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Today

I The power method to find the dominant eigenvector

I The shifted power method to speed up convergence

I The inverse power method

I The Rayleigh quotient iteration

I The QR-algorithm



The Power Method

I Find the eigenvector corresponding to the dominant
(largest in absolute value) eigenvalue.

I With a simple modification we can also find the
corresponding eigenvalue



Assumptions

I Let A ∈ Cn,n have eigenpairs (λj , vj), j = 1, . . . , n.

I Given z0 ∈ Cn we assume that

(i) |λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|,
(ii) zT0 v1 6= 0.

(iii) A has linearly independent eigenvectors .

I The first assumption means that A has a dominant
eigenvalue λ1 of algebraic multiplicity one.

I The second assumption says that z0 has a component in
the direction v1.

I The third assumption is not necessary. It is included to
simplify the analysis.



Powers

I Given A ∈ Cn,n, a vector z0 ∈ Cn, and assume that i),ii),
iii) hold.

I Define a sequence {zk} of vectors in Cn by
zk := Akz0 = Azk−1, k = 1, 2, . . . .

I z0 = c1v1 + c2v2 + · · ·+ cnvn, with c1 6= 0.

I Akvj = λkj vj , k = 0, 1, 2, . . ., j = 1, . . . , n.

I Then
zk = c1A

kv1 + c2A
kv2 + · · ·+ cnA

kvn, k = 0, 1, 2, . . . .

I zk = c1λ
k
1v1 + c2λ

k
2v2 + · · ·+ cnλ

k
nvn, k = 0, 1, 2, . . . .

I zk
λk1

= c1v1 + c2
(
λ2
λ1

)k
v2 + · · ·+ cn

(
λn
λ1

)k
vn.

I zk/λk1 ,→ c1v1, k →∞



The Power method

Need to normalize the vectors zk .

I Do not know λ1.

I Choose a norm on Cn, set x0 = z0/‖z0‖ and generate for
k = 1, 2, . . . unit vectors ,{xk} as follows:

(i) yk = Axk−1

(ii) xk = yk/‖yk‖.
(1)



Example1

I

A =

[
1 2
3 4

]
, z0 = [1.0, 1.0]T , x0 = [0.707, 0.707]T

I x1 = [0.39, 0.92], x2 = [0.4175, 0.9087],
x3 = [0.4159, 0.9094], . . .

I converges to an eigenvector of A



Example2

The way {xk} converges to an eigenvector can be more
complicated.

I

A =

[
−1 −2
−3 −4

]
, z0 = [1.0, 1.0]T , x0 = [0.707, 0.707]T

I x1 = [−0.39,−0.92], x2 = [0.4175, 0.9087],
x3 = [−0.4159,−0.9094], . . .

I changes sign in each iteration.



Convergence

Lemma
Suppose (i), (ii), (iii) hold. Then

lim
k→∞

( |λ1|
λ1

)k
xk =

c1
|c1|

v1
‖v1‖

.

In particular, if λ1 > 0 and c1 > 0 then the sequence {xk} will
converge to the eigenvector u1 := v1/‖v1‖ of unit length.

I In Example 2, λ1 < 0 and c1 > 0 if
u1 = [0.4159, 0.9094]T . For k large:

I xk ≈
(
λ1
|λ1|

)k c1
|c1|u1 = (−1)ku1.



Eigenvalue

I Suppose we know an approximate eigenvector of
A ∈ Cn,n. How should we estimate the corresponding
eigenvalue?

I If (λ,u) is an exact eigenpair then Au− λu = 0.

I If u is an approximate eigenvector we can minimize the
function ρ : C→ R given by

ρ(µ) := ‖Au− µu‖2.

Theorem
ρ is minimized when µ = ν := u∗Au

u∗u
is the Rayleigh quotient of

u.

Proof on blackboard.



Power with Rayleigh

function [l,x,it]=powerit(A,z,K,tol)
af=norm(A,’fro’); x=z/norm(z);
for k=1:K

y=A*x; l=x’*y;
if norm(y-l*x)/af < tol

it=k; x=y/norm(y); return
end
x=y/norm(y);

end
it=K+1;



Example

I

A1 :=

[
1 2
3 4

]
, A2 :=

[
1.7 −0.4

0.15 2.2

]
, and A3 =

[
1 2
−3 4

]
.

I Start with a random vector and tol=10−6.

I Get convergence in 7 iterations for A1, 174 iterations for
A2 and no convergence for A3.

I A3 has two complex eigenvalues so assumption i) is not
satisfied

I Rate of convergence depends on r = |λ2/λ1|. Faster
convergence for smaller r .

I We have r ≈ 0.07 for A1 and r = 0.95 for A2.



The shifted power method

I A variant of the power method is the shifted power
method.

I In this method we choose a number s and apply the
power method to the matrix A− sI.

I The number s is called a shift since it shifts an eigenvalue
λ of A to λ− s of A− sI.

I Sometimes the convergence can be faster if the shift is
chosen intelligently.

I For example, for A2 with shift s = 1.8, we get
convergence in 17 iterations instead of 174 without shift.



The inverse power method

I We apply the power method to the inverse matrix
(A− sI)−1, where s is a shift.

I If A has eigenvalues λ1, . . . , λn in no particular order then
(A− sI)−1 has eigenvalues

µ1(s) = (λ1−s)−1, µ2(s) = (λ2−s)−1, . . . , µn(s) = (λn−s)−1.

I Suppose λ1 is a simple eigenvalue of A.

I Then lims→λ1|µ1(s)| =∞, while
lims→λ1 µj(s) = (λj − λ1)−1 <∞ for j = 2, . . . , n.

I Hence, by choosing s sufficiently close to λ1 the inverse
power method will converge to that eigenvalue.



For the inverse power method (1) is replaced by.

(i) (A− sI)yk = xk−1

(ii) xk = yk/‖yk‖.
(2)

Note that we solve the linear system rather than computing
the inverse matrix. Normally the PLU-factorization of A− sI
is pre-computed in order to speed up the iteration.



Rayleigh quotient iteration

We can combine inverse power with Rayleigh quotient
calculation.

(i) (A− sk−1I)yk = xk−1,

(ii) xk = yk/‖yk‖,
(iii) sk = x∗kAxk ,

(iv) rk = Axk − skxk .

I We can avoid the calculation of Axk in (iii) and (iv).



Example

I A1 :=

[
1 2
3 4

]
.

I Try to find the smallest eigenvalue
λ = (5−

√
33)/2 ≈ −0.37

I Start with x = [1, 1]T and s = 0

k 1 2 3 4 5
‖r‖2 1.0e+000 7.7e-002 1.6e-004 8.2e-010 2.0e-020
|sk − λ| 3.7e-001 -1.2e-002 -2.9e-005 -1.4e-010 -2.2e-016

Table: Quadratic convergence of Rayleigh quotient iteration



Problem with singularity?

I The linear system in i) becomes closer and closer to
singular as sk converges to the eigenvalue.

I Thus the system becomes more and more ill-conditioned
and we can expect large errors in the computed yk .

I This is indeed true, but we are lucky.

I Most of the error occurs in the direction of the
eigenvector and this error disappears when we normalize
yk in ii).

I Miraculously, the normalized eigenvector will be quite
accurate.



Discussion

I Since the shift changes from iteration to iteration the
computation of y will require O(n3) flops for a full matrix.

I For such a matrix it might pay to reduce it to a upper
Hessenberg form or tridiagonal form before starting the
iteration.

I However, if we have a good approximation to an eigenpair
then only a few iterations are necessary to obtain close to
machine accuracy.

I If Rayleigh quotient iteration converges the convergence
will be quadratic and sometimes even cubic.



The QR Algorithm

I An iterative method to compute all eigenvalues and
eigenvectors of a matrix A ∈ Cn,n.

I The matrix is reduced to triangular or quasitriangular
form by a sequence of unitary similarity transformations
computed from the QR factorization of A.

I Recall that for a square matrix the QR factorization and
the QR decomposition are the same.

I If A = QR is a QR factorization then Q ∈ Cn,n is unitary,
Q∗Q = I and R ∈ Cn,n is upper triangular.



Basic QR

A1 = A

for k = 1, 2, . . .

QkRk = Ak (QR factorization of Ak)

Ak+1 = RkQk .

end

(3)

The determination of the QR factorization of Ak and the
computation of RkQk is called a QR step.



Example

I A1 = A =

[
2 1
1 2

]
I A1 =

(
1√
5

[
2 −1
1 2

] )
∗
(

1√
5

[
5 4
0 3

] )
= Q1R1.

I A2 = R1Q1 = 1
5

[
5 4
0 3

]
∗
[

2 −1
1 2

]
= 1

5

[
14 3
3 6

]
=[

2.8 0.6
0.6 1.2

]
.

I A4 ≈
[

2.997 −0.074
−0.074 1.0027

]
,

I A10 ≈
[

3.0000 −0.0001
−0.0001 1.0000

]
.

I A10 is almost diagonal and contains approximations to
the eigenvalues λ1 = 3 and λ2 = 1 on the diagonal.



Example 2

A1 = A =


0.9501 0.8913 0.8214 0.9218
0.2311 0.7621 0.4447 0.7382
0.6068 0.4565 0.6154 0.1763
0.4860 0.0185 0.7919 0.4057


we obtain

A14 =


2.323 0.047223 −0.39232 −0.65056

−2.1e − 10 0.13029 0.36125 0.15946
−4.1e − 10 −0.58622 0.052576 −0.25774

1.2e − 14 3.3e − 05 −1.1e − 05 0.22746

 .
A14 is close to quasi-triangular.



Example 2

A14 =


2.323 0.047223 −0.39232 −0.65056

−2.1e − 10 0.13029 0.36125 0.15946
−4.1e − 10 −0.58622 0.052576 −0.25774

1.2e − 14 3.3e − 05 −1.1e − 05 0.22746

 .
I The 1× 1 blocks give us two real eigenvalues λ1 ≈ 2.323

and λ4 ≈ 0.2275.

I The middle 2× 2 block has complex eigenvalues resulting
in λ2 ≈ 0.0914 + 0.4586i and λ3 ≈ 0.0914− 0.4586i .

I From Gerschgorin’s circle theorem it follows that the
approximations to the real eigenvalues are quite accurate.

I We would also expect the complex eigenvalues to have
small absolute errors.



Why QR works

I Since Q∗kAk = Rk we obtain

Ak+1 = RkQk = Q∗kAkQk . (4)

I Thus Ak+1 is similar to Ak and hence to A.

I It combines both the power method and the Rayleigh
quotient iteration.

I If A ∈ Rn,n has real eigenvalues, then under fairly general
conditions, the sequence {Ak} converges to an upper
triangular matrix, the Schur form.

I If A is real, but with some complex eigenvalues, then the
convergence will be to the quasi-triangular Schur form



QR factorization of Ak

Theorem
For k = 1, 2, 3, . . ., the QR factorization of Ak is Ak = Q̃kR̃k ,
where

Q̃k := Q1 · · ·Qk and R̃k := Rk · · ·R1, (5)

and Q1, . . . ,Qk , R1, . . . ,Rk are the matrices generated by the
basic QR algorithm (3). Moreover,

Ak = Q̃
∗
k−1AQ̃k−1, k ≥ 1. (6)

Proof on blackboard.



Relation to the Power Method

I Since R̃k is upper triangular its first column is a multiple
of e1

I

Ake1 = Q̃kR̃ke1 = r̃
(k)
11 Q̃ke1 or q̃(k)

1 := Q̃ke1 =
1

r̃
(k)
11

Ake1.

I Since ‖q̃(k)
1 ‖2 = 1 the first column of Q̃k is the result of

applying the normalized power iteration to the starting
vector x0 = e1.

I If this iteration converges we conclude that the first
column of Q̃k must converge to a dominant eigenvector
of A.



Initial reduction to Hessenberg form

I One QR step requires O(n3) flops for a matrix A of order
n.

I By an initial reduction of A to upper Hessenberg form
H1, the cost of a QR step can be reduced to O(n2).



Invariance of the Hessenberg form; I

I Consider a QR step on H1.

I We determine plane rotations Pi ,i+1, i = 1, . . . , n − 1 so
that Pn−1,n · · ·P1,2H1 = R1 is upper triangular.

I 
x x x x
x x x x
0 x x x
0 0 x x

 P1,2→


x x x x

0 x x x
0 x x x
0 0 x x

 P2,3→


x x x x
0 x x x

0 0 x x
0 0 x x



P3,4→


x x x x
0 x x x
0 0 x x

0 0 0 x

 .



Invariance of the Hessenberg form; II

I H1 = Q1R1, where Q1 = P∗1,2 · · ·P∗n−1,n is a QR
factorization of H1.

I To finish the QR step we compute
R1Q1 = R1P

∗
1,2 · · ·P∗n−1,n.

I This postmultiplication step is illustrated by the
Wilkinson diagram

R1 =

[
x x x x
0 x x x
0 0 x x
0 0 0 x

]
P∗
12→
[

x x x x
x x x x
0 0 x x
0 0 0 x

]
P∗
23→
[

x x x x
x x x x
0 x x x
0 0 0 x

]
P∗
34→
[

x x x x
x x x x
0 x x x
0 0 x x

]
.



Invariance of the Hessenberg form; III

I If Ak is upper Hessenberg then Ak+1 is upper Hessenberg.

I One QR step requires O(n2) flops.

I If A is tridiagonal and symmetric then one QR step
requires O(n) flops.



Deflation

I If a subdiagonal element ai+1,i of an upper Hessenberg
matrix A is equal to zero, then the eigenvalues of A are
the union of the eigenvalues of the two smaller matrices
A(1 : i , 1 : i) and A(i + 1 : n, i + 1 : n).

I Thus if during the iteration the (i + 1, i) element of Ak is
sufficiently small then we can continue the iteration on
the two smaller submatrices separately.



Effect on A of deflation

I suppose |a(k)i+1,i | ≤ ε.

I Âk := Ak − a
(k)
i+1,iei+1eTi

I Ak = Q̃
∗
k−1AQ̃k−1

I Âk = Q̃
∗
k−1(A + E)Q̃k−1,

I E = Q̃k−1(a
(k)
i+1,iei+1eTi )Q̃

∗
k−1.

I ‖E‖F = ‖a(k)i+1,iei+1eTi ‖F = |a(k)i+1,i | ≤ ε

I Setting a
(k)
i+1,i = 0 amounts to a perturbation in the

original A of at most ε.



The Shifted QR algorithms
Like in the inverse power method it is possible to speed up the
convergence by introducing shifts. The explicitly shifted QR
algorithm works as follows:

A1 = A

for k = 1, 2, . . .

Choose a shift sk

QkRk = Ak − skI (QR factorization of Ak − sI)

Ak+1 = RkQk + skI.

end

(7)

Since Rk = Q∗k(Ak − skI)

Ak+1 = Q∗k(Ak − skI)Qk + skI = Q∗kAkQk

and Ak+1 and Ak are unitary similar.



Relation to the inverse power method

I A− skI = QkRk ⇒ (A− skI)∗ = R∗kQ
∗
k

I (A− skI)∗Qk = R∗k
I (A− skI)∗Qken = R∗ken = r (k)nn en.

I Qken is the result of one iteration of the inverse power
method to A∗ with shift sk .



Choice of shifts

1. The shift sk := eTn Aken is called the Rayleigh quotient
shift.

2. The eigenvalue of the lower right 2× 2 corner of Ak

closest to the n, n element of Ak is called the Wilkinson
shift. This shift can be used to find complex eigenvalues
of a real matrix.

3. The convergence is very fast and at least quadratic both
for the Rayleigh quotient shift and the Wilkinson shift.



The Implicitly shifted QR algorithm

1. By doing two QR iterations at a time it is possible to find
both real and complex eigenvalues without using complex
arithmetic. The corresponding algorithm is called the
implicitly shifted QR algorithm

2. After having computed the eigenvalues we can compute
the eigenvectors in steps. First we find the eigenvectors of
the triangular or quasi-triangular matrix. We then
compute the eigenvectors of the upper Hessenberg matrix
and finally we get the eigenvectors of A.

3. Practical experience indicates that only O(n) iterations
are needed to find all eigenvalues of A. Thus both the
explicit- and implicit shift QR algorithms are normally
O(n3) algorithms.


