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Definition 8.12 (Consistent Matrix Norms) A matriz norm is called consis-
tent on C™" if

4. |AB| < [A| Bl (submultiplicativity)

holds for all A, B € C™". A matriz norm is consistent if it is defined on C™"
for all m,n € N, and 4. holds for all matrices A, B for which the product AB is
defined.

Clearly the three norms in (8.8) are defined for all m,n € N. From Lemma 8.10
it follows that the Frobenius norm is consistent.

Exercise 8.13 Show that the sum norm is consistent.
Exercise 8.14 Show that the maz norm is not consistent by considering [11].

Exercise 8.15
(a) Show that the norm
|All:= vinn| Ay, AecC™”
18 a consistent matriz norm.
(b) Show that the constant /mn can be replaced by m and by n.
For a consistent matrix norm on C™" we have the inequality
| A*¥|| < ||A|* for k € N. (8.9)

When working with norms we often have to bound the vector norm of a matrix
times a vector by the norm of the matrix times the norm of the vector. We have
the following definition.

Definition 8.16 (Subordinate Matrix Norms) Suppose m,n € N are given,

let || |la« on C™ and || ||g on C™ be vector norms, and let || || be a matriz norm on
C™™. We say that the matriz norm || || is subordinate to the vector norms || |a
and | I3 if | Azla < [ A] || for all A € C™" and all w € C". If | o = | Il
then we say that || || is subordinate to || ||a-

By Lemma 8.10 we have ||Az|2 < ||A||F|x|2, for all & € C*. Thus the

Frobenius norm is subordinate to the Euclidian vector norm.
Exercise 8.17 Show that the sum norm is subordinate to the l1-norm.
Exercise 8.18 (a) Show that the max norm is subordinate to the oo and 1 norm,
i.e., |[Az]oo < ||A|m||x|1 holds for all A € C™™ and all x € C™.
(b) Show that ||Aei|lco = Al e, where ||A|lam = |agi]-

[Az|o
[ER

(c) Show that || Al|ar = maxz2o
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8.2.3 Operator Norms

Corresponding to vector norms on C" and C™ there is an induced matrix norm on
C™™ which we call the operator norm.

Definition 8.19 (Operator Norm) Suppose m,n € N are given and let || || be
a vector norm on C™ and || ||g a vector norm on C™. For A € C™" we define

1A = | Alla s = max 1AZ]a

. (8.10)
2#0 |z

We call this the (o, 8) operator norm, the («, 8)-norm, or simply the a-norm if

a=p.

Before we show that the (a, 3)-norm is a matrix norm we make some obser-
vations.

1. It is enough to take the max over subsets of C". For example

Az,
1Az x | Az (8.11)

A = =
1Al agker(A) ||z||p ] s=1

That we only need to consider x’s outside the null space ker(A) of A is obvious.
We can take the max over the S-norm unit sphere in C" since

= max [|[Az|,.

a =zlls=1

|Az|o H x
x = max|[A(—2-)
a0 |zl =270 llzlls

2. The operator norm ||A| is subordinate to the vector norms || ||, and || ||s.
Thus
|Az|o < [|A]l||z|s for all A € C™" and @ € C". (8.12)

3. We can use max instead of sup in (8.10). This follows by the following com-
pactness argument. Since all vector norms on C™ are equivalent the unit
sphere Sg;= {x € C": ||z||g = 1} is bounded. It is also finite dimensional and
closed, and hence compact. Moreover, since the vector norm || ||, is a contin-
uous function, it follows that the function f : Sg — R given by f(x) = ||Az|
is continuous. But then f attains its max and min and we have

Allasg = ||Ax*||o for some z* € C" with ||z*||z = 1. 8.13
B B

Lemma 8.20 The operator norm given by (8.10) is a matriz norm on C™™. The
operator norm is consistent if the vector norm || ||« is defined for all m € N and

s =1l lla-

Proof. We use (8.11). In 2. and 3. below we take the max over the unit sphere
Sp.

1. Nonnegativity is obvious. If ||A|| = 0 then ||Ayl||g = 0 for each y € C". In
particular, each column Ae; in A is zero. Hence A = 0.
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2. Al = maxy||cAz | = maxg|c| | Az o = |c| | A].
3. | A+ B|| = max (A + B)alla < maxg|| Az, + maxy|| B|la = | A +[| Bl
4 1AB = maxpeyo MBE = musp.o 25k 5l
< maxy 2o 1le maxg 4o 175l = 4] |B].
O

For any a-norm of the n x n identity matrix we find

I
x” Gl =max1=1.
x#0 ||zc||a x#0

1| =

For the Frobenius norm we find ||I||r = /0, and this shows that the Frobenius
norm is not an operator norm for n > 1.

8.2.4 The p-Norms

Recall that the p or ¢, vector norms (8.2) are given by

n
1/p
|, := (Z|$j|p) 21 x|l = llila<x ;]

The operator norms || ||, defined from these p-vector norms are used quite frequently
for p =1,2,00. We define for any 1 < p < oo
ax 1AZ0e _

0 el Iyl

[ Allp = x || Ayl (8.14)

In the most important cases we have explicit expressions for these norms.

Theorem 8.21 For A € C™" we have

Al := ax Z|akj| (maz column sum)
| A2 := o1, (largest singular value of A) (8.15)
|Alloo := lg}QaSXmZ|ak,j|, (maz row sum,).

The expression || A||2 is called the two-norm or the spectral norm of A.

Proof. The result for p = 2 follows from the minmax theorem for singular values.
Indeed, by (7.17) we have 01 = maxzo HHmHH For p = 1,00 we do the following:

(a) We derive a constant K, such that |Ax||, < K, for any x € C" with ||x||, = 1.

(b) We give an extremal vector y* € C™ with |ly*||, = 1 so that ||Ay*||, = K.
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It then follows from (8.14) that || A, = ||Ay*|l, = K.

1-norm: Define Ky, ¢ and y* by Ki := maxi<j<n ypeq|@kj| = Yopeqlarc| and

*

y* := e., a unit vector. Then ||y*||; = 1 and we obtain

()
Az = [ D anjas| <D0 lawllzy] =

k=1 j=1 k=1 j=1 j

(b) Ay*| = K1

(Y langl) ;] < K.
= k

1 =1

oo-norm: Define Ko, r and y* by K 1= maxj<p<m Z;n:l\akﬂ =: Z;L=1|arj| and
y* = [e—i917. . €_ian}T7 where a,; = |a’rj|emj forj=1,...,n
() [[Az]loo = maxichem | X5 arjz;| < maxicpem 27—y lakj||7)] < Koo
() [[AY* [loo = maxichem | Y-, apje % | = K.

The last equality is correct because | > i1 agje ] < > oi=ilarj| < Koo with
equality for k = r.

Example 8.22 In Ezample 7.6 we found that the largest singular value of the ma-
triv A= = [ 5 18], is o1 =2. We find

29 37
Al =— Al =2 Al = — Allr = V5.
lAli= 3. 14l=2 [Ale="1r [Alr=V5
We observe that the values of these norms do not differ by much.

In some cases the spectral norm is equal to an eigenvalue of the matrix.

Theorem 8.23 Suppose A € C™™ has singular values 01 > 09 > -+ > 0, and
eigenvalues [A1| > |Aa| > -+ > |\n|. Then

1

|4ll2 = o1 and A7 s = (8.16)
1

lAllz = A\ and ||A71||2 = if A is symmetric positive definite,  (8.17)
1

lAll2 = [A1] and ||A71||2 = m, if A is normal. (8.18)

For the norms of A~" we assume of course that A is nonsingular.

Proof. Since 1/0,, is the largest singular value of A™*, (8.16) follows. As shown
in Section 7.1.3 the singular values of a symmetric positive definite matrix (normal
matrix) are equal to the eigenvalues (absolute value of the eigenvalues). This implies
(8.17) and (8.18). O
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Exercise 8.24 Suppose A € C™" is nonsingular. Use (8.16) and (7.17) to show
that

A7 Y|y = max [l .
H ||2 w20 ||A$||2

A[_21 _21]

Compute || Al|, and ||[A™Y|, for p=1,2,00.

Exercise 8.25 Let

The following result is sometimes useful.

Theorem 8.26 For any A € C™" we have ||A]|3 < || Al|1]|Allco-

Proof. Let (0%,v1) be an eigenpair for A* A corresponding to the largest singular
value of A. Then

A ]vill = ofl|villy = llofoill = [| A" Avy [l < A1 All1[lo1]s-

Observing that ||A*[|1 = ||A] e by Theorem 8.21 and canceling ||v1]]; proves the
result. 0O

8.2.5 Unitary Invariant Matrix Norms

Definition 8.27 A matriz norm || || on C™™ is called unitary invariant if | UAV|| =
|A|l for any A € C™" and any unitary matrices U € C™™ and V € C™™.

When an unitary invariant matrix norm is used, the size of a perturbation
is not increased by a unitary transformation. Thus if U and V are unitary then
U(A+ E)V =UAV + F, where ||F| = || E|.

It follows from Lemma 8.10 that the Frobenius norm is unitary invariant. We
show here that this also holds for the spectral norm. It can be shown that the
spectral norm is the only unitary invariant operator norm, see [9] p. 308.

Theorem 8.28 The Frobenius norm and the spectral norm are unitary invariant.

Moreover ||A*||Fr = |Allr and || A%z = || Al|2.

Proof. The results for the Frobenius norm follow from Lemma 8.10. Suppose
A e C™™ and let U € C"™™ and V' € C™" be unitary. Since the 2-vector norm is
unitary invariant we obtain
[UA[|z; = max [|[UAz||; = max [|Az|z = [|A]2.
lzll2=1 llzll2=1
Now A and A" have the same nonzero singular values, and it follows from The-
orem 8.21 that ||A*||2 = [|A]l2. Moreover V* is unitary. Using these facts we

find
AV ]2 = [[(AV)*[]2 = [VFA"|[2 = A"z = [[Al]2.
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Exercise 8.29 Show that |V All2 = ||Al2 holds even for a rectangular V' as long
as V'V =1.

Exercise 8.30 Find A € R*? and U € R>! with UTU = I such that ||AU||s <
|All2. Thus, in general, | AU ||z = ||A|2 does not hold for a rectangular U even if
U'U=1

Exercise 8.31 Show that ||Al|, = p(A) := max |\;| (the largest eigenvalue of A),
1 <p < oo, when A is a diagonal matriz.

Exercise 8.32 A vector a € C™ can also be considered as a column vector A €
(C’rn,l‘

(a) Show that the spectral matriz norm (2-norm) of A equals the Euclidean vector
norm of a.

(b) Show that | A|l, = |lallp for 1 <p < co.

Exercise 8.33 If A € C™" has elements a;;, let |A| € C™™ be the matriz with
elements |a;;|.

(a) Compute |A] if A= [ ITZ {_i, } , i=+—1.
(b) Show that for any A € C™" || Alls = || A] |, | All, = | |A]ll, for p = 1,c0.
(c) Show that for any A € C™™ ||All2 < |||A]]|2-

(d) Find a real symmetric 2 x 2 matriz A such that ||All2 < || |A4] ||2.

Exercise 8.34 Let m,n € N and A € C"™". Show that

IA]l2 = max |ly* Ax|.
llzll2=llyll2=1

8.2.6 Absolute and Monotone Norms

A vector norm on C" is called an absolute norm if ||z| = |||z| || for all x € C".
Here |z| := [|21],. .., |7,]]T, the absolute values of the components of . Clearly the
vector p norms are absolute norms. We state without proof (see Theorem 5.5.10 of
[9]) that a vector norm on C" is an absolute norm if and only if it is a monotone
norm, i.e.,

lz:| < |yil, i=1,...,n = |lz|| < |ly||, for all z,y € C".

Absolute and monotone matrix norms are defined as for vector norms.
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Exercise 8.35 Show that the Frobenius norm and the 1,00 operator norms are
absolute norms.

Exercise 8.36 Show that the spectral norm is not an absolute norm.

The study of matrix norms will be continued in Chapter 9.

8.3 The Condition Number with Respect to Inversion

Consider the system of two linear equations

r1 + To = 20
r1 + (1 — 10716)1’2 = 20-—10"15

whose exact solution is z1 = xo = 10. If we replace the second equation by
21+ (141071029 =20 — 1071,

the exact solution changes to 1 = 30, xo = —10. Here a small change in one of
the coefficients, from 1 — 10716 to 1+ 10716, changed the exact solution by a large
amount.

A mathematical problem in which the solution is very sensitive to changes
in the data is called ill-conditioned. Such problems are difficult to solve on a
computer.

In this section we consider what effect a small change (perturbation) in the
data A,b has on the solution x of a linear system Ax = b. Suppose y solves
(A+ E)y = b+e where E is a (small) n x n matrix and e a (small) vector. How
large can y—ax be? To measure this we use vector and matrix norms. In this section
| ]| will denote a vector norm on C™ and also a submultiplicative matrix norm on
C™™ which in addition is subordinate to the vector norm. Thus for any A, B € C™"
and any € C™ we have

|AB|| < | A]l | B]| and [|Az[| < [[A[[{|z]

This is satisfied if the matrix norm is the operator norm corresponding to the given
vector norm, but is also satisfied for the Frobenius matrix norm and the Euclidian
vector norm. This follows from Lemma 8.10.

Suppose  and y are vectors in C" that we want to compare. The difference
|ly — «|| measures the absolute error in y as an approximation to x, while ||y —
z|/||z|| and ||y — z||/|ly|| are measures for the relative error.

We consider first a perturbation in the right-hand side b.

Theorem 8.37 Suppose A € C™" is nonsingular, b,e € C", b # 0 and Az = b,
Ay =b+e. Then
le]l

L el _ lly ==l | _ 1
BBl S SK(A)W, K(A) = [|A[[|lA7] (8.19)
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Proof. Subtracting Az = b from Ay = b+e we have A(y—x) = eor y—x = A 'e.

Combining ||y — || = [|A~ e[| < [[A™"| |le|| and [[]| = [[Az| < | A[ ||| we obtain
the upper bound in (8.19). Combining |le|| < ||A| |y — | and [|z| < | A7 |b]
we obtain the lower bound. 0O

Consider (8.19). |le||/||b]| is a measure of the size of the perturbation e relative
to the size of b. The upper bound says that ||y — «||/||x|| in the worst case can be

K(A) = |A]lA™

times as large as ||e||/||b]|. K(A) is called the condition number with respect
to inversion of a matrix, or just the condition number, if it is clear from the
context that we are talking about solving linear systems or inverting a matrix. The
condition number depends on the matrix A and on the norm used. If K(A) is
large, A is called ill-conditioned (with respect to inversion). If K(A) is small, A
is called well-conditioned (with respect to inversion). We always have K(A) > 1.
For since ||z|| = ||[Iz| < |[I]|||z| for any @, by subordinance we have || I]| > 1 and
therefore by submultiplicativity || Al ||A™!| > ||AA™Y|| = ||I]| > 1.

Since all matrix norms are equivalent, the dependence of K(A) on the norm
chosen is less important than the dependence on A. Sometimes one chooses the
spectral norm when discussing properties of the condition number, and the ¢1, ¢,
or Frobenius norm when one wishes to compute it or estimate it.

Explicit expressions for the 2-norm condition number follow from Theorem 8.23.

Theorem 8.38 Suppose A € C™" is nonsingular with singular values o1 > o9 >
- > o, > 0 and eigenvalues [A1| > |Aa| > -+ > |An| > 0. Then Kz(A) :=
VA2 A"}z = 04/ Moreover,

A1/ A, if A is symmetric positive definite,

8.20
A1/ Anl,  if A is normal. (8.20)

K5(A) :{

It follows that A is ill-conditioned with respect to inversion if and only if
o1/0y, is large, or A1/, is large when A is symmetric positive definite.

Exercise 8.39 The upper and lower bounds for ||y — z||/||z| given by (8.19) can
be attained for any matriz A, but only for special choices of b. Suppose y 4 and
ya-1 are vectors with |yl = |ya-ll = 1 and [|A| = [[Ayal and A7 =
A Yo -

(a) Show that the upper bound in (8.19) is attained if b= Ay, and e =y4-1.

(b) Show that the lower bound is attained if b=y, -1 and e = Ay,4.

We consider next a perturbation E in a nonsingular matrix A. The following
result shows that A + E is nonsingular if FE is sufficiently small and that small
changes in A give small changes in the inverse if A is well conditioned.
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Theorem 8.40 Suppose A € C™™ is nonsingular and let ||-|| be a consistent matriz
norm on C»". If E € C*" is so small that r := ||A™'E| < 1 then A + E s
nonsingular and

A~

I(A+B)H < —— (8.21)
If r < 1/2 then
l(A+B)1— A 12
K(A)—-. 8.22
T SR (8.22)

Proof. We show in (8.31) in Section 8.4 that if B € C™™ and ||B|| < 1 then I — B

is nonsingular and
1

< .

1B
Since r < 1 the matrix I — B := I+ A~ ' E is nonsingular. Since (I—B) 'A™'(A+
E) = I we see that A + E is nonsingular with inverse (I — B)~'A™'. Hence,

A+ E)™Y < (I - B)7||A"|| and (8.21) follows from (8.23). From the
identity

(I —B) (8.23)

(A+E)y'-A'=—A"'EA+E)!
we obtain by (8.21)

1B] A
4l T=7

I(A+E)™ — A7 < [A|E[l](A+E)7'| < K(A)

Dividing by ||A™!|| and setting r = 1/2 proves (8.22). O
We can now show the following upper bounds.

Theorem 8.41 Suppose A, E € C"", b € C" with A invertible and b # 0. If
r:=|AT E| < 1/2 for some operator norm then A + E is invertible. If Az = b
and (A+ E)y = b then

P 18]

=2 A E| < K(A)=1 (8.24)
i <4 El= KA

ly — 2| 12|

=2« og a2l (8.25)
e 1A

Proof. That the matrix A + E is invertible follows from Theorem 8.40. (8.24)
follows easily by taking norms in the equation £ — y = A~ 'Ey and dividing by
|y|l. From the identity y — = = ((A+ E)™'— A™") Az we obtain |y — z|| <
(A4 E)~' — A Y|||A||||=|| and (8.25) follows from (8.21). O

In Theorem 8.41 we gave a bound for the relative error in  as an approxi-
mation to vy, (8.24), and the relative error in y as an approximation to x, (8.25).
|IE||/|| Al is a measure for the size of the perturbation F in A relative to the size
of A. The condition number again plays a crucial role. |y — x||/||y|| can be as
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large as K(A) times ||E|/||A||. It can be shown that the upper bound can be
attained for any A and any b. In deriving the upper bound we used the inequality
|A ' Ey|| < ||A7Y|||E|| |ly||. For a more or less random perturbation E this is not
a severe overestimate for ||A~"Ey||. In the situation where E is due to round-off
errors (8.24) can give a fairly realistic estimate for ||y — x||/||y]|.

Suppose we have computed an approximate solution y to Az = b. The vector
r(y) := Ay — b is called the residual vector, or just the residual. We can bound
x—y in term of .

Theorem 8.42 Suppose A € C™", b € C", A is nonsingular and b # 0. Let
r(y) = Ay — b for each y € C". If Ax = b then

L el < @)l
K@) o] = J=l =W (8.26)

Proof. We simply take e = r(y) in Theorem 8.37. O

If A is well-conditioned, (8.26) says that ||y —x||/||z|| =~ ||r(y)|/||bl|. In other
words, the accuracy in y is about the same order of magnitude as the residual as
long as ||b|| = 1. If A is ill-conditioned, anything can happen. We can for example
have an accurate solution even if the residual is large.

Exercise 8.43 Let || ||, be the 1, vector norm and let cond,(T) = |T ||| T ||,
where |T||, = maxyzo |[Tx|,/||z|, be the p-condition number of T € R™™. In
this exercise we find the p-condition numbers for the matriz T := tridiag(—1,2, —1)
in terms of h:=1/(m +1). You will need the explicit inverse of T given by (2.10)
and the eigenvalues given in Lemma 4.11.

a) Show that

1( h2, m odd, m > 1,
condy (T') = cond(T') = 3 { W2~ 1. m even. (8.27)
b) Show that for p = 2 we have
h h
condy(T') = cot? (%) = 1/tan? (%)
c) Show the bounds
A2 2 ond (T) < A 2 (8.28)
2 3 > 72 '
Hint: For the upper bound use the inequality tanx > x valid for 0 < x < 7/2.
For the lower bound we use the inequality cot?® x > l% — % forx > 0. This can

be derived for 0 < x < 7 by first showing that the second derivative of cot? x
s positive and then use Taylor’s theorem.

8.4 Convergence and Spectral Radius

We start with some basic notions that we need.
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8.4.1 Convergence in R™" and C™"

Definition 8.44 Consider an infinite sequence of matrices { A} = Ao, A1, Aa, . ..
in C™™.

1. {Ag} is said to converge to the limit A in C™" if each element sequence
{A(ij)}x converges to the corresponding element A(ij) fori=1,...,m and
j=1...,n.

2. {Ax} is a Cauchy sequence if for all € > 0 there is an integer N € N such
that for each k,l > N and all i,j we have |Ay(ij) — Ai(ij)] <e.

3. {Ay} is bounded if there is a constant M such that |Ay(ij)| < M for alli, j, k.

By stacking the columns of A into a vector in C™" we can use the results in
Section A.4 and obtain

Theorem 8.45 1. A sequence {Ay} in C™" converges to a matriz A € C™"
if and only if limg o0 || Ax, — A|| = 0 for any matriz norm ||-||.
2. A sequence { Ay} in C™" is convergent if and only if it is a Cauchy sequence.
3. Every bounded sequence { Ay} in C"™™ has a convergent subsequence.

8.4.2 The Spectral Radius

We define the spectral radius of a matrix A € C™" as the maximum absolute
value of its eigenvalues.

A):= max || 8.29
p(A) = max (8.29)
Theorem 8.46 For any matriz norm ||-|| which is consistent on C™™ and any

A € C™™ we have p(A) < || Al

Proof. Let (A, x) be an eigenpair for A and define X := [z,...,x] € C™". Then
AX = AX, which implies |A| || X || = |XX|| = |AX]| < || Al | X]]- Since || X|| # 0
we obtain |A| < ||A]. O

The inequality p(A) < ||A|l can almost be made into an equality by choosing
the norm carefully.

Theorem 8.47 Let A € C™" and € > 0 be given. There is a consistent matrix
norm ||-||" on C™™ such that p(A) < ||All' < p(A) + €.

Proof. Let A have eigenvalues A1, ..., A,. By the Schur Triangulation Theorem 6.1
there is a unitary matrix U and an upper triangular matrix R = [r;;] such that
U*AU = R. For t > 0 we define D, := diag(t,t,...,t") € R™", and note that
the (i,4) element in D;RD; " is given by t'~Ir;; for all i,j. For n = 3

At 7%
D:RD;' = |0 X tlry
0 0 A3
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For each B € C™" and t > 0 we define ||B|; := ||D;U*BUD;"|;. We leave it
as an exercise to show that this is a consistent matrix norm on C™". We define
|B||" := || B||t, where t is chosen so large that the sum of the absolute values of all
off-diagonal elements in D;RD; " is less than e. Then

1Al

DU AUD; |1 = |DRD; s = max 3|(DRD;Y),

IN

max (0] +€) = p(A) +e

Theorem 8.48 For any A € C™™ we have

lim A" =0 < p(A) < 1.

k—o0

Proof. Suppose p(A) < 1. By Theorem 8.47 there is a consistent matrix norm |||
on C™" such that ||A]| < 1. But then || A*|| < ||A|* — 0 as k — co. Hence A* — 0.
Conversely, suppose (A, ) is an eigenpair of A with |A| > 1. Since AFz = Nz, by
Tllieorem D.3 it follows that A*x does not tend to zero. But then we cannot have
A" —0. O

Theorem 8.49 For any consistent matriz norm ||-|| on C™"™ and any A € C™™ we
have
lim || A% Y% = p(A). (8.30)
k—o0

Proof. By Theorems D.3 and 8.46 we obtain p(A)* = p(A*) < || A¥|| for any k € N
so that p(A) < ||A¥||*/*. Let e > 0 and consider the matrix B := (p(A) 4 €)' A.
Then p(B) = p(A)/(p(A) +€) < 1 and ||B¥|| — 0 by Theorem 8.48 as k — oc.
Choose N € N such that ||[B¥|| < 1 for all k > N. Then for k > N

k
=

1A = [|(p(A) + ) B)"|| = (p(A) +¢)"| B|| < (p(A) +¢)".

We have shown that p(A) < ||A*||'/* < p(A) + € for k > N. Since ¢ is arbitrary
the result follows. O

Exercise 8.50 The convergence limy, || A"||/* = p(A) can be quite slow. Con-
sider

Xa0 - 00
0MAa - 00
00X 00

A= |. .| e R™.
000 - Xa
000 - 0A

If I\ = p(A) < 1 then limy oo A¥ = 0 for any a € R. We show below that the
(1,n) element of A* is given by f(k) := ( k Ja" "IN for k> n— 1.

n—1
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(a) Make a plot of f(k) for A = 0.9, a = 10, and k < 200. Your program should
also compute maxy, f(k). Use your program to determine how large k must be
before f(k) < 1078.

(b) We can determine the elements of A* explicitly for any k. Let E := (A—\I)/a.
Show by induction that E* = [0 In- k] for 1 <k<n-—1 and that E" =0.

(c) We have A* = (aE + MI)* Z;m%{k el ( YA =IaI B and conclude that the
(1,n) element is given by f(k) for k >n — 1.

8.4.3 Neumann Series
A geometric series of matrices is known as a Neumann Series.
Theorem 8.51 (Neumann Series) Suppose B € C™"™. Then
1. The series > pep B* converges if and only if p(B) < 1.
2. If p(B) < 1 then (I — B) is nonsingular and (I — B)™' =377, B*.

3. If | B|| < 1 for some consistent matrixz norm ||-|| on C™™ then

(I -B)~ (8.31)

< ———.
—1-[Bj

Proof.

1. Suppose p(B) < 1. We use Theorem 8.45 and show that the sequence {A,,}
of partial sums A,, := > ., B" is a Cauchy sequence. Let ¢ > 0. By
Theorem 8.47 there is a consistent matrix norm ||-|| on C™™ such that || B|| < 1.
Then for | > m

IIBH m
A = Al = | Z BY| < Z IB|* < Se

k=m+1 k=m+1 ||B|| B

provided m > N and N is such that % < e. Thus {A,,} is a Cauchy

sequence and hence convergent.

Conversely, suppose (A, ) is an eigenpair for B with A > 1. Now for [ > m

l l l
(A=Al = > Brall=| > Na|=|zl > >N
k=m+1 k=m+1 k=m+1

But then {A,,} cannot be a Cauchy sequence and hence not convergent.

2. By induction on m it follows that

(Zm: B*)(I-B)=1-B"". (8.32)
k=0
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For if (27 B¥)(I — B) = I — B™ then

m m—1
(Z Bk:) (I—B) _ ( Z Bk+B7rL) (I—B) _ I_B7n+Bm_B7n+1 _ I—B"H_l.
k=0 k=0

Since p(B) < 1 we conclude that B™"! — 0 and hence taking limits in (8.32)
we obtain (342 B*)(I — B) = I which completes the proof of 2.

3. By L |(I-B)~Y| = [|552 B < 305, IIBI* = a7

|

Exercise 8.52 Show that | B||; := |D,U*BUD; ||, defined in the proof of The-
orem 8.47 is a consistent matriz norm on C™™.

Exercise 8.53 Suppose A € C™" is nonsingular and E € C™™. Show that A+ E
is nonsingular if and only if p(A™'E) < 1.
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Chapter 9

The Classical Iterative
Methods

Gaussian elimination and Cholesky factorization are direct methods. In absence
of rounding errors they find the exact solution using a finite number of arithmetic
operations. In an iterative method we start with an approximation (©) to the
exact solution & and then compute a sequence {x*)} such that hopefully z*) — a.
Iterative methods are mainly used for large sparse systems, i.e., where many of the
elements in the coefficient matrix are zero. The main advantages of iterative meth-
ods are reduced storage requirements and ease of implementation. In an iterative
method the main work in each iteration is a matrix times vector multiplication, an
operation which often does not need storing the matrix, not even in sparse form.

We consider the classical iterative methods of Jacobi, Gauss-Seidel, and an ac-
celerated version of Gauss-Seidel’s method called Successive OverRelaxation (SOR).
David Young developed in his thesis a beautiful theory describing the convergence
rate of SOR, see [26]. We give the main points of this theory specialized to the
average- and discrete Poisson matrix. With a careful choice of an acceleration pa-
rameter the amount of work using SOR, on the discrete Poisson problem is the same
as for the fast Poisson solver without FFT. Moreover, SOR  is not restricted to con-
stant coefficient methods on a rectangle. However, to obtain fast convergence using
SOR it is necessary to have a good estimate for the acceleration parameter.

9.1 Classical lterative Methods; Component Form

Suppose A € C™" is nonsingular with nonzero diagonal elements and let b € C™.
Solving the ith equation of Ax = b for z;, we obtain a fixed-point form of Az = b

i—1 n
Ty = (—Zaij:vj— Z (lij.’ﬂj+b¢)/aii, i:1,2,...7n. (91)
j=1 Jj=i+1

k k
[335 ) ( )]T

Suppose we know an approximation x(*) = R Y to the exact solution x

of Ax = b.

111
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1. In Jacobi’s method (J method) we substitute (*) into the right hand side
of (9.1) and compute a new approximation by

i—1 n
xz(.kﬂ) =(- Zaijxg-k) - Z aijT; M+, )/aii, fori=1,2,....,n. (9.2)
j=1 j=itl

2. Gauss-Seidel’s method (GS method) is a modification of Jacobi’s method,

(k+1)

where we use the new x; immediately after it has been computed.

(’H_l) Zaw (k+1) _ Z aij:cgk) + bi)/aii, fori=1,2,...,n. (9.3)
Jj=1+1

3. The Successive Over Relaxation method (SOR method) is obtained
by introducing an acceleration parameter 0 < w < 2 in the GS method. We
write z; = wz; + (1 — w)z; and this leads to the method

1—1 n
k+1 2 : k+1 z : k k
j=1

j=i+1

The SOR method reduces to the Gauss-Seidel method for w = 1. Denoting the
right hand side of (9.3) by wé’iﬂ) we can write (9.4) as x*t1) = wa:_g,lzﬂ) +(1-
w)z®) | and we see that (*+1) is located on the straight line passing through
the two points mél;-s-l) and ). The restriction 0 < w < 2 is necessary for
convergence (cf. Theorem 9.22). Normally we choose the relaxation parameter
w in the range 1 < w < 2 and then **1 is computed by linear extrapolation,
i.e., it is not located between :BE,];H) and z(®).

4. We mention also briefly the Symmetric Successive Over Relaxation method
SSOR. One iteration in SSOR consists of two SOR sweeps. A forward SOR
sweep (9.4), computing an approximation denoted *+1/2) instead of x(*+1),
is followed by a back SOR sweep computing

(k+1) Za” (k+1/2) Z aijx§k+1)+bi)/aii+(1_w)wgk+1/2) (95)
Jj=i+1

in the order ¢ = n,n — 1,...1. The method is slower and more complicated
than the SOR method. Its main use is as a symmetric preconditioner. For if
A is symmetric then SSOR combines the two SOR steps in such a way that
the resulting iteration matrix is similar to a symmetric matrix. We will not
discuss this method any further here and refer to Section 11.2 for an alternative
example of a preconditioner.

We will refer to the J,GS, and SOR methods as the classical (iteration) methods.
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9.2 The Discrete Poisson System

Consider the classical methods applied to the discrete Poisson matrix A € R™"
given by (4.7). Let n = m? and set h = 1/(m + 1). In component form the linear
system Ax = b can be written (cf. (4.3))

Qi j = Uim1j — Uipr — i1 — Uigyr = D2 fig, 4,5 =1,...,m,
with homogenous boundary conditions (4.4). Solving for u; ; we obtain
Ui = (ui,l’j + Ui, + Ui o1+ U1+ h2fi’j)/4, ,j=1,...,m. (9.6)
The J, GS , and SOR methods can now be written

71 o0 = (oo ol 4ol 4 120) 4

iJ i—1,7

Gs o = (o) oY ol 4ol 4 n2f) /a

z] 1—1,7 7,7—1

SOR: vt = (o) + ot 4ol 4ol +02f5) 14+ (1 - wplt).

Ui 1,9 1] 1 1,3
(9.7)
For GS and SOR we use the natural ordering i.e., with 4, in increasing order

i,7=1,...,m, while for J any ordering can be used.
Here is a Matlab program to test the convergence of Jacobi’s method on the
discrete Poisson problem.

Algorithm 9.1 (Jacobi) We carry out Jacobi iterations on the linear system
(9.6) with F = (f;;) € R™™ starting with V(© = 0 € R™+27m+2_ The output
is the number of iterations k, to obtain ||V —U||,; := maxi,j|v§f) —u;;| < tol.
Here (u;;) € R™T2™2 i5 the "exact” solution of (9.6) computed using the fast
Poisson solver in Algorithm 5.1. We set kK = K +1 if convergence is not obtained
in K iterations.

function k=jdp(F,K,tol)
m=length (F);
U=fastpoisson(F);
V=zeros (m+2,m+2); W=V;
E=F/(m+1)"~2;
for k=1:K
for i=2:m+1
for j=2:m+1
W(i,j)=(V(i-1,3j)+V(i+1,j)+V(i,j-1)..
+V(i,j+1)+E(i-1,j-1))/4;
end
end
if max(max(abs(W-U)))<tol, return
end
V=W;
end
k=K+1;
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k100 | k2500 | k10 000 | K40 000 | K160 000

J | 385 | 8386
GS | 194 | 4194
SOR 35 164 324 645 1286

Table 9.1. The number of iterations k, to solve the n x n discrete Pois-
son problem using the methods of Jacobi, Gauss-Seidel, and SOR (see text) with a
tolerance 1078,

In Table 9.1 we show the output k¥ = k, from this algorithm using F =
ones(m,m) for m = 10,50, K = 10*, and tol = 10~8. We also show the number
of iterations for Gauss-Seidel and SOR with a value of w known as the optimal
acceleration parameter w = 2/(1 +sin(xw/(m + 1))). We will derive this value later.
For the GS and SOR methods we have used Algorithm 9.2.

Algorithm 9.2 (SOR) This is the analog of Algorithm 9.1 using GS and SOR
instead of J to solve the discrete Poisson problem. w is an acceleration param-
eter with 0 < w < 2. For w = 1 we obtain Gauss-Seidel’s method. The optimal
value for the discrete Poisson problem is w = 2/(1 + sin(rw/(m + 1))).

function k=sordp(F,K,w,tol)
m=length (F);
U=fastpoisson(F);
V=zeros (m+2,m+2) ;
E=F/(m+1)"2;
for k=1:K
for i=2:m+1
for j=2:m+1
V(i,j)=w*(V(i-1,j)+V(i+1,j)+V(i,j-1)..
+V (i, j+1)+E(i-1,3-1))/4+(1-w)*V (i, j);
end
end
if max(max(abs(V-U)))<tol, return
end
end
k=K+1;

We make several remarks about these programs and the results in Table 9.1.

1. The rate (speed) of convergence is quite different for the three methods. The
J and GS method converge, but rather slowly. The J method needs about
twice as many iterations as the GS method. The improvement using the SOR
method with optimal w is rather spectacular.

2. We show in Section 9.5.1 that the number of iterations k,, for a size n problem
is k, = O(n) for the J and GS method and k,, = O(y/n) for SOR with optimal
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w. The choice of tol will only influence the constants multiplying n or \/n.

3. From (9.7) it follows that each iteration requires O(n) flops. Thus the number
of flops to achieve a given tolerance is O(k,, x n). Therefore the number of
flops for the J and GS method is O(n?), while it is only O(n®/?) for the SOR
method with optimal w. Asymptotically, for J and GS this is the same as
using banded Cholesky, while SOR competes with the fast method (without
FFT).

4. We do not need to store the coefficient matrix so the storage requirements for
these methods on the discrete Poisson problem is O(n), asymptotically the
same as for the fast methods. For the GS and SOR method we can store the
new UZU—CJFI) in the same location as vz@). For Jacobi’s method we need an extra

J
array. (W in Algorithm 9.1).

5. Jacobi’s method has the advantage that it can be easily parallelized.

9.3 Matrix Formulations of the Classical Methods

To study convergence it is convenient to use matrix formulations of the classical
methods. In general we can construct an iterative method by choosing a nonsingular
matrix M and write Az = b in the equivalent form Bx = ¢, where B= M 1A
and ¢ = M~ 'b. The system Bx = c can be written x = £ — Bx+c¢ = (I - B)x+c,
and this defines the iterative method

) .= Gz®™ ¢, G=I-B=I-M"1A, c¢=M""b. (9.8)

Different choices of M leads to different iterative methods. The matrix M can be
interpreted in two ways. It is a preconditioning matrix since a good choice of
M will lead to a system Bax = ¢ with smaller condition number. It is also known
as a splitting matrix, since if we split A in the form A = M + (A — M) then
Ax = b can be written Mx = (M — A)x+ b and this leads to the iterative method

Mz*+D = (M — A)z™ + b (9.9)

which is equivalent to (9.8).

The matrix M should be chosen so that G has small spectral radius and
such that the linear system (9.9) is easy to solve for x*+1) These are conflicting
demands. M should be an approximation to A to obtain a B with small condition
number, but then (9.9) might not be easy to solve for x(*+1).

9.3.1 The Splitting Matrices for the Classical Methods

To describe M for the classical methods we write A as a sum of three matrices,
A=D—- Ay — Ar, where —Ay, D, and —AR are the lower, diagonal, and upper
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part of A, respectively. Thus D := diag(ai1,...,ann),

0 0 —app --- —ain
—a91 0 . . .
Ay = . . . y AR = - - : . (910)
. .. .. 0 _a/'n,fl,n
—Qn,1 —Qp,n—1 0 0

Proposition 9.3 The splitting matrices M j, M1, M, for the J, GS, and SOR
method are given by

M;=D, M,=D-A;,, M,=w'D-A,. (9.11)

Proof. The equation Ax = b can be written Dx — Apx — Arx = b or Dx =
A;x + Arx + b. This leads to

J: D™t = A, 2®) 4 Apz®) + b,
GS: Dz Y = A 2D 4 Apax® 4, (9.12)
SOR: Dx+Y = w(AL:c(k'H) + Agz® + b) + (1 - w)Dz®),

Writing these equations in the form (9.9) we obtain (9.11). 0O

Example 9.4 For the system

we find
0 0 2 0 0 1
o IR R B P
" My;=p=2 9, mMo—w'D-a, - |* 0
A wzw L= -1 2wl

The iteration matriz G, = I — M;lA is given by

_ 10 . W/2 0 2 —1 _ 1—w OJ/2
Gw - |:0 1:| |:w2/4 w/Q] |:—1 2:| B |:w(1_w)/2 1_w+w2/4:| . (913)
For the J and GS method we have

G,=I-D'A= L?Q 1(/)2} , Gy = [8 %ﬂ : (9.14)

We could have derived these matrices directly from the component form of the iter-
ation. For example, for the GS method we have the component form

1
mngrl) _1

1 (k+1) kt+1) , 1
2 9

1
3 Tq = 5:131 + .

xék) + 5
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Substituting the value of xgkﬂ) from the first equation into the second equation we

find

2 T2
g _[o 1/2} P
CC(Qchrl) 0 1/4 xgk)

9.4 Convergence of Fixed-point lteration

1.1 1 1 1 3
k+1 k k
2 = (237(2)—|— )+2——7$é)+*.

Thus

1/2 .
(k+1) _ — (k)
x = +|:3/4:|—G1£L‘ + e.

We have seen that the classical methods can be written in the form (9.8) for a
suitable M. Starting with 2(®) this defines a sequence {x*)} of vectors in C". If
limy_y0o %) = & for some & € C™ then x is a solution of £ = Gx + ¢ since

= lim %) = lim (Gz®™ 4+ ¢) = G lim ¥ + ¢ = Gz +c.
k—oc0 k—o0 k—o0
For a general G € C™" and ¢ € C™ a solution of x = Gz +c is called a fixed-point
and the iteration £*t1 = Gx(¥) + ¢ a fixed-point iteration. The fixed-point is
unique if I — G is nonsingular.
Consider next convergence of fixed-point iteration.

Definition 9.5 We say that the iterative method **+) := Gx*) + ¢ converges
if the sequence {w(k)} converges for any starting vector x(?.

To study convergence we consider for £ > 0 the error

e =2 _ g

Lemma 9.6 The iterative method x**Y) = Gz + ¢ converges if and only if
limg—y00 G* = 0.

Proof. Subtraction of x = Gz + ¢ from £**t1) = Gz®) + ¢ leads to cancellation
of ¢ and €*t1) = Ge®). By induction €®) = GFe©® for k =0,1,2,.... It follows
that €®) — 0 for all €© if and only if G >0 O

Recall that the spectral radius of a matrix G € C™" with eigenvalues A1 ..., A,
is defined as p(G) = max;|\;|. Using Theorem 8.46 we obtain the following theorem:

Theorem 9.7 Suppose G € C™" and ¢ € C*. The iteration x*t1 = Gz®) + ¢
converges if and only if p(G) < 1.

Since p(G) < ||G|| for any consistent matrix norm on C™™ (cf. Theorem 8.46)
we obtain

Corollary 9.8 If |G| < 1 for some consistent matriz norm, then the iteration
z++) = Gz®) + ¢ converges.
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Exercise 9.9 Show that both Jacobi’s method and Gauss-Seidel’s method diverge
for A=[12].

Exercise 9.10 FEzplain why J and GS converge for the cubic spline matriz N in
Chapter 2. (This is mainly of academic interest since for tridiagonal strictly diago-
nally dominant matrices Gaussian elimination has complezity O(n) and is preferable
for such systems.)

Exercise 9.11 Show that the J method converges if A is strictly diagonally domi-

nant, i. e., |ai| > 32, laij| fori=1,....,n.
Exercise 9.12 Consider the GS method. Suppose r := max;r; < 1, where r; =
D it l‘Z”“ Show using induction on i that |e§-k+1)| < 7€M for i = 1,...,i.

Conclude that Gauss-Seidel’s method is convergent when A is strictly diagonally
dominant.

Consider next the rate of convergence. Suppose || || is a matrix norm that
is subordinate to a vector norm also denoted by || ||. Taking norms in €*) = G*¢(©)
we obtain

le® ] =GP < |G*][I€] = p(G)* ][]
For the last formula we apply Theorem 8.49 which says that limy_,.. ||G"||'/* =

p(G). Thus for fast convergence we should use a G with small spectral radius.

Lemma 9.13 Suppose p(G) =1 —1n for some 0 <n <1, | || a consistent matric
norm, and let s € N. Then
~ log(10
o i 10e10)s (9.15)
n

is an estimate for the smallest number of iterations k so that p(G)* < 1075.

Proof. k is an approximate solution of the equation p(G)* = 107*. Indeed, taking
logarithms we find klog p(G) = —slog 10. Thus

_ slog(10) _ slog(10)  log(10)s _i
log(1=n) n+0(n?) U '

Exercise 9.14 Consider the iteration in Example 9.4. Show that p(Gj) = 1/2.

Then show that :cgk) = Jiék) =1-27% for k > 0. Thus the estimate in Lemma 9.13
is exact in this case.

The convergence limy_,oo||G¥||'/* = p(G) can be quite slow, (cf. Exer-
cise 8.50).
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9.4.1 Stopping the Iteration

In Algorithms 9.1 and 9.2 we had access to the exact solution and could stop the
iteration when the error was sufficiently small in the infinity norm. The decision
when to stop is obviously more complicated when the exact solution is not known.
One possibility is to choose a vector norm, keep track of ||z**1) — z(*)|| and stop
when this number is sufficiently small. This must be applied with some care if ||G||
is close to one, as the following result indicates.

Lemma 9.15 Suppose |G|| < 1 for some consistent matriz norm which is subordi-
nate to a vector norm also denoted by || ||. If *) = Gx*~V) + ¢ and x = Gz + c.
Then

|G| -
||93(k) —z| < 17“””:0(”“) —zk 1)||, k> 1. (9.16)
Proof. We find

l2®) — 2| = |G""Y — )| < |G]l=*"" — x|
=||Glllz"*Y 2™ +a® — 2| < (|G| (2" —2®| + ®) — ).

Thus (1 — |G| ||=® — z| < ||G]|||e*~Y — 2*)|| which implies (9.16). O

Another possibility is to stop when the residual vector r*) = b — Ax®)
is sufficiently small in some norm. To use the residual vector for stopping it is
convenient to write the iterative method (9.8) in an alternative form. If M is the
splitting matrix of the method then by (9.9) we have Ma*+1) = Ma®) — Az*) +b,
This leads to

2F D = g®) L ple®) e (B —p — Ag®), (9.17)

Testing on r(*) works fine if A is well conditioned, but Theorem 8.42 shows
that the relative error in the solution can be much larger than the relative error in
r(®) if A is ill-conditioned.

9.4.2 Richardson’s Method (R method)

This method is based on the simple splitting M r := al, where « is a nonzero
scalar. By (9.17) we obtain Richardson’s method in the form

ekt = 20 4 o=p®) () — Az, (9.18)

If all eigenvalues of A have positive real parts then the R method converges provided
« is sufficiently large.

Proposition 9.16 Suppose all eigenvalues of A have positive real parts and that
« 1s real. Then there is an ag such that the R method converges for a > aq. If A
has positive eigenvalues 0 < A\, < --- < A1 then the spectral radius of

Ga)=T-a'A
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s uniquely minimized if o = o, where

A+ A AL — A
= d p(G(a™)) = . 1
« 9 , an p( (OZ )) )\1+An (9 9)
Proof. The eigenvalues of G(«) are
wila)=1—=Xj/a, j=1,...,n,
and if u; := Re); > 0 then
Aj A uj N2 N2 [ 20u;
. 2 _1-20Yy1-22y=1—-922 AN I J_q 1
|15 ()] ( a)( a) o + o2 a2 \|\]2 <

if 2cc > max;;(|A;|?/u;) and the R method converges. We next show that p(G(a)) >
p(G(a*)) if a # o*. Indeed, if a > o* then

)\I_An

p(G(a)) Z () =1=A/a>1= A, /a" = \ = p(G(a*))-
1 +>\n
Next, if a < a* then
* )‘1 — )\n *
—p(G(@) <) =1-Ai/a<1l-X\/a =3 = —p(G(a")),
1 +>\n

and again p(G()) > p(G(a*)). O

9.5 Convergence of the Classical Methods for the

Discrete Poisson Matrix
The matrix A in (4.7) is symmetric positive definite (cf. Theorem 4.13). We show
in Theorem 9.23 that the SOR method converges for all 0 < w < 2 if A is symmetric

positive definite. So the GS method converges, but the J method does not converge
for all symmetric positive definite matrices.

Exercise 9.17 Show (by finding its eigenvalues) that the matriz

1 a a
a 1 a
a a 1

is symmetric positive definite for —1/2 < a < 1, but that the J method does not
converge for 1/2 < a < 1.

For the discrete Poisson problem we can determine explicitly the eigenvalues
of the iteration matrices and thus not only show convergence, but also estimate the
number of iterations necessary to achieve a given accuracy.
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Figure 9.1. p(G.,) withw € [0,2] for n =100, (lower curve) and n = 2500
(upper curve).

Recall that by (4.22) the eigenvalues \;  of A given by (4.7) are
Njw =4 —2cos(jmh) — 2cos(krh), j,k=1,....,m, h=1/(m+1).

Consider first Jacobi’s method. The matrix G; = I — D™*A = I — A/4 has
eigenvalues
1 1 . 1 )
pikp=1— Z)\j’k =3 cos(jmh) + 5 cos(kwh), j,k=1,...,m. (9.20)

It follows that p(Gy) = cos(rh) < 1 and the J method converges for all starting
values and all right hand sides.

For the SOR method it is possible to explicitly determine p(G,) for any
w € (0,2). The following result will be shown in Section 9.6.

Theorem 9.18 Consider the SOR iteration (9.7), whith the natural ordering. The
spectral radius of G, is

3 (wB+ /(WB? = 4w 1>)2 » Jorb<wser (9.21)

w—1, forw* <w < 2,

p(Gu) =

where 8 := p(Gy) and

* .

2
=1
1++/1-p2

p(Gw) > p(Go-) forw € (0,2) \ {w}. (9.23)

(9.22)

Moreover,
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n=100 n=2500 klOO k2500
J | 0.959493 | 0.998103 | 446 | 9703
GS | 0.920627 | 0.99621 | 223 | 4852
SOR | 0.56039 | 0.88402 32 150

Table 9.2. Spectral radia for Gy, G1, Gy« and the smallest integer k,
such that p(G)*» < 1078.

A plot of p(G,,) as a function of w € (0,2) is shown in Figure 9.1 for n = 100
(lower curve) and n = 2500 (upper curve). As w increases the spectral radius of
G, decreases monotonically to the minimum w*. Then it increases linearly to the
value one for w = 2. We call w* the optimal relaxation parameter.

For the discrete Poisson problem we have § = cos(nh) and it follows from
(9.21),(9.22) that

. 2 . 1 — sin(7h) 1
YT + sin(rh)’ PlGu) =w = 1= 1 +sin(mh)’ h= m+1 (9:24)

Letting w = 1 in (9.21) we find p(G1) = % = p(G;)? = cos?(wh). Thus, for
the discrete Poisson problem the J method needs twice as many iterations as the
GS method for a given accuracy.

The values of p(Gy), p(G1), and p(G,+) = w* — 1 are shown in Table 9.2 for
n = 100 and n = 2500. We also show the smallest integer k, such that p(G)¥» <
10~8. This is an estimate for the number of iteration needed to obtain an accuracy
of 1078, These values are comparable to the exact values given in Table 9.1.

9.5.1 Number of lterations

Let s be a positive integer. We can now estimate the number of iterations k,, to
obtain p(G)*» < 10~* for the J, GS and SOR method with optimal w. We use
Lemma 9.13 that provided the estimate

~ log(10)s

kp = ) p(G):].*??

n

Note that h = 1/(m 4 1) &~ n~/2. The estimates we derive agree with those we
found numerically in Section 9.2.

e J: p(G;) = cos(nh) =1 —n, n =1 — cos(rh) = 3n2h? + O(h?) = ”72/11 +
O(n=2). Thus
~ 2log(1
Fy = 2108005 6601y = o).
T
e GS: p(Gy) = cos?(wh) =1 —n, n =1 — cos?(rh) = sin® th = w2h? + O(h*) =
72 /n+ O(n=?). Thus

fen = logfr%)sn +0(n~1) = 0(n).
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o SOR: p(G-) = {rammd =1 — 2rh + O(h?). Thus

log(10)s
R

Ey, V4 0(n~Y?) = 0(vn).

Exercise 9.20 Consider for a € C

z= " = 0 al |z + I —a =: Gz +c.
T2 a 0] |z 1—a
Starting with (®) = 0 show by induction
mgk) = ;vgk) =1-d*, k>0,
and conclude that the iteration converges to the fived-point © = [1,1]T for |a| < 1
and diverges for |a| > 1. Show that p(G) = 1 —n with n = 1 — |a|. Compute the

estimate (9.15) for the rate of convergence for a = 0.9 and s = 16 and compare with
the true number of iterations determined from |a|® < 10716,

9.6 Convergence Analysis for SOR

The iteration matrix G, for the SOR method can be written in two alternative
forms that are both useful for the analysis.

Lemma 9.21 Suppose A € R™" and D = diag(a11,...,any) are both nonsingular.
Then

G,=I-(w'D-Ap)'"A=(T-wL) ' (wR+ (1 -w)I), (9.25)
where Ay, and Ag are given by (9.10) and
L:=D'A;,, R:=D 'Ag, sothat D'A=I—-L - R. (9.26)

Proof. For the first form see (9.8) and Proposition 9.3. Solving the SOR part of
(9.12) for 1) gives

2" = w(Le®™ ) + Rz® + D7'b) + (1 — w)z®,

or
(I - wL)z* ) = (wR + (1 —w)I)z™ +wD™'b.

Solving for 1) we obtain *t1) = G,x®) + ¢, where G, is given by the second
form in (9.25). O

We start with the following convergence result.

Theorem 9.22 The SOR method diverges if w is not in the interval (0, 2).
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Proof. Recall that the determinant of a product equals the product of determinants
and that the determinant of a triangular matrix equals the product of the diagonal
elements. From (9.25) we obtain

det(G,,) = det ((I —wL)™") det (WR+ (1 —w)I).

Since I — wL is lower triangular with ones on the diagonal it follows from
Lemma 2.8 that the first determinant equals one. The matrix wR + (1 — w)I is
upper triangular with 1 — w on the diagonal and therefore its determinant equals
(1 —w)™. Tt follows that det(G,) = (1 —w)™.

Since the determinant of a matrix equals the product of its eigenvalues we
must have |A| > |1 — w| for at least one eigenvalue A\ of G,. We conclude that
p(G,) > |w—1|. But then p(G,) > 1 if w is not in the interval (0,2) and by
Theorem 9.7 SOR diverges. 0O

We next show that SOR converges for all w € (0,2) if A is symmetric positive
definite.

Theorem 9.23 SOR converges for a symmetric positive definite matriz A € R™"
if and only if 0 < w < 2. In particular, Gauss-Seidel’s method converges for a
symmetric positive definite matrix.

Proof. By Theorem 9.22 convergence implies 0 < w < 2. Suppose 0 < w < 2. The
eigenpair equation G,z = Az can be written  — (W'D — Ar) Az = Az or

Az = (w'D—-Ap)y, y:=(1-N=x. (9.27)
Since A = —Ap + D — Ar we find

(

(W'D -D+Ap)y = (w'D - Ar — Ay 27 Az — Ay = )z,

so that by taking inner products and replacing AR by AL

(y,Mz) = (y, (W'D - D+ Agr)y) = ((w'D - D + AR)y,y)

1 (9.28)
=(w " D-D+AL)y,y).

Taking inner product with ¢ in (9.27) and adding to (9.28) we obtain

(Az,y) + (y, \Az) = (W'D - Ar)y,y) + (W'D - D+ Ar)y,y)
— (2wl — 1)(Dy,y) = (2w~ — 1)(1 = \)(1 - X)(Da, )
= (2wt =1)|1 = A\*(Dz,x).
On the other hand, since A is symmetric
(Az,y) + (y, \Az) = (1 = N)(Az,z) + (1 — VA(Az, ) = (1 — |\?*)(Az, x).

Thus,
2wt = 1)|1 = AP(Dz, x) = (1 — |A*)(Az, z). (9.29)
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Since A is symmetric positive definite we observe that also D is symmetric positive
definite. Furthermore we cannot have A\ = 1 for then y = 0 which by (9.27) implies
that A is singular. Since 0 < w < 2 implies w™' > 1/2 the left side of (9.29) is
positive and hence the right hand side is positive as well. We conclude that || < 1.
But then p(G,) < 1 and SOR converges. [

9.7 The Optimal SOR Parameter w

The following analysis holds both for the discrete Poisson matrix and the averaging
matrix given by (4.9). A more general theory is presented in [26]. Consider first
how the eigenvalues of G; and G, are related.

Theorem 9.24 Consider for a,d € R the SOR method applied to the matriz (4.9),
where we use the natural ordering. Moreover, assume w € (0,2).

1. If A # 0 is an eigenvalue of G, then

At w-—1

pi=——7 (9.30)
is an eigenvalue of G ;.
2. If p is an eigenvalue of Gy and A satisfies the equation
A2 =X+ w—1 (9.31)
then X\ is an eigenvalue of G.,.
Proof. For simplicity of notation we assume that a = —1 and d = 2. The compo-
nent equations in this proof hold for i,j = 1,...,m. Suppose (A, w) is an eigenpair
for G,,. By (9.25) (I —wL) " (wR+ (1 —w)I)w = Aw or
(WR+ MwL)w = A+ w—1w. (9.32)
Let w = vec(W), where W € C™™. Then (9.32) can be written
%(Awi,l,j w1+ Wi+ wie1) = (A +w — Dy, (9.33)

where w; ; = 0if ¢ € {0,m + 1} or j € {0,m + 1}. We claim that (u,v) is an
eigenpair for Gy, where p is given by (9.30) and v = vec(V') with

vi,j = )\_(i+j)/2wi_j. (934)

Indeed, replacing w; ; by )\(”j)/%i’j in (9.33) and cancelling the common factor
Ai+9)/2 we obtain

w _
Z(Uz‘fl,j T o1+ Vi1 Vi) = AT 2w — Dy
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But then At )
w —

For the converse let (u,v) be an eigenpair for G; and let as before v = vec(V'),
W = vec(W) with v; ; = )\*(i+j)/2wi7j. The equation G jv = pv can be written

= uv.

Z('Uifl,j + Vi1 + Vi1, + Vijr1) = (i

Let A be a solution of (9.31). Replacing v; ; by A~(F9)/24, ; and canceling A~ (1+7)/2
we obtain
1

Z(Al/Qwi—lu‘ AP+ N Pwi g+ AT P ) =

or, multiplying by wA!/2

w 1/2
~(Mwim1j + dwg o1+ Wi+ wiga) = wpA w g,

S

Thus, if wu'/? = A+ w — 1 then by (9.33) (\,w) is an eigenpair for G,. O

Proof of Theorem 9.18 By (4.22) the eigenvalues of G; = I — A/(2d) are
given by
i = —a(cos(jmh) + cos(kmh))/(2d), j k=1,...,m.

Thus the eigenvalues are real and if p is an eigenvalue then —y is also an eigenvalue.
Thus it is enough to consider positive eigenvalues p. For simplicity of notation let
again a = —1 and d = 2. Solving (9.31) for \ gives

Ap) = i(wu +/(wp)? — 4w — 1))2. (9.35)

Both roots A(u) are eigenvalues of G,,. The discriminant
d(w) == (wp)? — 4(w —1).
is strictly decreasing on (0, 2) since
d'(w) = 2(wp? —2) < 2(w—2) <0.

Moreover d(0) = 4 > 0 and d(2) = 4p® — 4 < 0. As a function of w, A() changes
from real to complex at

w=0(u) = ———. (9.36)
In the complex case we find

A = 3 (m? + 4w — 1)~ @) =w -1, s <w<2
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In the real case both roots of (9.35) are positive and the larger one is

Mp) = (s + VP 4@ D) 0<w<a). (9.37)

Both A(u) and &(p) are strictly increasing as functions of p. It follows that |A(u)]
is maximized for © = p(G;) =: B and for this value of u we obtain (9.21) for
0<w<oB) =w"

Evidently p(G,) = w —1 is strictly increasing in w* < w < 2. Equation (9.23)
will follow if we can show that p(G,) is strictly decreasing in 0 < w < w*. By
differentiation

_ By (wB)?2 — 4w —1) + wp? — 2.
VwB)? — 4w —1)

Since 3%(w?B? — 4w +4) < (2 — wB?)? the numerator is negative and the strict
decrease of p(Gy,) in 0 < w < w* follows.

(w8 + VPP — 1)
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Chapter 10

The Conjugate Gradient
Method

The conjugate gradient method is an iterative method for solving large sparse linear
systems Ax = b with a symmetric positive definite coefficient matrix A € R™".
It can also be used to minimize a quadratic function @ : R™ — R given by
Qx) = %:cTAac — aTb, see the following chapter. We compute a sequence of
approximations to the exact solution. Each new approximation &(*+1) is computed
from the previous ®) by a formula of the form

2D = 20 4y p®), (10.1)

where p(®) is a vector, the search direction, and a4, is a scalar determining the
step length. A characteristic of the method is that the residuals r(*) :== b— Ax(*)
(the negative gradients of Q(x(*))) are orthogonal (or conjugate), i.e., (r(®, 7)) =
0 for i # j, where (x,y) := &’y is the usual inner product in R”. This orthog-
onality property has given the method its name. If 7 ... »(=1 are nonzero
then @ ... 7™ are n + 1 orthogonal vectors in R and (") must be zero. It
follows that the conjugate gradient method is a direct method. The exact solution
is found in a finite number of operations. In practice, however the method is used as
an iterative method for large linear systems since the residuals become small quite
rapidly. For the Poisson problem the method converges as fast as the SOR-method
with optimal acceleration parameter and we do not have to estimate the parameter.
The conjugate gradient method was first published as a direct method in [7]. It was
only some 20-30 years later that the iterative nature was seriously appreciated.

The number of iterations to achieve a desired accuracy is essentially propor-
tional to the square root of the 2-norm condition number of the coefficient matrix
of the linear system. Thus the smaller the condition number the faster the method
converges.

Before deriving the method we give the algorithm, discuss implementation and
give numerical examples.

129
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10.1 The Conjugate Gradient Algorithm

Suppose A € R™" is symmetric positive definite and let b € R™. To solve the linear
system Az = b we choose an initial guess £(® € R”, set p(® := () .= p — Az
and generate a sequence of vectors {x(®} as follows:

For k=0,1,2,...
(k) p(k)
(k1) . (k) (k) _ )
T =X +Oékp 5 aj = (p(k),Ap(k))’ (]‘02)
pF+D) . (k) _ akAp(k), (10.3)

(k41 g (kF1))

(k+1) . (k1) (k) .:

(10.4)

Here (u,v) := u”v is the usual inner product of two vectors.

By induction on k we have r*) = b — Az®). This follows by definition for
k = 0, and if it holds for k then by (10.3) and (10.2) r*+1) = ¢(k) — o, Ap(k) =
b— Az — 0, Ap*) =b— A(x® 4 aypH)) = b — AxF+D),

Example 10.1 Consider the linear system

2 1] [n] [1
-1 2 xTo o 0"
Starting with £ = 0 we set p® =+ = b = [1,0]T. Using (10.2) we find

(O ) Then £ = 2O 4+ ap® = [9] + 181 = [162] and from

0= ATy = 3
(10.3) we find 7 = v — qyAp® =[] - 1[2] = [1(/)2]. By (10.4) we find
Bo = o) = i so that

«

PO ()

1
p =0+ ap® =[] + 715 = [1a]-

M) (0
Continwing with the mext iteration we obtain a; = M = 2 and 2@ =

2@ +ap® = [Y2]+ 2 [13] = 73] Since r® = r® — a1 Ap») = 0 this is

the exact solution found in n = 2 iterations.

Exercise 10.2 Do one iteration with the conjugate gradient method when (® = 0.

(Answer: zM) = (I(J?Xg)b.)

Exercise 10.3 Do two conjugate gradient iterations for the system

Ryl HN

starting with £ = 0.
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The formulas in (10.2)-(10.4) and the previous discussion form a basis for an
algorithm.

Algorithm 10.4 (Conjugate Gradient Iteration) The symmetric positive
definite linear system Ax = b is solved by the conjugate gradient method.
x is a starting vector for the iteration. The iteration is stopped when
[|r®)]2/||7@]| < tol or k > itmax. K is the number of iterations used.

function [x,K]=cg(A,b,x,tol,itmax)
r=b-Axx; p=r; rho=r’*r;
rhoO=rho; for k=0:itmax
if sqrt(rho/rho0)<= tol
K=k; return
end
t=A*p; a=rho/(p’*t);
X=xX+a*p,; r=r-axt;
rhos=rho; rho=r’*r;
p=r+(rho/rhos)*p;
end
K=itmax+1;

The work involved in each iteration is
1. one matrix times vector (¢t = Ap),
2. two inner products ((p,t) and (r,r)),

3. three vector-plus-scalar-times-vector (x =  +ap, r = r —at and p = r +
(rho/rhos)p),

The dominating part is the computation of t = Ap.

10.2 Numerical Example

We test the method on the example used in Chapter 9. The matrix is given by
the Kronecker sum T's := T7 ® I + I ® T; where Ty = tridiag,,(a,d,a). We
recall that this matrix is symmetric positive definite if d > 0 and d > 2|a|. We set
h=1/(m+1)and f=[1,...,1]T € R™.

Note that for our test problems T's only has O(5n) nonzero elements. There-
fore, taking advantage of the sparseness of T’y we can compute ¢ in Algorithm 10.4 in
O(n) flops. With such an implementation the total number of flops in one iteration
is O(n). We also note that it is not necessary to store the matrix T's.

To use the Conjugate Gradient Algorithm on the test matrix for large n it is ad-
vantageous to use a matrix equation formulation. We define matrices V, R, P, B, T €
R™™ by ¢ = vec(V), r = vec(R), p = vec(P), t = vec(T), and h%f = vec(B).
Then Tox = W2 f <= T, V+ VT, =B,and t =Top <= T =T,P + PT;.

This leads to the following algorithm for testing the conjugate gradient algo-
rithm.
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n | 2500 | 10 000 | 40 000 | 1 000 000 | 4 000 000
K 13 12 11 9 8

Table 10.6. The number of iterations K for the averaging problem on a
Vn x \/n grid for various n

n 2500 | 10 000 | 40 000 | 160 000
K 80 160 321 647
K/\n| 16 16| 1.61 1.62

Table 10.7. The number of iterations K for the Poisson problem on a
Vn X \/n grid for various n

Algorithm 10.5 (Testing Conjugate Gradient )
A = tridiag,, (a,d,a) ® I, + I, ® tridiag,, (a,d,a) € R™ ™

function [V,K]=cgtest(m,a,d,tol,itmax)
R=ones(m)/(m+1)~"2; rho=sum(sum(R.*R)); rhoO=rho; P=R;
V=zeros(m,m); Tl=sparse(tridiagonal(a,d,a,m));
for k=1:itmax

if sqrt(rho/rho0)<= tol

K=k; return

end

T=T1*P+P*T1; a=rho/sum(sum(P.*T)); V=V+a*P; R=R-axT|;

rhos=rho; rho=sum(sum(R.*R)); P=R+(rho/rhos)*P;
end
K=itmax+1;

Consider first the averaging matrix given by a = 1/9 and d = 5/18. Starting
with (®) = 0 and tol = 10~8 we obtain the values in Table 10.6.

The convergence is quite rapid. Note that each iteration only requires O(n)
flops and since it appears that the number of iterations can be bounded indepen-
dently of n, we solve the problem in O(n) operations. This is the best we can do
for a problem with n unknowns.

Consider next the Poisson problem corresponding to a = —1 and d = 2. Again
starting with (©) = 0 and tol = 10~® and using C'G in the form of Algorithm 10.5
we list K, the required number of iterations, and K//n. We obtain the values in
Table 10.7.

The results show that K is much smaller than n and appears to be proportional
to v/n. This is the same speed as for SOR and we don’t have to estimate any
acceleration parameter.

We will show in Section 10.4 that the number of iterations to achieve ||7||2/]|7|lo <
tol is bounded by the square root of the 2-norm condition number of T's.
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For the averaging problem it follows from (4.22) that the largest and smallest
eigenvalue of Ty are \,qz = g + %cos (wh) and Apin = g — %cos (wh). Thus

Amaz D+ 4cos(mh)

A (T5) = S =
condy(T'2) Amin 5 — 4cos(mwh)

<9.

Thus the condition number is independent of n and the number of iterations can
be bounded independently of n.
For the Poisson problem we find

Amaz 1+ cos(mh)
Amin 1 —cos(mh)

conds(Ts) = = condz(T) = O(n)

and we solve the discrete Poisson problem in O(n®/?) flops. Again this is the same
as for the SOR method and for the fast method without the FFT. In comparison
the Cholesky Algorithm requires O(n?) flops both for the averaging and the Poisson
problem.

10.3 Derivation and Basic Properties

Let A € R™"™ be symmetric positive definite. We will use two inner products on R™
L (2,y) = 2"y
2. (z,y) =z Ay.

The first product is the usual inner product corresponding to the Euclidian norm,
while the second product, called the A-product or the energy product, is an inner
product since A is symmetric positive definite.

Exercise 10.8 Show that the A-inner product is an inner product.

We note that
(z,y) = (z, Ay) = (Az,y).
The associated norm
[z]|a ==V (z, x)
is called the A-norm or energy norm of x. Two vectors x,y € R" are orthog-
onal if (z,y) = 0 and A-orthogonal if (x,y) = 0.
Suppose (@ € R™ is an initial approximation to the solution of the linear

system Ax = b and let r(© := b — Az be the corresponding residual. We
consider the Krylov subspaces W;, of R" defined by Wy = {0} and

Wy = span(r(o), Ar©® A%2pO Akflr(o)), k=1,2,3,---.
The Krylov spaces are nested subspaces

WoCcW,CcWycC---CW, CR"
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e

o

(rje W)= <fW>=0 <Py, W>=0

Figure 10.10. Orthogonality in the conjugate gradient algorithm.

with dim(W) < k for all £ > 0. We also note that if w € Wy, then Aw € Wy4.
This implies
=D ph=D 2®) _ 2O cwW,, k=1,2,.... (10.5)

For since p(® = 7 and ® — 20 = q,p(® this holds for k = 1 and it holds for
any k > 1 by induction.

Theorem 10.9 Suppose 79 #0 for j =0,1,... k. Then
1. {r©@ @ "B s an orthogonal basis for Wi 1.

2. {p©, pM ... p®} is an A-orthogonal basis for Wy 1.

Proof. We show using induction on k that

1 {r©@ @ . ¢®1}is an orthogonal basis for Wy ;.
2.
=L ) p
G — o) NP 6y

Thus, {p(o), e p(k)} is the result of applying the Gram-Schmidt orthogonalization
process to the linearly independent residuals {r(?), ... ()} using the inner product
(+,+) (cf. Theorem A.50).

The claims hold for k = 0. If they hold for k then (r(*) () = (p(®) p()) =0
fori < k. For j =0,1,...,k

(r*+D 20y = (8 — oy Ap®) ()
— (r(k)’r(j)) _ ak<p(k),p(j) _ 5j_1p(j71)>
= (r®) r@)) — oy (p®) pO))y.

This is zero for j < k and vanishes for j = k by the formula for a;. Since 70) is
nonzero and r(¥) e Wjt1 C Wy for j <k Claim 1. follows.
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By what we have shown (r(*+1) 4w) = 0 for w € Wy,. But then (r(#+1) p®) =
0 for i < k—1 since p@ € Wit1 C Wy fori < k—1. Now (10.6) follows for j = k+1
since

k i
p(41) _ZM @ _ oty _ ("D p®)
L p@ p@) P ®,p®) P

7=

(k)

k+1) (T(k+1)7Ap(k))

T ™ phy P

(D) (B) _ g (k41))
o (p), p(k))

_ ) (T(k+1)7r(k+1))p
(r(F) (k)

_ b1 4 g p(R) — pet),

_ (k)

_ (kD) _ (k)

p

(k)

Since any w € W}, is a linear combination of {7 () »(*=D1 and also
{p©@ pMW . p*=D} Theorem 10.9 implies

(r® w) = (p*) w) =0, weW,. (10.7)

These orthogonal properties are illustrated in Figure 10.10.
The orthogonality of the residuals implies the following best approximation
property of the sequence of iterates{w(k)} in the conjugate gradient algorithm.

Corollary 10.11 Suppose Ax = b, where A € R™" is symmetric positive definite
and {m(k)} is generate by the conjugate gradient algorithm. Then ) — 2(©) s the
best approzimation to x — (9 in the A-norm

—2®| 4 = mi — 2 — . 10.8
|z — 2|4 wﬂé@kllw o —wla (10.8)

Proof. By (10.7)
0= (r(k),w) = (A:B - Am(k),w) = <2’IZ - w(k)7w> = <’U _paw>7 w e ka

where v := x — (©) and p := z*) — z(®, By (10.5) it follows that p € Wy. Thus,
p is the A-orthogonal projection of v into Wy, and since v —p = x —x*) the result
follows from Theorem A.52. O

Exercise 10.12 Consider the linear system Ax = b where

2 -1 0 4
A=| -1 2 =1 |, and b= 0
0 -1 2 0
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a) Determine the vectors defining the Krylov spaces for k < 3 taking as initial

4 8 20
approzimation & = 0. Answer: [b, Ab, A*b]=| 0 —4 —16
0 0 4

b) Carry out three CG-iterations on Ax = b. Answer:

0 2 8/3 3
[m(O)vw(l)’J,@),m(S)]: 0 0 4/3 2 |,
00 01
[4 0 0 0
@M 2@ 2Bl =0 2 0 0],
| 0 0 4/3 0
8 0 0
[ap®, apV apP] = | —4 30|,
0 —2 16/9
4 1 4/9 0
P, pM p@ p® =10 2 8/9 0|,
0 0 12/9 0

c) Verify that

o dim(Wy)=Fk fork=0,1,2,3.

) is the exact solution of Ax = b.

o #(O . r®=1) s an orthogonal basis for Wy, for k =1,2,3.
PO ... p¥=Y is an A-orthogonal basis for Wy, for k =1,2,3.
{||l=® ||} is monotonically decreasing.

{|=®) — ||} is monotonically decreasing.

Exercise 10.13 Study the proof of Lemma 10.21 which shows that for the FEu-

clidean norm
e+ — |y < [|a® — @]y, k> 1.

Exercise 10.14 Consider solving the least squares problem by using the conjugate
gradient method on the normal equations AT Az = ATb. Explain why only the
following modifications in Algorithm 10.4 are necessary

1. r=A’(b-A*z); p=r;
2. a=rho/(t’*t);
3. r=r-a*A’*t;

Note that the condition number of the normal equations is condy(A)?, the square of
the condition number of A.
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10.4 Convergence
The main result in this section is the following theorem.

Theorem 10.15 Suppose we apply the conjugate gradient method to a symmetric
positive definite system Ax = b. Then the A-norms of the errors satisfy

le—a®lla _ (Vi1
=<2
[l —xO||a ~ VE+1

where kK = conds(A) = Mpaz/Amin 18 the 2-norm condition number of A.

k
) , for k>0,

This theorem explains what we observed in the previous section. Namely that
the number of iterations is linked to \/k, the square root of the condition number of
A. Indeed, the following corollary gives an upper bound for the number of iterations
in terms of \/k.

Corollary 10.16 If for some € > 0 we have k > 1log(2)\/k then % <e.

We prove Theorem 10.15 for 2(®) = 0. By Corollary 10.11 ) is the best
approximation to the solution x in the A-norm. We convert this best approxi-
mation property into a best approximation problem involving polynomials. In the
following we let I denote the class of univariate polynomials of degree < k with
real coefficients.

Theorem 10.17 Suppose Ax = b where A € R™" is symmetric positive defi-

nite with eigenvalues A1, . .., Ap and corresponding orthonormal eigenvectors uy, us,
.oy Up. Then
(k)12 —
Tr—x min 10.9
e~ = min 320 o (10.9)
Q(0)=1J=1

where the o;’s are the coefficients when b is expanded in terms of the basis of
eigenvectors of A, b=3""_, oju;.

Proof. If w € Wy, = span(b, Ab, ..., Ak_lb) then for some ag, ..., a1

k—1
w="> a;A’b=P(A)b,
j=0

where
P(A) = a01+a1A+a2A2 +"'+ak71Ak_1

is a matrix polynomial corresponding to the ordinary polynomial P(t) = ag+ a1t +
coFap_1tF1 of degree < k — 1. Then

|z —w|} = (az—w A(:c—w))
= (A7 (b— Aw),b— Aw)
= (A7Y( 1 b AP(A)b b— AP(A)b)
= (

) (10.10)
AT'Q(A)D Q(A)b)),
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where Q(A) = I — AP(A) is another matrix polynomial corresponding to the
polynomial Q(t) = 1 — tP(¢). Observe that Q@ € II; and Q(0) = 1. Using the
eigenvector expansion for b we obtain

Z%Q ZOJQ (10.11)

The last equality follows from (D.3). We also have

ATIQ(A)u; = QN ) A Ty = Sy, (10.12)

Combining (10.10),(10.11), and (10.12) we find
[z —wll% = (A7 Q(A)b, Q(A)b)
(A

= (ZUZ /\,i)ui’ZUjQ(Aj)uj>
i=1 v j=1

Q(Ai)Q(A; N ,Q(N)?
:ZO’ini( ll< )<ui,Uj):ZO'j ()\]) .

j=1

Minimizing over w is the same as minimizing over all Q € II; with Q(0) = 1 and
the proof is complete. 0O

We will use the following weaker form of Theorem 10.17 to estimate the rate
of convergence.

Corollary 10.18 Suppose [a,b] with 0 < a < b is an interval containing all the
eigenvalues of A. Then for all Q € II;, with Q(0) = 1 we have

|z —2™||a
20|, = 2%, 0@

Proof. In the proof of Theorem 10.17 we showed that to each w € Wy there
corresponds a polynomial @ € Iy with Q(0) = 1 such that

. o2 Q()‘j)2 )
J /\j

[l — ][} =
j=1

2
Taking w = x(*) we find ||z — 2 ||% = 2?21 % Therefore, by Theorem 10.17 for
any w € Wy,

3

2

J: — 202

< max = s, Q)P lle 2”1
g

e — M5 < [le —w|} < max |Q(z)]”

and the result follows by taking square roots. 0O
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We will apply Corollary 10.18 with Q(x) a suitably shifted and normalized
version of the Chebyshev poynomial. Recall that the Chebyshev polynomial of
degree n is defined recursively by

Tpar(t) = 2T (t) — To1(t), n>1

starting with Ty(¢t) = 1 and Ty (¢) = t. Thus Ta(t) = 2t% — 1, T5(t) = 4¢3 — 3t etc.
In general T;, is a polynomial of degree n. There are some convenient closed form
expressions for T;,.

Lemma 10.19 Forn >0
1. T, (t) = cos (narccos t) fort e [—1,1],

2. To(t) = 3[(t+VE=1)"+ (t+ V2 =1)"] for |t| > 1.

Proof. 1. With P,(t) = cos (narccost) we have P,(t) = cosng, where t = cos ¢.
Therefore

Poi1(t) + Pr_1(t) = cos(n+ 1) + cos (n — 1)¢p = 2 cos ¢ cos ng = 2t P, (t)

and it follows that P, satisfies the same recurrence relation as T,,. Since Py = Tj
and P; = T} we have P, =T, for all n > 0.

2. Fix t with |t| > 1 and let z,, := T,,(¢) for n > 0. The recurrence relation
for the Chebyshev polynomials can then be written

Tpy1 — 2taxy, + 1 =0 for n > 1, with zg = 1,2, = t. (10.13)

To find z,, we insert x,, = 2" into (10.13) and obtain 2" — 2t2" + 2"~! = 0 or
22 —2tz+1 = 0. Let z; and 2 be the roots of this quadratic equation. Then
2}, 28 and more generally ¢z} + co28 are solutions of (10.13) for any constants c¢;
and co. We find these constants from the initial conditions g = ¢; + ¢ = 1 and
T1 = c121 + Caz9 = t. Since z1 + 2o = 2t the solution is ¢; = ¢y = % Solving the
quadratic equation we find z; = o :=t 4+ V12 —1 and 2z = a~!. It follows that
zn, =Ty (t) = 3(a™ + a~™) which is the same as 2. O

Exercise 10.20 Show that
T, (t) = cosh(narccosh t) for |t| > 1,
where arccosh is the inverse function of coshz := (e® + e~ %) /2.
Proof of Theorem 10.15.

Proof. Let Aq,..., A\, be the eigenvalues of A and let k¥ > 0. We apply Corol-
lary 10.18 with a = min A;, b = max \;, and

Q(z) = Ty (W) /Ty (23) . (10.14)
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Note that @ is admissible since @ € II; with Q(0) = 1. By Lemma 10.19

T, (b+a—2x>
b—a
Moreover with t = (b+ a)/(b — a) we have

o +1
t+ t2— :\\;g—l’ K/:b/(l.

= max |Ty(t)| = 1. (10.15)

—1<t<1

Thus again by Lemma 10.19 we find
b+a\ 1|/(ve+1\" [ve—-1\|_1/ve+1\"

Ty | — | == > — . 10.1

k(b—a) 2[(#—1) +<\/E+1 “2\Vr—1 (10.16)

Using (10.15) and (10.16) in (10.14) completes the proof. 0O

Proof of Corollary 10.16.

Proof. The inequality
-1
£ < 672/1’
rz+1
follows from the familiar series expansion of the exponential function. Indeed, with
y=1/x we find

for = >1 (10.17)

o0 k o0
¢ ¢ 1;) k! * kz_:ly -y 2-1

and (10.17) follows. By Theorem 10.15 we then find

_ p(k) _ k
lo=a®lla _y (VE-1\" _, s
[l —xO||a ~ VE+1

Solving the inequality 2e~2%/vV# < ¢ leads immediately to the result. 0

The Euclidian norm of the residuals b — Az®) in the conjugate gradient it-
eration decreases monotonically (cf. Exercise 10.13). The following lemma shows
that the Euclidian norm of the errors & — 2(®) are also monotonically decreasing.

Lemma 10.21 Let « be the exact solution of Ax = b, define €, = x — %) for
k> 0 and let | || denote the Buclidian vector norm. If pU) # 0 for j < k then
llex+1ll2 < |l€kll2. More precisely,

2 _ 2 Hp(k)H% 2 2
el = Newlld — s (lewals + llle) (10.18)
A
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Proof. Set 4 '
pi=lrV)3 and 7= [lpY|%, j =0

and let m be the smallest integer such that ||€,,||2 = 0. Since p\) # 0 for j < k we
have dimWj_; = k 4+ 1 which implies that 7(*) # 0 and hence m > k. For j < m

J
20T — £0) 4 ajp(j) = U= ¢ aj,lp(j_l) + Osz(j) =...=20 4 Z aip(i)
i=0
so that
m—1 Py
1
€ =ax™ —20) = Z aip?, o = g (10.19)
For j > k
(p(j)7p(k)) _ (r(j)+/3j_1p(jfl)7p(k)) — Bj_l(p(jfl),p(k)) == ..m(p(k),p(k))

and since f;_1 - -- B = p;/pr we obtain

(pD, p®)y = %(pw),p(k)), j>k (10.20)

By A-orthogonality and (10.19)

m—1 m—1 m—1 m—1
12 = (@) p) N~ 10.21
€511 <; aip'”, ; aip Z ajm; = ; - (10.21)

Now

lerll3 = llexs1 + 25T — ™3 = ||epr1 + axp™|[3

(10.22)
= llexsll3 + ax (2(P™), €xy1) + arlp™]3).

and moreover

m—1
o (2(p®, €xi1) +axllp®3) "2V a2 S 0y (0, 0®) + anllp™3)
Jj=k+1

m—1

m—1 2
(10.20) Pj ||P 13 i Pj
2002 Y0 o Ip M+ anlp®) = T Z;H > 2

7r T
J=kt1 k =k Sk I

10 21
0 PR (1, 5 1 ey

Inserting this in (10.22) proves the lemma. 0O
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Chapter 11

Minimization and
Preconditioning

We continue the study of the conjugate gradient method. Recall that the rate of
convergence depends on the square root of the condition number of the coefficient
matrix. For problems with a large condition number the convergence can be slow.
For such problems a preconditioned conjugate gradient method is often used, and we
consider this method here.

The conjugate gradient method can also be used as a minimization algorithm
and we start discussing some aspects of minimization of quadratic functions.

11.1 Minimization

If A is symmetric positive definite then the quadratic function
1 T T n
Q(m)::im Az —b'z, xR

has a unique global minimum x* € R™ which is found by setting the gradient
g(x) := VQ(x) = Ax — b equal to zero (cf. Appendix G). So we find the minimum
as a solution of the linear system Ax* = b. We see also that the gradient of Q(x)
is equal to the residual of Az = b, i.e. g(x) = Az — b =r(x).

A general class of minimization algorithms for @ is given as follows:

1. Choose z(® € R,
2. For k=0,1,2,...

(a) Choose a “search direction” d®).
(b) Choose a “step length” oy.

(c) D) = 2®) 4 5. d®).

We would like to generate a sequence {x(®)} of points such that {*)} converges
quickly to the minimum « of Q.

143



144 Chapter 11.  Minimization and Preconditioning

We can think of Q(z) as a paraboloid. To see this, let A =UDU”, where U
is orthogonal and D = diag()\y,...,\,) is diagonal, be the spectral decomposition
of A and change variables to v = [vy,...,v,] == U @ and c:= UTb = [cy,...,c,].
Then

1 1 1 & =
Qx) = §wTUDUTm ~b'UU x = ivTDv —clv= B Z Ajv7 — Z Cjv;j.
j=1 j=1
In particular for n = 2 we have z := %)\11}% + %/\21}5 — c1v1] — cov9 and since A\; and
A2 are positive this is the equation for a paraboloid in (vy,ve, ) space as shown in
the following figure.

Q(=)

T1

Suppose *) ~ x*. To find a better approximation to the minimum we choose
a search direction d® and go from x*) along d® a certain distance determined

by ok. To see how o and d™ should be chosen, we note that
1
Q") = Q™) + o (™, r®) + §Uz<d(k)7 d*)y, (11.1)

where %) = Az(*) —b. Since A is symmetric positive definite, we have o7 (d(k), d(k)> >
0 for all nonzero oy, and d™. In order to make Q(z**1) smaller than Q(z®), we
must at least pick o, and d®) such that oy (d®,7(*)) < 0. For such a direction we
can determine the step length o}, = oj, such that Q(a:(k“)) is as small as possible,
ie.
Q(zFV)y = miﬁ Q(x™ + od™®).
[eAS
Differentiating with respect to o in (11.1) and setting the right-hand side equal to

zero, we find
. (@W,r®)
O—k . 7W. (11.2)
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We find 229 = (d®),d®)) > 0 = Q@™ + 51d™®)) = min,er Q@™ + 7d™®) and
k

oy, is called optimal with respect to a®.

In the method of Steepest Descent we choose d® = —r®) and of = o}, S0
that o
k) (7“( ), vl ))r(k)
(r(k) p(k) ’

The method of steepest descent will converge very slowly if A is ill-conditioned.
For then the ratio of the smallest and biggest eigenvalue becomes large and the
paraboloid becomes very distorted. In this case the residuals need not point in
the direction of the minimum. It can be shown that the number of iterations is
proportional to the two-norm condition number A4z /Amin of A.

Consider now the conjugate gradient method. Here we choose A-orthogonal
search directions d® = —p®_ Since by (10.1) z**tD = 2®) + a,p*) where
ar = (PP r)/(p*) Ap*)) we see that the step length —ay, is optimal with
respect to —p*). Moreover the gradients {r(*)} are orthogonal. Tt can also be
shown that

o (E+1)

=z k=0,1,2,.... (11.3)

Qx* )y = min Q(z® + w) (11.4)
wWEWi 41
and in the next section we show that the number of iterations is proportional to
the square root of the two-norm condition number of A. So the conjugate gradient
minimization algorithm converges much faster that the method of steepest descent
for problems where the ratio Ajaz/Amin is large.
Conjugate gradient like algorithms can be used to minimize more general
functions than @, see [15].

Exercise 11.1 Show that (r(k),'r(k"’l) = 0 in the method of steepest descent. Does
this mean that all the residuals are orthogonal?

Exercise 11.2 Let Q(x) = 7 Az — 2b” « have a minimum at * € R".
a) Show that Q(z) = ||x* — z||% — ||z*||4 for any = € R™.

b) Show (11.4).

11.2 Preconditioning

For problems Ax = b of size n where both n and condy(A) are large it is often
possible to improve the performance of the conjugate gradient method by using a
technique known as pre-conditioning. Instead of Ax = b we consider an equiv-
alent system BAx = Bb, where B is nonsingular and conds(BA) is smaller than
condz(A). We cannot use CG on BAx = Bb directly since BA in general is not
symmetric even if both A and B are. But if B is symmetric positive definite then we
can apply CG to a symmetrized system and then transform the recurrence formulae
to an iterative method for the original system Ax = b. This iterative method is
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known as the pre-conditioned conjugate gradient method. We shall see that
the convergence properties of this method is determined by the eigenvalues of BA.

Suppose B is symmetric positive definite. By Theorem 3.33 there is a non-
singular matrix C such that B = CTC. (C is only needed for the derivation and
will never be computed). Now

BAz = Bb < CT(CACT)C Tz =C"Cb e (CACT )y =Cb, & x=C"y.

We have 3 linear systems

Ax=b (11.5)
BAxz = Bb (11.6)
(CACT)yy=0Cb, & x=C"y. (11.7)

Note that (11.5) and (11.7) are symmetric positive definite linear systems. In ad-
dition to being symmetric positive definite the matrix CACT is similar to BA.
Indeed,

ct(cachc ' = BA.

Thus CAC”T and BA have the same eigenvalues. Therefore if we apply the conju-
gate gradient method to (11.7) then the rate of convergence will be determined by
the eigenvalues of BA.

We apply the conjugate gradient method to (CAC’T)y = Cb. Denoting the
search direction by ¢®) and the residual by 2(¥) = CACTy*) — Cb we obtain the
following from (10.2), (10.3), and (10.4).

y " =y L g™,y = (20,2)/(¢W, (cACT)g™),
2D = 20 o (CcACT)qP),
g+ = 24D 4 g g g (D) D ) (0.

With
2 = Ty pk) .= cTq® 0 .= TR B .= Cc7 120 (11.8)

this can be transformed into

2D = 20 4 p® .y = (s, 2 8)) /(p®) pR)y, (11.9)
P — (k) 4 ozkAp(k), (11.10)
s+ = o) 4 o, BAp®, (11.11)
pFtD) = gD g p®) g = (s (k1)) (g(R) ()Y (11.12)

Here (%) will be an approximation to the solution @ of Ax = b, r*) =
Az®*) — b is the residual in the original system and s*) = BAx®*) — Bb is the
residual in the preconditioned system. This follows since by (11.8)

r =120 =clcACTy® —b= Az — b
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and s(¥) = Tz = cTCr*) = Br(*). We now have the following preconditioned
conjugate gradient algorithm for obtaining an approximation x*) to the solution

Ogjlgqé’ﬁm%ﬂf11?3%@&%@8%13&8‘{%811@6%ﬁggte Gradient Algorithm)

1. Choose a starting vector z© (for example z0 = 0)
2. 1o = Az® — b, Py = So = Brg
3. po = (80,70); k=0
4. while \/pr/po > € & k< kmax
4.1a t, = Ap™
4.1b Wy = Btk
4.2 ax = pi/ (P 1)
4.3 gkt = z(*k) 4 akp(k)
440 v = ¢ ® Loty (r® = Az®) — b)
4.4b s = s 4wy, (s = BAz®) — Bb)

4.5 Phil = (S(k‘+1)’,,,(k‘+l))

4.6 piHD) = s 1) 4 PREL (k)
Pk

47Tk=k+1

This algorithm is quite similar to Algorithm 10.4. The main additional work
is contained in statement 4.1b. We’ll discuss this further in connection with an
example.

We have the following convergence result for this algorithm.

Theorem 11.4 Suppose we apply a symmetric positive definite preconditioner B to
the symmetric positive definite system Ax = b. Then the quantities x*) computed
in Algorithm 11.3 satisfy the following bound:

[z — 2" || 4 VE—1
- <2
[l —xO||a ~ VE+1

where K = Apaxz/Amin 18 the Tatio of the largest and smallest eigenvalue of BA.

k
> , for k>0,

Proof. Since Algorithm 11.3 is equivalent to solving (11.7) by the conjugate gra-
dient method Theorem 10.15 implies that

_ k) _ k
lly —y ||CACT§2<\/E 1>  for k>0,
lly — yollcacr VE+1

where y(*) is the conjugate gradient approximation to the solution y of (11.7 ) and Kk
is the ratio of the largest and smallest eigenvalue of CACT . Since BA and CACT
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are similar this is the same as the x in the theorem. By (11.8) we have

ly =y P2 40r = (y —y®,CACT (y — y™))
=(CT(y —y"), ACT (y —y™)) = |z — 2P|}

and the proof is complete. 0O

We conclude that B should satisfy the following requirements for a problem
of size n:

1. The eigenvalues of BA should be located in a narrow interval. Preferably one
should be able to bound the length of the interval independently of n.

2. The evaluation of Bx for a given vector x should not be expensive in storage
and flops, ideally O(n) for both.

11.3 Preconditioning Example

Throughout this section we use the same grid and notation as in Section 2.4. Let
h=1/(m+1).
We recall the Poisson problem

0%u 0%

— 2 —_—
Viu ox?  0Oy?

= f(z,y) for (z,y) €= (0,1)2 (11.13)

u = 0 on 09,

where f is a given function, €2 is the unit square in the plane, and 052 is the boundary
of Q. For numerical solution we have the discrete Poisson problem which can
either be written as a matrix equation

2 .
hofie =40jk —Vj—1k —Vjt1k — Vjk—1 — Vjkt1, Jk=1,...,m
V0,k = Um+1,k = Vj,0 = Vjm+1 = 0, ],k‘ =0,1,....m+1,

or as a system A,x = b, where = vec(v; ), b = h*vec(f; ;) and the elements a; ;
of A, are given by

(0777 :4, izl,...,n
Giy1i = Qiiy1 = —1, i=1,...,n—1, i#m2m,...,(m—1)m
Qitm,i = Qi i+m = —1, 1= 1,...,n—m

ai; =0, otherwise.

11.3.1 A Banded Matrix

Consider the problem

L0 (o) 28) — 2 ()20 = flx m (0.1
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Here Q is the open unit square while 0f2 is the boundary of €2. The functions f
and c¢ are given and we seek a function u = u(x,y) such that (11.14) holds. We
assume that ¢ and f are defined and continuous on  and that c(z,y) > 0 for all
(z,y) € Q. The problem (11.14) reduces to the Poisson problem in the special case
where c(z,y) =1 for (z,y) € Q.

As for the Poisson problem we solve (11.14) numerically on a grid of points

{(jh,kh): 4, k=0,1,...,m+ 1}, where h=1/(m+1),

and where m is a positive integer. Let (x,y) be one of the interior grid points. For
univariate functions f, g we use the central difference approximations

0 0 h, 0 h, 0 h
g (105390) ~ (e + ) Faten2) - = HJate— D) m
h h
~ (10 Plate+m) - ) = 1= a0 - e~ ) ) 1
to obtain
Q(c@) Gt Witk = k) = o1 k(g — V1)
Oz \ dalik h2
and
0, ouy _ Ciart (Wi = Uik) = ¢ 1 (Vik —vjh-1)
@(C@)j7k ~ R2 '

where ¢, o = c(ph, gh) and v, = u(jh, kh). With these approximations the discrete
analog of (11.14) turns out to be

_(PhU)_j,k = hzfj,k j’k;: 1,...,m

vie = 0 P—om+tlallkork=0m+1anj (115
where
—(Prv)ie = (Cr—1 +¢ 1k + ¢ n+Cr1)vk
TG k—1Vik—1 7 G L gVi-1k — Cigp L gVit1k — Gk L Ujk41
(11.16)

and f;r = f(jh, kh).

As before we let V' = (v; ) € R™™ and F = (f; ;) € R™™. The correspond-
ing linear system can be written Az = b where = vec(V), b = h?vec(F), and
the n-by-n coefficient matrix A is given by

Qi = Cjg—3 TG L, T C e T C gl 1= 12,000m
Qit1,i = Qi1 = —Cj4 1, tmodm # 0
Qitm,i = Giitm = —Cj, g4 1, 1=1,2,...,n—m
a;; = 0 otherwise,

(11.17)
where (j;, k;) with 1 < j;,k; < m is determined uniquely from the equation ¢ =
Ji+ (ki—1)ymfori=1,...,n. When ¢(x,y) =1 for all (z,y) € 2 then we recover
the Poisson matrix.
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In general we cannot write A as a matrix equation of the form (4.15). But we
can show that A is symmetric and it is positive definite as long as the function c is
positive on . Recall that a matrix A is positive definite if 7 Ax > 0 for all = # 0.

Theorem 11.1 If ¢(z,y) > 0 for (z,y) € Q then the matriz A given by (11.17) is
symmetric positive definite.

Proof.
To each x € R™ there corresponds a matrix V' € R™™ such that z = vec(V).
We claim that

m m m

m
xTA:c = Z ch,k-&-% (Uj7k+1 - Uj7k->2 + Z ch-i-%,k ('Uj+1,k - Uj,k)Q, (11.18)

j=1k=0 k=1j=0

where vo i = Um41,k = Vj,0 = Vjmy1 = 0 for j,k=0,1,...,m+ 1. Since Cjy1p and
it d correspond to values of ¢ in 2 for the values of j, k in the sums it follows that
they are positive and from (11.18) we see that 7 Az > 0 for all x € R™. Moreover
if T Az = 0 then all quadratic factors are zero and Vjk+1 = Vi, for k=0,1,...,m
and j = 1,...,m. Now vj9 = vjm+1 = 0 implies that V = 0 and hence z = 0.
Thus A is symmetric positive definite.

It remains to prove (11.18). From the connection between (11.16) and (11.17)
we have

T Az =

NE
NE

—(Prv)jkvk

~

Il
-
£

Il
—

I
Mz
NE

<

Il
-
B

Il
—

2 2 2 2
<Cj,k—;”j,k t 1 kVik T Cipl kVik T Gkt 1Sk
T Cjk— 3 Vi k—1Y5k T Cj k4 L U5,k Vg k41
= Cj—1 kVi—1,kVjk — Cj+;,kvj,kvj+1,k)-

Using the homogenous boundary conditions we have

Jj=1k=1 j=1 k=0
m m m m

Z Z cj;k*%vj:kflvj’k = E E Cj’k+%vj7k+lvj’k:’
j=1k=1 =1 k=0
m m m m

2 2
Ci—$.kY5k = i kVi+1ko

j=1k=1 k=1 j=0
m.om m m

chj—%,kvj—,kvj,k = Cjt 1 kVj+1,kVj k-
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n 2500 | 10000 | 22500 | 40000 | 62500
K 222 | 472 | 728 | 986 | 1246
K/Jn | 444 472 | 485 | 493| 498
Kpre 22 23 23 23 23

Table 11.2. The number of iterations K (no preconditioning) and Kp.
(with preconditioning) for the problem (11.14) using the discrete Poisson problem
as a preconditioner.

It follows that

m m
z’ Az = Z Z it (Vi + V5 g1 — 205 105041)
J=1 k=0
m m
2 2
+ 30D e k(O + Vs — 208050 1)
k=1j=0

and (11.18) follows. O O

11.3.2 Preconditioning

Consider solving Ax = b, where A is given by (11.17) and b € R™. Since A is
positive definite it is nonsingular and the system has a unique solution z € R™.
Moreover we can use either Cholesky factorization or the block tridiagonal solver to
find . Since the bandwidth of A is m = \/n both of these methods require O(n?)
flops for large n.

If we choose ¢(x,y) =1 in (11.14), we get the Poisson problem (11.13). With
this in mind, we may think of the coefficient matrix A, arising from the discretiza-
tion of the Poisson problem as an approximation to the matrix (11.17). This sug-
gests using B = A, 1 the inverse of the discrete Poisson matrix as a preconditioner
for the system (11.15).

Consider Algorithm 11.3. With this preconditioner Statement 4.1b can be
written A wy, = t.

In Section 5.2 we developed a Simple fast Poisson Solver, Cf. Algorithm 5.1.
This method can be utilized to solve A,wj, = ts.

Consider the specific problem where

e(a,y) = e and f(a,y) = 1.

We have used Algorithm 10.4 (conjugate gradient without preconditioning),
and Algorithm 11.3 (conjugate gradient with preconditioning) to solve the problem
(11.14). We used (® =0 and ¢ = 10~%. The results are shown in Table 11.2.

Without preconditioning the number of iterations still seems to be more or
less proportional to 4/n although the convergence is slower than for the constant



152 Chapter 11.  Minimization and Preconditioning

coefficient problem. Using preconditioning speeds up the convergence considerably.
The number of iterations appears to be bounded independently of n. This illustrates
that preconditioning is needed when solving nontrivial problems.

Using a preconditioner increases the work in each iteration. For the present
example the number of flops in each iteration changes from O(n) without precondi-
tioning to O(n/2) or O(nlogyn) with preconditioning. This is not a large increase
and both the number of iterations and the computing time is reduced drastically.

Let us finally show that the number £ = Anaz/Amin Which determines the
rate of convergence for the preconditioned conjugate gradient method applied to
(11.14) can be bounded independently of n.

Theorem 11.3 Suppose 0 < c¢g < c(z,y) < ¢1 for all (z,y) € [0,1]%. For the
eigenvalues of the matric BA = A;lA just described we have

A’I"I’LG,I < g

KR =

Amin Co

Proof.
Suppose A;lA:c = Az for some x € R™\{0}. Then Az = AA,z. Multiplying
this by 7 and solving for A we find

T Ax

A= 2 AT
T Ay

We computed ? Az in (11.18) and we obtain 7 A,z by setting all the ¢’s there
equal to one

alApr = > (vij1 — vig) + >

i=1 j=0 Jj=11

(vi+17j - vz:j)Q'

NE

I
o

Thus 7 A,z > 0 and bounding all the ¢’s in (11.18) from below by ¢y and above
by ¢; we find
co(zT Apr) < 2T Az < ¢ (2" Apz)

which implies that ¢ < A < ¢ for all eigenvalues A of BA = A 'A. 0
Using c(z,y) = e Y as above, we find ¢g = e™2 and ¢; = 1. Thus k < €% =~

7.4, a quite acceptable matrix condition which explains the convergence results from
our numerical experiment.
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Chapter 12

Orthonormal
Transformations

Transformations by elementary lower triangular matrices is used in Gaussian elim-
ination to reduce a matrix to triangular form (cf. Appendix E). Elementary lower
triangular matrices are not the only kind of transformations which can be used
for such a task. In this chapter we study how transformations by orthogonal ma-
trices can be used to reduce a rectangular matrix to upper triangular (also called
upper trapezoidal) form. This lead to a decomposition of the matrix known as a
QR decomposition and a compact form which we refer to as a QR factorization.
Orthonormal transformations have the advantage that they preserve the Euclidian
norm of a vector, and the spectral norm and Frobenius norm of a matrix. Indeed,
it @ € R™™ is an orthogonal matrix then ||Qu|l2 = |[v|2, [|QA]2 = ||All2, and
IQA|F = ||A| F for any vector v € R™ and any matrix A € R™", (cf. Lemma 8.10
and Theorem 8.28). This means that when an orthogonal transformation is applied
to an inaccurate vector or matrix then the error will not grow. Thus in general an
orthogonal transformation is numerically stable. The QR factorization can be used
to solve least squares problems and linear equations. We consider linear equations
in this chapter and least squares problems in Chapter 13.

12.1 The QR Decomposition and QR Factorization.

Definition 12.1 Let A € C™"™ with m > n > 1. We say that A = QR is a QR
decomposition of A if Q € C™™ is square and unitary and

_ | R

where Ry € C™" is upper triangular and 0y,—p , € C7™" is the zero matriz. We
call A = QR a QR factorization of A if Q € C™" has orthonormal columns
and R € C™™ is upper triangular.

A QR factorization is obtained from a QR decomposition A = QR by simply
using the first n columns of @ and the first n rows of R. Indeed, if we partition @

155
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as [Q1,Q,] and R = [f ], where Q; € R™" and Ry € R™" then A = Q, R, is a
QR factorization of A. On the other hand a QR factorization A = Q,R; of A can
be turned into a QR decomposition by extending the set of columns {qy,...,q,,} of
Q) into an orthonormal basis {qy,...,q,,q,1,---,q,} for R™ and adding m —n
rows of zeros to R;. We then obtain the QR decomposition A = QR, where

Q=lgy,...,q,) and R= [%1].

Example 12.2 An example of a QR decomposition is

1 3 1 1 1 -1 -1 2 2 3
1 3 7/ 1|11 1 1 1 0 4 5

A=11 1 47301 -1 21 1] %o o ¢ =9
1 -1 2 1 -1 1 -1 00 0

while a QR factorization A = Q, Ry is obtained by dropping the last column of Q
and the last row of R so that

1 -1

|
2 2 3
1
Y N A RN N )
211 -1 -1 00 6
T

Consider existence and uniqueness.

Theorem 12.3 Suppose A € C™™ with m > n > 1. Then A has a QR decom-
position and a QR factorization. The QR factorization is unique if A has linearly
independent columns and R has positive diagonal elements.

Proof. The general case can be proved using Householder transformations, see
Theorem 12.19. Suppose A € R™™ has linearly independent columns. By Corol-
lary 3.24 the matrix AT A is symmetric positive definite, and by Theorem 3.32
it has a Cholesky factorization ATA = R R, where R € R™" is upper trian-
gular and nonsingular. The matrix Q := AR~ has orthonormal columns since
Q"Q=R"A"AR'=R "R"RR ' =1. Butthen A= QR isa QR factor-
ization of A. This shows existence. For uniqueness, if A = QR is a QR factorization
of A and R has positive diagonal elements then A7 A = R"QTQR = R" R is the
Cholesky factorization of A7 A. Since the Cholesky factorization is unique it follows
that R is unique and hence Q = AR ! is unique. 0O

The QR factorization can be used to prove a classical determinant inequality.

Theorem 12.4 (Hadamard’s Inequality) For any A = [aq,...,a,] € C™ we
have

|det(A)] < HHaj”Z- (12.1)

Equality holds if and only if A has a zero column or the columns of A are orthogonal.
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Proof. Let A = QR be a QR factorization of A. Since

1 =det(I) = det(Q*Q) = det(Q*) det(Q) = |det(Q)|?
we have |det(Q)| = 1. Let R = [r1,...,7,]. Then (A*A);; = ||la;||3 = (R*R),; =
|‘Tj||%ﬂ and

|det(A)| = |det(QR)| = |det(R)| = [ T1ri;| < [lIrsll = T llasll-
j=1 j=1 j=1

The inequality is proved. If equality holds then either det(A) = 0 and A has a zero
column, or det(A) # 0 and r;; = ||7;||2 for j = 1,...,n. This happens if and only
if R is diagonal. But then A*A = R* R is diagonal, which means that the columns
of A are orthogonal. 0O

Exercise 12.5

1 2 1 1 1 1 2 2
1 2 1 1 -1 -1 0 2
A*10’Q*’1—1—1 1’R*00
1 0 1 -1 1 -1 0 0

Show that Q is orthogonal and that QR is a QR decomposition of A. Find a QR
factorization of A.

12.1.1 QR and Gram-Schmidt

The Gram-Schmidt orthogonalization of the columns of A can be used to find the
QR factorization of A.

Theorem 12.6 Suppose A € R™"™ has rank n and define

Jj=1 T
G,j V; i
v = ay, ’l)j:ajizﬁvi, fOT]:27...,7l. (122)
i=1 1 "
Let
v
Ql = [qla"'aqn}v qj: HU‘||2’ .7_]-, 7n7
J
[v1ll2 aval a3TU1 az,lvl a,{vl
0 Jvill afwvs -+ af_jv2  ajvo (12.3)
R, = :
||'Un71||2 a;z:vnfl
[vnll2

Then A = QR is the unique QR factorization of A.
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Proof. @, is well defined and with orthonormal columns since by Theorem A.50
{q1,--.,4,} is an orthonormal basis for span(A). That A = Q,R; follows by
writing (12.2) in the form
j—1
ay = [lvil2qy, a; = Z(afvi)qi + lvjll2g;, 5=2,...,n

i=1

Clearly R; has positive diagonal elements and the factorization is unique. 0O

Exercise 12.7 Construct Q, and Ry in Example 12.2 using Gram-Schmidt or-
thogonalization.

12.2 The Householder Transformation

The Gram-Schmidt orthogonalization process should not be used to compute the QR
factorization numerically. The columns of @; computed in floating point arithmetic
using Gram-Schmidt orthogonalization will often be far from orthogonal. There is
a modified version of Gram-Schmidt which behaves better numerically, but this will
not be considered here, see [2]. Instead we consider Householder transformations.

Definition 12.8 A matrix H € R™" of the form
H :=1—uu’, where u € R" and ul'u =2

is called a Householder transformation. The name elementary reflector is
also used.

— 2 —
For n = 2 we find H = { 1u2uu11 ;“522 } . A Householder transformation is symmetric
- — U2

and orthogonal. Indeed, H” = (I —uu”)” = H and
H"H = H?> = (I —vu")(I —vu”) = T - 2uu” + u(uTu)u? =1

There are several ways to represent a Householder transformation. House-

holder used I — 2uu”, where u”u = 1. For any nonzero v € R” the matrix
T
VU
H:=1I-2—— 12.4
oo (12.4)

N
. T ol
The main use of Householder transformations is to produce zeros in vectors.

We start with

is a Householder transformation. In fact H = I — uuT, where u := v/2

Lemma 12.9 Suppose ¢,y € R™ with ||z|2 = |ly|l2 and v := x —y # 0. Then
T

(I — 2:}’%)30 =y.

v
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X+Yy

y=Hx

X
Figure 12.1. The Householder transformation

T

Proof. Since x7x = yTy we have

viv=(x—y) T (x—y) =22Tx - 2y"Tx = 20" . (12.5)

But then (I—Q%)w:w—%’;fv:w—v:y. ]

A geometric interpretation of this lemma is shown in Figure 12.1. We have

2vvT voT voT
H:If UTU :me,WhereP::Ifm,
and "
v'xT  (12.5) 1 1
Pr=x—- —=— = — == .
T=T = v T— V=g (x+y)

It follows that Hx is the reflected image of . The mirror contains the vector  +y
and has normal x — y.

Exercise 12.10 Show that |x||2 = |ly|l2 implies that x — y is orthogonal to x +y
and conclude that Px is the orthogonal projection of  into the subspace span(z+y).

We can introduce zeros in components 2,3, ... in a vector « by picking o? =
7z and y := ae; in Lemma 12.9. The equation o? = z”Tx has two solutions
a = +||z|l2 and @ = —||z|2. We want to develop an algorithm which defines a

Householder transformation for any nonzero . We achieve this by choosing a to
have opposite sign of 1. Then v; = 1 — a # 0 so v # 0. Another advantage of
this choice is that we avoid cancelation in the subtraction in the first component of
v =« — aep. This leads to a numerically stable algorithm.

Lemma 12.11 For a nonzero vector @ € R™ we define

o= Ml i e>0 (12.6)
+||x|l2  otherwise,
and
H =1 —vu” withu = zja—er (12.7)

V1i—zi/a

Then H is a Householder transformation and Hx = «e;.
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Proof. Let y :== ae; and v :=x —y. If 1 > 0 then y; = a < 0, while if z; <0
then y; = a > 0. It follows that 27z = y"y and v # 0. By Lemma 12.9 we have
Hx = aey, where H =1 — 2% is a Householder transformation. Since

0<viv=(x—ae)(x—ae) =z"x -2z, + o = 2a(a — 27),

we find
_ _ T _ o \T
H_1_ 2(x — aey)(x — aey) _7_ (x/a—e1)(x/a—eq) P
20(a — x1) 1—az1/a
a
Example 12.12 For z := [1,2,2]7 we have |||z = 3 and since z1 > 0 we choose

[
a=-3. We findu=—[2,1,1]T/V/3 and

1 [2 [ -2 -2
H=I-7|1 2 1 1]25 -2 2 -1
1 -2 -1 2

The formulas in Lemma 12.11 are implemented in the following algorithm
from [17].

Algorithm 12.13 (Generate a Householder transformation) To given
x € R" the following algorithm computes a = « and the vector u so that
(I —uul)z = ae;.

function [u,a]l=housegen (x)
a=norm(x); u=x;
if a==

u(l)=sqrt(2); return;

end

if u(1)>0
a=-a;

end

u=u/a; u(1l)=u(l)-1;
u=u/sqrt (-u(1));

If £ = 0 then any w with ||ullz = v/2 can be used in the Householder trans-
formation. In the algorithm we use u = \/iel in this case.

Exercise 12.14 Determine H in Algorithm 12.13 when © = e;.

Householder transformations can also be used to zero out only the lower part

of a vector. Suppose y € RF, z € R*" % and o? = 272. Consider finding a

Householder transformation H such that H [¥] = [,%,]. Let @ and « be the
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output of Algorithm 12.13 called with & = z, i.e., [&, @] = housegen(z) and set
T =07, 4"]. Then

s fo  )

where H = I —aa”. Since uTu = @74 = 2 we see that H and H are Householder
transformations.

Exercise 12.15 Construct a Householder transformation Q such that Qx = y in
the following cases.

e-[t] o8]

2 0
byz=|2|, y=1|3
1 0

Exercise 12.16 Show that a 2 x 2 Householder transformation can be written in
the form

o-|

Find Qz if x = [cos ¢,sin ¢]T.

—cos¢p sing }

sing cos¢

Exercise 12.17 a) Find Householder transformations Q,, Q5 € R33 such that

1 0 1
Q2Q1A = QQQl -2 -1 0
2 2 1

is upper triangular.

b) Find the QR factorization of A where R has positive diagonal elements.

12.3 Householder Triangulation

Suppose A € R™™. We treat the cases m > n and m < n separately and consider
first m > n. We describe how to find a sequence H1, ..., H, of orthogonal matrices
such that

H,H, - HA= {Iﬂ 7
and where R; is upper triangular. Here each H is a Householder transformation.
Since the product of orthogonal matrices is orthogonal and each H is symmetric
we obtain the QR decomposition of A in the form

A=QR, where Q.= H H,---H, and R := [Rl].

o (12.8)
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Define A; = A and suppose for k > 1 that Ay is upper triangular in its first £ — 1

columns so that A, = [%’“ g’;], where By € RF~1F~1 is upper triangular and

Dy, € RFHLn=ktl Tet H) = I — a4, be a Householder transformation which
zero out the first column in Dy under the diagonal, so that Hy(Dyre;) = aie;.

I,_, O B C By C
Set Hj, :— [ . HJ Then Apsr = HyA), = [Ok Hg} - [ k41 D’;ﬂ,

where By41 € RF-, s upper triangular and Dy € Rr—kn=k  Thus Ajiq is
upper triangular in its first & columns and the reduction has been carried one
step further. At the end R := A, 11 = [%1}, where R; is upper triangular and
R=H, --HH;A. Thus A=H,--- H,R and we obtain (12.8).

The process just described can be illustrated as follows when m =4 and n = 3
using so called Wilkinson diagrams.

r T x 11 Ti2 T3
r T x | Hy H, 0 722 723
T x 0 0 1733
T x X 0 0 0

_ _ B2 CQ o BS C3- . R1

Al - Dl A2 - |: 0 D2:| A3 - |: O D3_ A4 - 0

The transformation is applied to the lower right block.
The process can also be applied to A € R™"” if m < n. In this case m — 1
Householder transformations will suffice and we obtain

H,_ - -HA=[R,S]=R, (12.9)

where R; is upper triangular and S; € R™"™"™.

In an algorithm we can store most of the vectors @y = [ugg,. - . ,umk}T and
R, in A. However, the elements uy; in @, and ri, in Ry have to compete for the
diagonal in A. For m = 4 and n = 3 the two possibilities look as follows:

uir T2 Ti3 i1 Ti2 T3
U U r U r r
A= 21 22 23 or A — 21 22 23
U3zp U2 U33 U3z1 U3z2 T33
Uq1  U4q2  U4q3 Ugq1  Ugq2  Ug3

Whatever alternative is chosen the loser has to be stored in a separate vector. In
the following algorithm we store r : kk in the diagonal of A, while the vectors @
are not stored.



12.3. Householder Triangulation 163

Algorithm 12.18 (Householder Triangulation of a matrix) Suppose

A € R™" with m > n and B € R™". The algorithm uses housegen to
compute Householder transformations Hy, ..., H, where s = min(n,m — 1)
such that R = H,...H,A is upper trapezoidal and C = H,..HB. If
B =1 € R™™ then CTR is the QR decomposition of A. If B is the empty
matrix then C is the empty matrix with m rows and 0 columns.

function [R,C] = housetriang(A,B)
[m,n]l=size(A); r=size(B,2); A=[A,B];
for k=1:min(n,m-1)
[v,A(k,k)]=housegen(A(k:m,k));
C=A(k:m,k+1:n+r); A(k:m,k+1:n+r)=C-v*(v’*C);
end
R=triu(A(:,1:n)); C=A(:,n+1l:n+r);

The function housegen (x) returns a Householder transformation for any « €
R™. Thus in Algorithm 12.18 we obtain a QR decomposition A = QR, where
Q = H,...H,, is orthogonal and » = min{n,m — 1}. Thus a QR factorization
always exists and we have proved

Theorem 12.19 Any A € R™"™ has a QR decomposition and a QR factorization.

The bulk of the work in Algorithm 12.18 is the computation of C — v (vT *C)
for each k. It can be determined from the following lemma.

Lemma 12.20 Suppose A € R™", u € R™ and v € R™. The computation of
A —u(uTA) and A — (Av)vT both cost O(4mn) flops.

Proof. It costs O(2mn) flops to compute w? := u” A, O(mn) flops to compute
W = uw’ and O(mn) flops for the final subtraction A — W, a total of O(4mn)
flops. Taking transpose we obtain the same count for A — (Av)vT. O

Since C € R™FtLntr=k and m > n the cost of computing the update
C —vx* (vl % C)is 4(m — k)(n +r — k) flops. This implies that the work in
Algorithm 12.18 can be estimated as

/n 4(m —k)(n+r —k)dk = 2m(n +r)* — %(n + )3, (12.10)
0

12.3.1 QR and Linear Systems

Algorithm 12.18 can be used to solve linear systems . If A € R™" is nonsingular and
b € R" then the output will be the upper triangular matrix R = H,_1...H1 A €
R and C=c¢=H,_1..H;b e R". So

Arx =b= anl‘..HlA = anl...Hlb,

and the solution of Ax = b is found by solving the upper triangular linear system
Rx =c.
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Algorithm 12.18 can be used as an alternative to Gaussian elimination. Recall
that in Gaussian elimination we compute an LU factorization of A and then find
the solution by solving two triangular systems. The two methods are similar since
they both reduce A to upper triangular form using certain transformations.

Which method is better? Here is a short discussion

e Advantages with Householder:

— Always works for nonsingular systems.
— Row interchanges are not necessary.

— Numerically stable.
o Advantages with Gauss

— Half the number of flops compared to Householder.
— Row interchanges are often not necessary.
— Usually stable, (but no guarantee).

— In general better than Householder for banded and sparse matrices.

Linear systems can be constructed where Gaussian elimination will fail nu-
merically even if row interchanges are used. On the other hand the transforma-
tions used in Householder triangulation are orthogonal so the method is quite
stable. So why is Gaussian elimination more popular than Householder triangu-
lation? One reason is that the number of flops in (12.10) when m = n is given
by 2n(n + 1)% — 2(n + 1)* &~ 2n® — 2n® = 4n3/3, while the count for Gaussian
elimination is half of that. Numerical stability can be a problem with Gaussian
elimination, but years and years of experience shows that it works well for most
practical problems and pivoting is often not necessary. Tradition might also play a
role.

12.4 Givens Rotations

In some applications, the matrix we want to triangulate has a special structure.
Suppose for example that A € R™" is square and upper Hessenberg as illustrated
by a Wilkinson diagram for n =4

T x
T x
T x

A:

oo 8 8
8 8 8 8

0 =

Only one element in each column needs to be annihilated and a full Householder
transformation will be inefficient. In this case we can use a simpler transformation.

Definition 12.21 A plane rotation (also called a Given’s rotation) is a matriz
of the form

P:—[C 8}, where ¢® + 5% = 1.
s ¢
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0
y=Px

Figure 12.2. A plane rotation.

A plane rotation is orthogonal and there is a unique angle 6 € [0, 27) such that ¢ =
cos f and s = sin §. Moreover, the identity matrix is a plane rotation corresponding
to 8 = 0.

Exercise 12.22 Show that if x = [ 555 ] then Px = {TCOS (a—9):| . Thus P rotates

rsina rsin (a—0)

a vector x in the plane an angle 0 clockwise. See Figure 12.2.

Suppose

x x x
T = [ml] £0, ci=", s:=2 =z
2 r

szl x1 wo| (@] _ 1 22 + 22 _|r
r|—T2 x1| |T2 r 0 0]’
and we have introduced a zero in &. We can take P = I when x = 0.
For an n-vector # € R” and 1 <+¢ < j < n we define a rotation in the ¢, j-

plane as a matrix P;; = (pr;) € R™" by pr = d except for positions i, jj, 14, ji,
which are given by

Then

{p“ pii} = [ ¢ S} , where ¢? + s = 1.
Pji Djj -5 c

Premultiplying a matrix by a rotation in the 4, j plane changes only rows ¢ and
4 of the matrix, while postmultiplying the matrix by such a rotation only changes
column 7 and j. In particular, if B = P;;A and C = AP;; then B(k,:) = A(k,:),
C(:, k) = A(:, k) for all k # 4, j and

Al =oAL leen ot = taca aca) | S 3

-5 ¢ -5 ¢
(1211)
An upper Hessenberg matrix A € R™" can be transformed to upper triangular
form using rotations P;;4q for ¢ = 1,...,n — 1. For n = 4 the process can be

illustrated as follows.

rx T Py 7‘(1)1 T12 T13 T14 Pos
_ |z x x T
A= 8362 4 0 =z z =z %
x

T11 712 T13 T14 T11 T12 T13 T'14
0 722 723 T24 134 0 722 T23 T24
0

0 0 =z =«

z T 0 0 733 r3a
0 0 z = 0 0 0 744

8888

For an algorithm see Exercise 12.23.
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Exercise 12.23 Let A € R™" be upper Hessenberg and nonsingular, and let b €
R™. The following algorithm solves the linear system Ax = b using rotations P, ;11
fork=1,....,n— 1. Determine the number of flops of this algorithm.

Algorithm 12.24 (Upper Hessenberg linear system) Suppose A € R™™
is nonsingular and upper Hessenberg and that b € R™. This algorithm uses
Given’s rotations to solve the linear system Ax = b. It uses Algorithm E.7.

function x=rothesstri(A,b)
n=length(A); A=[A bl;
for k=1:n-1
r=norm ([A(k,k),AC(k+1,k)]);
if r>0
c=A(k,k)/r; s=A(k+1,k)/r;
A([k k+1] ,k+1:n+1)=[c s;-s cl*A([k k+1] ,k+1:n+1)D;
end
A(k,k)=r; A(k+1,k)=0;
end
x=backsolve(A(:,1:n),A(:,n+1));




Chapter 13

Least Squares

13.1 The Pseudo-Inverse and Orthogonal Projections
13.1.1 The Pseudo-Inverse

Suppose A = U3,V is a singular value factorization of A € C™". The matrix
AT € C™™ given by
A=V 3UT (13.1)

is called the pseudo-inverse of A. It is independent of the particular factorization
used to define it. We show this in Exercises 13.1, 13.2. In terms of the singular
value decomposition we have

Al = VSIU*, where B 1= [0?"31” JOrim=r
If A is square and nonsingular then ATA = AAT = I and AT is the usual inverse
of A. Any matrix has a pseudoinverse, and so Alisa generalization of the usual
inverse.

Exercise 13.1 Show that B := A" satisfies (1) ABA = A, (2) BAB = B, (3)
(BA)* = BA, and (4) (AB)* = AB.

Conversely, Exercise 13.2 shows that if B € C™™ satisfies the four equations
in Exercise 13.1 then B = AT. Thus A" is uniquely defined by these axioms and is

independent of the particular singular value factorization used to define it.

Exercise 13.2 Given A € C™", and suppose B,C € C™™ satisfy

ABA = A (1) ACA = A,
BAB = B (2) CAC = C,
(AB¥ = AB (3) (AC)Y = AcC,
(BAYY = BA (4) (CAP = CA.
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Verify the following proof that B = C.
B=(BA)B=(A"YB"B=(A"Cc")A"B"B =CcA(A"B")B
=CA(BAB) = (C)AB = C(AC)AB = CC" A" (AB)
—cc(A"BT A"y =c(cA")=cAC =C.

Exercise 13.3 Show that the matrices A = |11| and B = 1 [110] satisfy the
58 ili1o

azioms in Ezercise 13.1. Thus we can conclude that B = A" without computing
the singular value decomposition of A.

Exercise 13.4 Suppose A € C™™ has linearly independent columns. Show that
A" A is nonsingular and AT = (AHA)*IAH. If A has linearly independent rows,
then show that AA™ is nonsingular and AT = AT (AAT)—1,

Exercise 13.5 Show that u' = (uu)"1ut? if u € C*1 is nonzero.

Exercise 13.6 If A = uv? where u € C™, v € C" are nonzero, show that

1

H
A= A" o= ulfol3.

Exercise 13.7 Show that diag(\y, ..., )T = diag(Al, ..., AL) where
Vo U N A0
g 0 X =0
Exercise 13.8 Suppose A € C"™". Show that
a) (AT) = (Ah".
b) (AN = A.
c) (@A)l = éAT, a#0.

Exercise 13.9 Suppose k,m,n € N, A € C™", B € C*. Suppose A has linearly
independent columns and B has linearly independent rows.

a) Show that (AB)! = BTA". Hint: Let E = AF, F = BTA". Show by using
A'A = BB' = I that F is the pseudo-inverse of E.

b) Find A € R, B € R>! such that (AB)T # BTAT,

Exercise 13.10 Show that A™ = A" if and only if all singular values of A are
either zero or one.
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13.1.2 Orthogonal Projections

The singular value decomposition and the pseudo-inverse can be used to compute
orthogonal projections into the subspaces span(A) and ker(A”").

We start by recalling some facts about sums, direct sums and orthogonal sums
of subspaces (Cf. Chapter A). Suppose S and T are subspaces, and (-, ) an inner
product on R™ or C". We define

e Sum: X :=S+7T:={s+t:scSandteT}.

e Direct Sum: S + 7 is called a direct sum if SNT = {0}. We write S® T
instead of S + 7T in this case.

e Orthogonal Sum: S® 7 is an orthogonal sum if (s,¢) =0 for all s € S and
allt e T.

e Orthogonal Complement: 7 = St := {x € X : (s,z) =0 for all s € S}.

e If S® T is an orthogonal sum and v =s+t€ S@ T withse Sandt e T
then s and t are called the orthogonal projections of v into S and 7. The
orthogonal projection is unique.

We recall that
e S+7T =T+ S5 and S+ T is a subspace of R™ or C".
o dim(S+7)=dimS+dim7 —dim(SNT).
e dim(S®T)=dimS+dim7T.

e Every v € S® T can be decomposed uniquely as v = s + t, where s € S and
teT.

o C™ = span(A) ® ker(A") is an orthogonal sum for any A € C™".

Theorem 13.11 Suppose A € C"™" and b € C™. Then
b, := AA'b (13.2)
is the orthogonal projection of b into span(A), and
by := (I —AA")b (13.3)

is the orthogonal projection of b into the orthogonal complement ker(A™) of span(A).

Proof. Suppose A = USV7 is a singular value decomposition of A € C"™". Then

where b; = Ujc;j and ¢; := U’b for j = 1,2. Since U1(Uy) is an orthonormal basis
for span(A) (ker(A*)), we have by (bs) € span(A) (ker(A*)). Now AA" = U, U7,

and then by =b—b; = (I — AAHb. 0O
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Example 13.12 The singular value decomposition of A =
Thus Uy = [ég] and Uqy = [ﬂ. Moreover AY = I, (399]

s =[508]. b =

[E] then by = AA's = UUTb = [§18] b = [ZO] and by = (I, — AANb =
fle=[5]:

Exercise 13.13 Show that if A has rank n then A(A*A)~tA*b is the projection
of b into span(A). (Cf. Exercise 13.4.)

—
Ny OO

U.UTb = {

[=lel)
[=]e)e)

Exercise 13.14 Consider the linear system Ax = b where A € C™" has rank
r>0andbe C". Let

UHAV:[Zl 0}

0O o

represent the singular value decomposition of A.

a) Letc=[c1,...,c))T =U"b and y = [y1,...,yn)T = VHz. Show that Az =b
if and only if

¥, 0 e
o o|Y™©
b) Show that Ax = b has a solution x if and only if c,41 =+ = ¢, = 0.

¢) Deduce that a linear system Ax = b has either no solution, one solution or
infinitely many solutions.

Exercise 13.15 For any A € C™", b € C" show that one and only one of the
following systems has a solution

(1) Az =b, (2) Ay =0, yTb+#0.

In other words either b € span(A), or we can find y € ker(A™) such that y"b # 0.
This is called Fredholms alternative.

13.2 The Least Squares Problem

Let A € C™"™ and b € C™ be given. Consider the linear system Ax = b of m
equations in n unknowns. If m > n, we have more equations than unknowns and
there might be no vector @ such that Az = b. Let r(x) = Az —b € C™. We
can then pick a vector norm ||-|| and look for & € C™ which minimizes ||r(z)||. The
choice ||-|| = ||*||2, the Euclidean norm, is particularly convenient and will be studied
here.
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Definition 13.16 Given A € C™™ and b € C™. We call an x € C" which
minimizes ||r(x)||3 = ||Ax — b||3 a least squares solution of Az =b. We set

E(z) := ||Az — b]3 = |[r(2)|3.
To find © which minimizes E(x) is called the least squares problem.

Since the square root function is monotone minimizing E(x) or /E(x) is
equivalent.

Theorem 13.17 The least squares problem always has a solution. The solution s
unique if and only if A has linearly independent columns. Moreover, the following
are equivalent.

1. x is a solution of the least squares problem.
2. A*Axz = A™b
3. = A'b+z, for some z € ker(A), and where A" is the pseudo-inverse of A.

We have ||z||y > ||ATb||2 for all solutions x of the least squares problem.

Proof. Let b = by + by, where b; € span(A) and by € ker(A*) are the orthogonal
projections into span(A) and ker(A"), respectively (see Theorem 13.11). Since
biv = 0 for any v € span(A) we have b5(b; — Az) = 0 for any x € C™. Therefore,
for x € C™,

16— Az|3 = [[(b1 — Az) + b2 |3 = [|b1 — A3 + [[b2]|3 > [|b2]13,

with equality if and only if Az = b;. Since b; € span(A) we can always find such
an x and existence follows.

1 < 2: By what we have shown x solves the least squares problem if and only if
Ax =b; sothat b— Ax =b; + by — Ax =by € ker(A*), or A*(b - Aw) =0.

1 = 3: Suppose Az = b; and definez := @ — A'b. Then Az = Az — AATH =
by —b; =0 and z € ker(A).

3= 1: If & = ATb + z with z € ker(A) then Az = AATb+ Az =b,.

If A has linearly independent columns then ker(A) = {0} and = A'b is the
unique solution.

Suppose z = A'b + 2, with z € ker(A) is a solution. To show the minimum
norm property |||z > ||ATb||; we recall that if the right singular vectors of A are
partitioned as [v1,...,Vp, Upt1,...,0,] = [V1, V3], then V5 is a basis for ker(A).
Moreover, V5V, = 0 since V has orthonormal columns. If Al = VXU and
z € ker(A) then z = Vyy for some y € C"" and we obtain

Z*ATb = y* ViV ZTUb = 0.

Thus z and A'b are orthogonal so that ||x||2 = ||[ATb + z|3 = ||AT®|3 + |23 >
lATe[3. O
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The linear system
A*Ax = A™b
is called the normal equations. It is a linear system of n equations in n unknowns.
If A is real then the coefficient matrix AT A is nonsingular and hence symmetric
positive definite if and only if A has linearly independent columns.

Before discussing numerical methods for solving the least squares problem we
consider some examples.

13.3 Examples

Example 13.18 We choose n functions ¢1,¢a, . .., ¢n defined fort € {t1,ta, ..., tm}
and positive numbers wy, ..., Ww,,. Typical examples of functions might be polyno-

mials, trigonometric functions, exponential functions, or splines. We want to find

x = [21,79,...,2,]7 such that

2

B(x) =Y wi | Y ziéi(t:) —vi
i=1 J=1

is as small as possible. Let p(t) := Z;L:1 xj¢i(t). The numbers w; are called
weights. If y; is an accurate observation, we can choose a large weight w;. This
will force p(t;) — y; to be small. Similarly, a small w; will allow p(t;) — y; to be
large. If an estimate for the standard deviation dy; in y; is known for each i, we
can choose w; = 1/(6y;)?, i = 1,2,...,m. Let A € R™", b € R™ have elements

a; 5 = \/QE(ﬁj(tl) and bi = \/’lEyl Then

(Az); = Vw; Y ¢;(t:),
j=1

m

E(z) =) [(Az); — b]* = | Az — b||5.
i=1
and we have a least squares problem.

The i,j element b; j in B = AT A and the ith component ¢; in ¢ = ATb take
the form

bij =Ygy OkiOkj = 9 opeq Widi(tr)Ps(tr),
m 1/2
Ci = e Wy T yr@i(t).

In particular, if n = 2,w; = L,i=1,...,m, ¢1(t) = 1, and ¢2(t) = t, the normal
equations can be written

moo b a2k | (13.5)
Yt Yt} T2 > tkyk
Here k ranges from 1 to m in the sums. This 2 X 2 system is symmelric positive
definite and is easily solved for x1 and xs.

(13.4)
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Example 13.19 With the data

z | 1.0

| | 4.0
y ‘ 3.1‘

2.0
1.8

o|lo
o
[

we try a least squares fit of the form
p(t) = x1 + xat.

We can find x1 and x4 by solving the linear system (13.5). In this case we obtain

{140 ég][i;}:[lgl]' (13.6)

The solution is x1 = 3.95 and xo = —0.98. The data and the polynomial p(t) are
shown in Figure 13.1.

Y

y = 3.95 — 0.98¢

Figure 13.1. A least squares fit to data.

Example 13.20 Suppose we have a simple input/output model. To every input
u € R™ we obtain an output y € R. Assuming we have a linear relation

n
Yy = u'z = E Ui Ly,
i=1
between u and y, how can we determine x?

Performing m > n experiments we obtain a table of values

ulu ug |- | U
y‘yl‘yZ""‘ym
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We would like to find x such that

“{ Y1
UzT Y2

Ax = . T = . =b.
u, Ym

We can estimate T by solving the least squares problem min||Az — b||3.

Exercise 13.21 Suppose (t;,y;)7, are m points in the plane. We consider the
over-determined systems

(i) 1 = w0 (ii) x1+tize = u
1 = Yo 1 t+towe = Yo
1 = Ym T1 +tpTs = Ym

a) Find the normal equations for (i) and the least squares solution.

b) Find the normal equations for (ii) and give a geometric interpretation of the
least squares solution.

Exercise 13.22 Related to (ii) in Exercise 13.21 we have the overdetermined sys-
tem
(iii) $1+(ti—t)1‘2 = Yi, 1= 1,2,...,77’2,,

where t = (t; + -+ +t,,)/m.

a) Find the normal equations for (iii) and give a geometric interpretation of the
least squares solution.

b) Fit a straight line to the points (t;,y;): (998.5,1), (999.5,1.9), (1000.5,3.1) and
(1001.5,3.5) using a). Draw a sketch of the solution.

Exercise 13.23 In this problem we derive an algorithm to fit a circle (t — c1)? +
(y — c2)? = 12 to m > 3 given points (t;,y;)™, in the (t,y)-plane. We obtain the
overdetermined system

(ti—c1)>+ (yi —c2)?=1% i=1,...,m, (13.7)

of m equations in the three unknowns c1,co and r. This system is nonlinear, but it
can be solved from the linear system

tixry +yix2+x3:t?+yi2, i=1,...,m, (13.8)

and then setting c1 = x1/2, ca = x2/2 and r* = ¢ + ¢35 + x3.
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a) Derive (13.8) from (13.7). Ezplain how we can find c1,ca,r once [x1, T2, T3] is
determined.

b) Formulate (13.8) as a linear least squares problem for suitable A and b.
c) Does the matriz A in b) have linearly independent columns?

d) Use (13.8) to find the circle passing through the three points (1,4),(3,2),(1,0).

13.4 Numerical Solution using the Normal Equations

We assume that A and b are real and that A has linearly independent columns.
The coefficient matrix B := AT A in the normal equations is symmetric positive
definite, and we can solve these equations using the RT R factorization of B.

Consider forming the normal equations. We can use either a column oriented-
or a row oriented approach. To derive these we partition A in terms of columns or
rows as

af,
A=lai,...,a,] =
al.
We then find
1. (ATA);; = ala.;, (ATb); =alb, (inner product form),
2. ATA= > azal, ATp = Yot biai, (outer product form).

The outer product form is suitable for large problems since it uses only one pass
through the data importing one row of mA at a time from some separate storage.

Consider the number of operations to compute B := AT A. We need 2m
flops to find each ala.;. Since B is symmetric we only need to compute n(n +
1)/2 such inner products. It follows that B can be computed in O(mn?) flops.
The computation of B using outer products can also be done in O(mn?) flops by
computing only one half of A. In conclusion the number of operations are O(mn?)
to find B, 2mn to find A7b, O(n?®/3) to find R, O(n?) to solve R"y = ¢ and O(n?)
to solve Rx = y. Since m > n, the bulk of the work is to find B.

A problem with the normal equation approach is that the linear system can
be poorly conditioned. In fact the 2-norm condition number of B := AT A is the
square of the condition number of A. This follows, since the singular values of B are
the square of the singular values of A. If A is ill-conditioned, this could make the
normal equation approach problematic. One difficulty which can be encountered is
that the computed A" A might not be positive definite. See Problem 13.31 for an
example.

13.5 Numerical Solution using the QR Factorization

Suppose A € R™™ has rank n and let b € R™. The QR factorization can be used
to solve the least squares problem mingegrn | Ax — bll2. Suppose A = QR is a
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QR factorization of A. Since @, has orthonormal columns we find
ATA=RIQTQ,R.=RTR,, A"b=R!Q]0.
Since A has rank n the matrix Rf is nonsingular and can be canceled. Thus
ATAz=A"b= Riz=c;, c :=Q]b.

We can use Householder transformations or Givens rotations to find Ry and c;.
Consider using the Householder triangulation algorithm Algorithm 12.18. We find
R =Q"A and ¢ = Q'b, where A = QR is the QR decomposition of A. The
matrices Ry and ¢; are located in the first n rowws of R and c.

Thus have the following method to solve the full rank least squares problem.

1. [R,c]=housetriang(A,b).

2. Solve R(1:n,1:n)x = c(1:n) for the least squares solution x.

Example 13.24 Consider the least squares problem with

1 3 1 1
1 3 1
A= 1 -1 -4 and b = 1
1 -1 2 1

This is the matriz in Example 12.2. The least squares solution x is found by solving
the system

2 2 3| =1 1 1 1 1 1 1
0 4 5| [z2] = 5 1 1 -1 -1 x 1
0 0 6| [x3 1 -1 -1 1 1

and we find z = [1,0,0]T.

Using Householder triangulation is a useful alternative to normal equations
for solving full rank least squares problems. The 2 norm condition number for
the system Rjx = ¢; is K2(R1) = K2(Q,R1) = K2(A), and as discussed in the
previous section this is the square root of K5(AT A), the condition number for the
normal equations. Thus if A is mildly ill-conditioned the normal equations can be
quite ill-conditioned and solving the normal equations can give inaccurate results.
On the other hand Algorithm 12.18 is quite stable.

But using Householder transformations requires more work. The leading term
in the number of flops in Algorithm 12.18 is approximately 2mn? — 2n3/3, (cf.
(12.10)), while the number of flops needed to form the normal equations, taking ad-
vantage of symmetry is O(mn?). Thus for m much larger than n using Householder
triangulation requires twice as many flops as the an approach based on the normal
equations. Also, Householder triangulation have problems taking advantage of the
structure in sparse problems.
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13.6 Numerical Solution using the Singular Value
Factorization

This method can be used even if A does not have full rank. It requires knowledge
of the pseudo-inverse of A. By Theorem 13.17

x=Ab+ 2

is a least squares solution for any z € ker(A).

1 1
Example 13.25 The pseudo-inverse of A = |1 1| is AT = 3 E 1 8} (cf.
0 0

Example 18.3. Moreover, [—1,1]T is a basis for ker(A). If b = [b1,ba,b3]", then
for any z € R the vector

b1
171 1 0 1
sc_4L 1 0} ba +Z[—1]
bs

is a solution of min||Ax — b||2 and this gives all solutions.

When rank(A) is less than the number of columns of A then ker(A) # {0},
and we have a choice of z. One possible choice is z = 0 giving the minimal norm
solution A'b. (Cf. Theorem 13.17.)

13.7 Perturbation Theory for Least Squares

In this section we consider what effect small changes in the data A, b have on the
solution @ of the least squares problem min||Ax — b||s.

If A has linearly independent columns then we can write the least squares
solution @ (the solution of A¥ Az = A" b) as

x=A'b, Al:=(A"A)"1A"

13.7.1 Perturbing the right hand side

Let us now consider the effect of a perturbation in b on x.

Theorem 13.26 Suppose A € C™" has linearly independent columns, and let
b,e c C™. Let ¢,y € C™ be the solutions of min||Ax — b||z and min||Ay —b— e||2.
Finally, let by, e; be the projections of b and e on span(A). If by # 0, we have for
any operator norm

leal]
1b1]1°

L el ==l _ e

= i
K(A) by = ezl — K(A) = [ A[[]|AT]. (13.9)
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Proof. Subtracting @ = A™b from y = A'b + Afe we have y — x = ATe. Since
AYe = A"e;, we have ATe = A'e;. Thus ||y — z|| = ||ATes|| < [|AT||[|e1].
Moreover, [|by || = |[Az|| < [|A][l]. Therefore |ly —||/|z| < Al A"|[lex]/[lb:]
proving the rightmost inequality. From A(x —y) = e; and * = A'b; we obtain
the leftmost inequality. 0O

(13.9) is analogous to the bound (8.19) for linear systems. We see that the
number K (A) = || Al||| AT generalizes the condition number || A||||A™} || for a square
matrix. The main difference between (13.9) and (8.19) is however that ||e||/||b]| in
(8.19) has been replaced by |le1||/||b1]|, the projections of e and b on span(A). If
b lies almost entirely in N(AY), i.e. ||b||/|b1]| is large, ||e1]|/||b1]| can be much
larger than ||e||/||b]|. This is illustrated in Figure 13.2. If b is almost orthogonal
to span(A), |lei||/||b1]] will normally be much larger than |le||/||b]|. Note that
lle1|l/||b1]] is also present in the lower bound.

N(AD)
A

span(A)

Figure 13.2. Graphical interpretation of the bounds in Theorem 13.26.

Example 13.27 Suppose

1 1 10~4 106
A=1]011], b= 0 , e= 0
0 0 1 0

For this example we can compute K(A) by finding A" explicitly. Indeed,

was[ 4] w4 7]
f T aiar [ 1 -1 0
Al = (AT A) A_[O Lo
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Thus Koo(A) = || Al|oc||AT|loo = 2-2 = 4 is quite small.

Consider now the projections by and by. We have span(A) = span(ey, es) C
R2, and N(AT) = span(e3) C R3. The projection by onspan(A) isb, = (1074,0)7.
Since ||b]|oo/||by||oo = 10* is large, we expect that the solutions  and y of min||Az—
bll2 and min||Ay — b — el|a will differ by much more than |e|joc/||blloc = 1075, To
check this we compute  and y. These can be found by either solving the normal
equations or by solving Ax = by, Ay = by + e1. This gives x = by = (1074,0)T
and y =b; +e; = (1074 +1075,0)7. We find

& —ylloo  107°
|xlco 1074

and this is indeed much larger than |e|joc/||bl|oo = 1076, but equals ||e1||oo/||by || oc.
(13.9) takes the form

110—2 < w <4.1072
4 [0

Exercise 13.28 Let

—_
[\
(=

=

A=

— =
—_ =
S
w

a) Determine the projections by and by of b on span(A) and N(AT).
b) Compute K(A) = ||A2]|A"]2.

For each A we can find b and e so that we have equality in the upper bound
in (13.9). The lower bound is best possible in a similar way.

Exercise 13.29 a) Let A € C™"™. Show that we have equality to the right in
(13.9) if b= Ay, er = yar where Ayl = Al [|ATy 4] = [ AT

b) Show that we have equality to the left if we switch b and e in a).

c) Let A be as in Example 13.27. Find extremal b and e when the lo norm is used.

13.7.2 Perturbing the matrix

The analysis of the effects of a perturbation F in A is quite difficult. The following
result is stated without proof, see [12, p. 51]. For other estimates see [2] and [19].

Theorem 13.30 Suppose A, E € C"™" m > n, where A has linearly independent
columns and o := 1 — ||E|3|Af||s > 0. Then A + E has linearly independent
columns. Let b = by +bs € C™ where by and by are the projections on span(A) and
N(A™) respectively. Suppose by # 0. Let x and y be the solutions of min|| Az —b]|o
and min||(A + E)y — b||a. Then

_ b2l
[b1]l2”

— 1 E
lmyls Ly g I El

’ K =||Al2l|AT[l2. (13.10)
lzll> ~ o A2

B
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(13.10) says that the relative error in y as an approximation to « can be at
most K (14 5K)/« times as large as the size || E||2/||Al|2 of the relative perturbation
in A. If b lies almost entirely in span(A), § will be small, and we have p <
LK||E||2/||All2. This corresponds to the estimate (8.25) for linear systems. If 3 is
not small, the term L K23 E||2/||Al|z will dominate. In other words, the condition
number is roughly K (A) if 3 is small and K(A)?3 if 3 is not small. Note that 3 is
large if b is almost orthogonal to span(A) and that by = b — Az is the residual of
x.

Exercise 13.31 Consider the least squares problems where

1 1 2
A=1|1 1 , b=1]31], eeR.
1 1+e 2

a) Find the normal equations and the exact least squares solution.

b) Suppose € is small and we replace the (2,2) entry 3+2e+€2 in AT A by 3+2€.
(This will be done in a computer if € < \/u, u being the round-off unit). Solve
AT Ax = ATb for © and compare with the x found in a). (We will get a
much more accurate result using the QR factorization or the singular value
decomposition on this problem).

13.8 Perturbation Theory for Singular Values

In this section we consider what effect a small change in the matrix A has on the
singular values.

We recall the Hoffman-Wielandt Theorem for singular values, Theorem 7.24.
If A, B € R™™ are rectangular matrices with singular values vy > as > -+ > ay,
and 1 > 2 > -+ > 3, then

n

> laj = iI> < |A - B3

Jj=1

This shows that the singular values of a matrix are well conditioned. Changing the
Frobenius norm of a matrix by small amount only changes the singular values by a
small amount.

Using the 2-norm we have a similar result involving only one singular value.

Theorem 13.32 Let A, B € R™" be rectangular matrices with singular values
ar>ay > >y and By > P2 > - = Py Then

‘O‘j _ﬁj| <||[A—=Blz, forj=12,...,n. (13.11)

Proof. Fix j and let S be the n—j+1 dimensional subspace for which the minimum
in Theorem 7.23 is obtained for A. Then

|(B+(A-B)zls _ |Bals, (A= Bzl

< Bj+|[A=Bll.

22 el 22 ol 35y el
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By symmetry we obtain 5; < ¢o; + ||A — B||2 and the proof is complete. O

The following result is an analogue of Theorem 8.40.

Theorem 13.33 Let A, E € R™™ have singular values oy > -+ > oy, and €1 >
> e If |AT2||El2 < 1 then

1. rank(A + E) > rank(A),

LA —_1
2 A+ Bl < pamien = ae

where 1 is the rank of A.

Proof. Suppose A has rank r and let B := A + FE have singular values §; >
.- > B,. In terms of singular values the inequality | A'|s||E|ls < 1 can be written
€1/ar < 1 or a, > €;. By Theorem 13.32 we have a, — 8, < €1, which implies
Br > a,. — €1 > 0, and this shows that rank(A + E > r. To prove 2., the inequality
By > a, — €1 implies that

1 ar [EYE

< = =
Qr — €1 1—61/Olr 17||AT||2HE||2

(A + E)f|, s%
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Chapter 14

Numerical Eigenvalue
Problems

In this and the next chapter we consider numerical methods for finding one or more
of the eigenvalues and eigenvectors of a matrix A € C™". Maybe the first method
which comes to mind is to form the characteristic polynomial w4 of A, and then
use a polynomial root finder, like Newton’s method to determine one or several of
the eigenvalues.

It turns out that this is not suitable as an all purpose method. One reason is
that a small change in one of the coefficients of 74 () can lead to a large change in
the roots of the polynomial. For example, if 74 () :) = A6 and ¢(\) = A6 — 10716
then the roots of w4 are all equal to zero, while the roots of ¢ are \; = 10~ 1e2mii /16,
j=1,...,16. The roots of ¢ have absolute value 0.1 and a perturbation in one of
the polynomial coefficients of magnitude 1076 has led to an error in the roots of
approximately 0.1. The situation can be somewhat remedied by representing the
polynomials using a different basis.

We will see that for many matrices the eigenvalues are less sensitive to per-
turbations in the elements of the matrix. In this text we will only consider methods
which work directly with the matrix.

14.1 Perturbation of Eigenvalues

In this section we study the following problem. Given matrices A, E € C™", where
we think of E as a pertubation of A. By how much do the eigenvalues of A
and A + FE differ? Not surprisingly this problem is more complicated than the
corresponding problem for linear systems.

We illustrate this by considering two examples. Suppose Ag := 0 is the zero
matrix. If A € 0(Ap + E) = o(E), then |A\| < || E|lcc by Theorem 8.46, and any
zero eigenvalue of Ay is perturbed by at most || E||o. On the other hand consider

185
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for € > 0 the matrices

010 0 0 0 00 0 0
0 0 1 0 0 0 00 0 0
Ap= |0t SHE R L i| = eenel
000 -~ 01 000 -+ 00
000 -- 00 e 00 -~ 00

The characteristic polynomial of A; + E is w(\) := (—=1)*(\" — ¢), and the zero
eigenvalues of A; are perturbed by the amount |A| = ||E||<1>én Thus, for n = 16, a
perturbation of say e = 10716 gives a change in eigenvalue of 0.1.

The following theorem shows that a dependence || E||5)" is the worst that can
happen.

Theorem 14.1 (Elsner’s Theorem) Suppose A, E € C™™. To every u € oc(A+
E) there is a A € o(A) such that

1-1/ 1/n
= Al < (|All2 + 1A+ El2)" "By (14.1)

Proof. Suppose A has eigenvalues Ay, ..., A, and let A; be one which is closest to
w. Let wy with |Juq|l2 = 1 be an eigenvector corresponding to p, and extend uq to
an orthonormal basis {u1,...,u,} of C*. Note that

[(uI — A)urllz = (A + E)uy — Auyllz = [|Euy|l2 < [|E2,
n n

[Tz — Ayuyllo < [Tl + 14w, ) < (1A + B)llo + [1AL) "

Jj=2

Using this and Hadamard’s inequality (12.1) we find

=M™ < [Tk = Ml = [det(u — A)] = |det (uI — Afus,... u,])|
j=1

- n—1
< (I = A)wallz [Tl = A)uyllz < [ El2([(A+ B)ll2 + [ All2)"
j=2

The result follows by taking nth roots in this inequality. 0O

It follows from this theorem that the eigenvalues depend continuously on the
elements of the matrix. The factor || E Hé/ " shows that this dependence is almost,

but not quite, differentiable. As an example, the eigenvalues of the matrix [! 1] are
1+ /€ and this expression is not differentiable at € = 0.

Recall that a matrix is nondefective if the eigenvectors form a basis for C”.
For nondefective matrices we can get rid of the annoying exponent 1/n in || E|2.
The following theorem is proved in Section 14.4. For a more general discussion see

[19].
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Theorem 14.2 Suppose A € C™™ has linearly independent eigenvectors {x1, ...,
T, } and let X = [x1,...,x,] be the eigenvector matriz. Suppose E € C™™ and let
u be an eigenvalue of A+ E. Then we can find an eigenvalue X of A such that

A= pl < Kp(X)[|E]p,  1<p< oo, where Kp(X) = [ X, [ X 7|, (14.2)

The equation (14.2) shows that for a nondefective matrix the absolute error
can be magnified by at most K,(X), the condition number of the eigenvector matrix
with respect to inversion. If K,(X) is small then a small perturbation changes the
eigenvalues by small amounts.

Even if we get rid of the factor 1/n, the equation (14.2) illustrates that it can be
difficult or sometimes impossible to compute accurate eigenvalues and eigenvectors
of matrices with almost linearly dependent eigenvectors. On the other hand the
eigenvalue problem for normal matrices is better conditioned. Indeed, if A is normal
then it has a set of orthonormal eigenvectors and the eigenvector matrix is unitary.
If we restrict attention to the 2-norm then K3(X) = 1 and (14.2) implies the
following result.

Theorem 14.3 Suppose A € C™" is normal and let p be an eigenvalue of A + E
for some E € C™"™. Then we can find an eigenvalue X of A such that |\—u| < || E||2-

For an even stronger result for Hermitian matrices see Corollary 6.16. We
conclude that the situation for the absolute error in an eigenvalue of a Hermitian
matrix is quite satisfactory. Small perturbations in the elements are not magnified
in the eigenvalues.

14.1.1 Gerschgorin’s Theorem

The following theorem is useful for locating eigenvalues of an arbitrary square ma-
trix.

Theorem 14.4 (Gerschgorin’s Circle Theorem) Suppose A € C™"™. Define
fori=1,2,...,n

n

Ri:{ZE(CZIZ—a”"STi}, T ::Z|aij|,
j=1
J#i

Ci={zeC:lz—ayl<¢}, ¢:=) layl.
i=1
1#£]
Then any eigenvalue of A lies in RN C where R = R URyU---UR, and C =
CiruCyU---UC,.

Proof.  Suppose (A, x) is an eigenpair for A. We claim that A € R;, where
i is such that |z;| = ||z]lcc. Indeed, Ax = Az implies that Ej a;jr; = Ax; or
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A —aii)z; = Zﬁéi ai;x;. Dividing by x; and taking absolute values we find

N —ail =D aijwj/ai| < laijlla; /] <7
J#i J#i
since |z;/z;| <1 for all j. Thus A € R;.
Since X is also an eigenvalue of A7, it must be in one of the row disks of AT,
But these are the column disks C; of A. Hence A € C; for some j. 0O

The set R; is a subset of the complex plane consisting of all points inside a
circle with center at a;; and radius r;, c.f. Figure 14.1. R; is called a (Gerschgorin)
row disk.

Imaginary axis

T

Real axis

Figure 14.1. The Gerschgorin disk R;.

An eigenvalue A lies in the union of the row disks Ry,..., R, and also in
the union of the column disks C4,...,C,. If A is Hermitian then R; = C; for i =
1,2,...,n. Moreover, in this case the eigenvalues of A are real, and the Gerschgorin

disks can be taken to be intervals on the real line.

Example 14.5 Let T = tridiag(—1,2,—1) € R™™ be the second derivative matriz.
Since A is Hermitian we have R; = C; for all i and the eigenvalues are real. We

find
Ri=R,={2€R:[2-2/<1}, and R, ={z€R:[z-2| <2}, i=23,...,m—L

We conclude that A € [0,4] for any eigenvalue A of T. To check this, we recall that
by Lemma 4.11 the eigenvalues of T' are given by

. 2
. Jm .
Aj=4 —_— =12,...,m.
] |:Sln 2(m+1):| ’ J < 7m
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2
When m is large the smallest eigenvalue 4 [Sin M} is very close to zero and the

2
largest eitgenvalue 4 [Sin %} is very close to 4. Thus Gerschgorin,s theorem

gives a remarkably good estimate for large m.

Sometimes some of the Gerschgorin disks are distinct and we have

Corollary 14.6 Ifp of the Gerschgorin row disks are disjoint from the others, the
union of these disks contains precisely p eigenvalues. The same result holds for the
column disks.

Proof. Consider a family of matrices
A(t):=D+t(A— D), D :=diag(ai1,...,ann), t<]0,1].

We have A(0) = D and A(1) = A. As a function of ¢, every eigenvalue of A(t) is
a continuous function of ¢t. This follows from Theorem 14.1, see Exercise 14.7. The
row disks R;(t) of A(t) have radius proportional to ¢, indeed

n
Ri(t) ={2€C: |z —ay| <tri}, ri= Z |ai;].
i

Clearly 0 < ¢; < to < 1 implies R;(t;) C R;(t2) and R;(1) is a row disk of A
for all i. Suppose |J;_, R;, (1) are disjoint from the other disks of A and set
Re(t) := UY_, R, (t) for t € [0,1]. Now RP(0) contains only the p eigenvalues
Qiy iy oo @iy, Of A(0) = D. As t increases from zero to one the set RP(t) is
disjoint from the other row disks of A and by the continuity of the eigenvalues

cannot loose or gain eigenvalues. It follows that RP(1) must contain p eigenvalues
of A. O

Exercise 14.7 Suppose t1,ts € [0,1] and that p is an eigenvalue of A(ts). Show,
using Theorem 14.1 with A = A(t1) and E = A(ts) — A(t1), that A(t1) has an
etgenvalue A such that

A — p| < C(ta — t1)*™, where C < 2(|| D2 + ||A — D||2).

Thus, as a function of t, every eigenvalue of A(t) is a continuous function of t.

1 € €
Example 14.8 Consider the matriz A = [63 2 651], where |e;| < 1071 all i. By
€5 €6

Corollary 14.6 the eigenvalues A1, A2, A3 of A are distinct and satisfy |N; — j| <
2x 1071 for j =1,2,3.



190 Chapter 14. Numerical Eigenvalue Problems

Exercise 14.9 Consider the matrix

[N
O o
e =
= - O O

Show using Gerschgorin’s theorem that A is nonsingular.

Exercise 14.10 Show using Gerschgorin,s theorem that a strictly diagonally dom-
inant matriz A (lai;| > 32,4, |ai ;| for all i) is nonsingular.

14.2 Unitary Similarity Transformation of a Matrix
into Upper Hessenberg Form

Before attempting to find eigenvalues and eigenvectors of a matrix (exceptions are
made for certain sparse matrices), it is often advantageous to reduce it by similarity
transformations to a simpler form. Orthogonal similarity transformations are par-
ticularly important since they are insensitive to noise in the elements of the matrix.
In this section we show how this reduction can be done.

Recall that a matrix A € R™" is upper Hessenberg if a;,; = 0 for j =
1,2,...,i—2,i=3,4,...,n. We will reduce A € R™" to upper Hessenberg form by
unitary similarity transformations. Let A; = A and define Ay 1 = Hp A Hy, for
k=1,2,...,n— 2. Here H} is a Householder transformation chosen to introduce
zeros in the elements of column k of Aj under the subdiagonal. The final matrix
A, _1 will be upper Hessenberg.

If A} = A is symmetric, the matrix A, _; will be symmetric and tridiagonal.
For if A} = Ay then

AL = (H AH))" = HyATH), = Agy.

Since A,,_1 is upper Hessenberg and symmetric, it must be tridiagonal.
To describe the reduction to upper Hessenberg or tridiagonal form in more
detail we partition Ay as follows

| By Cy
Ak[Dk Ek].

Suppose B, € R¥* is upper Hessenberg, and the first & — 1 columns of D} €
R"=%k are zero, i.e. Dy, =[0,0,...,0,d;]. Let V), = I —vpvl € R"Fn=F be a
Householder transformation such that Vdy = aie;, where a% = d{dk. Define

L }ER"’”.
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The matrix H is a Householder transformation, and we find

. | Iy 0 B, Cy I, 0
Ak+1—HkAka—|:O Vk][Dk Ek]{o Vk:|

. By Ci.Vy

T | ViDL VLELV |

Now ViDy =[V0,...,V0,Vidi] = (0,...,0,are;). Moreover, the matrix By,
is not affected by the H}, transformation. Therefore the upper left (k4 1) x (k+1)
corner of Ay is upper Hessenberg and the reduction is carried one step further.
The reduction stops with A, _1 which is upper Hessenberg.

To find Ay we use Algorithm 12.13 to find vy and «y. We store vy in the
kth column of a matrix L as L(k + 1 : n,k) = vg. This leads to the following
algorithm.

Algorithm 14.11 (Householder reduction to Hessenberg form) This

algorithm uses Householder similarity transformations to reduce a matrix
A € R™" to upper Hessenberg form. The reduced matrix B is tridiagonal if
A is symmetric. Details of the transformations are stored in a lower triangular
matrix L. The elements of L can be used to assemble an orthonormal matrix Q
such that B = QT AQ. Algorithm 12.13 is used in each step of the reduction.

function [L,B] = hesshousegen (A)

n=length(A); L=zeros(n,n); B=A;

for k=1:n-2
[v,B(k+1,k)]=housegen(B(k+1:n,k));
L(k+1:n,k)=v; B(k+2:n,k)=zeros(n-k-1,1);
C=B(k+1:n,k+1:n); B(k+l:n,k+1:n)=C-v*x(v’*C);
C=B(1:n,k+1:n); B(l:n,k+1:n)=C-(C*xv)*v’;

end

Exercise 14.12 Show that the number of flops for Algorithm 14.11 is 0(13—0713).

We can use the output of Algorithm 14.11 to assemble the matrix Q € R™™
such that Q is orthonormal and Q” AQ is upper Hessenberg. We need to compute

the product Q = H1H,--- H,,_5, where Hy = [é I—m?kvf} and vy, € R *. Since

v; € R" ! and v,,_s € R? it is most economical to assemble the product from right
to left. We compute

Q, =Tand Q,=H;Q,fork=n—-2n-3,... 1
Suppose Q. ; has the form [I(;“ (?k L where Uy, € R* %"=k Then

Q. — I 0 e 0] _ [T 0
k 0 vakvg 0 Uk 0 Uk*’Uk('UgUk) ’

This leads to the following algorithm.
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Algorithm 14.13 (Assemble Householder transformations) Suppose
[L,B] = hesshousegen(A) is the output of Algorithm 14.11. This algo-
rithm assembles an orthonormal matrix @ from the columns of L such that
B = QT AQ is upper Hessenberg.

function Q = accumulateQ (L)
n=length(L); Q=eye(n);
for k=n-2:-1:1
v=L(k+1:n,k); C=Q(k+1:n,k+1:n);
Q(k+1:n,k+1:n)=C-v*x(v’*C);
end

Exercise 14.14 Show that the number of flops required by Algorithm 14.13 is

O(%n?’).

Exercise 14.15 If A is symmetric we can modify Algorithm 14.11 as follows. To
find Ap41 from Ay, we have to compute V , E .V, where Ey, is symmetric. Dropping
subscripts we have to compute a product of the form G = (I — vvT)E(I — vvT).
Let w := Ev, §:= %va and z := w — Bv. Show that G = E —vz" — 2zvT. Since
G is symmetric, only the sub- or superdiagonal elements of G need to be computed.
Computing G in this way, it can be shown that we need O(4n3/3) operations to
tridiagonalize a symmetric matriz by orthonormal similarity transformations. This
is less than half the work to reduce a monsymmetric matriz to upper Hessenberg
form. We refer to [18] for a detailed algorithm.

14.3 Computing a Selected Eigenvalue of a
Symmetric Matrix

Let A € R™" be symmetric with eigenvalues \y < Ao < .-+ < A,,. In this section
we consider a method to compute an approximation to the mth eigenvalue A, for
some 1 < m < n. Using Householder similarity transformations as outlined in the
previous section we can assume that A is symmetric and tridiagonal.

dl C1
c1 ds Co
A= . (14.3)
Cn—2 dn-1 Cn-1
Cn—1 dy
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Suppose one of the off-diagonal elements is equal to zero, say ¢; = 0. We then have
A= [‘%1 ,22]’ where

di dit1  Cit1
c1 dy ¢ Cit1 diya  Ciy2
A = and Ay =
Ci—g di—1 Ci—1 Cn—2 dn_1 Cp—1
ci—1 d; Ch—1 dp

Thus A is block diagonal and each diagonal block is tridiagonal. By 6. of Theo-
rem D.3 we can split the eigenvalue problem into two smaller problems involving
A; and A;. We assume that this reduction has been carried out so that A is
irreducible, i.e., ¢; 0 fori=1,...,n — 1.

We first show that irreducibility implies that the eigenvalues are distinct.

Lemma 14.16 An irreducible, tridiagonal and symmetric matriz A € R™"™ has n
real and distinct eigenvalues.

Proof. Let A be given by (14.3). By Theorem 6.5 the eigenvalues are real. Define
for € R the polynomial pi(z) := det(xly — Ag) for k = 1,...,n, where Ay is
the upper left k x k corner of A (the leading principal submatrix of order k). The
eigenvalues of A are the roots of the polynomial p,. Using the last column to
expand for k > 2 the determinant py41(z) we find

Pre1(x) = (& — dpg1)pe(x) — cipp—1 (). (14.4)

Since py(x) = x — dy and pa(z) = (z — d2)(x — dy) — ¢? this also holds for k = 0,1
if we define p_;1(x) = 0 and po(x) = 1. For M sufficiently large we have

p2(=M) >0, pa(di) <0, po(+M)>0.

Since po is continuous there are y; € (—M, d;) and ys € (dy, M) such that ps(y;) =
p2(y2) = 0. It follows that the root dy of p; separates the roots of ps, so y; and yo
must be distinct. Consider next

p3(x) = (x — d3)pa(x) — c3p1(2) = (¢ — d3)(x — y1)(x — y2) — c(x — dn).
Since y1 < d1 < y2 we have for M sufficiently large
p3(—M) <0, ps(y1) >0, ps(y2) <0, ps(+M)>0.

Thus the roots x1,xs,z3 of ps are separated by the roots yi,y2 of pa. In the
general case suppose for k > 2 that the roots 21, ..., zx_1 of px_1 separate the roots
Y1y, Yk Of pp. Choose M so that yg:= —M < y1, ygt+1 := M > yg. Then

Yo <Y1 <21 <y2 <20 <2p—1 <Yk <Ykt1-
We claim that for M sufficiently large

Pea1(y) = (=1 I ppa (y;)| #0, for j=0,1,...,k+1.
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This holds for j =0,k 4+ 1, and for j =1,...,k since

Pre1(Y;) = —ipr—1(y;) = —caly; —21) -+ (Y — 2k-1)-

It follows that the roots x1,...,zr4+1 are separated by the roots y1, ..., yx of pr and
by induction the roots of p,, (the eigenvalues of A) are distinct. 0O

14.3.1 The Inertia Theorem

We say that two matrices A, B € C™" are congruent if A = E BE for some
nonsingular matrix £ € C™". By Theorem 6.10 a Hermitian matrix A is both
congruent and similar to a diagonal matrix D, U? AU = D where U is unitary.
The eigenvalues of A are the diagonal elements of D. Let w(A), ((A) and v(A)
denote the number of positive, zero and negative eigenvalues of A. If A is Hermitian
then all eigenvalues are real and 7(A) + ((A) + v(A) = n.

Theorem 14.17 (Sylvester’s Inertia Theorem) If A, B € C™" are Hermitian
and congruent then n(A) = w(B), ((A) = ((B) and v(A) = v(B).

Proof. Suppose A = E¥BE, where E is nonsingular. Assume first that A and
B are diagonal matrices. Suppose m(A) = k and 7(B) = m < k. We shall show
that this leads to a contradiction. Let E; be the upper left m x k corner of E.
Since m < k, we can find a nonzero x such that E;xz = 0 (cf. Lemma B.5). Let
yT =[x7,07) € C", and z = [z1,...,2,]7 = Ey. Then z; =0 fori = 1,2,...,m.
If A has positive eigenvalues A1,..., Ay and B has eigenvalues p1, ..., u,, where
w; <0 for i > m + 1 then

n k
i=1 i=1

But

y"Ay =y"E"BEy=2"Bz= > x> <0,
1=m-+1
a contradiction.

We conclude that 7(A) = n(B) if A and B are diagonal. Moreover, v(A) =
m(—A)=n(—B)=v(B)and ((A) =n—n(A)—v(A) =n—7n(B)—v(B) = {(B).
This completes the proof for diagonal matrices.

Let in the general case U7 and Us be unitary matrices such that U fI AU, =
D; and Uf BU; = D5 where Dy and D5 are diagonal matrices. Since A =
EHBE, we find D, = FHDQF where F = UfEUl is nonsingular. Thus D; and
D5 are congruent diagonal matrices. But since A and D;, B and D5 have the
same eigenvalues, we find 7(A) = n(D;) = m(D3) = 7(B). Similar results hold for
(andv. 0O
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Corollary 14.18 Suppose A = tridiag(c;,d;,c¢;) € R™™ is symmetric and that
a € R is such that A—ad has an LDL™ factorization, i.e. A—al = LDL" where
L is unit lower triangular and D is diagonal. Then the number of eigenvalues of
A strictly less than o equals the number of negative diagonal elements in D. The
diagonal elements dy (), ...,d,(«) in D can be computed recursively as follows

di(a) =d; —a, dp(a) =dy, —a—ci_y/dp_1(a), k=2,3,...,n. (14.5)

Proof. Since the diagonal elements in R in an LU factorization equal the diagonal
elements in D in an LDL” factorization we see that the formulas in (14.5) follows
immediately from (2.5). Since L is nonsingular, A — oI and D are congruent. By
the previous theorem v(A —al) = v(D), the number of negative diagonal elements
in D. If Az = Az then (A—al)x = (A—a)x, and A—« is an eigenvalue of A—al.
But then v(A — al) equals the number of eigenvalues of A which are less than .
O

Exercise 14.19 Consider the matriz in Fxercise 14.9. Determine the number of
eigenvalues greater than 4.5.

Exercise 14.20 Let forn € N

(10 1 o -+ 0
1 10 1
A, = 0 0
: .1 10 1
L 0 -~ 0 1 10 |

a) Let dy, be the diagonal elements of D in an LDLT factorization of A,,. Show
that 5++/24 < dj, <10, k= 1,2,...,n.

b) Show that D, = det(A,) > (5 + V24)". Give ng € N such that your computer
gives an overflow when D, is computed in floating point arithmetic.

Exercise 14.21 (Simultaneous diagonalization of two symmetric matrices by a
congruence transformation). Let A, B € R™™ where AT = A and B is sym-
metric positive definite. Let B = UT DU where U is orthonormal and D =

diag(dy, ..., dn). Let A= D™'2UAUT D/ where D™/? = diag(d; /2, ..., dn*'?).

a) Show that A is symmetric. Let A = 0TDU where U is orthonormal and D is
diagonal. Set E = UTD_l/QﬁT.

b) Show that E is nonsingular and that E* AE = D, E'TBE=1.



196 Chapter 14. Numerical Eigenvalue Problems

14.3.2 Approximating )\,

Corollary 14.18 can be used to determine the mth eigenvalue of A, where A\; <
Ao < - < A,. For this we use interval bisection. Using Gerschgorin’s theorem we
first find an interval [a,b], such that [a,b) contains the eigenvalues of A. Let for
x € [a, b]

p(x) :=#{k:dp(x) <0for k=1,...,n}

be the number of eigenvalues of A which are strictly less than x. Clearly p(a) = 0,
p(b) = n and p(e) — p(d) is the number of eigenvalues in [d,e). Let ¢ = (a + b)/2
and k := p(c). If k > m then \,,, < ¢ and A, € [a,c], while if & < m then A, > ¢
and A, € [¢,b]. Continuing with the interval containing \,, we generate a sequence
{la;,b;]} of intervals, each containing A, and b; —a; =277 (b — a).

As it stands this method will fail if in (14.5) one of the dy(«) is zero. One
possibility is to replace such a di(«) by a suitable small number, say 6, = *+|cg|en,
where the negative sign is used if ¢ < 0, and €j; is the Machine epsilon, typically
2 x 10716 for Matlab. This replacement is done if |dy ()| < |0x].

Exercise 14.22 Suppose A = tridiag(c, d, c) is symmetric and tridiagonal with el-
ements dy,...,d, on the diagonal and c1,...,cnh—1 on the neighboring subdiagonals.
Let Ay < Ao < - < A\, be the eigenvalues of A. We shall write a program to
compute one eigenvalue A, for a given m using bisection and the method outlined
in Section 14.3.2.

a) Write a function k=count(c,d,x) which for given x counts the number of
eigenvalues of A strictly less than x. Use the replacement described above if
one of the dj(x) is close to zero.

b) Write a function lambda=findeigv(c,d,m) which first estimates an interval
[a,b] containing all eigenvalues of A and then generates a sequence {[a, bi]}
of intervals each containing \p,. Iterate until by, — ap, < (b — a)epr, where epg
is Matlab’s machine epsilon eps. Typically epr = 2.22 x 10716,

c) Test the program on T := tridiag(—1,2,—1) of size 100. Compare the exact
value of A5 with your result and the result obtained by using Matlab’s built-in
function eig.

Exercise 14.23 Suppose A € C™" is upper Hessenberg and x € C. We will study
two algorithms to compute f(x) = det(A — aI).

a) Show that Gaussian elimination without pivoting requires O(1 * n?) flops.
b) Show that the number of flops is the same if partial pivoting is used.
c) Estimate the number of flops if Given’s rotations are used.

d) Compare the two methods discussing advantages and disadvantages.
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14.4 Perturbation Proofs

We first show that the p-norm of a diagonal matrix is equal to its spectral radius.

Lemma 14.24 If A = diag(\1,...,\,) is a diagonal matriz then ||All, = p(A)
for 1 <p < oo.

Proof. For any € C™ and p < oo we have

n

1
lA]y = [Pazr, . Azl Tl = (DIl ) 7 < p(A) |,
j=1

Thus ||A|, = maxg.o lA=ll, p(A). But from Theorem 8.46 we have p(A) <

[E2

||Al|, and the proof is complete for p < co. 0O

Exercise 14.25 Give a direct proof that ||A|ec = p(A) if A is diagonal.

Suppose now (u,x) is an approximation to an eigenpair of a matrix A. One
way to check the accuracy is to compute the residual r := Ax — px. For an exact
eigenpair the residual is zero and we could hope that a small residual implies an
accurate eigenpair.

Theorem 14.26 (Absolute errors) Suppose A € C™™ has linearly independent
eigenvectors {x1,...,xp} and let X = [x1,...,x,] be the eigenvector matriz. To
any p € C and x € C™ with ||x||, = 1 we can find an eigenvalue A of A such that

A —pl < Kp(X)l7llp, 1<p<oo, (14.6)

where 1= Az — px and Ky(X) = | X ||, | X Y|,. If for some E € C™™ it holds
that (u,x) is an eigenpair for A+ E, then we can find an eigenvalue A of A such
that

A —pl S Kp(X)|Ellp, 1<p<oo, (14.7)

Proof. If y € o(A) then we can take A = p and (14.6), (14.7) hold trivially.
So assume p ¢ o(A). Since A is nondefective it can be diagonalized, we have
A= XDX ! where D = diag(\y, ..., \,) and (Aj, ;) are the eigenpairs of A for
j=1,...,n. Define D; := D—plI. Then Dy =diag (M —p) L., (A —p)7Y)
exists and

XD'X e = (X(D—puD)X ) 'r = (A—pl) (A plz = .
Using this and Lemma 14.24 we obtain

SR . Ky(X)| ]
1= = | XD7'X ||, < ||D7,K, (X =P P
llzll, = | 1 rlp, < D7 |[pKp (X7l i, — ]

But then (14.6) follows. If (A + E)x = pyx then 0 = Az — yx + Ex = r + Ex.
But then |7, = [|[-Ez|, < | E||p. Inserting this in (14.6) proves (14.7). O
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For the accuracy of an eigenvalue of small magnitude we are interested in the
size of the relative error.

Theorem 14.27 (Relative errors) Suppose in Theorem 14.26 that A € C™™ is
nonsingular. To any p € C and x € C™ with |||/, = 1, we can find an eigenvalue
A of A such that

A — gl <
Al

T
K, (X)K,(A) ||||A||||” , 1<p<oo, (14.8)
p

where r := Az — px. If for some E € C™" it holds that (u, ) is an eigenpair for
A + E, then we can find an eigenvalue A of A such that

E
I Ell, 1<p<oo, (14.9)

A—U _
2 S K XA Bl < Ky (XK, (A) e, 1<p<
p

A

Proof. Applying Theorem 8.46 to A~ we have for any A € o(A)

Kp(A)

p

> =

and (14.8) follows from (14.6). To prove (14.9) we define the matrices B := yA~!
and F:= —A"'E. If (Aj, ) are the eigenpairs for A then (A%, :1:) are the eigenpairs
for B for j =1,...,n. Since (u,x) is an eigenpair for A + E we find

(B+F-Iz=pA"'-A"'E-Tlx=A""(ul — (E+ A))z =0.

Thus (1, x) is an eigenpair for B + F. Applying Theorem 14.26 to this eigenvalue
we can find X € o(A) such that |[§ — 1| < K,(X)||F|, = K,(X)||A"'E||, which
proves the first estimate in (14.9). The second inequality in (14.9) follows from the
submultiplicativity of the p-norm. 0O



Chapter 15

Some Methods for
Computing Eigenvalues

15.1 The Power Method

Let A € C™" have eigenpairs (\;,v;), 7 =1,...,n. Given zg € C" we assume that

(@) Ml > [A2f =2 As| =+ = A,
(i)  zdv, #£0 (15.1)

(#i7) A has linearly independent eigenvectors.

The first assumption means that A has a dominant eigenvalue A; of algebraic mul-
tiplicity one. The second assumption says that zy has a component in the direction
v1. The third assumption is not necessary, but is included in order to simply the
analysis.

The power method is a technique to compute the dominant eigenvector v
of A. As a by product we can also find the corresponding eigenvalue. We define a
sequence {zy} of vectors in C™ by

zp = Afzg= Az, 1, k=1,2,.... (15.2)

To see what happens let zg = c;v1 + cav2 + -+ - + ¢, vy, where by assumption (i7)
of (15.1) we have ¢; # 0. Since A*v; = Av; for all j we see that

Zp = cl)\’fvl + 02)\’2“'02 + -+ cn)\ﬁvm k=0,1,2,.... (15.3)

Dividing by A} we find

k A2 k A’rL k
)\7]16:61’014_62()\71) ’U2+'~'—|-Cn()\71) v,, k=0,1,2,.... (15.4)
Assumption (i) of (15.1) implies that (A\;/A1)* — 0 as k — oo for all j > 2 and we
obtain .

lim 2% = cyvy, (15.5)

k—oc0 )\]f
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the dominant eigenvector of A. It can be shown that this also holds for defective
matrices as long as (i) and (i¢) of (15.1) hold, see for example page 58 of [18].

In practice we need to scale the iterates z; somehow and we normally do not
know A;. Instead we choose a norm on C", set &y = zo/||z0|| and generate for
k=1,2,... unit vectors as follows:

(1) Y = Axy_1
(i) on =yl (15.6)

Lemma 15.1 Suppose (15.1) holds. Then

lim (‘i—il)kwk =

k=00 el ol

1 Ui

In particular, if A1 > 0 and ¢; > 0 then the sequence {xy} will converge to the
eigenvector uy := v1/||v1]| of unit length.

Proof. By induction on k it follows that &, = zi/|zk| for all & > 0, where
2 = A" 2. Indeed, this holds for k = 1, and if it holds for k—1 then Yy, =Axp_1 =
Azi1/llziall = zi/llzeal and @ = (zi/llzr-al)([ze-1ll/l2k]]) = zk/llZkl
But then

k k
ca A2 cn [ An
Zk Cl/\llC v1+c1< 1) vz + +c1<)\1> Un
x), = —, k=0,1,2,...,

Tzl T Tk k
o oy g () oo ()

and this implies the lemma. O

Suppose we know an approximate eigenvector w of A, but not the correspond-
ing eigenvalue p. One way of estimating p is to minimize the Euclidian norm of the
residual r(A) := Au — \u.

Theorem 15.2 Let A € C»", uw € C"\ {0}, and let p : C — R be given by
u"Au

p(A) = [Au — Au|l2. Then p is minimized when \ := “Z the Rayleigh quotient
for A.

Proof. 1t is equivalent to minimize E()\) := p?()\). Now

E\) = uur? — 2u” Aul + uT AT Au.
We see that E is a quadratic polynomial and since w”u > 0, E has a unique
minimum A, where E'()\) = 0. The solution of E’(\) = 0 is given by A = %A,

u*u
0

Using Rayleigh quotients we can incorporate the calculation of the eigenvalue
into the power iteration. We can then compute the residual and stop the iteration
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when the residual is sufficiently small. The estimate (14.8) can give us some insight.
Recall that if A is nonsingular and nondefective with eigenvector matrix X and
(4, u) is an approximate eigenpair with ||ul|2 = 1, then we can find an eigenvalue A
of A such that

A — | Au — pull

A [Al2

Thus if the relative residual is small and both A and X are well conditioned then
the relative error in the eigenvalue will be small.

This discussion leads to the power method with Rayleigh quotient computa-
tion.

Algorithm 15.3 (The Power Method) Given A € C™", a starting vector
z € C", a maximum number K of iterations, and a convergence tolerance
tol. The power method combined with a Rayleigh quotient estimate for the
eigenvalue is used to compute a dominant eigenpair (I, x) of A with ||z|s = 1.
The integer it returns the number of iterations needed in order for ||[Azx —
lx||2/||AllF < tol. If no such eigenpair is found in K iterations the value
it = K + 1 is returned.

< Ka(X)K»2(A)

function [1,x,it]l=powerit(A,z,K,tol)
af=norm(A,’fro’); x=z/norm(z);
for k=1:K
y=A*xx; 1l=x’x*y;
if norm(y-1l*x)/af<tol
it=k; x=y/norm(y); return

end
x=y/norm(y);
end
it=K+1;

Example 15.4 We try powerit on the three matrices

1 2 1.7 —04 1 2
Ay = {3 4] , Agi= {0.15 2.2 ] and As = [—3 4]'

In each case we start with the random vector z = [0.6602,0.3420] and tol = 1075.
For Ay we get convergence in 7 iterations, for Asg it takes 174 iterations, and for
As we do not get convergence.

The matriz Az does not have a dominant eigenvalue since the two eigenvalues
are complex conjugate of each other. Thus the basic condition (i) of (15.1) is not
satisfied and the power method diverges. The enormous difference in the rate of
convergence for A; and As can be explained by looking at (15.4). The rate of
convergence depends on the ratio % If this ratio is small then the convergence is
fast, while it can be quite slow if the ratio is close to one. The eigenvalues of A1 are
A1 = 5.3723 and A\s = —0.3723 giving a quite small ratio of 0.07 and the convergence
is fast. On the other hand the eigenvalues of As are \y = 2 and Ao = 1.9 and the
corresponding ratio is 0.95 resulting in slow convergence.
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A variant of the power method is the shifted power method In this method
we choose a number s and apply the power method to the matrix A — sI. The
number s is called a shift since it shifts an eigenvalue A\ of A to A — s of A — sI.
Sometimes the convergence can be faster if the shift is chosen intelligently. For
example, if we apply the shifted power method to Ay in Example 15.4 with shift
1.8 then with the same starting vector and tol as above we get convergence in 17
iterations instead of 174 for the unshifted algorithm.

15.1.1 The Inverse Power Method

Another variant of the power method with Rayleigh quotient is the inverse power
method. This method can be used to determine any eigenpair (A, ) of A as long
as A has algebraic multiplicity one. In the inverse power method we apply the power
method to the inverse matrix (A — sI)~!, where s is a shift. If A has eigenvalues
A1, ..., A\, in no particular order then (A — sI)~! has eigenvalues

pi(s) = (=) Hpa(s) = N2 =)o pa(s) = (A — 5) 71
Suppose A; is a simple eigenvalue of A. Then lim,_, 5, |p1(s)| = oo, while lim,_, 5, p;(s) =
(Aj —A1)7! < oo for j =2,...,n. Hence, by choosing s sufficiently close to A\; the
inverse power method will converge to that eigenvalue.
For the inverse power method (15.6) is replaced by

(i) (A=sDy, =z

(i) xk = yi/ |yl
Note that we solve the linear system rather than computing the inverse matrix.
Normally the PLU factorization of A — sI is precomputed in order to speed up the
iteration.

A variant of the inverse power method is known simply as Rayleigh quotient
iteration. In this method we change the shift from iteration to iteration, using the
previous Rayleigh quotient s;_; as the current shift. In each iteration we need to
compute the following quantities

(1) (A—-sp1D)y;, = xp—1,

) zk=yi/llyll;
(#i1) sy = ¢ Axy,
)

(15.7)

T = A:IJk — SgLk.

We can avoid the calculation of Az in (ii7) and (iv). Let

 YpTi_1 T
Pr = —, k= :
YrYk 1Y ll2
Then
YAy Y (A —sp_ 1)y YrLTh—1
Ska*ikZSkq-i- il " ) k:3k71+k*7:3k71+/)k7
YrYk YiYi YrYr
Ay — (Sk—1+ PK)Y,  Tr-1— PrY
T = 14(1:1c — SgL — k ( ) k — k = Wg — PrkTE.

[yl EE
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k 1 2 3 4 5
e 1.0¢+000 | 7.76-002 | 1.6e-004 | 8.2¢-010 | 2.0e-020
|s— 1| | 3.7e-001 | -1.2e-002 | -2.9e-005 | -1.4e-010 | -2.2¢-016

Table 15.7. Quadratic convergence of Rayleigh quotient iteration.

Another problem is that the linear system in ¢) becomes closer and closer to singular
as s, converges to the eigenvalue. Thus the system becomes more and more ill-
conditioned and we can expect large errors in the computed y,. This is indeed
true, but we are lucky. Most of the error occurs in the direction of the eigenvector
and this error disappears when we normalize y,, in 7). Miraculously, the normalized
eigenvector will be quite accurate.

We obtain the following algorithm.

Algorithm 15.5 (Rayleigh quotient iteration) Given an approximation
(s,x) to an eigenpair (A, v) of a matrix A € C™". This algorithm computes a
hopefully better approximation to (A, v) by doing one Rayleigh quotient itera-
tion. The length nr of the new residual is also returned

function [x,s,nrl=rayleighit(A,x,s)
n=length(x);

y=(A-s*eye(n,n))\x;

yn=norm (y) ;

w=x/yn;

x=y/yn;

rho=x’*w;

s=s+rho;

nr=norm(w-rho*x);

Since the shift changes from iteration to iteration the computation of y in
rayleighit will require O(n?) flops for a full matrix. For such a matrix it might
pay to reduce it to a upper Hessenberg form or tridiagonal form before starting the
iteration. However, if we have a good approximation to an eigenpair then only a
few iterations are necessary to obtain close to machine accuracy.

If Rayleigh quotient iteration converges the convergence will be quadratic and
sometimes even cubic. We illustrate this with an example.

Example 15.6 The matriz A = [} 2] has an eigenvalue \; = (5—+/33)/2 ~ —0.37.
We test the rate of convergence by calling rayleighit 5 times starting with * =
[1,1]7 and s = 0. The results are shown in Table 15.7. The errors are approvimately
squared in each iteration indicating quadratic convergence.
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15.2 The QR Algorit

hm

The QR algorithm is an iterative method to compute all eigenvalues and eigenvec-
tors of a matrix A € C™". The matrix is reduced to triangular form by a sequence
of unitary similarity transformations computed from the QR factorization of A.
Recall that for a square matrix the QR factorization and the QR decomposition are
the same. If A = QR is a QR factorization then Q € C™™ is unitary, Q*Q = I
and R € C™" is upper triangular.

The basic QR algorithm takes the following form:

A=A
fork=1,2,...
Q.R; = Ax (QR factorization of Ay) (15.8)
Apr1 = R Q.
end
Here are two examples to illustrate the convergence.
Example 15.8 We start with
2 1 1 [-2 -1 1 |-5 —4
m-asfo) -G 3 DGl B -em
and obtain
1{-5 —4 -2 -1 2.8 —0.6
Az_R1Q1_5[0 3} *[1 2} - {0.6 12 |
Continuing we find
A — 2.997 —0.074 Ao — 3.0000 —0.0001
7 [-0.074 1.0027|> 7 [-0.0001  1.0000
Ay is almost diagonal and contains the eigenvalues A\y = 3 and Ay = 1 on the

diagonal.

Example 15.9 Applying the QR iteration (15.8) to the matriz

0.9501 0.8913 0.8214 0.9218
A — A | 02311 0.7621 0.4447 0.7382
=271 0.6068 0.4565 0.6154 0.1763
0.4860 0.0185 0.7919 0.4057
we obtain
2.323 | 0.047223  —0.39232 | —0.65056
A, — | ~21e—10] 0.13029 0.36125 | 0.15946
M= _41e—10] —0.58622  0.052576 | —0.25774
12¢—14] 3.3e— 05 —1.le—05| 0.22746
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This matriz is almost quasi-triangular and estimates for the eigenvalues A1, ..., A4
of A can now easily be determined from the diagonal blocks of Ai14. The 1 x 1
blocks give us two real eigenvalues A1 =~ 2.323 and Ay ~ 0.2275. The middle 2 x 2
block has complex eigenvalues resulting in Ao = 0.0914 4 0.4586¢ and A3 ~ 0.0914 —
0.4586¢. From Gerschgorin’s circle theorem 14.4 and Corollary 14.6 it follows that
the approzimations to the real eigenvalues are quite accurate. We would also expect
the complex eigenvalues to have small absolute errors.

15.2.1 The Relation to the Power Method

In the basic QR algorithm we obtain the QR factorization of the powers A" as
follows:

Theorem 15.10 Let Q4,...,Q;, and Ry,..., Ry be the matrices generated by the
basic QR algorithm (15.8). Then the products

Q. =Q, - Q, and R :=Ry,---Ry fork>1 (15.9)
are the matrices in a QR factorization A* = QkRk of A*.

Proof The proof is by induction on k. Clearly Q1R1 = QlRl = Aj. Suppose

Q, Ry = A" for some k > 2. Since Q, Ry, = Ay, = Qk LAQ,_, we find

QkRk = qu(QkRk)kal = quAkkal = (QkAQZq)Aqukal = A",
|

Since Ry, is upper triangular, its first column is a multiple of e; so that

o~ 1
Ae; = Q,Rye, = rll)lel or q = Que1 = (k) —A'e
11

Since ||(~1§k)||2 = 1 the first column of @, is the result of applying the normalized
power iteration (15.6) to the starting vector &g = e;. If this iteration converges we
conclude that the first column of Qk must converge to a dominant eigenvector of
A. It can be shown that the first column of A must then converge to A\je;, where
A1 is a dominant eigenvalue of A. This is clearly what happens in Examples 15.8
and 15.9.

15.2.2 A convergence theorem

There is no theorem which proves convergence of the QR algorithm in general. The
following theorem shows convergence under somewhat restrictive assumptions.

Theorem 15.11 Suppose in the basic QR algorithm (15.8) that
1. A eR™" can be diagonalized, X "AX = A := diag(A1,..., \n).
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2. The eigenvalues A1, ..., Ay are real with |Ai| > [Az] > -+ > |A,] > 0.
3. The inverse of the eigenvector matriz has an LU factorization X ' = LR.

Let Qk =Q...Qy, for k > 1. Then there is a diagonal matriz Dy, with diagonal
elements £1 such that Qka — Q, where QTAQ s triangular and Q 1is the Q-
factor in the QR factorization of the eigenvector matriz X.

Proof. In this proof we assume that every QR factorization has an R with pos-
itive diagonal elements so that the factorization is unique. Let X = QR be the
QR factorization of X. We observe that QT AQ is upper triangular. For since
X 'AX = A we have R'QTAQR = A so that QT AQ = RAR™ is upper
triangular. Since A1 = QgAQ,€7 it is enough to show that Qk.Dk — @ for some
diagonal matrix D} with diagonal elements £1.

We define the nonsingular matrices

.. 01 On

F = RAFLA*R™! =Q,Rr, Gk —RkRA R, D, —dlag(|5 | W),
1 n

where d1, ..., 4, are the diagonal elements in the upper triangular matrix Gy and

Fy = QkRk is the QR factorization of F'x. Then

A" = XA* X' = QRA*LR = Q(RA*LA "R ')(RA*R)
— QF(RA"R) = QQ,.R,(RA"R) = (QQ,.D;")(DiGy),

and this is the QR factorization of A*. Indeed, QQkD,;l is a product of orthonor-
mal matrices and therefore orthonormal. Moreover DG}, is a product of upper
triangular matrices and therefore upper triangular. Note that Dy, is chosen so that
this matrix has positive diagonal elements. By Theorem 15.10 Ak QkRk is also
the QR factorization of A*, and we must have Qk = QQk o or Qka = QQ,C
The theorem will follow if we can show that @, — I.

The matrix A¥LA™F is lower triangular with elements ( i—;)klu on and under
the diagonal. Thus for n = 3

1 0 0
AFLA™F = | (33)Fln 1 0
(32)*l1 (32)*z2 1

By Assumption 2. it follows that AFLA™" — I, and hence F;, — I. Since RZRk is
the Cholesky factorization of F{Fk it follows that Rka — I. By the continuity
of the Cholesky factorization it holds Ry — I and hence R;l — I. But then
O,=F.R, -1 O

Exercise 15.12 Use Theorem 8.40 to show that R, — 1T implies R;l 1T
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15.2.3 The Shifted QR Algorithms

Like in the inverse power method it is possible to speed up the convergence by
introducing shifts. The explicitly shifted QR algorithm works as follows:

A=A

fork=1,2,...
Choose a shift s,
Q.Rr = A — s I (QR factorization of Ay, — sI)
Ap = RpQy + s, 1.

end

(15.10)

We will not develop the practical details of an implementation of this algo-
rithm. We contend ourselves with the following remarks. See [18] for a detailed
discussion and algorithms.

1. Ag41 is unitary similar to Ag. For since Ry, = Qr (A — siI) we find Apq =
R.Q) + 51 = Qi (Ar, — 51.1)Q), + sk I = Q1 ALQ,,.

2. Before applying this algorithm we reduce A to upper Hessenberg form using
Algorithm 14.11.

3. If A is upper Hessenberg then all matrices { Ay }x>1 will be upper Hessenberg.
This follows since Q,, = (Ag — skI)Rf1 implies Ax11 = Ry (Ag — skI)Rl;1 +
sgd = RkAlezl. This product of two upper triangular matrices and an
upper Hessenberg matrix is upper Hessenberg.

4. Givens rotations is used to compute the QR factorization of Ay — siI.

5. To compute Ay from Ay requires O(n?) flops if Aj is upper Hessenberg
and O(n) flops if Ay, is tridiagonal.

6. The shifted QR algorithm is related to the power method, cf. Theorem 15.10.

7. The equation A — siI = Q. Ry implies that (A — s I)Tq, = rF, e,, where
q;, is the last column of @, and 7%, is the (n,n) element in Ry. Thus q, is
the result of one iteration of the inverse power method to A with shift s;.

8. If a subdiagonal element a;;1; of an upper Hessenberg matrix A is equal
to zero, then the eigenvalues of A are the union of the eigenvalues of the
two smaller matrices A(1 : 4,1 : ¢) and A(4+ 1 : n,i +1 : n). Thus if
during the iteration the (i + 1,47) element of Ay is sufficiently small then
we can continue the iteration on the two smaller submatrices separately. This
splitting occurs often in practice and can with a proper implementation reduce
the computation time considerably.

9. The shift s; := el Ape, is called the Rayleigh quotient shift.

10. The eigenvalue of the lower right 2 x 2 corner of Ay closest to the n,n element
of Ay is called theWilkinson shift. This shift can be used to find complex
eigenvalues of a real matrix.

11. The convergence is very fast and at least quadratic both for the Rayleigh
quotient shift and the Wilkinson shift.
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12.

13.

14.

By doing two QR iterations at a time it is possible to find both real and
complex eigenvalues without using complex arithmetic. The corresponding
algorithm is called the implicitly shifted QR algorithm

After having computed the eigenvalues we can compute the eigenvectors in
steps. First we find the eigenvectors of the triangular or quasi-triangular
matrix. We then compute the eigenvectors of the upper Hessenberg matrix
and finally we get the eigenvectors of A.

Practical experience indicates that only O(n) iterations are needed to find all
eigenvalues of A. Thus both the explicit- and implicit shift QR algorithms
are normally O(n?) algorithms.
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Appendix A
Vectors

This chapter contains a review of vector space concepts that will be useful in this
text. we start by introducing a vector space. To define a vector space we need a
field F, a set of vectors V, a way to combine vectors called vector addition, and
a way to combine elements of F and V called scalar multiplication. In the first
part of this section F will be an arbitrary field, but later the field will be the set of
real or complex numbers with the usual arithmetic operations.

A.1 Vector Spaces

Definition A.1 A field is a set F together with two operations +,- : F xF — F
such that for all a,b,c € F the following arithmetic rules hold

(AO) there exists an element 0 € F such that a + 0 = a.

(Am) there ezists an element (—a) € F such that a + (—a) = 0. We define sub-
traction as a — b := a+ (-b).

(Aa) a+(b+c¢)=(a+b)+ec.

(Ac) a+b=b+a.

(M1) there exists an element 1 € F such that a -1 = a.

(Mi) if a # 0 then there exists an element a=! € F such that a-a~! = 1.
Ma) a-(b-¢)=(a-d)-c.

(Mc) a-b=1b"a.

D) a-(b+c)=a-b+a-c.

The requirements (A0), (Am), (Aa) are the axioms for a group. They state that
(F,+) is a group, and since in addition (Ac) holds then (F,+) is by defintion an

211
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abelian group. The axioms (M1), (Mi), (Ma), (Mc) state that (F\ {0}, ) is an
abelian group. Often we drop the dot and write ab for the product a - b. Examples
of fields are R or C with ordinary addition and multiplication.

Definition A.2 A vector space over a field F is a set V together with two opera-
tions vector addition, + :V x V =V and scalar multiplication, - : F x V — V such
that for all a,b € F and v,w € V the following hold

(V) (V,+) is an abelian group.
(Va) (a-b)-v=a-(b-v).
(Vdl) (a+b)-v=a-v+b-v.
(Vd2) a- (v+w)=a-v+a-w.
(M1) 1-v=wv.

We denote a vector space by (V,F) or by V if the underlying field is clear from the
context.

Definition A.3 Let (V,F) be a vector space and S a nonempty subset of V. Then
(8,F) is a subspace of (V,F) if (S,F) is itself a vector space.

It follows that (S, F) is a subspace of (V,F) if S is closed under vector addition
and scalar multiplication, i.e. as; + bse € S for all a,b € F and all s1,s2, € S§. For
any vector space (V,F) the two sets {0}, consisting only of the zero element in V),
and V itself are subspaces. They are called the trivial subspaces.

Here are some examples of vector spaces.

Example A.4 (The Vector Spaces R"™ and C") In the following chapters we
will deal almost exclusively with the vector spaces R* = (R™R), C" = (C",C)
and their subspaces. Addition and scalar multiplication are defined by

V1 + wy avq
v+w = . , av =

VUp + Wy AUy,

Example A.5 (Subspaces of R? and R?) For a given vector x € R" let S =
{te : t € R}. Then S is a subspace of R", in fact it represents a straight line
passing through the origin. For n = 2 it can be shown that all nontrivial subspaces
of R? are of this form. For n = 3 the nontrivial subspaces are all lines and all
planes containing {0}.
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Example A.6 (The Vector Space C(I)) LetF =R and let C(I) be the set of all
real valued functions f : I — R which are defined and continuous on an interval I C
R. Here the vectors are functions in C(I). Vector addition and scalar multiplication
are defined for all f,g € C(I) and all a € R by

(f +9)(x) = f(x) + g(x), (af)(x):=af(z), forallzel
C(I) = (C(I),R) is a vector space since
e the sum of two continuous functions is continuous,
e a constant times a continuous function is continuous

e vector addition and scalar multiplication are defined point-wise, so the axioms
for a vector space follows from properties of real numbers.

Example A.7 (The Vector Space I1,,) Let I1,(I) be the set of all polynomials
of degree at most n defined on a subset I C R or I C C. We write simply I1,, if
I =R or I =C. With pointwise addition and scalar multiplication defined as in
Ezample A.6 the set (IL,(I),R) is a subspace of (C(I),R).

Definition A.8 (Linear Combinations) The sum civi + cova + - + ¢, v, with
c; € Fandwv; €V fori=1,...,n is called a linear combination of vy,...,v,.

We say that the linear combination is nontrivial if at least one of the ¢;’s is nonzero.
The set

span{vy,...,v,} ={cv1+--+cv,: ¢, €F, i=1,...,n}
spanned by vy,...,v, €V is a subspace of (V,F). A vector space V is called finite

dimensional if it has a finite spanning set; i.e. there exist n € N and {v1,...,v,}
in V such that ¥V = span{vy,...,v,}.

Exercise A.9 Show that the O of vector addition is unique and that {0} is a sub-
space.

Exercise A.10 Show that 0-x =0 for any x € V.
Exercise A.11 Show that span{vy,...,v,} is a subspace.

Exercise A.12 Show that span{vy,...,v,} is the smallest subspace containing the
vectors Vi, ..., Uy.
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A.2 Linear Independence and Bases

Definition A.13 Let X := {vy,...,v,} be a set of vectors in a vector space (V,TF).
We say that X is linearly dependent if we can find a nontrivial linear combination
which is equal to zero. We say that X is linearly independent if it is not linearly
dependent. In other words

c1v1 + -+ cpvy =0 for somecy,...,cn €F = ¢ =---=¢,=0.

The elements in a set of linearly independent vectors must all be nonzero and
we have

Lemma A.14 Suppose vi,...,v, span a vector space V and that wy, ..., wy are
linearly independent vectors in V. Then k < n.

Proof. Suppose k > n. Write w; as a linear combination of elements from the set
Xo :={v1,...,v,},say w1 = cyv1+- - -+, v,. Since wy # 0 not all the ¢’s are equal
to zero. Pick a nonzero c, say c;,. Then v;, can be expressed as a linear combination
of w; and the remaining v’s. So the set X} = {wi,v1,...,Vi;-1,Vi; 41,5 Vn}
must also be a spanning set for V. We repeat this for ws and &;. In the linear
combination wy = d;, w1 +E#il d;v;, we must have d;, # 0 for some i5. Moreover
i # 11 for otherwise wy = djw; contradicting the linear independence of the w’s.
So the set X5 consisting of the v’s with v;, replaced by w; and v;, replaced by w-
is again a spanning set for V. Repeating this process n — 2 more times we obtain a
spanning set X,, where all the v’s have been replaced by w1, ..., w,. Since k > n
we can then write wy, as a linear combination of wy, . .., w, contradicting the linear
independence of the w’s. We conclude that £k <n. O

Definition A.15 A finite set of vectors {v1,...,v,} in a vector space (V,F) is a
basis for (V,F) if

1. spanf{vy,...,v,} = V.

2. {vi,...,v,} is linearly independent.

Theorem A.16 Suppose (V,F) is a vector space and that S := {vy,...,v,} is a

spanning set for V. Then we can find a subset {v;,,...,v;, } of S that forms a basis
for V.
Proof. It {vy,...,v,} is linearly dependent we can express one of the v’s as a

nontrivial linear combination of the remaining v’s and drop that v from the spanning
set. Continue this process until the remaining v’s are linearly independent. They
still span the vector space and therefore form a basis. 0O

Corollary A.17 A wvector space is finite dimensional if and only if it has a basis.
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Proof. Let V = span{vy,...,v,} be a finite dimensional vector space. By Theo-
rem A.16 V has a basis. Conversely, if V = span{vy,...,v,} and {vy,...,v,} is a
basis then it is by defintion a finite spanning set. 0O

Theorem A.18 Fvery basis for a vector space V has the same number of elements.
This number is called the dimension of the vector space and denoted dim) .

Proof. Suppose X = {vy,...,v,}and Y = {w1,...,wy} are two bases for V . By
Lemma A.14 we have k < n. Using the same Lemma with X and ) switched we
obtain n < k. We conclude that n = k. 0

The set of unit vectors {ey,...,e,} form a basis for both R™ and C". The
dimension of the trivial subspace {0} is defined to be zero.

Theorem A.19 Every linearly independent set of vectors {vy,..., v} in a finite
dimensional vector space V can be enlarged to a basis for V.

Proof. If {vq,...,v;} does not span ¥V we can enlarge the set by one vector vg41
which cannot be expressed as a linear combination of {v1,...,v;}. The enlarged
set is also linearly independent. Continue this process. Since the space is finite
dimensional it must stop after a finite number of steps. 0O

It is convenient to introduce a matrix transforming a basis in a subspace into
a basis for the space itself.

Lemma A.20 Suppose S is a subspace of a finite dimensional vector space (V,F)

and let {s1,...,8,} be a basis for S and {v1,...,v,} a basis for V. Then each s;
can be expressed as a linear combination of v1,..., Uy, say
m
S; = Zaijvi fOTj =1,...,n. (Al)
i=1
IfxeSthenx=3"_ cjs; =" biv; for some coefficients b := [bi,...,by]",
c:=[c1,...,cn]T. Moreover b= Ac, where A = [a;j] € C™". The matriz A has

linearly independent columns.

Proof. (A.1) holds since s; € V and {vy,...,v,} spans V. Since {s1,...,8,}
is a basis for § and {v1,...,v,} a basis for V every @ € S can be written @ =
>oi—1¢i8i = Yivy biv; for some scalars (c;) and (b;). But then
xr = ZCij = ch(Zaijv,;) = Z (Zaijcj)vi = Zbﬂ)l
=1 j=1 =1

j=1 j=1 i= i=1 j=

Since {v1,...,V,} is linearly independent it follows that b, = 2?21 a;jc; for i =

1,...,m or b = Ac. Finally, to show that A has linearly independent columns
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suppose b := Ac = 0 for some ¢ = [cy,...,c,]T. Define x := Z?:l ¢;8;. Then

x =) " bv; and since b = 0 we have & = 0. But since {s1,...,s,} is linearly
independent we have c=0. 0O

The matrix A in Lemma A.20 is called a change of basis matrix.

Exercise A.21 Show that the elements in a linearly independent set must be nonzero.

Exercise A.22 Show that the set of unit vectors {e1,...,e,} form a basis both for
R™ and for C™. Why does this show that the dimension of R™ and C" is n?

A.3 Operations on Subspaces

Let R and S be two subsets of a vector space (V,F) and let a be a scalar. The sum,
multiplication by scalar, union, and intersection of R and S are defined by

R+S:={r+s:reRand s c S},
a8 := {as: s € S},

RUS:={z:xz€RorxeS}

RNS:={z:xe€Rand x €S}

O

A~ o~~~
T = W N
= L O =

Exercise A.23 Let R = {(z,y) : 2% + y*> < 1} be the unit disc in R? and set
S={(z,y): (z — %)2 +y? <1}. Find R+ 8,28,RUS,, and RN S.
A.3.1 Sums and intersections of subspaces

In many cases R and S will be subspaces. Then aS = S and both the sum and
intersection of two subspaces is a subspace of (V,F). Note however that the union
R US of two subspaces is not necessarily a subspace.

Exercise A.24 Let R and S be two subspaces of a vector space (V,F). Show that
aS =S and that both R+ S and RNS are subspaces of (V,F).

Example A.25 For given vectors x,y € R™ with  and y linearly independent let
R =span{x} and S = span{y}. Then R and S are subspaces of R™. Forn = 2 we
have R + S = R2, while for n = 3 the sum represents a plane passing through the
origin. We also see that RNS = {0} and that RUS is not a subspace.

Exercise A.26 Show the statements made in Example A.25.

Theorem A.27 Let R and S be two subspaces of a vector space (V,F). Then

dim(R + 8) = dim(R) + dim(S) — dim(R N S). (A.6)
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Proof. Let {u1,...,u,} be a basis for R NS, where {uy,...,u,} =0, the empty
set, in the case RNS = {0}. We use Theorem A.19 to extend {uq,...,u,} to a basis
{u1,...,up, r1,...,74} for R and a basis {u1,...,up, S1,...,8.} for S. Every « €
R + S can be written as a linear combination of {u1,...,%p,71,...,7¢, 81,...,5¢}
so these vectors span R + S. We show that they are linearly independent and
hence a basis. Suppose u + r + s = 0, where u = Z?:l ajug, T = 2321 piTj,
and s := Z;Zl 0;8;. Now r = —(u + s) belongs to both R and to S and hence

r € RNS. Therefore r can be written as a linear combination of w;,...,u,
say r = Z§:1 Bju; and at the same time as a linear combination of ri,...,7r,.
But then 0 = Y0, Bju; — >3, pjr;y and since {us,...,up,71,...,74} is linearly
independent we must have 8y = -+ =, = p1 = -+ = pg = 0 and hence r = 0.
We now have u + s = 0 and by linear independence of {u1,...,up,s1,...,5:} we
obtain oy = -+ = ap = 01 = -+ = 0 = 0. We have shown that the vectors
{u1,...,up,71,...,7¢,81,...,8} constitute a basis for R + S. The result now

follows from a simple calculation
dm(R+S8)=p+qg+t=(p+q + (p+1t)—p=dim(R)+ dim(S) — dim(R N S).
0

From this theorem it follows that dim(R + S) = dim(R) + dim(S) provided
RNS ={0}.

Definition A.28 (Direct Sum) Let R and S be two subspaces of a vector space
V,F). If RNS = {0} then the subspace R+ S is called a direct sum and denoted
R&S. The subspaces R and S are called complementary in the subspace R®S.

Theorem A.29 Let R and S be two subspaces of a vector space (V,F) and assume
RNS ={0}. Everyx € RO S can be decomposed uniquely in the form x = r + s,
where r € R and s € S. If {r1,...,ry} is a basis for R and {s1,...,8,} is a basis
for S then {ri,..., 7k, 81,...,8,} is a basis for R® S.

Proof. To show uniqueness, suppose we could write € = r; + 81 = ry + s for
r1,72 € R and s1,82 € S. Then r; — o = 85 — 81 and it follows that r; — r5 and
s — 81 belong to both R and S and hence to RNS. But then ry —r3 =s2—51 =0

so 71 = 73 and so = s1. Thus uniqueness follows. Suppose {r1,...,r%} is a basis
for R and {s1,...,8,} is a basis for S. Since dim(R + S) = dim(R) + dim(S) the
vectors {ry,..., Tk, S1,...,8,} span R + S. To show linear independence suppose

Z§:1 piT; + Z;L:1 0;8; = 0. The first sum belongs to R and the second to S and
the sum is a decomposition of 0. By uniqueness of the decomposition both sums

must be zero. But then p; =--- = pp =01 =--- = 0, = 0 and linear independence
follows. 0
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A.3.2 The quotient space

For the sum of two sets we write € + S := {& + s : s € S} when one of the sets is a
singleton set {x}. Suppose S is a subspace of a vector space (X,F). Since aS =S
we have

alx+S)+bly+S)=(ax+dby)+S, forall a,b € Fand all z,y € S.

The set
X/S={x+S:xecX} (A7)

is a vector space if we define
a(x+S)+bly+S):=(ax+by)+ S, forall a,b € F and all z,y € S.

The space X' /S is called the quotient space of X by S. The zero element in X' /S
is S itself. Moreover, if x +S=y+ Sthenx —y € S.

Exercise A.30 Show that X /S is a vector space.

Theorem A.31 Suppose S is a subspace of a finite dimensional vector space (X ,TF).
Then
dim(8) 4 dim (X/S) = dim(X). (A.8)

Proof. Let n := dim(X), k = dim(S), and let {s1,...,8;} be a basis for S. By
Theorem A.19 we can extend it to a basis {s1,..., Sk, tk+1,-..,tn} for X. The
result will follow if we can show that {ty+1 + S,...,t, + S} is a basis for X'/S.
Recall that the zero element in X'/S is §. To show linear independence suppose
> ekt aj(t; +8) = S for some a1, ..., a, in F. Since 377, a;S = S and the
zero element in X/S is unique we must have Z;L:k 41 @5t; = 0 which implies that
ag4+1 = -++ = a, = 0 by linear independence of the t’s. It remains to show that
span{tiy1 +S,...,t, +S} = X/S. Suppose x +S € X/S. For some ay,...,a, we
have £ = x1 + x5, where x; = Zle a;s; and &g = Z?:kﬂ a;t;. Since ¢1+S8 =S8
we have x + S =a2 +S =37, ait; +S=>"_4 . a;(t; +S) € X/S. O

A.4 Convergence of Vectors

Consider an infinite sequence {xy} = xo, 1, T2, ... of vectors in R™. This sequence
converges to zero if and only if each component sequence xy(j) converges to zero
for j = 1,...,n. In terms of the natural basis we have x; = 2?21 x(j)er and
another way of stating convergence to zero is that in terms of the basis {e1,...,en}
for R™ each coefficient @y (j) of ) converges to zero.

Consider now a more general vector space.

Definition A.32 Let {v1,...,v,} be a basis for a finite dimensional vector space
(V,F), where F =R or F = C, and let {x} be an infinite sequence of vectors in
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V with basis coefficients {cy}, i.e. xx =Y, ckjv; for each k. We say that {xy}
converges to zero, or have the limit zero, if limp_,oocrj = 0 for j =1,...,n. We
say that {xy} converge to the limit x in V if &), — x converges to zero. We write
this as limg_yoo ®p = or & — « (as k — 00).

This definition is actually independent of the basis chosen. If {ws,...,w,}
is another basis for V and x; = 2?21 bijw; for each k then from Lemma A.20
b, = Acy, for some nonsingular matrix A independent of k. Hence ¢; — 0 if and
only if by — 0. If {a;} and {by} are sequences of scalars and {x;} and {y;} are
sequences of vectors such that {ar} — a, {bx} — b, {zr} — @, and {y,} — vy
then {axxy + bry,} — ax + by. This shows that scalar multiplication and vector
addition are continuous functions with respect to this notion of limit.

Corresponding to a basis {v1,...,v,}, we define

n
| := 11%1]'agxn‘c]" where x = z;cjvj_
J:

We leave as an exercise to show that this is a norm on V. Recall that any two
norms on V are equivalent. This implies that for any other norm ||-|| on V there are
positive constants «, 8 such that any « = 2?21 c;v; satisfy

lz|| < @ max |¢j| and |¢;| < Bljz| for j =1,...,n. (A.9)
1<j<n
Suppose now (V,F,|-||) is a normed vector space with F =R or F = C. The
notion of limit can then be stated in terms of convergence in norm.
Theorem A.33 In a normed vector space we have & —  if and only if limg_ o ||@r—

x| = 0.

Proof. Suppose {v1,...,v,} is a basis for the vector space and assume x, x € V.
Then x, —x = 7, cxjv; for some scalars cy; By (A.9) we see that

1
- | < _ < )
fmaxle| < flox — ] < amaay|

and hence |z — x| — 0  limy ¢; — 0 for each j & xp - . 0O

Since all vector norms are equivalent we have convergence in any norm we can
define on a finite dimensional vector space.

Definition A.34 Let (V,TF,||-||) be a normed vector space and let {xy} in V be an
infinite sequence.

1. {x}} is a Cauchy sequence iflimy, ;o (zp—2;) = 0 or equivalently limy, ;o0 ||k —
x;|| = 0. More precisely, for each € > 0 there is an integer N € N such that
for each k,1 > N we have ||xy — x;|| < e.

2. The normed vector space is said to be complete if every Cauchy sequence
converges to a point in the space.
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3. {xy} is called bounded if there is a positive number M such that ||xg| < M

4.

for all k.

{zn, } is said to be a subsequence of {@xy}r>0 if 0 <np <ng <ng---.

Theorem A.35 In a finite dimensional vector space V the following hold:

1. A sequence in 'V is convergent if and only if it is a Cauchy sequence.

2. V is complete.

3. Ewvery bounded sequence in V has a convergent subsequence.

Proof.

1. Suppose x; — x. By the triangle inequality ||xr — ;|| < ||k — || + ||z — ||

and hence ||z, — x;]] — 0. Conversely, let {vy,...,v,} be a basis for V and
{x1} a Cauchy sequence with x; = Z?:l ck;jv; for each k. Then xy — x; =
Z?Zl(ckj — ¢;)v; and since limy ;oo (€ — ;) = 0 we have by definition of
convergence limy ;o0 (cx; —¢15) =0 for j =1,...,n. Thus for each j we have
a Cauchy-sequence {cy;} € C and since C is complete {cy;} converges to some

¢j € C. But then ), — 2 := 37 cjv; € V.

.V is complete since we just showed that every Cauchy sequence converges to

a point in the space.

Let {v1,...,v,} be a basis for V and {xx} be a bounded sequence with
T = Z?Zl cx;v; for each k. By (A.9) each coefficient sequence {c;}x is
a bounded sequence of complex numbers and therefore, by a well known prop-
erty of complex numbers, has a convergent subsequence. In particular the
sequence of vy coefficients {cx1} has a convergent subsequence cy, 1. For the
second component the sequence {cy, 2} has a convergent subsequence, say ¢, 2.
Continuing with j = 3,...,n we obtain integers 0 < mg < m; < --- such that
{Cm,,;} is a convergent subsequence of ¢; for j = 1,...,n. But then {x,,,}
is a convergent subsequence of {xy}.

A.4.1 Convergence of Series of Vectors

Consider now an infinite series >y, of vectors in a vector space (V,F) with
F =R or F =C. We say that the series converges if the sequence of partial sums
{zi} given by x;, = Zfﬁ:o y,, converges. A sufficient condition for convergence is
that > °_ ||y, || converges for some vector norm. We say that the series converges
absolutely if this is the case. Note that |3 °_y,. |l < >0 _ollY, ||, and absolute
convergence in one norm implies absolute convergence in any norm by Theorem 8.3.
In an absolute convergent series we may change the order of the terms without
changing the value of the sum.
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Exercise A.36 Show that if {ar} — a, {bx} = b, {zx} — =, and {y,} — y then
{apxr + bry,} — ax + by.

Exercise A.37 Show that ||-||c is a norm.

A.5 Inner Products

An inner product or scalar product in a vector space (V,F), where F = R or
F = C, is a function (-,-) mapping pairs of vectors into a scalar. We consider first
the case where F = R.

Definition A.38 An inner product in a vector space (V,R) is a function VxV — R
satisfying for all x,y,z €V and all a,b € R the following conditions:

1. (x,x) > 0 with equality if and only if x = 0. (positivity)
2. (x,y) = (y,x) (symmetry)
3. (ax + by, z) = a(x, z) + b(y, ). (linearity)

The triple (V,R, (-,+,)) is called a real inner product space

The standard inner product in V = R” is given by (x,y) := x’y. It is
clearly an inner product in R™.

When the field of scalars is C the inner product is complex valued and prop-
erties 2. and 3. are altered as follows:

Definition A.39 An inner product in a vector space (V,C) is a function VxV — C
satisfying for all x,y,z € V and all a,b € C the following conditions:

1. (x,x) > 0 with equality if and only if x = 0. (positivity)
2. (x,y) = (y,x) (skew symmetry)
3. (ax + by, z) = a(x, z) + b(y, z). (linearity)

The triple (V,C,{-,-,)) is called a complex inner product space

Note the complex conjugate in 2. and that (Cf. Exercise A.45)

(x,ay + bz) =a(x,y) + bz, z). (A.10)

The standard inner product in C" is given by (x,y) := z*y = 2?21 T;Y;.
It is clearly an inner product in C".

Suppose now (V,F, (-, -,)) is an inner product space with F =R or F = C. We
define the inner product norm by

lz|| := v (x,x), xTeV.
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For any vectors @,y € V and scalar a € F we have (Cf. Exercises A.44 and A.45)
by linearity and symmetry the expansion

|l + ayl® = [[z]* + 2ale, y) + a®|ly[>  (real case), (A.11)
= ||lx||® + 2Re(x, ay) + |a*|ly||*> (complex case), (A.12)

where Rez and Imz denotes the real- and imaginary part of the complex
number z.

In the complex case we can write the inner product of two vectors as a sum
of inner product norms. For any @,y € V it follows from (A.12) that

Az y) = |z +yl? = |z - yl* +ille - iyl* — illz + iyl (A.13)

where i = /—1 and we used that Im(z) = Re(—iz) for any z € C.
To show that the inner product norm is a norm in (V, R) we need the triangle
inequality. To show it we start with a famous inequality.

Theorem A.40 (Cauchy-Schwarz inequality) For any x,y in a real or com-
plex inner product space

Kz, y)| < llz|lyll
with equality if and only if x and y are linearly dependent.

Proof. The inequality is trivial if (z,y) = 0 so assume (x,y) # 0. Suppose

first (x,y) € R. We define the scalar a := —ﬁﬁﬁ’r), and use (A.11) to obtain

0 < |z+ay|® = || - (<3r,',y))2/||y||2 Thus the inequality follows in the real
case. Suppose next (x,y) is complex valued, say (x,y) = re’®. We define b := ¢~
and observe that b(z,y) = r is real valued and |b] = 1. Using the real case of the
Cauchy-Schwarz inequality we find

[z, y)| = [b(z, y)| = [(b, y)| < [[bz]|[|y]l = [y

which proves the inequality also in the complex case. We have equality if and only
if © + ay = 0 which means that « and y are linearly dependent. 0O

Theorem A.41 (Triangle Inequality) For any x,y in a real or complex inner
product space
lz+yl <[] + [yl

Proof. From the Cauchy-Schwarz inequality it follows that Re{x,y) < |=||||ly]-
Using this on the inner product term in (A.12) with a = 1 we get

e+ yl* < llz|* + 2llz/llyll + lyl* = (=l + [yl)*.

Taking square roots completes the proof. 0O
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Theorem A.42 (Parallelogram Identity) For all x,y in a real or complez in-
ner product space

e+ ylI* + [l — yll* = 2[l|* + 2[y]*.

Proof. We set a = £1 in the inner product expansion (A.12) and add the two
equations. 0O

In the real case the Cauchy-Schwarz inequality implies that —1 < % <1
for nonzero @ and y so there is a unique angle 6 in [0, 7] such that
cosf = @.y) (A.14)

[yl

This defines the angle between vectors in a real inner product space.

Exercise A.43 Suppose A € R™" has linearly independent columns. Show that
(x,y) = xT AT Ay defines an inner product on R™.

Exercise A.44 Show (A.11)

Exercise A.45 Show (A.10) and (A.12).

Exercise A.46 Show (A.13)

Exercise A.47 Show that in the complex case there is a unique angle 0 in [0, 7 /2]
such that

@, )]
cosf = . A.15
eyl (A.15)

A.6 Orthogonality

As in the previous section we assume that (V,F, (-,-,)) is an inner product space
with F =R or F = C. Also ||-|| denotes the inner product norm.

Definition A.48 (Orthogonality) Two vectors x,y in a real or complex inner
product space are called orthogonal or perpendicular, denoted as * 1 y, if
(x,y) = 0. The vectors are orthonormal if in addition ||z| = ||y|| = 1.

For orthogonal vectors it follows from (A.12) that the Pythagorean theorem
holds

lz +yl* = llzl* + lyl?, if Ly
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Definition A.49 (Orthogonal- and Orthonormal Bases) A set of vectors {v1,
..., Uk} in a subspace S of a real or complex inner product space is called an or-
thogonal basis for S if it is a basis for S and (v;,v;) = 0 fori # j. It is an
orthonormal basis for S if it is a basis for S and (v;,v;) = d;; for all i,j.

A basis for an inner product space can be turned into an orthogonal- or or-
thonormal basis for the subspace by the following construction.

Theorem A.50 (Gram-Schmidt) Let {si,...,si} be a basis for a real or com-
plex inner product space (S,F,(-,-)). Define

j—1
vy =81, v, ZSJ’W =2,k (A.16)

P ’U“’UZ

Then {v1,...,vi} is an orthogonal basis for S and the normalized vectors

{uy,...,up}:={ }

U1 Vg

loall” " [loll

is an orthonormal basis for S.

Proof. To show that {vy, ..., v} is an orthogonal basis for S we use induction on k.
Let S; :=span{si,...,s;} for j =1,..., k. Clearly v; = s; is an orthogonal basis
for Sq. Suppose for some j > 2 that vy,...,v,_1 is an orthogonal basis for S;_; and
let v; be given by (A.16) as a linear combination of s; and vy, ...,v;_1. Replacing
each of these v; by a linear combination of s1,...,s;_1 we obtain v; = Egzl a;S;
for some ag, ..., a; with a; = 1. Since s1, ..., s; are linearly independent and a; # 0
we deduce that v; # 0. By the induction hypothesis

j—l
(sj,v; (sj,v)
(vj,v) = (s;,v1) Z 'u:v: (vi,v1) = (8,v;) — (’UJl:Uﬂ (vj,v1) =0
i=1
fori=1,...,5—1. Thus vy,...,v; is an orthogonal basis for S;.
If {v1,...,v} is an orthogonal basis for S then clearly {u1,...,ux} is an
orthonormal basis for §. 0O

Theorem A.51 (Orthogonal Projection) LetS be a subspace of a finite dimen-
sional real or complex inner product space (V,F,(-,-,)). To each = € V there is a
unique vector p € S such that

(x—p,s) =0, foralseS. (A.17)

If (v1,...,vg) is an orthogonal basis for S then

P=> <w’vi_> v;. (A.18)
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Proof. Define p by (A.18). Then

(p,vj) = Z i (vi,v5) = (, v;) (vj,v;) = (x,v;)

— (v;,v;) (v, v5)

so that by linearity (z — p,v;) = 0 for j = 1,...,k. But then (x — p,s) = 0 for
all s € §. This shows existence of a p satisfying (A.17). For uniqueness suppose
p1,Py €S and (x —p;,s) = (x —p,y,s) =0 for all s € S. Then (x — p,,8) — (x —
Py, S) = (Py— Py, 8) =0 for all s € S and in particular (p, —p;, Py —p;) = 0 which
implies that p, —p; =0or p; =py,. 0O

Theorem A.52 (Best Approximation) Let S be a subspace of a finite dimen-
stonal real or complex inner product space (V,F,{-,-,)). Letx €V, andp € S. The
following statements are equivalent

1. ({x—p,s) =0, forallseS.
2. ||l —s|| > ||l —pl|| for all s € S with s # p.

Proof. Suppose 1. holds and that s # p. Using Pythagoras for inner products we
have

lz = sl* = l[(z = p) + (p = 8)II* = = = plI* + |p — s|* > ||l= - p|*.

Conversely, suppose 2. holds. Pick any nonzero s € S and define the scalar
a:= —Re{x — p, s)/||s]|?. Using (A.12) and the minimality of p we obtain

lz = pl* < & - p + as|* = ||lz - p||* + 2aRe(x — p, 5) + a*||s|*
= |l — pl* - (Re(z —p, s))/Ils]*.

This can only be true if Re{(x — p,s) = 0 for all s € S. Since s € S implies that
is € S, where i = /—1, we have

0 =Re(x — p,is) = Re( —i(x — p, s)) = Im(z — p, s)
and hence (x —p,s) =0forallseS. 0O
The vector p is called the orthogonal projection of x into § with respect

to (-,-)., and denoted by p = Ps.
In terms of an orthogonal basis (v1,...,v) for S we have the representation

s=> (8,00 alses. (A.19)

i1 (v, vi)
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Figure A.1. The orthogonal projection of x into S.

A.7 Projections and Orthogonal Complements

Theorem A.53 Let S be a subspace in a real or complex inner product space
(V,F,(-,-,)) and let Ps : R® — S be the operator mapping a vector x € V into
the orthogonal projection p in S. Then Ps is a linear projection operator, i.e.

1. Ps(ax + By) = aPsx + BPsy for allxz,y €V and all o, € F.
2. P§ = Ps, i.e. Ps(Psx) = Psx for allz € V.

Proof.

1. Let p := Psx and q := Psy. Then (x —p,s) = 0 and (y — g, s) = 0 for all
s € S, and by linearity of the inner product

(ax + By — (ap+ Bq),s) = a{x — p,s) + By —q,s) = 0.

But then ap + 8q = aPsx 4+ SPsy is the orthogonal projection of ax + Sy
into § and 1. follows.

2. Since p = Psx € S the uniqueness implies that Psp = p which gives 2.
d

Definition A.54 (Orthogonal Complement) Let S be a subspace in a real or
complez inner product space (V,F,(-,-))). The Orthogonal Complement of S , which
is denoted by S+, consists of all vectors in V that are orthogonal to every s € S. In
other words

xSt — (x,8)=0, forallscS.
Clearly St is a subspace of V.

Theorem A.55 (Orthogonal Decomposition) For each subspace S of a real or
complex inner product space we have the direct sum decomposition V =S & S*+. If
(s1,...,8k) is a basis for S and (t1,...,t,) is a basisforSL then (s1,...,8k,t1,...,tn)
is a basis for S ® S*. In particular, any orthonormal basis for S can be extended
to an orthonormal basis for V.
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Proof. If £ € SNS* then (z,z) = 0 so z = 0.This means that SNS*+ = {0} and
S @St is a direct sum. Every € R™ can be decomposed as = Psx + (x — Psx)
where Psx € S and  — Psx € S*. Since we are dealing with a direct sum it follows
from Theorem A.29 that any basis (s1,...,sk) for S and any basis (¢1,...,t,) for
St can be combined into a basis for V. If (sy,...,s) is an orthonormal basis for
S then we apply the Gram-Schmidt process to (¢1,...,t,) to obtain a combined
orthonormal basis for V. 0O

Exercise A.56 Show that (SJ-)J' = § for any subspace S of a real or complex
inner product space.



228 Appendix A. Vectors




Appendix B
Matrices

In this chapter we review some topics related to matrices. In Section B.1 we study
block-multiplication, a basic tool in matrix analysis. We then review the transpose
matrix, linear systems, and inverse matrices. We end the chapter with some basic
facts about orthonormal-, and unitary matrices.

Some matrices with many zeros have names indicating their ”shape”. Suppose
AecR* or Ae C™". Then A is

e diagonal if a;; = 0 for ¢ # j.

¢ upper triangular or right triangular if a;; = 0 for ¢ > j.

® lower triangular or left triangular if a;; = 0 for ¢ < j.

® upper Hessenberg if a;; =0 for ¢ > j + 1.

® lower Hessenberg if a;; = 0 for i < j + 1.

® tridiagonal if a;; = 0 for |i — j| > 1.

® lower banded with bandwidth p if a;; = 0 for i > j +p.

¢ upper banded with bandwidth ¢ if a;; =0 for ¢ < j +g.

® banded with bandwidth p+ ¢+ 1 if A is both lower banded with bandwidth
p and upper banded with bandwidth g.

® block upper triangular if there is an integer k such that a;; = 0 for i =
k+1,...,nand j=1,... k.
e block lower triangular if AT is block upper triangular.

B.1 Arithmetic Operations and Block Multiplication

The arithmetic operations on rectangular matrices are

® matrix addition C = A+ B if ¢;; = a;; + b;; for all 4,j and A, B,C are
matrices of the same dimension.
¢ multiplication by a scalar C = oA, where ¢;; = aa;; for all 4, j.

229
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® multiplication by another matrix C = AB,C=A-BorC = Ax B,
where A € C™?, B € CP", C € C™", and ¢;; = > n_, Qiby; for i =
1,....m,j=1,...,n.

® entry-by-entry matrix operations(add a dot) C = A.xB and D = A./B,
and ¥ = A.Ar where all matrices are of the same dimension and ¢;; = a;;b;;,
dij = a;j/b;; and e;; = a;; for all 4,7 and suitable 7. The entry-by-entry
product C = A.x B is known as the Schur product and also the Hadamard
product.

Example B.1 (The Vector Space of m x n matrices) On the set C™" of mx
n matrices we define vector addition as matriz addition and scalar multiplication
as a scalar times a matriz. Then C™" = (C™" C) is a vector space. Of course
R™"™ = (R™" R) is also a vector space.

A rectangular matrix A can be partitioned into submatrices by drawing hori-
zontal lines between selected rows and vertical lines between selected columns. For
example, the matrix

1 2 3
A=14 5 6
7 8 9
can be partitioned as
112 3 11213
i |40 42 =T o | ) avasas) = | 4]5]0 .
21 22 218 9 -1slo
af] [123 12 3
(iii) |a3, | =| 4 5 6 |, (iv) [An,Ap]=| 4|5 6
a3, 7 8 9 718 9

In (7) the matrix A is divided into four submatrices

Ay = [1] , Ap = [273], Ay = E] , and Agy = [g g} ,

while in (i) and (i4i) A has been partitioned into columns and rows, respectively.
The submatrices in a partition is often referred to as blocks and a partitioned
matrix is sometimes called a block matrix.

We will make heavily use of block multiplication of matrices. In the follow-
ing we assume that A € C™? and B € CP". We have the following rules and
observations for block multiplication.

1. If B = [b:l, .. .,bm} is partitioned into columns then the partition of the
product AB into columns is

AB = [Ab.1, Abs, ..., Ab,].
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.IfA:[

In particular, if I is the identity matrix of order p then
A=AI=A [eheg,...,ep] = [Ael,Aeg,...,Aep]

and we see that column j of A can be written Ae; for j =1,...,p.

. Similarly, if A is partitioned into rows then

T T

L a%B
Ay, a2:B

m:

and taking A = I, it follows that row i of B can be written e! B for i =
1,...,p.

It is often useful to write the matrix-vector product Ax as a linear combination
of the columns of A

Ax =z1a.1 + 2200 + -+ + Tpayp.

One way to see that this is correct is to partition A into columns and @ into
rows.

If B= [Bl,Bg}, where B; € CP" and By € CP"~" then
A[B,.B,] = [AB,, AB,)].

This follows from Rule 1. by an appropriate grouping of the columns of B.

A= [31], where A; € CP and Ay € C™~%P then
2

a)e=an)

This follows from Rule 2. by a grouping of the rows of A.

. If A = [A1,As] and B = [By, Bs], where A; € C™*, A, € C™P~*, B, €

C®™ and By € CP~%™ then

(A, Ay {gj — [A,B, + A,B,].

Indeed, (AB);; = Z?:l aipbry = Zj‘=1 airbr; + Z§=s+1 a;xbr; = (A1B1);; +
(A2B3);; = (A1B1 + A3B»);;.

A A -
AH<MJMHB‘{

By, By

Bo, ng] then

A Agp| |Bun Bip| _ |[AnBii+ABy AnnBio + A1y Ba
Ay Ag| |Ba1 Ba A1 Bi1 + A»By A Bia+ Ay B’
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provided the vertical partition in A matches the horizontal one in B, i.e. the
number of columns in A;; and Ag; equals the number of rows in By; and
Bi5. To show this we use Rule 4. to obtain

ABHAU A12} {Bu} [Au A12} {312”
Ay Ax| |Bo1| ' |Aar Agx| |Baal|’

We complete the proof using Rules 5. and 6.
8. Consider finally the general case. If all the matrix products in

s
CU:ZAZICBIC]> 7;:17"'7p7j:17"'7q
k=1

are well defined then

All Als Bll qu Cll Clq

A, - Ayl |Ba -+ By, Cpi - Cpy

where

S
Cij:ZAikBkj7 izl,...,p,jzl,...,q.
k=1

The requirements are that
e the number of columns in A is equal to the number of rows in B.

e the position of the vertical partition lines in A has to mach the position
of the horizontal partition lines in B. The horizontal lines in A and the
vertical lines in B can be anywhere.

B.2 The Transpose Matrix

The transpose of A € C"™" is a matrix B € C™™, where b;; = a;; for all 4, j.
Thus the rows of A are the columns of B and vice versa. The transpose of A is
denoted AT. Three important properties of the transpose are

1. (A+B)T = AT + BT,
2. (AC)T =CT AT,
3. (AT = A.

Here A, B € C™" and C € C™*, where k, m,n are any positive integers.
Consider now the real case A € R™™. A useful characterization is the follow-
ing:

Theorem B.2 Let (z,y) := 'y = > /" z;y; be the usual inner product on R™
For any A € R"™™ we have (z, Ay) = (ATx,y), allz € R™, y € R If (x, Ay) =
(Bx,y) holds for some B € R™™ and all € R™, y € R" then B = A”.



B.3. Linear Systems 233

Proof. For any x € R™ and y € R"”

(@, Ay) =D ai( Y aiy;) =D (D wmiai)y; =) _(AT2)y; = (ATz.y).
i=1 j=1 j=1 i=1 j=1

If we choose * = e; and y = e; then a;; = (e;, Ae;) = (Be;,e;) = bj; for

i=1,...,mandj=1,....,ns0 B=AT. O

The Hermitian transpose or conjugate transpose of A € C™" is the
matrix B € C*™ given by B = (A)T Here z = z — iy denotes the complex
conjugate of z = x + iy, where ¢ = /—1 is the imaginary unit and z,y € R.

Moreover A is obtained from A by taking the complex conjugate of all its entries.
The Hermitian transpose of A is denoted A™. The Hermitian transpose enjoys the
same properties as the transpose:

1. (A+B)" = A" + B,

2. (AC) =CcH A",

3. (AT = A,
Again A, B € C"™" and C € C™*, where k, m,n are any positive integers.

We obtain the same characterization in the complex case.

Theorem B.3 Let (z,y) := xfy = Y"7" | T;y; be the usual inner product in C™
For any A € C™" we have (x, Ay) = (AP x,y), allx c C™, y e C". If (x, Ay) =
(Bx,y) holds for some B € C™™ and all x € C™, y € C" then B = Al

Exercise B.4 Use Theorem B.3 to show that (AC)? = C" A" and (A™)H = A.

B.3 Linear Systems

Consider a linear system

a1 + aiaTe+ - A ATy = by
2121 + a2+ -+ G2pTp = b2
11 + AmaZa+ -+ GpnTn =bm

of m equations in n unknowns. Here for all ¢, j, the coefficients a;;, the unknowns
x;, and the components of the right hand sides b;, are real or complex numbers.
The system can be written as a vector equation

ria1 + x2a2 + - + Tpay = b,

T . T
where a; = [alj,...,amﬂ eCmforj=1,...,nand b = [bl,...,bm] . It can
also be written as a matrix equation

ay;  aiz - Gip Z1 by
a1 az2 - A2p T2 ba

Az = | . : . l=1.]=0

Aml Am2 *°°  OGmn LTn bm
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The system is homogenous if b = 0 and it is said to be underdetermined,
square, or overdetermined if m < n, m = n, or m > n, respectively.

A linear system may have a unique solution, infinitely many solutions, or no
solution. To discuss this we first consider a homogenous underdetermined system.

Lemma B.5 Suppose A € R™"™(C™") with m < n. Then there is a nonzero
x € R"(C™) such that Az = 0.

Proof. Suppose A € R™"™(C™™) with m < n. The n columns of A span a subspace
of R™(C™). Since R™(C™) has dimension m the dimension of this subspace is at
most m. By Lemma A.14 the columns of A must be linearly dependent. It follows
that there is a nonzero € R"(C") such that Az =0. 0O

Consider now a square linear system. The following definition is essential.

Definition B.6 A square matrix A is said to be non-singular if the only solution
of the homogenous system Ax = 0 is * = 0. The matriz is singular if it is not
non-singular.

Theorem B.7 Suppose A € R™™(C™™). The linear system Ax = b has a unique
solution € R™(C") for any b € R™(C™) if and only if the matriz A is non-singular.

Proof. Suppose A is non-singular. We define B = [A b] € R™" 1 (C™"+1) by
adding a column to A. By Lemma B.5 there is a nonzero z € R"HH(C"*1) such

that Bz = 0. If we write z = ZZ where z = [zl,...,zn]T € R*(C™) and

L<n+1]
Zn+1 € R(C), then

Bz=[Ab| * | =Az+z,.1b=0.

[#nt1]
We cannot have z,y; = 0 for then Az = 0 for a nonzero z contradicting the
non-singularity of A. Define © := —2/z,41. Then

z 1 -
Aw:fA( ):f Az = — (fzn_Hb)fb
Zn+1 Zn41 Zn+1

so x is a solution.

Suppose Az = b and Ay = b for ¢,y € R*(C"). Then A(x —y) = 0 and
since A is non-singular we conclude that  — y = 0 or = y. Thus the solution is
unique.

Conversely, if Az = b has a unique solution for any b € R"(C") then Az =0
has a unique solution which must be = 0. Thus A is non-singular. 0O
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B.4 The Inverse matrix

Suppose A € R™™(C™™) is a square matrix. A matrix B € R™"(C™") is called
a right inverse of A if AB = I. A matrix C € R™"™(C™") is said to be a left
inverse of A if CA = I. We say that A is invertible if it has both a left- and a
right inverse. If A has a right inverse B and a left inverse C' then

C=CI=C(AB)=(CA)B=IB=B

and this common inverse is called the inverse of A and denoted A~'. Thus the
inverse satisfies A™'A = AA™! =1T.
‘We want to characterize the class of invertible matrices and start with a lemma.

Lemma B.8 If A,B,C € R™*"(C™") with AB = C then C is non-singular if
and only if both A and B are non-singular.

Proof. Suppose both A and B are non-singular and let Cx = 0. Then ABx =0
and since A is non-singular we see that Bax = 0. Since B is non-singular we have
x = 0. We conclude that C' is non-singular.

For the converse suppose first that B is singular and let * € R™(C") be a
nonzero vector so that Bx = 0. But then Cx = (AB)x = A(Bx) = A0=0s0 C
is singular. Finally suppose B is non-singular, but A is singular. Let & be a nonzero
vector such that Az = 0. By Theorem B.7 there is a vector « such that Bx = x
and z is nonzero since & is nonzero. But then Cx = (AB)x = A(Bz) = Az =0
for a nonzero vector  and C' is singular. [

Theorem B.9 A square matriz is invertible if and only if it is non-singular.

Proof. Suppose first A is a non-singular matrix. By Theorem B.7 each of the linear
systems Ab; = e; has a unique solution b; for i = 1,...,n. Let B = [by,...,by].
Then AB = [Abl, .. .,Abn} = [el, .. .,en] = I so that A has a right inverse B.
By Lemma B.8 B is non-singular since I is non-singular and AB = I. Since B is
non-singular we can use what we have shown for A to conclude that B has a right
inverse C, i.e. BC = I. But then AB = BC = I so B has both a right inverse
and a left inverse which must be equal so A = C. Since BC = I we have BA =1
so B is also a left inverse of A and A is invertible.

Conversely, if A is invertible then it has a right inverse B and since AB =T
and I is non-singular we again use Lemma B.8 to conclude that A is non-singular.
0

The theorem shows that we can use the terms ”non-singular” and ”invertible”
interchangeably. If B is a right inverse or a left inverse of A then it follows from
Lemma B.8 that A is non-singular. Thus to verify that some matrix B is an inverse
of another matrix A it is enough to show that B is either a left inverse of a right
inverse of A. This calculation also proves that A is non-singular. We use this
observation to give simple proofs of the following results.
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Corollary B.10 Suppose A, B € R™"(C™"™) are non-singular and c¢ is a nonzero
constant.

1. A~ is non-singular and (A™')~! = A.

2. C = AB is non-singular and C™' = B"1 A1,

3. AT is non-singular and (AT)"1 =(A™HT = AT,

4 1

. cA is non-singular and (cA)~! = EA_l.

Proof.

1. Since A™'A = I the matrix A is a right inverse of A~*. Thus A™' is non-
singular and (A7)~ = A.

2. We note that (B"*A™')(AB) =B '(A"'A) B=B 'B =1. Thus AB is
invertible with the indicated inverse since it has a left inverse.

3. NowTI =I"=(A7'A)T = AT(A™1)T showing that (A™1)7 is a right inverse
of A”.

. -1 . . .
4. The matrix %A is a one sided inverse of cA.

Exercise B.11 Show that

a b17" [ d b 1
c d Y ¢ a | YT ad—be

for any a, b, ¢, d such that ad — bc # 0.
Exercise B.12 Find the inverse of

sinf  cosf

_ [ cosf) —sinf }

Exercise B.13 Suppose A € C*", and B,C € R™™ for some n,m € N. If
(I +CTA™'B)~! exists then

(A+BCT)'=A'—A'BUI+CTA'B)"'cTA .

B.5 Rank, Nullity, and the Fundamental Subspaces

Recall that the column space (or span) and the null space (kernel) of a matrix
A € C"™" are defined by

span A :={y € C" :y = Az, ¢ € R"}
ker A := {x € C": Az = 0}.
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These sets are subspaces of C™ and C", respectively. The four subspaces span A,
ker A, span A™ and ker A* are known as the four fundamental subspaces of a
matrix. The dimension of the column space of A is called the rank of A and
denoted rank A. The dimension dim ker A of the null space is called the nullity of
A and denoted null A.

Recall that the orthogonal complement S+ of a subspace S of C" is {t € C" :
(s,t) =0 for all s € S}. For § = span A we have

Theorem B.14 The orthogonal complement of the column space of a matriz A €
C™™ is the null space of A*. We have the orthogonal decomposition

C™ =span A @ ker A™. (B.1)

Proof. We first show that

span(A)t = ker(A*) := {y € R™ : A*y = 0}.
Suppose ¢ € span(A). Then ¢ = Az for some z € R". If y € ker(A") then
(y,c¢) = (y,Ax) = (A*y,x) = 0. Thus ker(A*) C span(A)>-. To show that
span(A)+ C ker(A*) we pick any y € span(A)+. Then (A*y,z) = (y, Az) =0
for all € R™ which means that y € ker(A"). The orthogonal decomposition (B.1)
now follows from Theorem A.55. 0O

The following formula for the rank of a product of two matrices will also be
useful.

Lemma B.15 If A € C"™" and B € C™P for some m,n,p € N then
rank(AB) = rank B — dim(ker A N span B).

Proof. Pick a basis {s1,...,8;} for ker A N span B and extend it to a basis

{81,..-, 8k, ®p41,...,x;} for span B. The result will follow if we can show that

Y :={Axyy1,...,Ax;} is a basis for span(AB).

(i) Y islinearly independent. Forif )" c¢;Ax; := Zzzkﬂ cjAx; = 0then A(Y cjz;) =
0, and hence ) c¢jx; € ker A Nspan B. But then Z;:k+1 CjT; = Zle cjS;

for some cy,...,ck, and by linear independence we have ¢y =--- = ¢; = 0.

(ii) span Y C span(AB). Suppose y = »_ c;Ax; € span Y. Since x; € span(B)
we have x; = Bz;, for some zj, j = k+1,...,l. But theny =, ¢;ABz; €

span(AB).

(iii) span(AB) C span Y. If y € span(AB) then y = Az for some x € span B.
Since {s1,..., Sk, Tk+t1,--., T} is a basis for span B we have x = Z?:l c;s;+
lezk_ﬂ c;x; for some c1,...,¢ and s; € ker(A). But then

k ! !

y=Ar= chAsj + Z cjAx; = Z c;Ax; € span(Y).
j=1 j=k+1 j=k+1
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Consider now the four fundamental subspaces.

Theorem B.16 For any matrix A € C™" we have

1. rank A + null A = n,
2. rank A +null A* = m,
3. rank A = rank A™.

Proof.

1. Taking B to be the identity matrix in Lemma B.15 we obtain rank(A) =
rank I — dim(ker A NspanI) = n — dim(ker AN C"™) = n — dimker A.

2. This follows from Theorems A.55 and B.14.

3. If we apply 2. to A™ we obtain dimspan A* +dimker A = n. But then rank A =

dimspan A = n — dimker A = n — (n — dimspan A*) = dimspan A* = rank(A™).
a

To derive some further results about rank and nullity we start with a definition:

Definition B.17 (Equivalent matrices) Suppose A, B € C"™". We say that A
is equivalent to B, denoted A ~ B, if B = X AY for some non-singular matrices
X eC™™ agndY € C™".

Exercise B.18 Show that ~ is an equivalence relation, i. e.,
() A~ A4,
(ii) if A~ B then B~ A,
(iii) if A~ B and B ~ C then A~ C.
For any subspace S of C" and B € C™" we define BS := {Bs: s € S}.

Exercise B.19 Show that BS is a subspace of C™.

Exercise B.20 Suppose A € C™" and that X € C™™ and Y € C™" are non-
singular. Show that

span(A) = span(AY) = X 'span(X A),
ker A =Y ker(AY) = ker(X A),

rank(X AY') = rank(A),

null(XAY) = null A.

Ll

For the rank of a general product we have
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Theorem B.21 Suppose A € C™" and B € C™? for some m,n,p € N. Then
rank(AB) < min{rank(A), rank(B)}.

Proof. Since span(AB) C span(A) we have rank(AB) < rank(A). Now span(B*A*) C

span(B*). Therefore rank(AB) = rank((AB)*) = rank(B*A*) < rank(B*) =

rank(B). 0O

We end this section with the following useful result.

Theorem B.22 [f the matrix A € C"™" has rank r then there is at least one non-
singular v X v submatriz in A. Moreover there are no non-singular submatrices of
larger order.

Proof. We use Theorem A.16 twice. There is a subset {a.;,,...,a.;.} of the
columns of A which forms a basis for span(A). Consider the matrix B* € C™",

where B = [a.j,,...,a.;]. Since r = rank(B) = rank(B") there is a subset
{i1,...,ir}of {1,...,m} such that columns i1, . . ., i, of B* form a basis for span(B™).
But then rows ¢1,...,%, of B are linearly independent, defining a non-singular r x r

submatrix in A. Suppose M is a non-singular submatrix in A of order k. The
columns in A corresponding to the columns in M are linearly independent and
hence k£ <. 0

B.6 Linear Transformations and Matrices

Let (X,F) and (), F) be vector spaces over the same field F. A mappingT : X — Y
is called linear if for all z,y € X and all a € F we have

1. T(x+y)=Tx+ Ty, (additivity)
2. T(ax) = aTx. (homogeneity)

If YV is the vector space of all functions f : R — R and X is the space of all
differentiable functions f : R — R, then the mapping T' : X — ) given by T'f :=
df /dx is a linear transformation from X' to ). The mapping T given by (T'f)(x) :=
fox f(t)dt is a linear transformation from the space X of all continuous functions
f:R—Rinto X.

Linear transformations are not the main emphasis of this text and we will
only consider briefly the special case where X = R™ and )V = R™. The same results
hold for the complex case X = C™ and ) = C™. Suppose A € R™". The mapping
T : R" — R™ given by Tx = Ax is clearly additive and homogenous. Thus it is
a linear mapping. It turns out that all linear mappings T' : R™ — R™ are of this
form.

Theorem B.23 Fvery linear map from R™ — R™ can be written in the form T =
Ax for some A € R™™.
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Proof. Suppose x € R"™. Then x = 2?21 z;e; and by linearity

n n n
Tx = T(ijej) = ijTej = ijaj = AiE,
j=1 j=1 j=1
where A = [ay,...,a,] = [Tey,...,Te,] e R™". 0O

Let

spanT := {y € R" : y = Tz for some = € R"},

B.2
kerT := {x € R" : T = 0}, (B2)

be the span and kernel of the linear transformation T'. The sets spanT and ker T'
are subspaces of R” and R"”, respectively.

Theorem B.24 Suppose T : R™ — R™ is a linear transformation. Then For any
matric A € C™"™ we have

dimspanT + dimker T' = n.
Proof. This follows from Theorem B.16 since Tx = Ax for some matrix A. 0O

Much more can be said about linear transformations and matrices. We refer
to any book on linear algebra.

B.7 Orthonormal and Unitary Matrices
Definition B.25 A matriz Q € R™" is said to be orthonormal if Q7 Q = 1I.

Since the columns of an orthonormal matrix are orthonormal, we have chosen
the term ”orthonormal matrix” although ”orthogonal matrix” is more common in
the classical literature.

Theorem B.26 Suppose Q € R™"™. The following is equivalent:

Q is orthonormal,

the columns of Q form an orthonormal basis for R™.
Q' =qQ"

QQ" =1

the columns of Q* (rows of Q) form an orthonormal basis for R™,

AR

(Qz,Qy) = (x,y) for all x,y € R™, where (x,y) = Ty is the usual inner
product on R™.

We also have
(i) The product Q,Q4 of two orthonormal matrices is orthonormal.

(ii) If Q is orthonormal then ||Qx||2 = ||x||2 for all x € R™.
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Proof. Let q4,...,q, be the columns of Q.
1< 2 This follows since (QTQ)Z-j = (q;,q;) for all i, ;.

1< 3 Since QT is a left inverse of Q it follows from the discussion after Theorem B.9
that Q is invertible and Q! = Q.

3< 4 Since QT = Q! the definition of the inverse matrix implies that Q7 is a
right inverse of Q so that QQT = I.

45 5 This follows since Q" is orthonormal and (Q™)T = Q

14 6 If Q is orthonormal then by Theorem B.2 we have (z,y) = (Q Qx,y) =
(Qz, Qy) for all x,y € R™. Conversely, taking * = e; and y = e; we find

(Q"Q)i; = (Q"Qes,e;) = (Qei, Qe;) = (es,e;) = &;; for all i,j =1,...,n.

Suppose @, and Q, are orthonormal. Then (Q,Q,)"Q,Q, = QT QT Q,Q, = I so
the product @, Q5 is orthonormal. Using 6. with y = & we obtain (ii). O

Consider now the complex case.
Definition B.27 A matriz U € C™™ is said to be unitary if U*U = I.
Note that a real unitary matrix is orthonormal.

Theorem B.28 Suppose U € C™™. The following is equivalent:

U is unitary,

the columns of U form an orthonormal basis for C™.

U—l =U*

vu*=1

the columns of U* (rows of U) form an orthonormal basis for C",

AN o o

Uz, Uy) = (x,y) for all x,y € C", where (x,y) = x*y is the usual inner
product on C™.
7. | Uz|2 = |||z for all z € C™.

The product UyUs of two unitary matrices is unitary.
Proof. That 1-6 are equivalent is similar to the proof of the real case. Clearly 6

implies 7. That 7 implies 6 follows from the fact that we can write a complex inner
product as a sum of norms. (Cf. (A.13).) 0O

Exercise B.29 Show in Theorem B.28 that 7. implies 6.
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Appendix C
Determinants

The first systematic treatment of determinants was given by Cauchy in 1812. He
adopted the word “determinant” which was introduced by Gauss in 1801. The first
use of determinants was made by Leibniz in 1693 in a letter to De L’Hospital. By
the beginning of the 20th century the theory of determinants filled four volumes
of almost 2000 pages (Muir, 1906-1923. Historic references can be found in this
work). The main use of determinants in this text will be to study the characteristic
polynomial of a matrix.

In this section we give the elementary properties of determinants that we need.

C.1 Permutations

For n € N, let N, = {1,2,...,n}. A permutation is a function o : N,, — N,

which is one-to-one and onto. That is, {o(1),0(2),...,0(n)} is a rearrangement of

{1,2,...,n}. If n = 2, there are two permutations {1,2} and {2, 1}, while for n = 3

we have six permutations {1, 2,3}, {1, 3,2}, {2,1,3}, {2,3,1}, {3,1,2} and {3, 2, 1}.

We denote the set of all permutations on N,, by S,,. There are n! elements in 5,,.
If 0,7 are two permutations in .S,,, we can define their product o7 as

or ={o(7(1)),0(7(2)),...,0(r(n))}.

For example if 0 = {1,3,2} and 7 = {3,2,1}, then o7 = {0(3),0(2),0(1)} =
{2,3,1}, while 7o = {7(1),7(3),7(2)} = {3,1,2}. Thus in general o7 # 70. It
is easily shown that the product of two permutations o,7 is a permutation, i.e.
o1 : N,, — N,, is one-to-one and onto.

The permutation € = {1,2,...,n} is called the identity permutation in S,,.
We have e = oce =o for all o € S,,.

Since each o € S, is one-to-one and onto, it has a unique inverse oc—!. To
define o~1(j) for j € N,,, we find the unique i such that o(i) = j. Then o~1(j) = i.
We have 0710 = 00~ ! = e. As an example, if 0 = {2,3,1} then o= = {3,1,2},
and o~ lo =007 = {1,2,3} =«

243
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With each o € S,, we can associate a + or — sign. We define

Sign(o) = 1T

where
9(0) = [[(c(i) = a())(0(i) = 0(2)) -+ (o (i) — o (i—1)).
i=2
For example if e = {1,2,3,4} and 0 = {4, 3,1,2}, then

g9(6) = (2-1)(3-1)(3-2)(4-1)(4-2)(4-3) = 1! - 213! > 0,
(

g(o) = (3-4)(1-4)(1-3)(2-4)(2-3)(2-1)
= (—1)(=3)(=2)(~2)(~1) - 1= —11- 2! - 3! < 0.

Thus sign(e) = +1 and sign(o) = —1.

g(o) contains one positive factor (2—1) and five negative ones. The negative
factors are called inversions. The number of inversions equals the number of times
a bigger integer precedes a smaller one in o. That is, in {4,3,1,2} 4 precedes 3
1 and 2 ( three inversions corresponding to the negative factors (3—4), (1—4) and
(2—4) in g(0)), and 3 precedes 1 and 2 ((1—3) and (2—3) in g(o)). This makes it
possible to compute sign(o) without actually writing down g(o).

In general, the sign function has the following properties

1. sign(e) = 1.
2. sign(o7) = sign(o)sign(r) for o, 7 € S,,.
3. sign(oc~!) = sign(o) for o € S,,.

Since all factors in g(e) are positive, we have g(e) = |g(e)| and sign(e) = 1. This
proves 1. To prove 2 we first note that for any S,

sign(o :g(o)
sign(c) g(e)

Since g(o) and g(e) contain the same factors apart from signs and g(e) > 0, we have
l9(0)] = g(e). Now

glor) _ glor) g(r) _ g(o7)
gle)  g(r) gle)  g(7)
We have to show that g(o7)/g(7) = g(0)/g(e). We write g(c)/g(e) in the form

sign(o7) =

sign (7).

n i—1 . .
0' - o\t) — 0
) |II|TUZ] 7”0(17]):%.
g =2 j=1 J

i—

Mm?_HLAddm—UTD»~(ddm—o i
" ) (7(i 11_12] 1TU



C.2. Basic Properties of Determinants 245

7 is a permutation so g(o)/g(e) and g(o7)/g(7) contain the same factors. Moreover,
the sign of the factors are the same since r(i,j) = r(j,4) for all ¢ # j. Thus
g(0)/g(e) = g(o7)/g(7), and 2 is proved. Finally, 3 follows from 1 and 2; 1 =
sign(e) = sign(oo~1!) = sign(o)sign(c~!) so that o and o~! have the same sign.

Exercise C.1 Show that p(o1) = (po)T for p,o,7 € Sy, i.e. multiplication of
permutations is associative. (In fact, we have

1. Multiplication is associative.
2. There exists an identity permutation €.
3. Bvery permutation has an inverse.

Thus the set S, of permutations is a group with respect to multiplication. S, is
called the symmetric group of degree n).

C.2 Basic Properties of Determinants

For any A € C™"™ the determinant of A is defined the number

det(A) = Z Sign(0)aq(1),100(2),2 * * * Go(n)n- (C.1)
Uesn
This sum ranges of all n! permutations of {1,2,...,n}. We also denote the deter-

minant by (Cayley, 1841)

a11 a1z - QAlp
21 A2 -+ A2p
apl  Ap2 - Apn
From the definition we have
ail a2

= 11022 — G21G12-
a1 a2

The first term on the right corresponds to the identity permutation e given by
€(i) =4, i = 1,2. The second term comes from the permutation o = {2,1}. For
n=3

aix a2 aig
a1 Q22 G23 = (11022033 — 311032023 — 021012033
asy Qg2 ass
+ a21032013 + a31012023 — 431022013

The following is a list of properties of determinants.

1. Triangular matrix The determinant of a triangular matrix is the product of
the diagonal elements. det(A) = aj1a22 - Gpy. In particular det(l) = 1.
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2. Transpose det(AT) = det(A).
3. Homogeneity For any 5; € C, i =1,2,...,n, we have

det ( [Bra1, B2a2, ..., Bnan)] ) = BBz Bndet ([a1,a2,...,a,)]).
4. Permutation of columns If 7 € S,, then

det(B) := det[(ar(1), @r(2), - - -, Qr(n))] = sign(7) det[(ay,az, ..., a,)].
5. Additivity

det ([@y,...,ap—1,0k + ), Qpi1,. .., 0] )
zdet([al,...,an] ) +det([a1,...,a;€...,an] )

6. Singular matrix det(A4) = 0 if and only if A is singular.

7. Product rule If A, B € C™" then det(AB) = det(A) det(B).

Block triangular If A is block triangular with diagonal blocks B and C' then
det(A) = det(B) det(C).

Proof.

1.

3.

If o # €, we can find distinct integers ¢ and j such that o (i) > ¢ and o(j) < j.
But then ag;y,; = 0 if A is upper triangular and a,(;); = 0 if A is lower

triangular. Hence
det(A) = Sign(€)ae(1),1ae(2),2 ©tOe(n),n = 01,102,2 " A p.

Since the identity matrix is triangular with all diagonal elements equal to one,
we have that det(I) = 1.

By definition of AT and the det-function

dEt(AT) = Z sign(0)a1,0(1)a2,0(2) ** * An,o(n)-
oceSy,

Consider an element a; (;). If o(i) = j then
Giyo(i) = do=1(5).5°

Since o(1),0(2),...,0(n) ranges through {1,2,...,n}, we obtain

det(AT) = ZUESn sign(o)agq(1)71a071(2)72 ©Qo=1(n)n

= Yoes, Sign(a_l)%—l(1),1%—1(2),2 B e CORD
Zg—lesn Sign(o'il)aoﬁl(1),1a0*1(2),2 *Qg=1(n),n
det(A).

This follows immediately from the definition of det[(81a1, f2as2, ..., fnay)].



C.2. Basic Properties of Determinants 247

4. We have

det(B) = ) sign(0)ao(1) +(1) 0 (2)7(2) - Go(n) m(n)-
ocES,

Fix i in {1,2,...,n}. Let k = o(i) and m = 7(i). Then 771(m) = i and
o(r71(m)) = k. Hence

Ao (i),7(i) = Ck;m = Qor—1(m),m-

Moreover, sign(c) = sign(7)sign(c7~1). Thus

det(B) = sign(T) Z sign(onl)agTq(1)’1a0771(2)’2 © o Qor—1(n),n-
oESy
But as o ranges over S,, o7~ ! also ranges over S,. Hence

det(B) = sign(7) det[(a1, aq, ..., an)].

5. This follows at once from the definition.

6. We observe that the determinant of a matrix is equal to the product of the
eigenvalues and that a matrix is singular if and only if zero is an eigenvalue
(cf. Theorems D.6, D.7). But then the result follows.

7. To better understand the general proof, we do the 2 x 2 case first. Let A =
(a17a2)7 B = (bl,bQ). Then

AB = (Ab;, Aby) = (b1,1a1 + bz 1a2,b1 2a1 + b2 2a2).
Using the additivity, we obtain

det(AB) = det(bl,lal,bl,gal)+det(b2,1a2,b172a1)
+ det(bmal, b272a2) + det(b27lag, b272a2).

Next we have by homogeneity

det(AB) = blylbl)g det(al, (11) + b2’1b1’2 det(ag, a1>
+ b1,1b272 det(al, CLQ) + b271b272 det(ag, (12).

Property 6 implies that det(aq,a1) = det(as,as) = 0. Using Property 4, we
obtain det(ag,a;) = —det(a1, az) and

det(AB) = (b1)1b272 — b271b1,2) det(al, ag) = det(B) det(A)

The proof for n > 2 follows the n = 2 case step by step. Let C = (¢1,¢2,...,¢,) =
AB. Then

¢, =Ab;=bi a1 +bya0+ - +bya,, i=1,2...,n

Using the additivity, we obtain

det(AB) = Z Z e Z det[(bil’lail,biz’ga@ ey bzmnaln)]

i1=112=1 in=1
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Next we have by homogeneity

det(AB) Z Z Z biy 1biy 2+ by, mdet](ai,, @iy, ..., ai,)]
—= =

Property 6 implies that det[(a;,,...,a;, )] = 0 if any two of the indices
i1,...,%, are equal. Therefore we only get a contribution to the sum whenever
i1,...,1p is a permutation of {1,2,...,n}. Thus

det AB Z ba(l) 1 U(n),n det[(aa(l), ey aa(n))].
oceS,

By Property 4 we obtain

det(AB) Z sign(7)bo (1)1~ bo(n),n det[(ay, . .., an)].
oES,
According to the definition of det(B) this is equal to det(B) det(A).
Suppose A is block upper triangular. Let

Spp={0€8,:00) <k if i<k, and o(i) > k+1 if i > k+1}.

We claim that ag1y,1 - Go(n),n = 0if 0 € Sy k, because if o(i) > k for some
i <k then a,(;),; = 0 since it lies in the zero part of A. If o(i ) < k for some
i > k41, we must have o(j) > k for some j < k to make “room” for o (i), and

ag(j),; = 0. It follows that

det(A) = Z sign (o)A (1),1 ** * Qo (n),n-

oESnh K

[ o) i=1,...k (i =1,

p(l){z’ i=k+1,....n, T(Z){a(i) i=k+1,....n
If o0 € Sy, p and 7 will be permutations. Moreover, o = p7. Define p and 7
in Sy and S,,_, respectively by p(i) = p(i), i =1,...,k, and 7(¢) = 7(i+k) — k
fori=1,...,n—k. As o ranges over S, 1, p and 7 will take on all values in
Sk and S,,_j respectively. Since sign(p) = sign(p) and sign(7) = sign(7), we
find

sign(o) = sign(p)sign(r) = sign(p)sign(?).

Then

det(A) = Epesk Eresn k51gn( p)sign(7 )bﬁ(l),l"'bﬁ(k:)}kd%(l),l"'d-i-(nfk),nfk

det(B) det(D).
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C.3 The Adjoint Matrix and Cofactor Expansion

We start with a useful formula for the solution of a linear system.
Let A;(b) denote the matrix obtained from A by replacing the jth column of
A by b. For example,

D () w31 ()
=(58) e () me= (0 e ()

Theorem C.2 (Cramers rule (1750)) Suppose A € C™" with det(A) # 0 and

beC". Letx = [r1,T2,...,7,]7 be the unique solution of Ax =b. Then
det(4,(5))
= —— =12,...,n.
xj det(A) I j » < 7n

Proof. Since 1 = det(I) = det(AA™") = det(A)det(A™ ') we have det(A™') =
1/det(A). Then

det(A; (b))

T det(A™ A, (b))

= det([Ailal, e ,Ailaj_l, Ailb, Ailaj_;,_l, ey Ailan])

= det([el,...,ej,l,amejﬂ,...,en]) = xj,

where we used Property 8 for the last equality. 0O

Exercise C.3 Solve the following system by Cramers rule:

ERIETty

Let A; ; denote the submatrix of A obtained by deleting the 7th row and jth
column of A. For example,

_ 1
b
i
o
|
| — |
SIS

o
[

o W Nelie))
[

a

o+

o

Definition C.4 (Cofactor and Adjoint) For A € C™" and 1 < i,j < n the
determinant det(A;;) is called the cofactor of a;;. The matriz adj(A) € C™"
with elements (—1)"7 det(A; ;) is called the adjoint of A.
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Exercise C.5 Show that if

2 —6 3
A=|3 -2 -6 |,
6 3 2
then
14 21 42
adj(A)=| —42 —14 21
21 —42 14
Moreover,
343 0 0
adj(A)A = 0 343 O =det(A)I.
0 0 343

Theorem C.6 (The inverse as an adjoint) If A € C™" is nonsingular then

1
—1 .
= dj(A).
det(a) “UA)
Proof. Let A™' = [xy,...,x,], where xj = [r1;,...,7nj]T. The equation AA™! =
I implies that Az; =e; for j =1,...,n and by Cramer’s rule
det(Ai(ej)) : »det(A z) .
= S (—) Y =12, n.
T = )V Gepay 0 T b2

For the last equality we first interchange the first and ith column of A;(e;). By
Property 4 it follows that det(A;(e;)) = (—=1)"" ' det ([e;, a1, ..., a1, Qit1, - .., ay)).
We then interchange row j and row 1. Using Property 8 we obtain

det(Ai(ej)) = (71)i+j72 det(Aﬂ) = (71)i+j det(AJz)

Corollary C.7 For any A € C™"™ we have
A adj(A) = adj(A)A = det(A)I. (C.2)

Proof. 1If A is nonsingular then (C.2) follows from Theorem C.6. We simply
multiply by A from the left and from the right. Suppose next that A is singular

with m zero eigenvalues Aj,...,\,, and nonzero eigenvalues Ap41,...,A,. We
define €y := min,,41<;<n|Aj|. For any e € (0,¢) the matrix A + eI has nonzero
eigenvalues €, ..., €, \pt1+€, ..., A\, +€ and hence is nonsingular. By what we have
proved

(A+el) adj(A+el) = adj(A+el)(A+el) =det(A+el)I. (C.3)

Since the elements in A + eI and adj(A + eI) depend continuously on € we can
take limits in (C.3) to obtain (C.2). 0O
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Corollary C.8 (Cofactor expansion) For any A € C™"™ we have

det(A) =Y (=1)"ay; det(Ayj) fori=1,...,n, (C.4)
j=1
det(A) = (~1)"ay; det(Ay) forj=1,...,n. (C.5)

Proof. By (C.2) we have A adj(A) = det(A)I. But then det(A) = el Aadj(A)e; =
>oiy(=1)"*a;; det(A;;) which is (C.4). Applying this row expansion to AT we
f('ind )det(AT) = 25 (=1)"*aj; det(Ay ;). Switching the roles of i and j proves
C.bh). O

C.4 Computing Determinants

A determinant of an n-by-n matrix computed from the definition can contain up to
n! terms and we need other methods to compute determinants.

A matrix can be reduced to upper triangular form using elementary row oper-
ations. We can then use Property 1. to compute the determinant. The elementary
operations using either rows or columns are

1. Interchanging two rows(columns).
2. Multiply a row(column) by a scalar a.
3. Add a constant multiple of one row(column) to another row(column).

Let B be the result of performing an elementary operation on A. For the three
elementary operations the numbers det(A) and det(B) are related as follows.

1. det(B) = — det(A) (from Property 4.)
2. det(B) = awdet(A) (from Property 3.)
3. det(B) = det(A)(from Properties 5., 7.)

It follows from Property 2. that it is enough to show this for column operations.
The proof of 1. and 2. are immediate. For 3. suppose we add « times column k to
column ¢ for some k # i. Then using Properties 5. and 7. we find

det(B) = det ( [a1,...,ai_1,a; + a@k, @it1, ..., an])
5 det(A) + det ( [ah ey @1, A, Gt - - .7an] ) z det(A)

To compute the value of a determinant it is often convenient to use row- or
column operations to introduce zeros in a row or column of A and then use one of
the cofactor expansions in Corollary C.8.

Example C.9 The equation for a straight line through two points (z1,y1) and
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(z2,y2) in the plane can be written as the equation

1 =z y
det(A):=1{1 z1 y1|=0
1z yo

involving a determinant of order 3. We can compute this determinant using row
operations of type 3. Subtracting row 2 from row 3 and then row 1 from row 2 we
obtain

1 = v 1 T Y
I 20 yi|=0 m1—2 y1—y|=(x1—2)(y2—v1)— (y1 —y)(x2 — 1).
1 zo o 0 zo—x1 Yo—11

Rearranging the equation det(A) = 0 we obtain

Y2 — Y1
y—y=—-(x— 1)
Xro — I

which is the slope form of the equation of a straight line.

Exercise C.10 Show that the equation for the plane through the points (x1,y1,21),
(T2, Y2, 22) and (x3,ys3, 23) is

r y z 1
royo s 1) 0
T2 Y2 22 1 '
T3 Y3 z3 1

Exercise C.11 Let P; = (z;,y:), i = 1,2,3, be three points in the plane defining a
triangle T. Show that the area of T is

1 Tr1y T2 X3
A(T) = S|y vz s
1 1 1

Exercise C.13 Show that

1 oz a2 T
—1
1 a9 23 xy
. . :H(fi_x]’)v
: : i>j
1z, 22 zn—t

where [[,- (@ — ;) = 17 o (z; — 1) (z; — @2) -+ (@; — i—1). This determinant
is called the Van der Monde determinant. Hint: Subtract x¥ times column k from
column k+1 fork=n—-1,n-2,...,1.
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wY

U

Figure C.12. The triangle T defined by the three points Py, P> and Ps.

Exercise C.14 (Cauchy 1842). Let a = [av1,..., 0], B = [B1,..., BT be in

R™.

a) Consider the matriz A € R™™ with elements a; ; = 1/(a;+5;), 4, =1,2,...,n.

Show that
det(A) = Pg(a)g(B)

where P =[]}, [T}, aij, and for v = [y1,..., )"

n

9(v) =] =) = 72) -+ (3 = vi-1)

=2

Hint: Multiply the ith row of A by H?Zl(ai +8;) fori=1,2,...,n. Call the
resulting matriz C. Each element of C is a product of n—1 factors o, + Bs.
Hence det(C) is a sum of terms where each term contain precisely n(n—1)
factors a,. + Bs. Thus det(C) = g(«, ) where q is a polynomial of degree at
most n(n—1) in «; and B;. Since det(A) and therefore det(C) vanishes if
a; = a  for some i # j or B, = B for some r # s, we have that q(c, 3)
must be divisible by each factor in g(a) and g(3). Since g(a) and g(B8) is a
polynomial of degree n(n—1), we have

q(e, B) = kg(a)g(B)

for some constant k independent of o and B. Show that k = 1 by choosing
Bi+a;=0,i=1,2,...,n.

b) Notice that the cofactor of any element in the above matriz A is the determi-

nant of a matriz of similar form. Use the cofactor and determinant of A to
represent the elements of A™" = (bj1.). Answer:

bik = (ar + ) Ax(=55)Bj(—aw),
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where

Au(a) = l;lk (;_ka) o B =] (5_;;) .

s#k

Exercise C.15 Let H,, = (h; ;) be the nxn matriz with elements h; ; = 1/(i+j—1).
Use Ezercise C.14 to show that the elements t7'; in T', = H_' are given by

GYI0)

-1

where ) )
“—n

f(z’—i—l):( - )f(i), i=1,2,..., f(1)=-n.

C.5 Some Useful Determinant Formulas

Suppose A € C™"™ and suppose for an integer r < min{m,n} that 4 = {i1,...,4}
and 7 = {j1,...,Jr} are integers with 1 < i; < iz < --- < i, <mand 1< j; <
Jo < - < jr. We let
Qiyjn " Qigjg,
Al g) =
Qipji 7 Qg
be the submatrix of A consisting of rows i1, ..., . and columns ji, ..., j.. The fol-

lowing formula bears a strong resemblance to the formula for matrix multiplication.
Theorem C.16 (Cauchy-Binet formula) Let A € C™?, B € CP" and C =

AB. Suppose 1 <r <min{m,n,p} and let i = {i1,...,ir} and § = {j1,...,Jr} be
integers with 1 < i1 <ig < - <. <mand 1 < j1 < jo <---<jr <n. Then

det (C(i,5)) =Y _ det (A(i,k)) det (B(k, 5)), (C.6)
k

where we sum over all k = {ky,... k. } with 1 <k <ko < -+ <k <p.
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Eigenvalues and
Eigenvectors

Suppose A € C™" is a square matrix, A € C and « € C". We say that (\, x)
is an eigenpair for A if Ax = Ax and x is nonzero. The scalar A is called an
eigenvalue and z is said to be an eigenvector. If (A, x) is an eigenpair then
(A, ax) is an eigenpair for any o € C with « # 0. An eigenvector is a special vector
that is mapped by A into a vector parallel to itself. The length is increased if |A| > 1
and decreased if |A\| < 1. The set of distinct eigenvalues is called the spectrum of
A and is denoted by o(A).

D.1 The Characteristic Polynomial

D.1.1 The characteristic equation
Lemma D.1 For any A € C™" we have A € 0(A) <= det(A — A\I) = 0.

Proof. Suppose (A, x) is an eigenpair for A. The equation Az = Az can be written
(A — A)x = 0. Since x is nonzero the matrix A — AI must be singular with a
zero determinant. Conversely, if det(A — AI) = 0 then A — AI is singular and
(A — X))z = 0 for some nonzero x € C". Thus Az = Az and (), x) is an eigenpair
for A. O

We observe that det(A — AI) = 0 if and only if det(AI — A) = 0.The equation

det(A — AI) = 0 or equivalently det(AI — A) = 0 is called the characteristic
equation of A.

Definition D.2 The function ma: C — C given by ma(\) = det(A — M) is called
the characteristic polynomial of A.

255
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To see that w4 is in fact a polynomial let us take a closer look at this function.
For n = 3 we have

a11 — A a12 a13
det(A — )\I) = as1 a29 — A a23
a3 asa  azz— A

Expanding this determinant by the first column we find

azx — A ag3

det(A — AXI) = (a11 — N) a3 s —

a2 ais ’

—a
)\‘ 2 as2 a33—/\

a12 a13

age — A ags | (@11 — A)(a22 — A)(azs — A) +r(X)

+ as1

for some polynomial 7 of degree at most one. In general
det(A — AI) = (a11 — A)(a22 — A) -+ (@pn — A) + 7(N), (D.1)

where each term in r(A) has at most n — 2 factors containing A. It follows that r
is a polynomial of degree at most n — 2, w4 is a polynomial of exact degree n, and
the eigenvalues are the roots of this polynomial.

By the fundamental theorem of algebra an n x n matrix has precisely n eigen-
values A1,..., A\, some of which might be complex even if A is real. The com-
plex eigenpairs of a real matrix occur in complex conjugate pairs. Indeed, taking
the complex conjugate on both sides of the equation Ax = Az with A real gives
AT = )\T.

The following result will be useful.

Theorem D.3 Suppose (u,x) is an eigenpair for A € C»™. Then

- x) is an eigenpair for AL

1. If A is nonsingular then (u

2. (u¥,x) is an eigenpair for A" for k e N.

3. If p given by p(t) = ag + art +agt? + - - -+ axt® is a polynomial, then (p(u), )
is an eigenpair for the matriz p(A) = agl + a1 A + ay A® + - + ar A"

4. u is an eigenvalue for AT in fact TAT =TA.

5. T is an eigenvalue for A*, in fact T+ (N) = ma()\) for all A € C.
6. If A=[B §] is block triangular then 1o = 7p - Tp.
Proof.
1

. Az =px = A 'z =p '

2. We use induction on k. The case k = 1 is trivial and if A¥ ' = w1z then
AFx = AAF g = 1 Ax = R,

— ,
3. p(A)x = E?:o a;Alx = E?:o a;jx = p(p)x.
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4. Since det(B™) = det(B) for any matrix B we find for any A € C
Tar(\) = det(A” — AI) = det (A — AI)T) = det(A — M) = Ta(N).

Thus A" and A have the same characteristic polynomial and hence the same
eigenvalues.

5. We have ma-(\) = 75(A) = det(A — AI) = det(A — M) = 7a(A). Thus

7a(A\) =0 ma+«(A) =0 and the result follows.

6. By Property 8 of determinants

|B-Xx C

ma(d) 0 D -\

= det(B — M) det(D — M) = m()\) - mp(\).

In general it is not easy to find all eigenvalues of a matrix. One notable
exception is a triangular matrix.

Theorem D.4 The eigenvalues of a triangular matriz are given by its diagonal
elements.

Proof. If A € C™" is triangular then A — AT is also triangular with diagonal
elements a;— A for i = 1,...,n. But then the roots of det(A—AI) =[]}, (a;;—A) =
Oare \; =ay; fori=1,...,n. 0O

To find the eigenvectors of a triangular matrix requires more work. Indeed,
the eigenvectors are nontrivial solutions of a homogenous triangular linear system
with at least one zero on the diagonal.

Example D.5 The 3 x 3 matriz A =
homogenous triangular linear system for a
0 1 0] [= 0
(A—Dx=0o0r |0 0 1| |z2| = |0
0 0 0| |z3 0

1107 ,
011 has the eigenvalue N\ = 1. The
n eigenvector & = [x1, o, x3]7 is

We find zo = x3 = 0 so any eigenvector must be a multiple of ey .

There are two useful relations between the elements of a matrix A € C™" and
its eigenvalues A1, ..., \,.

Theorem D.6 For any A € C™"
trace(A) =M + Ao+ -+ Ay, det(A) =X e - Ay, (D.2)
where the trace of A € C™" is the sum of its diagonal elements
trace(A) :== a1 +aza + -+ + ann (D.3)
and det(A) is the determinant of A.
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Proof. We compare two different expansion of m4. On the one hand from (D.1)
we find
7aAN) = (=1)" A" + e A" 4 g,

where ¢,,—1 = (—=1)" ! trace(A) and ¢y = 74(0) = det(A). On the other hand
TaN) =M =AM = A) = (=1)" A" +dpy o A" -+ d,

where dj,—1 = (=1)""' (A1 + -+ A,) and dg = A1 - - Ay, Since ¢; = d; for all j we
obtain (D.2). 0O

For a 2 x 2 matrix the characteristic equation takes the convenient form
M\ — trace(A)\ + det(A) = 0. (D.4)
Thus, if A =[?1] then trace(A) = 4, det(A) = 3 so that ma(\) = A\? — 4\ + 3.
In terms of eigenvalues we have an additional characterization of a singular

matrix.

Theorem D.7 The matriz A € C™™ is singular if and only if zero is an eigenvalue.

Proof. Zero is an eigenvalue if and only if 74(0) = det(A) = 0 which happens if
and only if A is singular. 0O

Exercise D.8 Find eigenvalues and eigenvectors of A =

S O =
[N )
N W W

Exercise D.9 Let A € 0(A) where A2 = A € C™". Show that \=0 or A=1. (A
matriz is called idempotent if A2 = A).

Exercise D.10 Let \ € o(A) where A¥ =0 for some k € N. Show that A = 0. (A
matriz A € C™™ such that A¥ =0 for some k € N is called nilpotent ).

Exercise D.11 Let A € o(A) where ATA = 1. Show that |\ = 1.

Exercise D.12 Suppose A € C™" is singular. Then we can find e¢g > 0 such that
A + €l is nonsingular for all € € (0,€g). Hint: det(A) = A A2+ Ay, where \; are
the eigenvalues of A.

Exercise D.13 For ¢; € C let f(A\) = A\" 4+ g1 A" + - + qo be a polynomial
of degree n in A. We derive two matrices which have (—=1)"f as its characteristic
polynomial.
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a) Show that f = (—1)"m4 where

—Aqn-1 —Q4n-2 - —q1 —qo
1 0 e 0 0
e 0 1 -~ 0 0
0 0 e 1 0

A is called the companion matrix of f.

b) Show that f = (—1)"ma where

0 0 0 —q
10 0 —q
A=101 0 —q
00 -+ 1 —gn

Thus A’ can also be regarded as a companion matriz for f.

D.2 Similarity Transformations

Row operations can be used to reduce a matrix to triangular form, but row opera-
tions change the eigenvalues of a matrix. We need a transformation which can be
used to simplify a matrix without changing the eigenvalues.

Definition D.14 Two matrices A, B € C™" are said to be similar if there is a
nonsingular matriz S € C™" such that B = S~*AS. The transformation A — B
is called a similarity transformation.

A similarity transformation does not change the eigenvalues.

Theorem D.15 Similar matrices have the same characteristic polynomial and there-
fore the same eigenvalues.

Proof. Let B=S"'AS. By properties of determinants

re(\) = det(ST'AS — \I) = det (S™' (A — \I)S)
= det(S7) det(A — AI)det(S) = det(S™'8) det(A — M) = w4 (N).

But then A and B have the same characteristic polynomial and hence the same
eigenvalues. 0O

Consider next what a similarity transformation does to the eigenvectors.

Theorem D.16 1. (\, x) is an eigenpair for B = S~'AS if and only if (\, Sx)
is an eigenpair for A.
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2. The columns of S are eigenvectors of A if and only if B is diagonal.

Proof.
1. Br = \x & S 'ASx = \x & A(Sz) = \(Sz), and Sz # 0 since S is
nonsingular.
2. Suppose A has eigenvalues A1, ..., A, and let sq,..., s, be the columns of S.

If B is diagonal then ()\;, e;) is an eigenpair for B and (\;, Se;) = (\;, s;)
is an eigenpair for A for i = 1,...,n. Conversely, if B = S™'AS and the
columns s1, ..., s, of S are eigenvectors of A then As; = \;s; fori =1,...,n.
But then AS = SC, where C = diag(\1,...,\,) is diagonal. Thus C =
S~'AS = B is diagonal.

The following result is sometimes useful.

Theorem D.17 For any A € C™" and B € C™"™ the matrices AB and BA have
the same spectrum. More precisely,

)\nﬂAB()\):/\mWBA()\), X e C.

Proof. Define block matrices of order n + m by

AB 0 0 0 I, A
VA B AR

By Property 6. of Theorem D.3 we have mg(A) = A"map(A) and 7p(A) = A"wpa ().

But ES = SF so E and F are similar and have the same characteristic polynomial
by the proof of Theorem D.15. 0O

D.3 Linear Independence of Eigenvectors

Definition D.18 A square matriz A is diagonalizable if it is similar to a diag-
onal matriz, S~'AS = diag(A1, ..., \n).

Since S is nonsingular its columns are eigenvectors of A, and Theorem D.16
implies the following result.

Theorem D.19 A matriz is diagonalizable if and only if its eigenvectors form a
basis for R™ or C™.

A matrix with distinct eigenvalues can be diagonalized.

Theorem D.20 Eigenvectors corresponding to distinct eigenvalues are linearly in-
dependent.
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Proof. Suppose (A1, 21),..., (A, k) are eigenpairs for A € C™™ with A; # A

for i # j. Suppose x1,...,x are linearly dependent. Let m < k be the smallest
positive integer so that x1, ..., x,, are linearly dependent. Since &1 # 0 we see that
m > 2. For some nonzero (c1,...,c,) we have

ZCjEEj =0. (D5)
j=1

Applying A to this equation we obtain by linearity Z;nzl cjAjz; = 0. From this
relation we subtract A, times (D.5) and find Z;n:_ll ¢;i(Aj — Am)x; = 0. But since
Aj —Am #0for j =1,...,m —1 and at least one ¢; # 0 for j < m we see that
{x1,...,@m—_1} is linearly dependent, contradicting the minimality of m. 0O

Corollary D.21 If A € C™™ has distinct eigenvalues then the corresponding eigen-
vectors form a basis for C™.

Proof. By the previous theorem the n eigenvectors are linearly independent. Since
n is the dimension of C™ the eigenvectors form a basis. 0O

For a matrix with multiple eigenvalues the situation is more complicated. We
. . 1107 . .
have seen that any eigenvector of the 3 x 3 matrix A = [8 ! %] is a multiple of e;.

Thus this matrix does not have a set of linearly independent eigenvectors. On the
other hand the unit matrix has a basis of eigenvectors, namely the unit vectors.

In order to characterize the matrices with eigenvectors which form a basis
we have to count carefully the multiplicity of the eigenvalues. We consider two
kinds of multiplicities called algebraic and geometric multiplicities. The algebraic
multiplicity of an eigenvalue X is simply the multiplicity of A as a root in the
characteristic polynomial. More formally we state:

Definition D.22 We say that an eigenvalue A of A has algebraic multiplicity
a = a(A\) = aa(N) if ma(z) = (2 — N)%p(z), where p(z) #0. The eigenvalue X is
simple (double, triple) if a is equal to one (two, three). A complex number z which
is mot an eigenvalue is defined to have algebraic multiplicity aa(z) = 0.

To define the second kind of multiplicity we consider for each A € o(A) the
nullspace
ker(A — M) :={z e R" : (A — M)z = 0} (D.6)

of A — \I. This set consists of all eigenvectors of A corresponding to the eigenvalue
A If ¢,y € ker(A — AI) and «, § are scalars then ax + By € ker(A — A\I). So this
nullspace is a subspace of C". The dimension of the subspace must be at least one
since A — A1 is singular.

Definition D.23 The geometric multiplicity g = g(A) = ga()) of an eigenvalue
A of A is the dimension of the nullspace ker(A — AI).
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Example D.24 The n x n identity matriz has the eigenvalue X = 1 with w;(\) =
(1 =X)". Since I — A1 is the zero matriz when A = 1, the nullspace of I — I is
all of n-space and it follows that a = g = n. On the other hand the 3 X 3 matrix

A= {8(1]1} has the eigenvalue A =1 with a =3 and g = 1.

The geometric multiplicity of an eigenvalue is always bounded above by the
algebraic multiplicity of the eigenvalue.

Theorem D.25 For any square matriz A and any A\ € o(A) we have ga(\) <
CLA(/\).

Proof. Let {v1,...,v,} with g := ¢gA(A), be an orthonormal basis for ker(A — \I)
and extend this set to an orthonormal basis {vy,...,v,} for C". Then the matrix
V = [v1,...,v,] € C»" is unitary and V' = V*. Partition V as V = [V, V],
where V1 := [v1,...,vy] and V3 := [vg41,...,0,]. Then AV, = AV, VIV, =
I,,V;V1=0,and
- Vi _|ViAV, VIAV,| M, ViAV,
B:=V*AV = {vg] AV, Vo] = ViAv, V;Avg] = { 0’ V;AVJ :

Since B is block triangular Property 6 of Theorem D.3 implies that 7g(z) = (z —
A)ITvsav,(z). But then ap(\) > g. Since A and B are similar they have the
same characteristic polynomial, and it follows that aa(\) = ag(A\) > ga(N). O

Definition D.26 An eigenvalue where ga(A) < aa(N) is said to be defective . A
matriz is defective if at least one of its eigenvalues is defective.

Theorem D.27 A matriz A € C™"™ hasn linearly independent eigenvectors if and
only if the algebraic and geometric multiplicity of all eigenvalues are the same.

Proof. Suppose A has distinct eigenvalues 1, ..., u, with algebraic multiplicities
ai,...,a, and geometric multiplicities g1,. .., g,. Suppose {v;1,...,v;,} is a basis

93T

for ker(A — p;I) for j =1,...,r. We claim that the combined bet {vje bl jor i

linearly independent. We show this using induction on r. Suppose {vjk} ity ]1 1 1s

linearly independent and assume

r gj

Z Zajkvjk = 0 for some scalars a;y. (D.7)
j=1k=1

We multiply this equation by (A — u,-I) and obtain by linearity

r 9 T r—1 gj

Z Za‘]k A ,ur U]k = Z Z a]k) = Hr ’Ujk? - Z Z a]k = Hr U]k

j=1k=1 j=1k=1 j=1 k=1
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By the induction hypothesis all these a;, vanish and in (D.7) we are left with
7 arver = 0. Since these v's form a basis for ker(A — p,I) we also have
arr, =0 for k =1,...,g,. (This also proves the induction hypothesis for r = 1.)
Thus {vx}72] j—1 18 linearly independent and it follows that the number of linearly
independent eigenvectors is equal to > ;95 Since g; < a; for all j and > ja;=n
wehavezjgj:nifandonlyifaj:gjforj:L...,r. ]

D.4 Left Eigenvectors

Definition D.28 A nonzero vector y € C™ corresponding to an eigenvalue \ of
A is called a left eigenvector of A if y*A = Ay*. We say that (\,y) is a left
eigenpair of A.

Note that y*A = \y* if and only if A*y = M\y. It follows from Theorem D.3 that
if y*A = Ay™* then A\ must be an eigenvalue for A, while a left eigenvector y is an
eigenvector for A*. If we need to make a distinction then an ordinary eigenvector,
eigenpair is called a right eigenvector and right eigenpair, respectively.

Left- and right eigenvectors corresponding to distinct eigenvalues are orthog-
onal.

Theorem D.29 Suppose (u,y) and (A, x) are left and right eigenpairs of A € C™™.
If A # p then y*x = 0.

Proof. Using the eigenpair relation in two ways we obtain y*Ax = A\y*x = py*x
and we conclude that y*x =0. O

The case where A = p is more complicated. For example, the matrix A :=
[3 1] has one eigenvalue A = 1 of algebraic multiplicity two, one right eigenvector
x = e; and one left eigenvector y = e;. Thus y*x = 0. Two sufficient conditions
guaranteeing that y*x ## 0 are given in the following theorem.

Theorem D.30 Suppose y and x are left- and right eigenvectors corresponding to
the same eigenvalue X of A € C™™. Then y*x # 0 in the following two cases:

1. A can be diagonalized.

2. The algebraic multiplicity of X is equal to one.

Proof.

1. Suppose YAX = D = diag(\1,...,\,), where Y = X!, Partition Y by
rows and X by columns as
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Since YA = DY and AX = X D, we see that y, is a left eigenvector and x;
is a right eigenvector corresponding to \; fori =1,...,n. But since Y X =1
we have yya; =1 for all 4.

2. Assume that ||| = 1. We have (cf. (6.1))

- A2
vav= 2],

where V' is unitary and Ve; = . Let u := V*y. Then
(VA*V)u = V*A*y = \V*y = \u,

so (A, u) is an eigenpair of V*A*V. But then y*z = u*V*Ve;. Suppose
that u*e; = 0, i.e., u = [2] for some nonzero v € C"~!. Then

viava=[ALE - [0 =5[]

and by Theorem D.3 it follows that A is an eigenvalue of M. But this is
impossible since A has algebraic multiplicity one and the eigenvalues of A are
the union of A and the eigenvalues of M.

Corollary D.31 If A € C™™ has linearly independent right eigenvectors €1, ..., &,
then A, also has linearly independent left eigenvectors y,,...,y,. For any v € C"

we have
n

v =Y (v, = 3 (@v)y (D.3)

j=1 k=1

Proof. From the proof of the previous theorem we have yj;x; = d; for all j, k. So
ifv =737, cjzj, then yjv =37 cjypa; = ¢y for k =1,...,n. The proof of the
second formula is similar. 0O



Appendix E
Gaussian Elimination

Gaussian elimination is the classical method for solving n linear equations in n
unknowns. In component form the system is

1121 + ai®e+ - 4 ainTy = by,

a21%1 + AT+ -+ 4 GgpTp = by,

Ap1T1 + Ap2To+ -+ + AppTy = bwu

and in matrix form
aix a2 -+ Gln € by
a1 a2 aop | | @2 by
Aw = . = = b

anl an2 e Anpn Tn bn

We recall (see Definition B.6 and Theorem B.7) that the square system Ax = b
has a unique solution for all right hand sides b if and only if A is nonsingular, i.e.,
the homogeneous system Ax = 0 only has the solution & = 0. We recall (cf.
Theorem B.9) that a square matrix is invertible if and only if A is nonsingular, and
the solution of Ax = b can be written & = A~'b, where A™! is the inverse of A.
However, for large systems it is inefficient to compute @ in this way. For an example
see (2.10) and the discussion about the matrix T' there. We also note (Lemma B.8)
that if A = BC, where A, B,C are square matrices, then A is nonsingular if and
only if both B and C are nonsingular and in that case A™' = C~!B~1.

The entries of A and b can be either real or complex numbers. For simplicity
and ease of exposition we assume real entries.

In Gaussian elimination with no row interchanges we compute a triangular
factorization of the coefficient matrix A. This factorization is known as an LU
factorization® of A . In this chapter we discuss some theoretical and algorithmic

3We normally denote an upper triangular matrix by R, but we respect common practice and
most often we refer to the factorization A = LR as an LU factorization of A

265
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1 k1k n
1
k-1
k
n
A1 A2 Ak An

Figure E.1. Gaussian elimination

aspects of Gaussian elimination We consider also Gaussian elimination with row
interchanges.

E.1 Gaussian Elimination and LU factorization

In Gaussian elimination without row interchanges we start with a linear system
Az = b and generate a sequence of equivalent systems AP g =" for k= 1,...,n,
where A = A, bt = b, and A™® has zeros under the diagonal in its first k£ — 1
columns. Thus A™ is upper triangular and the system A™z = b™ is easy to
solve. The process is illustrated in Figure E.1.

The matrix A® takes the form

ro1 1 1 1 1 7
ai a3 k-1 aj aj ; a1n
k-1 k-1 k-1 k-1
Ap 1 k-1 | %1k~ Q15 " Qp1a
% 13
a ay . - a
AW = o, g o (E.1)
k k
a; i 1.7 Ajn
k k k
L Uk O, j Ann |
The process transforming A® into AFFY for | = 1,...,n—1 can be described
as follows.
fori=k+1:n
kE _ ko k
liie = agp./ag (E.2)
forj=k:n '
k+1 _ & k k
a;; - = ag; — ljag;

For j = k it follows from (E.2) that & = ak — a af, =0 fori =k +

%
Ak

1,...,n. Thus A®FY will have zeros under the diagonal in its first £ columns and
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the elimination is carried one step further. The numbers % in (E.2) are called
multipliers.

Alternatively, we can describe the transformation AR 5 AGFD a9 o multi-
plication of AW by a matrix known as an elementary lower triangular matrix

Definition E.1 For1 <k <n-1andl; = [lk+17k,...,ln7k]T € R** we define
the matriz M € R™™ by

10 0 0 0]
01 0 0 0
0 . . . .
My=I-| |ef=[0 0 - 1 0 of, (E.3)
k 0 0 -+ —lpprp 1 0
o 0 - ~lpr 0 o 1

where 0 is the zero vector in RF. We call My, an elementary lower triangular
matriz.

We have
A+ _ MkA(k), fork=1,...,n—1, (E.4)

where M, € R™" is an elementary lower triangular matrix of the form (E.3) with
lig = IF given by (E.2) fori=Fk+1,...,n.

Exercise E.2 Show (E.4).

Gaussian elimination with no row interchanges is valid if and only if the pivots
a’,:k are nonzero for k =1,...,n— 1.

Theorem E.3 We have aﬁ,k #0 for k =1,...,n—1 if and only if the leading
principal submatrices
ail e ik
Ay =
ar1 ... ALk

of A are nonsingular for k=1,...,n — 1.

Proof. Let By = A,(ck_)1 be the upper left k — 1 corner of A® given by (E.1).
Observe that the entries of the matrix By is computed from A by using only
entries from Aj_1 and that only row-operations preserving non-singularity are used.
It follows that Aj_1 is nonsingular if and only if By is nonsingular. By Lemma
2.8 By is nonsingular if and only if al(;) #£0,i=1,...,k —1. We conclude that
Aj,..., A, 1 are nonsingular if and only if Bs,..., B, are nonsingular which is
equivalent to a,(ﬁc) #0fork=1,....n—1. O
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Gaussian elimination is a way to compute the LU factorization of the coeffi-
cient matrix.

Theorem E.4 Suppose A € R™" and that Ay is nonsingular fork=1,... n—1.

Then Gaussian elimination with no row interchanges results in an LU factorization
of A € R™". In particularA = LR, where

1
1%1 1 a%l T a’]in
' ' Upp
bn o o 1

where the lgj and al; are given by (E.2).

Proof. From (E.2) we have for all 4, j

likal,jj = afj fj‘l for k < min(4, j), and l;;a}; = a}; for i > j.

Thus for ¢ < j we find

n i—1 i—1
_ _ k P k}+1 1
R)” = E likukj = E likakj + azj = E (a ij ) + a ;= Qi = Qg
k=1 k=1 k=1
while for ¢ > j
n j—1 7j—1
— _ k J o_ k k+1
R)zg = Z likUkj = Z likakj + lijajj = Z (aij ) + a = Q4j-
k=1 k=1 k=1

Note that this Theorem holds even if A is singular. Since L is nonsingular
the matrix R is singular, and we must have a;, = 0 when A is singular.

E.1.1 Algoritms

Consider next an algorithm to find the LU factorization of A using Gaussian elim-
ination with no row interchanges. Storing both the entries IJ; and a;; in A we can
write (E.2) as follows for k=1,...,n— 1.

fori=k+1:n
Qi = ik [ Ak
forj=k+1:n

Aij = Qij — Gikk;j

We can write (E.6) using outer product notation. We have

Qk4+1,k+1 *°°  Qk+1n Qk+1,k+1 =  OQk4+1,n Ak+1,k

Un, k+1 ce Un,n Qn, k41 ce Qn,n an, k
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The result is a matrix of order n — k.
This leads to the following algorithm.

Algorithm E.5 (lufactor) Given A € R™" with A; € R¥* nonsingular for
k =1,...,n — 1. This algorithm computes an LU factorization of A using
Gaussian elimination without row interchanges.

function [L,R]=1lufactor (A)
n=length(A); for k=1:n-1
kn=k+1:n;
A(kn,k)=A(kn,k)/A(k,k);
A(kn,kn)=A(kn,kn)-A(kn,k)*A(k,kn);
end
L=eye(n,n)+tril (A,-1);
R=triu(A);

Once we have an LU factorization of A the system Ax = b is solved easily in
two steps. Since LRx = b we have Ly = b, where y := Rx. We first solve Ly = b
for y and then Rx = y for . Consider solving a system Ax = b, where A is lower

triangular with nonzero diagonal entries. For n = 3 we have

ail 0 0 1 b1
a1 az 0 2| = |b2
ag1 az2 asz| |3 b3

From the first equation we find x; = by /a11. Solving the second equation for x5y

we

obtain xo = (by — ag121)/a11. Finally the third equation gives 3 = (bs — ag1z1 —
asax2)/ass. This process is known as forward substitution and we arrive at the

following algorithm.

Algorithm E.6 (forwardsolve) Given a nonsingular lower triangular matrix
A eR™ and b € R". An € R" is computed so that Az = b.

function x=forwardsolve(A,b)

n=length(b); x=b(:);

for k=1:n
x(k)=(x(k)-A(k,1:k-1)*x(1:k-1))/A(k,k);

end

A system Ax = b, where A is upper triangular must be solved 'bottom-up’.
We first find z,, from the last equation and then move upwards for the remaining

unknowns. We have the following algorithm.
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Algorithm E.7 (backsolve) Given a nonsingular upper triangular matrix
A e R™ and b€ R". An x € R" is computed so that Az = b.

function x=backsolve (A,b)

n=length(b); x=b(:);

for k=n:-1:1
x(k)=(x(k)-A(k,k+1:n)*x(k+1:n))/A(k,k);

end

E.1.2 Operation count

We define a flop (floating point operation) as one of the floating point arithmetic
operations, ie. multiplication, division, addition and subtraction. We denote by
nflops the total number of flops in an algorithm, i.e. the the sum of all multipli-
cations, divisions, additions and subtractions. For a problem of size n the number
nflops will often be a polynomial in n. For example, we will show below that an LU
factorization requires %n3 — %nQ — & flops. For large values of n the highest term
%n3 dominates and we usually say that nflops = O(%nS) ignoring lower order terms.
We sometimes say that nflops = O(n3) if we do not bother with the constant (in
this case 2/3) in front of the n3 term.

In many implementations the computing time 7’4 for an algorithm A applied
to a large problem is proportional to N4 := nflops. If this is true then we typically
have T4 = aN4, where « is in the range 107!2 to 107 on a modern computer.

Consider now Npy := nflops for LU factorization. Let M, D, A, S be the
number of multiplications, divisions, additions, and subtractions. We first do an

exact count. From (E.6) we find
o M= i(n—k?=3""\m?=1in(n—1)(n—1)
. D:Z"m;llmzén(n—l), S=M, A=0.

Thus
Nig=M+D+A+S= gn?’—1112—111:0(2713)
3 2 6 3
There is a quick way to arrive at the leading term 2n3/3. We only consider the
arithmetic operations contributing to the leading term. Then we replace sums by
integrals letting the summation indices be continuous variables and adjust limits
of integration in an insightful way to simplify the calculation. In the Gaussian
elimination case the contribution to the leading term only comes from M and S
and we find

n—1

n—1 n
M+S:2Z(nfk)2z2/ (nfk)2dkz2/ (nfk)zdk:gn?’.
k=1 1 0 3

This is the correct leading term and we obtain Ny = O(2n3/3) which is reasonably
correct for large values of n.
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Consider next forward and backward substitution. Counting flops and letting
Ng := Nr + Np we find

Ng ~ / 2(k —1)dk +/ 2(n — k)dk ~ / 2kdk +/ 2(n — k)dk = 2n>.
1 1 0 0
Comparing Nry and Ng we see that LU factorization is an O(n?®) process

while the solution stage only require O(n?) flops. This leads to dramatic differences
in computing time as illustrated in the following table:

n Try Ts
103 1s 0.003s
10* | 17min. 0.3s
10 | 32 years | 51min

Here we have assumed that the computing time for the LU factorization is
Try = 107203 and the computing time for the forward and bacwards substittution
is Ts = 3 x 107%n? corresponding to a = 3 x 1079/2.

To further illustrate the difference between n® and n? for large n suppose we
want to solve m systems A;x; = b; for j = 1,...,m, where A; € R™" and b; € R".
We need m(2n? + 2n?) flops for this. Thus if n = 10* and m = 100 the table gives
a computing time of approximately 1700min. Suppose now A; = A, i.e. we have
the same coefficient matrix in all systems. We can then write the m systems more
compactly as AX = B, where A € R™", B € R™™ and the matrix X € R™™ ig
the unknown. To solve AX = B we first compute the LU factorization of A and
then apply forward and backward substitution to the columns of B. If n = 10* the
computing time for this would be 17min for the LU factorization and 30s for the
solution phase.

E.2 Pivoting

We have seen that Gaussian elimination without row interchanges is only well de-
fined if the leading principal minors A, € R** are nonsingular for k = 1,...,n— 1.

Suppose now A € R™" is nonsingular. We can still solve a linear system
with A if we incorporate row interchanges. Interchanging two rows (and/or two
columns) during Gaussian elimination is known as pivoting. The entry which is
moved to the diagonal position (k, k) is called the pivot entry or pivot for short.
Gaussian elimination with row interchanges can be described as follows.

1. Choose 7} > k so that af , #0.

2. Interchange rows r; and k of AR,

3. Eliminate by computing ¥ and af;rl using (E.2).

We have seen that the elimination step can be described as multiplying the
current matrix by an elementary transformation matrix M given by (E.3). But
before we can multiply by M, we have to interchange rows. This can be described
in terms of permutation matrices.
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E.2.1 Permutation matrices

Definition E.8 A permutation matrix is a matriz of the form
P = I(vp) = [eimeiz» B aein] € Rn,n7
where e;, ..., e; 1is a permutation of the unit vectors ey, ...,e, € R".

Every permutation p = [i1,...,i,]T of the integers 1,2,... n gives rise to a
permutation matrix and vice versa. Post-multiplying a matrix A by a permuta-
tion matrix results in a permutation of the columns, while pre-multiplying by a
permutation matrix gives a permutation of the rows. In symbols

AP = A(;,p), PTA=A(p,:). (E.7)

Indeed, AP = (Ae;,,...,Ae; ) = A(:,p) and P'A = (ATP)T = (A" (;,p))" =
A(p,:).

Since PTP = I the inverse of P is equal to its transpose, P~1 = PT and
PPT = T as well. Thus a permutation matrix is an orthonormal matrix.

We will use a particularly simple permutation matrix.

Definition E.9 We define a (j,k)-Interchange Matrix Ij;, by interchanging col-
umn j and k of the identity matriz.

Since I = Iy;, and we obtain the identity by applying I;; twice, we see
that I ?k = I and an interchange matrix is symmetric and equal to its own inverse.
Pre-multiplying a matrix by an interchange matrix interchanges two rows of the
matrix, while post-multiplication interchanges two columns.

E.2.2 Gaussian elimination works mathematically

The process going from AR to AR+ can be written
A = A P AR for k=1,...,n—1, (E.8)

where Py, = I, ;, € R™" is a permutation matrix interchanging rows k£ and rj of
A% and My, € R™" is an elementary lower triangular matrix of the form (E.3)
with I = & given by (E.2) fori =k +1,...,n.

If A is nonsingular then Gaussian elimination can always be carried to com-
pletion by using suitable row interchanges. To show this, suppose by induction on
k that A% is nonsingular. Since A = A this holds for k¥ = 1. By Lemma 2.7
the lower right diagonal block in AW s nonsingular. But then at least one entry
in the first column of that block must be nonzero and it follows that r; exists so
that a’jk)k # 0. But then the matrices P, and My, in (E.8) are well defined. By
Lemma 2.8 the matrix M is nonsingular and since a permutation matrix is non-
singular it follows from Lemma B.8 that AKHD g nonsingular. We conclude that
AR ig nonsingular for k =1,...,n.
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E.2.3 Pivot strategies

Rp to now we have said nothing about what rows in A to interchange during the
elimination. We start with an example illustrating that small pivots should be
avoided.

Example E.10 Applying Gaussian elimination without row interchanges to the lin-
ear system
107 %21 + 220 = 4

T+ T = 3
we obtain the upper triangular system

10742y + 229 = 4
(1—-2x 102y =3 —4 x 10*

The exact solution is
—39997 ~9 4 —2x

N 20000 _
—19999 ~ 7 P

10-4 19999

To =

Suppose we round the result of each arithmetic operation to three digits. The solu-
tions fl(x1) and l(z2) computed in this way is

fi(z2) =2, fi(z1)=0.

The computed value 0 of x1 is completely wrong. Suppose instead we apply Gaussian
elimination to the same system, but where we have interchanged the equations. The
system is

1 +x9 =3
10742 + 229 = 4

and we obtain the upper triangular system

xr1 + Ty = 3
(2-10 Yz, =4—-3x107*

Now the solution is computed as follows

3.9997
~ =3 - ~ 1.
1.9999 ~ = M1 2

To =

In this case rounding each calculation to three digits produces fl(x1) = 1 and fi(z2) =
2 which is quite satisfactory since it is the exact solution rounded to three digits.

We briefly describe the two most common pivoting strategies. The choice

af . =max{|af,|: k <i<n}
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with r, the smallest such index in case of a tie, is known as partial pivoting. It
is possible to interchange both rows and columns. The choice

k

Ay sy = max{\aﬁj ck<i,j<n}

with g, s the smallest such indices in case of a tie, is known as complete pivoting.
Complete pivoting is known to be more stable, but requires a lot of search and is
seldom used in practice.

E.3 The PLU-Factorization

Consider now Gaussian elimination with row pivoting. We can keep track of the
row interchanges using pivot vectors p,. We define

p:=p,, where p; :=[1,2,... ,n]T, and py = I, xp for k=1,...,n—1.
(E.9)
We obtain p;,,, from p; by interchanging the entries r; and k in p;. In particular
the first k — 1 components in p, and p,,, are the same.
There is a close relation between the pivot vectors p, and the corresponding
interchange matrices Py, := I, . Since PiI(p;,:) = I(Pypy,:) = I(pyyq,:) we
obtain

p'.=pP, .- -P,=1I(p,)), P:=PPy---P, =1I(,p). (E.10)

Instead of interchanging the rows of A during elimination we can keep track

of the ordering of the rows using the pivot vectors p,. The Gaussian elimination in

Section E.1 with entries a}j can be described as follows:

fork=1:n-1

choose r; > k so that a’;'k!k # 0.

p=1Ir kp
o (E.11)
forer=k+1:n
k _ k k
Ap, & = apiyk/apk,k
forj=k:n
k+1 _ k _ k _k
pivi — Ppig T OpikOpy.j

This leads to the following factorization:

Theorem E.11 Gaussian elimination with row pivoting on a nonsingular matrix
A € R™™ leads to a factorization A = PLR, where P is a permutation matriz,
L is lower triangular with ones on the diagonal, and R is upper triangular. More
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explicitly, P = I(:,p), where p=1I,,_, n_1---I, 1[1,...,n]T, and
1 ) )
al 1 1 ap171 apl,n
L=|" ., R= L, (£.12)
’ n
a;nJ a;IQ)n,Q e ]- apn,”

Proof. The proof is analogous to the proof for LU factorization without pivoting.
From (E.11) we have for all i, j

ki _ 3 : .
pii %0 = Ppig for i > 7.

k k k

piklp i =@ a1} for k < min(i, j), and a

a PiJ  Disd

Thus for ¢ < j we find

n 1—1
B _ Ek i
(LR)ij =Y lisur; = »_af, pap, ;+ab, ;
k=1

-
Il
L

(ak ak+-1) +al c=a. . =ap ;= (PTA)

i Disd Di»J DisJ

ij’

>
Il
—

while for ¢ > j

3

7j—1
R . o k k k J
(LR)ZJ = E :llkuk.ﬂ - § :api,kapk,j + Cp;.5%;.j
k= k=1
j_

=

= (alljivj B a’;j_jl) + aihwj = allh',j = Qp;j = (PTA)ij'

>
Il
—

E.4 An Algorithm for Finding the PLU-Factorization

Using pivot vectors we can compute the PLU factorization of A without physically
interchanging the entries afj. As is clear from (E.12) we can store the entries of L
and R in A and work with A(py,:). At the end the entries of L and R will be
located under and above the diagonal.

In the following algorithm we use partial pivoting.
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Algorithm E.12 (PLU factorization) Given a nonsingular A € R™". This
algorithm computes a PLU factorization of A using Gaussian elimination with
partial pivoting. The permutation matrix P can be recovered form the pivot
vector p as P = I(:, p).

function [p,L,R] = plufactor (A)
n = length(A);
p = 1:n;
for k=1:n-1
[maxv,r] = max(abs(A(p(k:n),k)));
p([k r+k-1]) = p([r+k-1 k1);
ps=p(k+1l:n);
A(ps,k) = A(ps,k)/A(p(k),k);
A(ps,k+1:n) = A(ps,k+1:n) - A(ps,k)*A(p(k),k+1:n)j;
end
L = eye(n,n) + tril(A(p,:),-1);
R = triu(A(p,:));

Once we have a PLU factorization of A the system Ax = b is solved easily in
three steps. Since PLRx = b we have Pz = b, Ly = z, and Rz = y. Using the
output [p,L,R] of Algorithm E.12 the solution can be found from Algorithms E.6
and E.7 in two steps.

1. y=forwardsolve(L,b(p));

2. x=backsolve(R,y);

Exercise E.13 In this exercise we develop column oriented vectorized versions of
forward and backward substitution. Suppose L € R™" is lower triangular and
R € R™™ is upper triangular. Consider the system Lax = b. Suppose after k — 1
steps of the algorithm we have a reduced system in the form

1 0o --- 0 Tk bk
kg1 1 o O |zpga br+1
lnk s 1 Tn bn
This system is of order n — k + 1. The unknowns are zg, ..., x,.

a) We see that x; = by, and eliminating xj from the remaining equations show

that we obtain a system of order n — k with unknowns zyy1,...,2,
1 0 0 . b .
lopzpst 1 0 k+1 k+1 k+1,k
. = — Tk :
Tn bn ln,k

Ln ki1 o1
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Thus at the kth step, k = 1,2,...n we set x; = by and update b as follows:

bk+1:n)=0bk+1:n)—x(k)*Lk+1:nk).

b) Suppose now L € R™" is lower triangular, R € R™" is upper triangular
and b € R™. Justify the following column oriented vectorized algorithms for solving

Lxr =band Rz =b.

Algorithm E.14 (Forward Substitution (column oriented))

fork=1:n
z(k) = b(k)/L(k, k);
b(k4+1:n) = b(k+1:n) — L(k+1:n, k) * z(k);

end

Algorithm E.15 (Backward Substitution (column oriented))

fork=n:-1:1
w(k) = b(k)/R(k, );
b(1:k—1) = b(1:k—1) — R(1:k—1,k) * z(k);

end

Each algorithm requires n? flops.
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Appendix F
Computer Arithmetic

F.1 Absolute and Relative Errors

Suppose a and b are real or complex scalars. If b is an approximation to a then
there are different ways of measuring the error in b.

Definition F.1 (Absolute Error) The absolute error in b as an approximation
to a is the number € := |a — b|. The number e := b — a is called the error in b as an
approximation to a. This is what we have to add to a to get b.

Note that the absolute error is symmetric in @ and b, so that € is also the
absolute error in a as an approximation to b

Definition F.2 (Relative Error) If a # 0 then the relative error in b as an ap-
prozimation to a is defined by

|b—a
= pPp ‘= .

lal
We say that a and b agree to approximately —log,, p digits.

As an example, if @ := 31415.9265 and b := 31415.8951, then p = 0.999493
107% and a and b agree to approximately 6 digits.

We have b = a(1 + r) for some r if and only if p = |r|.

We can also consider the relative error p, := |a—b|/|b| in a as an approximation
to b.

Lemma F.3 Ifa,b# 0 and pp < 1 then p, < pp/(1 — pp).

Proof. Since |a|py = |b — a| > |a| — |b| we obtain [b| > |a|] — |a — b] = (1 — pp)|al.
Then

¢ b  — (L—pe)lal  1—pp

L O e

279



280 Appendix F. Computer Arithmetic

If pp is small then p, is small and it does not matter wether we choose p, or
py to discuss relative error.

Exercise F.4 Compare p, and py, when a := 3.1415.9265 and b := 31415.8951.

F.2 Floating Point Numbers

We shall assume that the reader is familiar with different number systems (binary,
octal, decimal, hexadecimal) and how to convert from one number system to an-
other. We use (x)s to indicate a number written to the base 5. If no parenthesis
and subscript are used, the base 10 is understood. For instance,

(100)2 = 4,
(01)2 = 05,
0.1 = (0.1)10 = (0.0001100110011001 . . .)s.
In general,
Tr = (CmCm,1 . Co.dldg e dn)ﬁ

means

r=> af +Y dif™, 0<c,di<B-1.

i=0 i=1

We can move the decimal point by adding an exponent:
y=x- Be7

for example
(0.1)10 = (1.100110011001 .. .)5 - 274,

We turn now to a description of the floating-point numbers. We will only
describe a standard system, namely the binary IEEE floating-point standard.
Although it is not used by all systems, it has been widely adopted and is used in
Matlab. For a more complete introduction to the subject see [8],[17].

We denote the real numbers which are represented in our computer by F. The
set F are characterized by three integers t, and e,e. We define

e =271, machine epsilon, (F.1)

and
F :={0} US UN, where
N =N, UN_, Np:=UL_Ne, N_:=-N,,

N i={(Ldidy - dy)2} *2° = {1,1 + enr, 1 + 2€nr, ..., 2 — e} % 29,
S:=8:US_, S;:={em,2en,3€epn,...,1 —ep} 2% S_:=-85,.

(F.2)
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Figure F.1. Distribution of some positive floating-point numbers

Example F.5 Supposet:=2,€=3 and e := —2. Then ey = 1/4 and we find

1 5 3 7 1537 5337
N72_{131767§7176}7 Nfl_{§7§717§}7 NO_{1717§717Z}7
5 7
Nl = {2a 5737 5}7 NQ = {4a57677}5 N3 = {87 107 127 14}7
1 1 3 3 1 1
S=ligeed " s 6k

The position of some of these sets on the real line is shown in Figure F.1

1. The elements of A/ are called normalized (floating-point) numbers. They
consists of three parts, the sign +1 or -1, the mantissa (1.d1ds - - d;)2, and
the exponent part 2°.

2. the elements in N, has the sign +1 indicated by the bit ¢ = 0 and the
elements in N_ has the sign bit o = 1. Thus the sign of a number is (—1)°.
The standard system has two zeros +0 and —0.

3. The mantissa is a number between 1 and 2. It consists of £ 4+ 1 binary digits.

4. The number e in the exponent part is restricted to the range e < e <e.

5. The positive normalized numbers are located in the interval [r,,, rps], where

T'm ‘= 297 ™ = (2 - GM) * 2€' (F3)

6. The elements in S are called subnormal or denormalized. As for normalized
numbers they consists of three parts, but the mantissa is less than one in size.
The main use of subnormal numbers is to soften the effect of underflow. If a
number is in the range (0, (1 — epr/2) * 2€), then it is rounded to the nearest
subnormal number or to zero.

7. Two additional symbols ”Inf” and "NaN” are used for special purposes.

8. The symbol Inf is used to represent numbers outside the interval [—rys, 7]
(overflow), and results of arithmetic operations of the form z/0, where = €
N. Inf has a sign, +Inf and -Inf.

9. The symbol NalN stands for "not a number”. a NaN results from illegal
operations of the form 0/0, 0 Inf, Inf/Inf, Inf — Inf and so on.

10. The choices of ¢, €, and e are to some extent determined by the architecture
of the computer. A floating-point number, say z, occupies n := 1+ 7+t bits,
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where 1 bit is used for the sign, 7 bits for the exponent, and ¢ bits for the
fractional part of the mantissa.

O" exp ‘ frac

Here c =0ifz >0and o = 1if £ < 0, and exp € {0,1,2,3,...,27 — 1} is
an integer. The integer frac is the fractional part dids - - - d; of the mantissa.
The value of a normalized number in the standard system is

x = (—1)7 * (1.frac)y * 2°P~% where b:= 2771 — 1. (F.4)

The integer b is called the bias.

11. To explain the choice of b we note that the extreme values exp = 0 and
exp = 27 — 1 are used for special purposes. The value exp = 0 is used for
the number zero and the subnormal numbers, while exp = 27 — 1 is used
for Inf and NaN. Since 2b = 27 — 2, the remaining numbers of exp, i.e.,
exp € {1,2,...,27 — 2} correspond to e in the set {1 —b,2 —b,...,b}. Thus
in a standard system we have

e=1-b, e=b:=2"""1-1 (F.5)

12. The most common choices of 7 and t are shown in the following table

precision | 7 | ¢ b ey =271 Ty = 2177 v
half 5 ] 10 15 [ 98x107* | 6.1x107° 6.6 x 107
single | 8 23| 127 [ 1.2x1077 | 1.2x 10738 | 3.4 x 10%®
double [11] 52 [ 1023 [22x 1071 | 2.2 x 10738 | 1.8 x 10°08
quad |15 | 11216383 [ 1.9 x 1073% [ 3.4 x 10~%932 [ 1.2 x 107932

Here b is given by (F.5) and rp; by (F.3) The various lines correspond to
a normalized number occupying half a word of 32 bits, one word (single
precision), two words (double precision), and 4 words (quad precision).

Exercise F.6 Check the results of the following operations on your computer. 11,
2nf e=If InfO log0, sin (Inf), arctan (—Inf).

F.3 Rounding and Arithmetic Operations

The standard system is a closed system. Every z € R has a representation as either
a floating-point number, or Inf or NaN, and every arithmetic operation produces a
result. We denote the computer representation of a real number z by fl(x).
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F.3.1 Rounding

To represent a real number x there are three cases.

Inf, if x > 7y,
fi(z) = ¢ —Inf, ifx < —ry,

round to zero, otherwise.

To represent a real number with |z| < rjs the system chooses a machine number
fi(z) closest to z. This is known as rounding. When z is midway between two
numbers in F we can either choose the one of larger magnitude (round away from
zero), or pick the one with a zero last bit (round to zero). The standard system
uses round to zero. As an example, if z = 1 4 €p7/2, then z is midway between
1 and 1 + €p. Therefore fl(x) = 1 + €p if round away from zero is used, while
fi(z) = 1 if x is rounded to zero. This is because the machine representation of 1
has frac = 0.
The following lemma gives a bound for the relative error in rounding.

Theorem F.7 Ifr,, <|z| <rp then
L —t—1
filr) =2(1+90), 0] <wup:= JeM = 27

Proof. Suppose 2¢ < x < 2Tt Then fi(x) € {1,1+epr, 1+ 2enr,...,2 —enr} *2°.
These numbers are uniformly spaced with spacing eps *2¢ and therefore |fl(z) —z| <
%61\/[26 < %ij * |z|. The proof for a negative x is similar. 0O

The number uy; is called the rounding unit.

Exercise F.8 Show that the upper bound for ¢ is attained for x = (1 + €pr/2) * 2¢
when round to zero is used. Compute § when x = (2 — epr/2) * 2°.

F.3.2 Arithmetic Operations

Suppose z,y € N. In a standard system we have
ﬂ(.ﬁoy):(l‘oy)(l—f‘é), |5‘ SUM? O€{+’—7*’/’\/}’ (F6)

where uys is the rounding unit of the system. This means that the computed value
is as good as the rounded exact answer. This is usually achieved by using one or
several extra digits known as guard digits in the calculation.

F.4 Backward Rounding-Error Analysis

The computed sum of two numbers vy, as € N satisfy fl(og oan) = (o +a2)(140),
where |6] < uyy, the rounding unit. If we write this as fl(a; 0 ag) = &1 + @2, where
a; = a;(1+6) for i = 1,2, we see that the computed sum is the exact sum
of two numbers which approximate the exact summands with small relative error,
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|0] < ups. The error in the addition has been boomeranged back on the data aq, as,
and in this context we call § the backward error. A similar interpretation is valid
for the other arithmetic operations —, x, /, Ve and we assume it also holds for the
elementary functions sin, cos, exp, log and so on.
Suppose more generally we want to compute the value of an expression ¢(ayq,
.,ap) Here aq,...,a, € N are given data, and we are using the arithmetic
operations, and implementations of the standard elementary functions, in the com-
putation. A backward error analysis consists of showing that the computed
result is obtained as the exact result of using data B := [B1,...,|7 instead of
a:=[aq,...,a,]. In symbols

dlar,...,an) =By, Bn)-

If we can show that the relative error in 3 as an approximation to a is O(uas)
either componentwise or norm-wise in some norm, then we say that the algorithm
to compute ¢(aq,...,q,) is backward stable. Normally the constant K in the
O(upr) term will grow with n. Typically K = p(n) for some polynomial p is
acceptable, while an exponential growth of K can be problematic.

F.4.1 Computing a Sum

We illustrate this discussion by computing the backward error in the sum of n

numbers s = a1 + --- + a,, where a; € N for all i. We have the following
algorithm.
$1 =y
fork=2:n
sp = fl(sp—1 + ax)
end
S:= 3,

Using a standard system we obtain for n = 3

So = ﬂ(Oél + Oég) = 011(1 +(52) +Oé2<1 + (52),
S3 = ﬂ(82 + 0[3) = 82(1 + (53) + Ckg(]. + (53) = 011(1 + 771) + 042(1 + 772) + 043(]. +773),
m=mn2=1+0)1+0d3), n3=(1+403), [&<uum.

In general, with §; := 0,
=Y ai(l4mn). ni=146)...(1+6), |6 <un, i=1,...,n. (F.7)
i=1

With ¢(aq,...,an) = ayg + -+ + @, this shows that

§:¢(alvvan):¢(6lvvﬁn)7 5z=0lz(1+772) (FS)

The following lemma gives a convenient bound on the 7 factors.
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Lemma F.9 Suppose for integers k,m with 0 < m <k and k > 1 that

(T+61) - (14+m) .
1 = ;05 < , =1,...,k.
T (L+ Gmgr) -+ (1 + ) 051 < war. g

If kuyy < ﬁ then
k| < kulyy, where uy, == 1.1uyy;. (F.9)

Proof. We first show that

kupy < a < 1= || < k—2. (F.10)

u
l—«a

For convenience we use u := uys in the proof. Since u < 1 we have 1/(1 —u) =
1+u+u?/(1—u)>1+uand we obtain

(1_U)k§m1§1+77k§wn§(l_“)_k-

The proof of (F.10) will be complete if we can show that

l—ku<(1—-uwk, Q—-uw)F<1+kd.
The first inequality is an easy induction on k. If it holds for k, then
A-w)l=1-wfl-uw)>0-ku)(l—u)=1—(k+Du+ku®>1—(k+1)u.
The second inequality is a consequence of the first,

ku ku
< — =1+ku.
l—ku_1+1—a +

1I-uw)F<@-ku)t=1+
Letting o = & in (F.10) we obtain (F.9). O

The number u}, := 1.1uyp, corresponding to a = 1/11, is called the adjusted
rounding unit . In the literature many values of a can be found. [17] uses o = 1/10
giving u); = 1.12ups, while in [8] the value a = 0.01 can be found. In the classical
work [25] one finds 1/(1 — ) = 1.06.

Let us return to the backward error (F.8) in a sum of n numbers. Since d; =0
we see that

| < (n—Vedhys Il < (0 — i+ Dty for i =2,...,m.

or more simply
[ni| < (n— 1))y, fori=1,...,n. (F.11)

This shows that the algorithm for computing a sum is backward stable.
The bounds from a backward rounding-error analysis can be used together
with a condition number to bound the actual error in the computed result. To see
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this for the sum, we subtract the exact sum s = a1 + - - - + «,, from the computed
sum §=a1(1+m)+ -+ an(l 4+ n,), to get

|5 = s| = laim + -+ annul < (Jar| + -+ [an])(n = Duly.
Thus the relative error in the computed sum of n numbers is bounded as follows

S—s

| < k(n — 1)uy,, where k := M. (F.12)

This bound shows that the backward error can be magnified by at most . The
number & is called the condition number. for the sum.

The condition number measures how much a relative error in each of the
components in a sum can be magnified in the final sum. The backward error shows
how large these relative perturbations can be in the actual algorithm we used to
compute the sum. Using backward error analysis and condition number separates
the process of estimating the error in the final result into two distinct jobs.

A problem where small relative changes in the data leads to large relative
changes in the exact result is called ill conditioned. We see that computing a sum
can be ill-conditoned if the exact value of the sum is close to zero and some of the
individualterms have large absolute values with opposite signs.

F.4.2 Computing an Inner Product

Computing an inner product p := a1y1 + - - - + an ¥, is also backward stable using
the standard algorithm

p1 = fl(a171)
fork=2:n

pie =l (pe—1 + (o))
end

ﬁ::pn

For a backward error analysis of this algorithm we only need to modify (F.7) slightly.
All we have to do is to add terms fl(agyx) = aryi(1 4+ %) to the terms of the sum.
The result is

ﬁzzakp)/k(l—’_nk)v nk:(1+7rk)(1+5k)(1+5n)7 k:]-vvna
k=1
where §; = 0. Thus for the inner product of n terms we obtain

— |OZ1’)/1| + o+ |O‘n’7n|
la1yr + -+ 4 anyn|

|u| < knup, K (F.13)
p

The computation can be ill conditioned if the exact value is close to zero and some
of the components are large in absolute value.
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F.4.3 Computing a Matrix Product

Using matrix norms we can bound the backward error in matrix algorithms. Sup-
pose we want to compute the matrix product C = A x B. Let n be the number of
columns of A and the number of rows of B. FEach element in C is the inner product
of a row of A and a column of B. Thus if C is the computed product then from
(F.13)

5o bil - b
|7ch C”‘ < Kignlhyg,  Kij o= larba] + - + Janb

= , all d, j. F.14
Cij |atby + - + anby| J (F.14)

We write this as |&;; — ¢;j| < kij|eij|nuh,. Using the infinity matrix norm we find
~ / / / .
Y |G — cijl <mahy Y kigles| < mnuhy Y les| < rnady]|Clloo, all i,
J J J
where k := max;; x;;. Maximizing over 7 we obtain

IC ~ Clls

iCl < Knuly. (F.15)

The calculation of a matrix product can be ill conditioned if one or more of the
product elements are small and the corresponding inner products have large terms
of opposite signs.
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Appendix G

Differentiation of Vector
Functions

For any sufficiently differentiable f : R™ — R we recall that the partial derivative
with respect to the ith variable of f is defined by

Dif(x) = of(x) — lim f(x + he;) — f(x)

x e R"
ox; h—0 h ’ ’

where e; is the ¢th unit vector in R™. For each € R"™ we define the gradient
Vf(x) € R?, and the hessian VV7 f(z) € R™" of f by

Dy f DiDyf --- DiDnf
Vfiw==|: |, Hf:=VVlf:= :

: : S (G.1)

where VT'f := (Vf)T is the row vector gradient. The operators VV7? and VIV
are quite different. Indeed, VIV f = D?f + ... + D2 f =: V2 the Laplacian of f,
while VV7 can be thought of as an outer product resulting in a matrix.
Exercise G.1 For f,g:R"™ — R show the product rules

1. V(fg) = fVg+gVf, V'(fg)=[fV'g+gV"f,

2. VVT(fg) =V Vlg+VgVTf+ fVVlg+gVVTf.

3. V3(fg) =2V fVg+ fV2g+ gV2if.

We define the Jacobian of a vector function f = [f1,... fm]? : R® — R™ as
the m,n matrix

Dify -+ Dnh

lem an’m
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As an example, if f(x) = f(z,y) = 2% — zy + y? and g(z,y) = [f(z,y), v — y]T
then

2x — 2x — —x+2
Ve = | 23] Vet = T AR
2*f  9f 9 _1
2 T -
Hj(x.y) = | %ffH—l )
oyox oy?

The second order Taylor expansion in n variables can be expressed in terms
of the gradient and the hessian.

Lemma G.2 Suppose f € C?(S2), where Q € R™ contains two points x,x +h € (2,
such that the line segment L := {x +th:t € (0,1)} C Q. Then

fx+h)=f(x)+h"Vf(z)+ %hTVVTf(c)h, for some ¢ € L. (G.2)

Proof. Let g : [0,1] — R be defined by g(t) := f(z + th). Then g € C?[0,1] and
by the chain rule

9(0) = f() (1) = f(x+h),

Zh 8f‘”+th) =hIVf(z +th),

i=1

c’)fw+th) reor
;]Zlhh IS = h"VVT f(x + th)h.

Inserting these expressions in the second order Taylor expansion

g(1) =g(0) + 4¢'(0) + %g”(u), for some u € (0, 1),

we obtain (G.2) withec =2z +uh. 0O

The gradient and hessian of some functions involving matrices can be found
from the following lemma.

Lemma G.3 For any m,n € N, B € R, C € R™" and x € R",y € R™ we
have

1. ViyTc)=vT(Cz)=C,
2. V(x"Bz) = (B+ B")z, V'(z"Bzx)=2"(B+ B"),
3. VVT(z"Bx) = B+ B".

Proof.
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. We find D;(y"C) = lim,0 + ((y + he;)"C — yTC) = el C and D;(Cx) =
limy,_0 %(C’(w + he;) — Cx) = Ce; and 1. follows.

. Here we find
1
D;(z" Bz) = lim —((x + he;)" B(z + he;) — =" Bx)
h—0 h
= lim (e Bz + " Be; + he] e;) = e} (B + BTz,
h—0
and the first part of 2. follows. Taking transpose we obtain the second part.

. Combining 1. and 2. we obtain 3.
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Appendix H
Some Inequalities

In this appendix we derive an inequality for convex functions called Jensen’s in-
equality and use it to show H”older’s and Minkowski’s inequaltiies.

H.1 Convexity

Definition H.1 (Convex function) Let I C R be an interval. A function f :
I — R is called convez if

fAz+ (1 =XNy) <Af(x) + (1 =N f(y)

for all x,y € I and all X € [0,1]. The sum Z;L:1 Ajzj is called o convex combi-
nation of z1,...,2, if \j >0 forj=1,...,n and 337_, A\; = 1.

The condition is shown graphically in Figure H.1.

Figure H.1. A convex function.
It then follows that the function —logz is convex on I = (0, 00).

293
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H.2 Inequalities

Theorem H.2 (Jensen’s Inequality) Suppose I € R is an interval and f : I —
R is convexr. Then for alln € N, all Ay,..., A\, with A\; >0 for j =1,...,n and
22;1 Aj=1, and all z1,...,2, € I we have

FOoN) £ DN f ().

Jj=1

Proof. We use induction on n. The result is trivial for n = 1. Let n > 2, assume
the inequality holds for k =n — 1, and let A;,z; for j =1,...,n be given as in the
theorem. Since n > 2 we have \; < 1 for at leas one ¢ so assume without loss of
generality that A\; < 1. Define u by u = >7_, 1i—3)\1zj Since 337, Aj =1- X\
this is a convex combination of k£ terms and the induction hypothesis implies that
flu) <370, li‘—g\lf(z]) But then by the convexity of f

n

f(z Aj) = f(Arzr + (1= A)u) < Af(e) + (1= M) f(u) < ZAjf(Zj)

Jj=1

and the inequality holds for k+1=n. 0O

Corollary H.3 (Weighted geometric/arithmetic mean inequality) Suppose

2?21 Aja; is a convex combination of nonnegative numbers a1, ...,a,. Then
n
A1 Az A )
aitay a," < Ajaj, (H.1)

where 00 := 0.

Proof. The result is trivial if one or more of the a;’s are zero so assume a; > 0
for all j. We use Jensen’s inequality with the convex function f(z) = —logz on
I =(0,00). Then

—log (Z/\jaj) < —Z)\j log(a;) = —log (ai‘1 ant)
i=1 =1

and since the log function is monotone the inequality follows. 0O

Taking A; = % for all j in (H.1) we obtain the classical geometric/arith-
metic mean inequality

LI
(a1a2 -+ an)m < ﬁZaj. (H.2)
j=1
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Corollary H.4 (Hé6lder’s inequality) For x,y € C" and 1 <p < o0

n

1 1
D lziysl < llllpllylly, where ~ + ==
=1 p q

Proof. We leave the proof for p = 1 and p = oo as an exercise so assume 1 < p < oc.
For any a,b > 0 the weighted arithmetic/geometric mean inequality implies that

1 1 1 1
arbs < —a+ —b, where — + - = 1. (H.3)
p q P q

If € = 0 or y = 0 there is nothing to prove so assume that both x and y are
nonzero. Using H.3 on each term we obtain

1
lzi [P\ 7 [ |y;? — (1 |ayl? 1|yj|q
EI Y5 § ( § =
IImIIpIIyIIq Y (4] Iyl — \p ||} qIIyIIZ

J

Q=

and the proof of the inequality is complete. O

Corollary H.5 (Minkowski’s inequality) For x,y € C" and 1 <p < 0
lz +yllp, < llzllp + lyllp-

Proof. We leave the proof for p = 1 and p = oo as an exercise so assume 1 < p < oc.
We write

n

n n
e +ylh = |z +ylP <D lasllay +y P+ lysllag +ys P
=1 j=1 j=1

We apply Holder’s inequality with exponent p and ¢ to each sum. In view of the
relation (p — 1)q = p the result is

lz +yll} < llplle +ylp/ + 2yl + .

Since p — % =1 the inequality follows. 0O
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Appendix |
The Jordan Form

1.1 The Jordan Form

We have seen that any square matrix can be triangularized by a unitary similarity
transformation. Moreover, any nondefective matrix can be diagonalized. The fol-
lowing question arises. How close to a diagonal matrix can we reduce a defective
matrix by a similarity transformation?

Definition 1.1 A Jordan block, denoted J,,(\) is an m x m matriz of the form

A10- 00
OAX1- 00
00X 00
Im(N) = :
000-- A1
000 0l
A 3 x 3 Jordan block has the form J3(A) = _Séi . We see that A is an

Lo
eigenvalue of J,,(\) and any eigenvector must be a multiple of e;. Thus, the
eigenvectors of J,,, () have algebraic multiplicity m and geometric multiplicity one.

The Jordan canonical form is a decomposition of a matrix into Jordan blocks.

Theorem 1.2 Suppose A € C™™ has k distinct eigenvalues A1, ..., A\ of algebraic
multiplicities a1, . ..,ar and geometric multiplicities g1, . ..,g,. There is a nonsin-
gular matriz S € C™" such that

J:=8"1AS =diag(Uy,...,Uy), with U; € C*%, (L1)
where each U; is block diagonal having g; Jordan blocks along the diagonal
U; = diag(Jom, , (Ai)s - - s I, . (N). (1.2)

Here m;1,...,m; g4, are unique integers so that m;1 > my2 > -+ > My g, and

— N :
ai =) ;L miy; for alli.

297



298 Appendix |I. The Jordan Form

The matrix J in (I.1) is called the Jordan form of A. As an example consider
the Jordan form
210
021
002
J = diag(U,,U>) = 23 c RS, (1.3)

2
31

The eigenvalues together with their algebraic and geometric multiplicities can be
read off directly from the Jordan form.

L] U1 = dlag(J3(2), J2(2), J1(2)) and U2 = J2(3)
e 2 is an eigenvalue of algebraic multiplicity 6 and geometric multiplicity 3.
e 3 is an eigenvalue of algebraic multiplicity 2 and geometric multiplicity 1.

Each U; is upper triangular with the eigenvalue \; on the diagonal and consists
of g; Jordan blocks. These Jordan blocks can be taken in any order and it is
customary to refer to any such block diagonal matrix as the Jordan form of A.
Thus in the example the matrix

is also a Jordan form of A. In any Jordan form of this A the sizes of the 4 Jordan
blocks J3(2), J2(2), J1(2), J2(3) are uniquely given.
The columns of S are called principal vectors. They satisfy the matrix
equation AS = SJ. As an example, in (I.3) we have S = [s1,..., sg] and we find
A81 :281, A82 :282+81,
AS3 = 283,
Asy =284, Ass; =285+ 84, Asg=2sg+ S5,
As; = 3s7, Asg = 3sg+ s7,

We see that the first principal vector in each Jordan block is an eigenvector of A.
The remaining principal vectors are not eigenvectors.

Exercise 1.3 For the Jordan form of the matric A = [
[6 i 8] Find S.
001

3
4
4

(=) =]
=D =

- _}wehaveJ:

Exercise 1.4 Find the Jordan form of the matriz

1016 -8 =5 6 1 -3 4
—-732-7-1012 2 -6 8
1 —612 12 —-1518 3 -9 12
—-510 -5 —2 24 4 —-1216
A= § —4 8 —4 —16 30 14 —1520 | - (14)
-3 6 -3 -12 9 24 -9 24
-2 4 -2 -8 6 —2 15 28
-12 -1 -4 3 -1 —6 41
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The following lemma is useful when studying powers of matrices.

Lemma 1.5 Let J be the Jordan form of a matric A € C™" as given in Theo-
rem I.2. Then forr=0,1,2,..., m=2,3,..., and any A € C

1. A" =8J"S 1,
2. J" =diag(U7,...,U}),
8. Uj = diag(Jpm, , (M) -+ oy Ty, (N)7),
4. E; = [g I"bfﬂ for 1 <r <m-—1, where E,, := J,(\) — A\,
6. TN = (B + ALy = om0 (D) ar—+ B,
Proof.

1. We have A? = §JS™'SJS™! = 8§J%8! and 1. follows by induction on r.
2. This follows since J is block diagonal.

3. Each J,,, ; is block diagonal.

4. We have
010 00
00606
_ _ OIm_l
En=|. =10 (L5)
000 01
000 00

The result follow for » = 1 and for general » < m — 1 by induction.
5. E" =E"'E,, =0.

6. This follows from the binomial theorem since I, and E,, commute and E" =
0.

Exercise 1.6 Determine Jy for r > 1.

Exercise 1.7 Find J'°° and A for the matriz in Ezercise I.3.
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1.L1.1 The Minimal Polynomial

Let J be the Jordan form of A given in Theorem 1.2. Since A and J are similar
they have the same characteristic polynomial, and since the Jordan form of A is
upper triangular with the eigenvalues of A on the diagonal we have

kg
ma(N) =7ms\) =[] — 0™

i=1j=1

The polynomials p;;(A) := (A; — A\)™# are called the elementary divisors of A.
They divide the characteristic polynomial.

Definition 1.8 Suppose A = SJS™! is the Jordan canonical form of A. The

polynomial
k

L L \m R .
w(z) == Zl;[l()\z z)™ where m; : 1§mja§}§;i My,
is called the minimal polynomial of A.

Since each factor in u(z) is also a factor in 7 (z), we have the factorization w4 (z) =
w(z)v(z) for some polynomial v(z).

Exercise 1.9 What is the characteristic polynomial and the minimal polynomial of
the matriz J in (1.3)7

To see in what way the minimal polynomial is minimal, we consider two ma-
trices defined from the characteristic polynomial 74 and the minimal polynomial.
Substituting a matrix for the independent variable in these polynomial we obtain

k

kg
ma(A) = [[NT =A™, wA) =T - A)™. (1.6)

i=1j=1 i=1

By induction it is easy to see that u(A) and m4(A) are polynomials in the matrix
A. Moreover, u(A) = [Ti_,(\I — STS™H)™ = Su(J)S™Y, so that u(A) = 0 if
and only if u(J) = 0. Now,

k k
p(J) = [JOuI = a)m =[] diag (LI = U™, ..., (LI = U)™)
=1 i=1
k k
= diag ([[NI - U™, ..., [T = U)™) =0,
=1 =1

since (\.I —U,)™ =0 for r =1,...,k. To show the latter we observe that

()\TI — UT)"“ = diag (()\TI — erl)mr, ey ()\TI — Jm,myr)mT)
=diag(E, " ,...,E"" ) =0,

M1 ? Mr g,
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by Lemma 1.5 and the maximality of m,..

We have shown that a matrix satisfies its minimal polynomial equation p(A) =
0. Moreover, the degree of any polynomial p such that p(A) = 0 is at least as large
as the degree d = Zle m; of the minimal polynomial p. This follows from the
proof since any such polynomial must contain the elementary divisors (A\; — A)™
fori=1,...,k. Since the minimal polynomial divides the characteristic polynomial
we obtain as a corollary the Cayley-Hamilton Theorem which says that a matrix
satisfies its characteristic equation T4 (A) = 0.

Exercise 1.10 Show that p(B) = S~ 'p(A)S for any polynomial p and any similar
matrices B=S"'AS.

Exercise 1.11 What is the minimal polynomial of the unit matriz and more gen-
erally of a diagonalizable matriz?
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(leading) principal minor, 26
1D test matrix, 44
2D test matrix, 44

A-norm, 131

A-orthogonal, 131

abelian group, 210

absolute error, 99, 277
adjoint matrix, 247
adjusted rounding unit, 283
algebraic multiplicity, 259
averaging matrix, 44

backward error, 282
backward stable, 282
banded matrix, 227
symmetric LU factorization,
38
banded symmetric LU factoriza-
tion, 38
biharmonic equation, 51
fast solution method, 62
nine point rule, 62

Cauchy sequence, 103, 217
Cauchy-Binet formula, 252
Cauchy-Schwarz inequality, 220
Cayley Hamilton Theorem, 299
characteristic equation, 253
characteristic polynomial, 253
Chebyshev polynomial, 137
Cholesky factorization, 33
cofactor, 247

column operations, 249
companion matrix, 257
complete pivoting, 272
computer arithmetic, 277

305

condition number, 284
ill-conditioned, 99
congruent matrices, 192
conjugate gradient method, 127
A-norm, 131
convergence, 135
derivation, 131
energy norm, 131
Krylov subspace, 131
least squares problem, 134
preconditioning, 143
preconditioning algorithm, 145
preconditioning convergence,
145
convergence
absolute, 218
convex combination, 291
convex function, 291
Courant-Fischer theorem, 70
Cramers rule, 247
cubic spline, 17
cubic Hermite interpolation poly-
nomial, 16
cubic spline interpolant, 17

defective eigenvalue, 260
defective matrix, 260
deflation, 66
determinant, 243
additivity, 244
block triangular, 244
Cauchy-Binet, 252
cofactor, 247
cofactor expansion, 249
homogeneity, 244
permutation of columns, 244
product rule, 244
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Index

singular matrix, 244
transpose, 244
triangular matrix, 243
Van der Monde, 250
direct sum, 215
Discrete Fourier Transform, 57
Fourier matrix, 57
Discrete Sine Transform, 56
double precision, 280

eigenpair, 253
left eigenpair, 261
orthonormal eigenpairs, 65
right eigenpair, 261
eigenvalue, 253
algebraic multiplicity, 259
characteristic equation, 253
characteristic polynomial, 253
Courant-Fischer theorem, 70
defective, 260
geometric multiplicity, 259
Hoffman-Wielandt theorem,
72
Kronecker sum, 47
location, 185
Rayleigh quotient, 69
Schur form, real, 72
spectral theorem, 68
spectrum, 253
eigenvector, 253
Kronecker sum, 47
left eigenvector, 261
right eigenvector, 261
elementary divisors, 298
elementary lower triangular ma-
trix, 265
elementary reflector, 156
Elsner’s theorem, 184
energy norm, 131
exchange matrix, 39

Fast Fourier Transform, 58
recursive FFT, 60

field, 209

fill-inn, 54

finite difference method, 11

fixed-point, 115
fixed-point iteration, 115
floating-point number
bias, 280
denormalized, 279
double precision, 280
exponent part, 279
guard digits, 281
half precision, 280
Inf, 279
mantissa, 279
NaNN, 279
normalized, 279
overflow, 279
quadruple precision, 280
round away from zero, 281
round to zero, 281
rounding, 281
rounding unit, 281
single precision, 280
subnormal, 279
flops, 268
Fourier matrix, 57
Fredholm’s alternative, 168
fundamental subspaces, 235

Gaussian elimination, 264
complete pivoting, 272
elementary lower triangular

matrix, 265
flops, 268
interchange matrix, 270
partial pivoting, 272
pivot, 269
pivot vector, 272
pivoting, 269

geometric multiplicity, 259

Gerschgorin’s theorem, 185

Given’s rotation, 162

gradient, 287

group, 209

guard digits, 281

Holder’s inequality, 90, 293
Hadamard’s inequality, 154
half precision, 280
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hessian, 287

Hilbert matrix, 252
Hoffman-Wielandt theorem, 72
Householder transformation, 156

identity matrix, 3
ill-conditioned, 284
ill-conditioned problem, 99
inequality, 291
geometric/arithmetic mean,
292
Holder, 293
Jensen, 291
Minkowski, 293
Inf, 279
inner product, 219
inner product norm, 219
standard inner product in C",
219
standard inner product in R",
219
inner product space
linear projection operator, 224
orthogonal basis, 222
orthogonal complement, 224
orthogonal decomposition, 224
orthonormal basis, 222
interchange matrix, 270
inverse power method, 200
iterative method
convergence, 115
Gauss-Seidel, 110
Jacobi, 110
SOR, 110
SOR, convergence, 121
SSOR, 110
iterative methods, 109

Jacobian, 287
Jensen’s inequality, 291
Jordan form, 296
elementary divisors, 298
Jordan block, 295
Jordan canonical form, 295
principal vectors, 296

Kronecker product, 45

eigenvalues, 46
eigenvectors, 46
inverse, 47
left product, 45
mixed product rule, 46
nonsingular, 47
positive definite, 47
right product, 45
symmetry, 47
transpose, 46
Kronecker sum, 45
eigenvalues, 47
eigenvectors, 47
nonsingular, 47
positive definite, 47
symmetry, 47
Krylov subspace, 131

Laplacian, 287
leading principal block submatri-
ces, 28
leading principal submatrices, 26
least squares
error analysis, 176
normal equations, 170
left eigenpair, 261
left eigenvector, 261
left triangular, 25
linear combination, 211
linear mapping, 237
linear system
homogenous, 232
overdetermined, 232
residual vector, 102
square, 232
underdetermined, 232
linear transformation
kernel, 238
span, 238
LU factorization, 25
symmettric, 29
LU factorization, see also LR fac-
torization, 263

mantissa, 279
matrix
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addition, 2, 227

adjoint, 247

block lower triangular, 227

block matrix, 8, 228

block upper triangular, 227

blocks, 8, 228

companion matrix, 257

conjugate transpose, 231

defective, 260

deflation, 66

diagonal, 227

diagonalizable, 258

diagonally dominant, 13

element-by-element operations,
2

entry-by-entry operations, 228

equivalent, 236

fundamental subspaces, 235

Hadamard product, 2, 228

Hermitian transpose, 231

Hilbert, 252

ill-conditioned, 100

inverse, 233

invertible, 233

leading principal submatrices,
26

left inverse, 233

left triangular, 227

lower banded, 227

lower Hessenberg, 227

lower triangular, 227

multiplication, 2, 228

nilpotent, 256

non-singular, 232

normal, 65, 67

nullity, 235

outer product expansion, 9

permutation, 270

pseudo-inverse, 165

quasi-triangular, 67

rank, 235

right inverse, 233

right triangular, 227

scalar multiplication, 2, 227

Schur factorization, 66

Schur product, 2, 228

second derivative, 12

similar matrices, 257

similarity transformation, 257

singular, 232

spectral radius, 102, 103

strictly diagonally dominant,

14

test matrix,1D , 44

test matrix,2D , 44

trace, 255

transpose, 230

tridiagonal, 227

unitary similar, 65

upper banded, 227

upper Hessenberg, 227

upper triangular, 227

well-conditioned, 100
matrix norm

consistent norm, 93

Frobenius norm, 91

max norm, 91

operator norm, 94

spectral norm, 95

subordinate norm, 93

sum norm, 91

two-norm, 95
Minkowski’s inequality, 90, 293
mixed product rule, 46

NaNN, 279
natural ordering, 42
negative (semi)definite, 30
Neumann Series, 105
nflops, 268
nilpotent matrix, 256
norm
[1-norm, 90
lo-norm, 90
lso-norm, 90
absolute norm, 98
Euclidian norm, 90
infinity-norm, 90
max norm, 90
monotone norm, 98
one-norm, 90
triangle inequality, 89
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two-norm, 90
normal equations, 170
normal matrix, 65, 67
nullity, 235

operation count, 268
optimal relaxation parameter, 120
orthogonal matrix, see orthonor-
mal matrix, 238
orthogonal projection, 223
orthonormal eigenpairs, 65
orthonormal matrix, 238
overflow, 279

paraboloid, 142
partial pivoting, 272
permutation, 241
identity, 241
inversion, 242
sign, 242
symmetric group, 243
permutation matrix, 39, 270
perpendicular vectors, 221
pivot vector, 272
pivots, 265
plane rotation, 162
PLU factorization, 27, 39
Poisson matrix, 43
Poisson problem, 41
five point stencil, 42
nine point scheme, 51
Poisson matrix, 43
variable coefficients, 146
Poisson problem (1D), 11
positive definite, 30
positive semidefinite, 30
power method, 197
inverse, 200
Rayleigh quotient iteration,
200
shifted, 200
pPp representation, 18
preconditioning, 143
principal submatrix, 26
principal vectors, 296
pseudo-inverse, 165

QR algorithm
implicit shift, 206
Rayleigh quotient shift, 205
shifted, 205
Wilkinson shift, 205
QR decomposition, 153
QR factorization, 153
quadratic form, 30
quadruple precision, 280
quotient space, 216

rank, 235

rate of convergence, 116

Rayleigh quotient, 69

Rayleigh quotient iteration, 200

relative error, 99, 277

residual vector, 102

right eigenpair, 261

right eigenvector, 261

right triangular, 25

rotation in the i, j-plane, 163

rounding unit, 281

rounding-error analysis
adjusted rounding unit, 283
backward error, 282
backward stable, 282
condition number, 284
ill-conditioned, 284

row operations, 249

RTR factorization, 33

scalar product, 219
Schur factorization, 66
Schur form, real, 72
second derivative matrix, 12
semi-Cholesky factorization, 33
sequence

bounded sequence of vectors,

218

subsequence, 218
Sherman-Morrison formula, 234
shifted power form, 18
shifted power method, 200
similar matrices, 257
similarity transformation, 257
single precision, 280
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singular value
Courant-Fischer theorem, 86
error analysis, 179
Hoffman-Wielandt theorem,
86
singular values, 76
singular vector
left singular vectors, 82
right singular vectors, 82
spectral radius, 102, 103
spectral theorem, 68
spectrum, 253
steepest descent, 143
stencil, 42
Sylvester’s inertia theorem, 192
symmetric positive semidefinite,
30

trace, 255
triangle inequality, 89
triangular matrix
left triangular, 25
right triangular, 25

unit vectors, 3
unitary similar, 65

vector
addition, 209
angle, 221
linearly dependent, 212
linearly independent, 212
orthogonal, 221
orthonormal, 221
scalar multiplication, 209
vector space, 210
basis, 212
complementary, 215
complete, 217
complex inner product space,
219
dimension, 213
direct sum, 215
finite dimensional, 211
intersection, 214
normed, 89

quotient space, 216
real inner product space, 219
subspace, 210
sum, 214
trivial, 210
union, 214
vectorization, 42
vectornorm, 89

Wilkinson diagram, 160



