INF 2140 PARALLELL-PROGRAMMERING
(Parallel Programming)

INF2140 lecture 1

Jan 18, 2012

INF2140 lecture 1

INF 2140 PARALLELL-PROGRAMMERING (Parallel Programming)

1/27

INF2140 lecture 1

INF 2140 PARALLELL-PROGRAMMERING (Parallel Programmi

INF2140 Crew

@ Lecturers
o Einar Broch Johnsen, office 8460, email: einarj@ifi.uio.no
e Olaf Owe, office 8463, email: olaf@ifi.uio.no
@ Teaching assistant (gruppelerer)
e Joakim Bjgrk, office 8163, email: joakimbj@ifi.uio.no, phone:
22 8504 75

All from the PMA group, 8th floor OJD'’s building

o Course webpage:
http://www.uio.no/studier/emner/matnat/ifi/INF2140/

INF2140 lecture 1

INF 2140 PARALLELL-PROGRAMMERING (Parallel Programming)

http://www.uio.no/studier/emner/matnat/ifi/INF2140/

Time and Place

@ Lectures

Wed. 10:15 - 12:00, Room 2423 (Store Aud.)

@ Groups (starts next week)

group day time place
1 Monday 14:15-16 OJD 3443 Datastue Chill
2 Tuesday 10:15-12 OJD 3443 Datastue Chill
103 Tuesday 12.15-14 OJD 3443 Datastue Chill
104 Friday 10:15-12 OJD 2443 Datastue Modula

o Evaluation

e Three compulsory assignments which must be approved.

o First one handed out end of next week.

e Final exam, June 15

INF2140 lecture 1

INF 2140 PARALLELL-PROGRAMMERING (Parallel Programming)

Plan Today

Practical matters
Overview of the course and motivation

Introduction

Repetition: Concurrency in Java

New Course

Why?
Who?
How?
What?

INF2140 lecture 1

INF 2140 PARALLELL-PROGRAMMERING (Parallel Programming)

Course content

The course provides a systematic and practical approach to
designing, analyzing and implementing parallel programs, with
regard to tightly cooperating concurrent threads as well as
distributed and object-oriented systems. The topics covered include
threads and interaction; interference, exclusion and synchronization;
deadlock, safety and liveness properties; message passing;
concurrent software architectures; and dynamic and timed systems.
The course uses state models and Java programs to introduce and
illustrate key concepts and techniques.

INF2140 lecture 1

INF 2140 PARALLELL-PROGRAMMERING (Parallel Programming)

Learning outcomes

After completing this course, you will be able to

@ design, analyze, and program parallel object-oriented systems.

@ you will know the most important concepts and techniques for
parallel programming

@ you will know what are the problems which arise in parallel
programming

@ you will know what techniques you can use to solve these
problems.

INF2140 lecture 1
INF 2140 PARALLELL-PROGRAMMERING (Parallel Programming)

Book

CONCURRENCY

STAT IDELS@ JAVA PROGRAMMING
| 5 §Wﬂ’ %

Concurrency: State Models &
Java Programs, 2"¢ Edition

Jeff Magee & Jeff Kramer
Wiley

JEFF MAGEE
| JEFF KRAMER

INF2140 lecture 1

INF 2140 PARALLELL-PROGRAMMERING (Parallel Programming)

Course OQutline

@ The main basic Concepts,
Models, Practice

@ Processes and Threads e Advanced topics . ..

@ Concurrent Execution © Dynamic systems

© Shared Objects & @ Message Passing
Interference © Concurrent Software

@ Monitors & Condition Architectures
Synchronization © Timed Systems

© Deadlock @ Program Verification

@ Safety and Liveness @ Logical Properties
Properties

@ Model-based Design

INF2140 lecture 1

INF 2140 PARALLELL-PROGRAMMERING (Parallel Programming)

Web based course material

http://www.wileyeurope.com/college/magee

@ Java examples and demonstration programs

@ State models for the examples

e Tool
o Labelled Transition System Analyser (LTSA) for modeling
concurrency, model animation and model property checking.

o installed on all “termstue” machines.
e command /tsa

INF2140 lecture 1

INF 2140 PARALLELL-PROGRAMMERING (Parallel Programming)

http://www.wileyeurope.com/college/magee

Motivation

e What
o Why

INF2140 lecture 1

INF 2140 PARALLELL-PROGRAMMERING (Parallel Programming)

What is a Concurrent Program?

@ A sequential program has a single thread of control.

@ A concurrent program has multiple threads of control allowing
it to perform multiple computations in parallel and to control
multiple external activities which occur at the same time.

INF2140 lecture 1
INF 2140 PARALLELL-PROGRAMMERING (Parallel Programming)

Concurrent and Distributed Software?

Interacting, concurrent software components of a system:
single machine — shared memory interactions

multiple machines — network interactions

INF2140 lecture 1

INF 2140 PARALLELL-PROGRAMMERING (Parallel Programming)

Why Concurrent Programming?

@ Performance gain from multiprocessing hardware
o parallelism.

Increased application throughput
e an 1/0O call need only block one thread.

Increased application responsiveness
o high priority thread for user requests.

More appropriate structure

o for programs which interact with the environment, control
multiple activities and handle multiple events.

INF2140 lecture 1

INF 2140 PARALLELL-PROGRAMMERING (Parallel Programming)

Do | need to know about concurrent programming?

Concurrency is widespread but error prone.
@ Therac-25 computerised radiation therapy machine

Concurrent programming errors contributed to accidents
causing deaths and serious injuries.

@ Mars Rover
Problems with interaction between concurrent tasks caused
periodic software resets reducing availability for exploration.

INF2140 lecture 1

INF 2140 PARALLELL-PROGRAMMERING (Parallel Programming)

Simple Example

@ process 1: x := x + 1 (x shared variable)

@ process 2: x := x - 1 (x shared variable)

Final result? Depending on the order of read and write operations
on X, assuming read and write are atomic (and do not interfere).

INF2140 lecture 1

INF 2140 PARALLELL-PROGRAMMERING (Parallel Programming)

Simple Example

There are 4 atomic x-operations: Process 1 reads x (R1), writes to
x (W1). Process 2 reads x (R2), writes to x (W2). R1 must happen
before W1 and R2 before W2, so these operations can be
sequenced in 6 ways:

Rl Rl R1 R2 R2 R2
Wl R2 R2 RlI Rl W2
R2 W1 W2 W1 W2 RI1
w2 W2 Wi w2 W1 Wil
0 -1 1 -1 1 0

We see that the final value of x is -1, 0, 1. The program is thus
non-deterministic: the result can vary from execution to execution.

INF2140 lecture 1

INF 2140 PARALLELL-PROGRAMMERING (Parallel Programming)

Calculation of number of possible executions

If we have 3 processes, each with a given number of atomic
operations, we have the following number of possible executions:

process 1 process 2 process 3 number of executions

2 2 2 90

3 3 3 1680

4 4 4 34 650
5 5 5 756 756

Different executions can lead to different final states. Impossible,
even for quite simple systems, to test every possible execution!
For n processes with m atomic statements each, the formula for
number of different executions is
(nxm)!
min

INF2140 lecture 1

INF 2140 PARALLELL-PROGRAMMERING (Parallel Programming)

a Cruise Control System

When the car ignition is switched
on and the on button is pressed,
the current speed is recorded and
the system is enabled: it
maintains the speed of the car at
the recorded setting.

Ignition @ Throttie [l] .
Brake [] Pressing the brake, accelerator or

| gt s]] ot seme] off button disables the system.
Pressing resume re-enables the

system.

Is the system safe?

Would testing be sufficient to discover all errors?

INF2140 lecture 1

INF 2140 PARALLELL-PROGRAMMERING (Parallel Programming)

Models

A model is a simplified representation of the real world.
Engineers use models to gain confidence in the adequacy and
validity of a proposed design.

e focus on an aspect of interest — concurrency

@ model animation to visualise a behaviour

e mechanical verification of properties (safety & progress)
Models are described using state machines, known as Labelled
Transition Systems LTS. These are described textually as finite

state processes (FSP) and displayed and analysed by the LTSA
analysis tool.

INF2140 lecture 1

INF 2140 PARALLELL-PROGRAMMERING (Parallel Programming)

Modeling the Cruise Control System

@Animalm

clearSpeed
on
recordSpeed
enableControl
speed
setThrottle
zoom

brake
disableControl
resume
enableControl
speed
setThrottle
zoom
engineOff
engineOn
speed
setThrottle
zoom

=[0I x]
engineOn ~|I” engineon

[clearspeed
[~ engineof

[~ on

[~ recordSpeed
[enableContral
|_ off

[disableControl
[brake

[accelerator
[resume

|7 speed

[setThrottle

=

INF2140 lecture 1

LTSA Animator to step through system
actions and events.

engineOn

speed

engineOff

Figure: LTS of the process that monitors
speed.

Later chapters will explain how to
construct models such as this so as to
perform animation and verification.

INF 2140 PARALLELL-PROGRAMMERING (Parallel Programming)

Programming practice in Java

Java is
o widely available, generally accepted and portable

@ provides sound set of concurrency features

Hence Java is used for all the illustrative examples, the
demonstrations and the exercises. Later chapters will explain how
to construct Java programs such as the Cruise Control System.

“Toy” problems are also used as they exemplify
particular aspects of concurrent programming problems!

INF2140 lecture 1

INF 2140 PARALLELL-PROGRAMMERING (Parallel Programming)

Threads in Java

A Thread class manages a single sequential thread of control.
Threads may be created and deleted dynamically.

Thread

run()

The Thread class executes instructions from its
method run(). The actual code executed depends on
the implementation provided for run() in a derived
class.

t

MyThread

run()

INF2140 lecture 1

class MyThread extends Thread A
public void run() {

/]

3

// Creating a thread object:
Thread a = new MyThread();

INF 2140 PARALLELL-PROGRAMMERING (Parallel Programming)

Threads in Java

Since Java does not permit multiple inheritance, we often
implement the run() method in a class not derived from Thread
but from the interface Runnable.

[m———————— P target

| _Runnable < Thread
I

|

: run() : public interface Runnable {

L

public abstract void run();

e

MyRun class MyRun implements Runnable{
run() public void run() {
//.....
}
}

Thread b = new Thread(new MyRun());

INF2140 lecture 1

INF 2140 PARALLELL-PROGRAMMERING (Parallel Programming)

thread life-cycle in Java

An overview of the life-cycle of a thread as state transitions:

stop(), or
run () returns

Terminated

o start() causes the thread to call its run() method.

@ The predicate isAlive() can be used to test if a thread has
been started but not terminated. Once terminated, it cannot
be restarted.

INF2140 lecture 1
INF 2140 PARALLELL-PROGRAMMERING (Parallel Programming)

thread alive states in Java

Once started, an alive thread has a number of substates :

[Alive\

Running

yield() dispatch

| suspend ()
Runnable
resume ()

start ()

Non-Runnable

N\

l stop(), or
run() returns

Also, wait () makes a thread non-Runnable, and notify() makes
it Runnable (used in later chapters).
Note: suspend, resume, stop are deprecated (not recommended).

INF2140 lecture 1
INF 2140 PARALLELL-PROGRAMMERING (Parallel Programming)

Course objective

This course is intended to provide a sound understanding of the
concepts, models and practice involved in designing concurrent
software.

The emphasis on principles and concepts provides a thorough
understanding of both the problems and the solution techniques.
Modeling provides insight into concurrent behavior and aids
reasoning about particular designs. Concurrent programming in
Java provides the programming practice and experience.

INF2140 lecture 1

INF 2140 PARALLELL-PROGRAMMERING (Parallel Programming)

Summary

o Concepts

e we adopt a model-based approach for the design and
construction of concurrent programs

@ Models

e we use finite state models to represent concurrent behavior.
@ Practice

e we use Java for constructing concurrent programs.

Examples are used to illustrate the concepts, models
and demonstration programs.

INF2140 lecture 1

INF 2140 PARALLELL-PROGRAMMERING (Parallel Programming)

