Mandatory Assignment 3

INF 2140, Spring 2012

Due: 27.04.2012

Published Date: 13.04.2012
COMMUNICATION PROTOCOLS

1. Unreliable channels:

Problem and description: In order to transmit data between two distant
points, communication protocols and channels between them are needed.
Some communication protocols are intended to work for unreliable channels.
Assume that there are two Java processes called sender S and receiver R; S
wants to transmit one package containing data to R, and R wants to send a
confirmation acknowledgment to S

after it has received the data, e

K
additionally assume that S and R j < E
. . : S =5 R
communicate via two unreliable —oC
channels K (to send data) and L (to L
send acknowledgments), as it is shown ;’71
. . igure
in Figure 1. ¢

In this mandatory assignment you are provided with a class implementing an
unreliable channel with the following interface:

public interface Channellnterface<T> {
public void send(T v) throws InterruptedException;
public T receive() throws InterruptedException;

}

This means that K and L in Figure 1 are two channel objects of the class that
implements the Channellnterface. When S wants to transmit a message
containing data, it calls the send method of channel K and when it wants to get
a message containing an acknowledgement, it calls the method receive of
channel L. In the same way, when R wants to get a message containing data, it
calls the method receive of K and when it wants to transmit a message
containing an acknowledgment it calls the method send of L.

IMPORTANT NOTE: In the description of the exercises we have used one
character name for the processes (i.e., K, L, S, R, etc). We recommend to use
longer names for processes in your solution to avoid errors in the LTSA tool.

Exercise 1: In order to analyze any communication protocol for unreliable
channels in FSP, you first need to model the unreliable communication
environment.

Figure 2 gives the structure diagram for an ENV

unreliable communication environment. ﬂb'd—m

Model the processes K and L as two

unreliable channels, K manipulates data and d.ack - cack

. —O0 L O—m

L manipulates acknowledgments. K and L

should satisfy the following safety/progress

properties: Figure 2

- A message from channel a to channel b
can be lost (K receives one message from a, but K will not send that
message through b), can be duplicated (K receives one message from a,
and K will send the message more than once through b) and can be sent
properly (K receives one message from a, and after that K sends that
message through b).

- In order to avoid deadlock due to unlimited message loss and unlimited
message duplication; a message from a to b will eventually be sent
properly (without loss and duplication). This means that the receiver
should eventually get a message containing data even under unfair
conditions where the properly sending branch has low priority.

- A message from channel ¢ to channel d can be lost (L receives one
message from c, but L will not send that message through d), can be
duplicated (L receives one message from c, and L will send the message
more than once through d) and can be sent properly (L receives one
message from c, and after that L sends that message through d).

- In order to avoid deadlock due to unlimited message loss and unlimited
message duplication; a message from c to d will be eventually sent
properly (without loss and duplication). This means that the sender
should eventually get a message containing ack even under unfair
conditions where the properly sending branch has low priority.

2. Alternating bit protocol:

Description: To overcome the shortages of unreliable channels (message loss
and message duplication), the sender and the receiver processes will
implement the Alternating Bit Protocol (ABP).

In this scenario, the sender S wants to send a sequence of messages to the
receiver R assuming an unreliable environment (with message loss and
message duplication). Each message from S to R contains a data part and a
one-bit sequence number (i.e., the value 0 or 1). R sends an acknowledgment
that is a one-bit sequence number (i.e., the value 0 or 1).

When S sends a message, it resends it repeatedly, with the same sequence
number, until it receives an acknowledgment from R that contains the same
sequence number. When that happens, S complements (flips) the sequence
number (from 0 to 1 or from 1 to 0) and starts transmitting the next message.

When R receives a message with a sequence number, it starts sending the
acknowledgment with that sequence number and keeps doing so until it

receives a message with a different sequence number. Then it complements
(flips) the sequence number and starts sending the acknowledgment with the
new sequence number, etc. This means that for example S may still receive
acknowledgments with sequence number 0 when it is already transmitting
messages with sequence number 1 (and vice-versa.). When that happens, S
ignores these messages and continues transmitting. In the same way R may
receive many messages with the same sequence number, so R will consider
only the first one and ignore the others and will continue transmitting the
acknowledgment until it receives a message with a different sequence
number.

The sender and receiver should be initialized with the sequence number 0.

Exercise 2: In order to analyze the ABP protocol for unreliable channels, you
need to model the ABP protocol in FSP. Figure 3 gives the structure diagram of
the ABP protocol where:

- S receives data from the channel in_msg, sends the data through a
(following the ABP protocol), receives an acknowledgment from d
(following the ABP protocol) and finally sends a confirmation
acknowledgment through the channel out_ack.

- R receives data from b (following the ABP protocol), sends these data
through the channel out msg (avoiding duplications), receives a
confirmation acknowledgment from in_ack and finally sends the
acknowledgment through c (following the ABP protocol).

ABP
ENV
a.bit.data
O O K O
.

in_msg.data out_msg.data

out_ack in_ack

Figure 3

The ABP system has to satisfy the following safety/progress properties:

- The ABP system should behave as the in_msg data L (outmsgdata
process P in Figure 4, where: out_ack l. in_ack
P = (in_msg[data:D] ->out_msg[data] -> —
in_ack -> out_ack -> P). e
- Consider the unfair condition where R has low priority on the event that
sends an acknowledgment through c, the ABP systems should satisfy the
progress property that an acknowledgment through c should eventually

happen.
Hint: you may use as a flipping function 1-bit

Exercise 3: Provide a Java implementation of S and R (using the provided
unreliable channel in Java).

Hint: if convenient, you may use the Select class to select between channels as
in Chapter 10 in the book, since the channel class is a subclass of Selectable.

. The Multiplexed Buffer:

Description To allow multiple senders and receivers (in this case we restrict
to two senders S1, S2 and two receivers R1, R2 where S1 sends messages with
data to R1 and S2 to R2 correspondingly, and R1 sends messages with
acknowledgments to S1 and R2 to S2 correspondingly), a multiplexed buffer is
used with the ABP system. In this scenario, there are still two channels
(channel K for sending messages and channel L for sending
acknowledgments) and two processes S and R that implement the ABP
protocol but in this case a message will also contain the identity of the
sender/receiver in addition to the data and/or one-bit sequence number.

Exercise 4: In order to analyze the Multiplexed buffer system using the ABP
protocol, you need to model it in FSP. Figure 5 gives the structure diagram of
the full system where:
- The ABP system has been straightforwardly extended with one more
piece of information i that is the identity of the sender/receiver (i.e., i can
be 1 or 2).
- S1 and S2 receive data from iinput.data, send these data through
i.in_msg.data and receive acknowledgments from i.out_ack.
- R1 and R2 receive data from i.out_msg.data, send these data through
i.output.data and send acknowledgments through i.in_ack.

ABP CS

©s9
a.i.bit.data b.i.bit.data
O K O O

\ outt 1.output.data

1.input.data

2.input.data 2.output.data

Figure 5

The Multiplexed buffer model has to satisfy the following safety property:
- The Multiplexed buffer model should

behave as two one slot buffer processes {inputdata o {outputdata
COPY in parallel as shown in Figure 6, # #

Where: 2.input.data 2.output.data
COPY = (input[data:D] -> ——(# COPY2 <#_

output[data] -> COPY). Figure 6

Exercise 5: Provide a Java implementation of your model (as in the previous
exercise, use the provided unreliable channel in Java).

Exercise 6 (optional): Consider the unfair condition where S2 has low
priority on sending a message trough 2.in_msg.data. Does your model satisfy

the progress property that S2 eventually sends a message? Explain. If your
system does not satisfy this property, you may as an optional task implement
an extra process that guarantees fairness between S1 and S2, which means
that S2 is guaranteed to eventually send a message.

Deliver to

The assignment should be carried out individually or with one or two other
students (Note that groups of more than three students are not allowed) and
delivered to the teaching assistant responsible through
https://devilry.ifi.uio.no/.

Only one answer is delivered if two or three students work together. The answer
must be marked with full name(s) and username(s) of the contributing students.

How to deliver

* You have to implement the FSP part of the exercises using the LTSA Tool
(the tool is installed on the lab machines, or you can download it from:
http://www.doc.ic.ac.uk/~jnm/book/ltsa/download.html). Your
implementation should compile and generate a state machine isomorphic to
the one above.

* For the Java part of the exercises you are provided with a project that
contains the implementation of the unreliable channel.

1.- Unzip the file “inf2140assignment3.zip”

2.- Import the project “inf2140assignment3” (into Eclipse).

3.- The project runs with the file “Assignment3.java”.

4.-Implement the Java part of the exercises.

Note: Your final implementation must run when your project is imported

into Eclipse, otherwise you must clearly state in the README file the exact

commands to run your implementations.

* The delivery must only be in one file: either a .tgz or .zip archive. First you
copy the contents of your assignment to a folder with the same name as your
username (for groups with two or three students, choose one username of
the two or three usernames), then delete all compiled files from the Java
project and pack the folder in a .tgz or .zip archive.

* Your archive should contain
— The source file of your FSP implementations.

— The source files of your Java implementations (the whole project without

the compiled files).

— A report, named either report.txt or report.pdf , in which you should
include the full name(s) and username(s) of the contributing students
together with a clear explanation of your FSP and Java implementations.

A file named README in which you should describe any peculiarities of

your solutions, for instance, things that may be missing, or assumptions
made, or questions for the group teacher. If everything runs fine, state it
in the README file.

Evaluation: This assignment is graded pass or fail. You must pass this
assignment in order to take the final exam. Good luck!

