
Message Passing

INF2140 Parallel Programming: Lecture 10

April 11, 2012

INF2140 Parallel Programming: Lecture 10

Message Passing

Message Passing

Concepts:
synchronous message passing - channel
asynchronous message passing - port
send and receive / selective receive
rendezvous bidirectional communications - entry
call and accept ... reply

Models
channel : relabelling, choice, guards
port : message queue, choice, guards
entry : port, channel

Practice
distributed computing (disjoint memory)
threads and monitors (shared memory)

INF2140 Parallel Programming: Lecture 10

Message Passing

Synchronous Message Passing: Channel

Channel c
Sender
send(e,c)

Receiver
v=receive(c)

one-to-one

send(e,c) - send the value of
the expression e to channel c.
The process calling the send
operation is blocked until the
message is received from the
channel.

v = receive(c) - receive a
value into local variable v from
channel c. The process calling
the receive operation is blocked
waiting until a message is sent to
the channel.

cf. distributed assignment v = e

INF2140 Parallel Programming: Lecture 10

Message Passing

Synchronous Message Passing: Applet

A sender communicates
with a receiver using a
single channel.

The sender sends a
sequence of integer values
from 0 to 9 and then
restarts at 0 again.

Channel <Integer > chan = new Channel <Integer >();
tx.start(new Sender(chan ,senddisp));
rx.start(new Receiver(chan ,recvdisp));

Instances of ThreadPanel Instances of SlotCanvas

INF2140 Parallel Programming: Lecture 10

Message Passing

Java Implementation: Channel

public class Channel <T> extends Selectable {
T chan_ = null;

public synchronized void send(T v)
throws InterruptedException {

chan_ = v;
signal (); //part of Selectable
while (chan_ != null) wait ();

}
public synchronized T receive ()

throws InterruptedException {
block (); clearReady (); //part of Selectable
T tmp = chan_; chan_ = null;
notifyAll (); // should be notify ()
return(tmp);

}
}

The implementation of
Channel is a monitor with
synchronized access methods
for send and receive.

Selectable is described later.

INF2140 Parallel Programming: Lecture 10

Message Passing

Java Implementation: Sender

class Sender implements Runnable {
private Channel <Integer > chan;
private SlotCanvas display;
Sender(Channel <Integer > c, SlotCanvas d)

{chan=c; display=d;}

public void run() {
try { int ei = 0;

while(true) {
display.enter(String.valueOf(ei));
ThreadPanel.rotate (12);
chan.send(new Integer(ei));
display.leave(String.valueOf(ei));
ei=(ei +1)%10; ThreadPanel.rotate (348);}

} catch (InterruptedException e){}
}

}

INF2140 Parallel Programming: Lecture 10

Message Passing

Java Implementation: Receiver

class Receiver implements Runnable {
private Channel <Integer > chan;
private SlotCanvas display;
Receiver(Channel <Integer > c, SlotCanvas d)

{chan=c; display=d;}

public void run() {
try { Integer v=null;

while(true) {
ThreadPanel.rotate (180);
if (v!=null) display.leave(v.toString ());
v = chan.receive ();
display.enter(v.toString ());
ThreadPanel.rotate (180); }

} catch (InterruptedException e){}
}

}

INF2140 Parallel Programming: Lecture 10

Message Passing

Model

range M = 0..9 // messages with values up to 9

SENDER = SENDER [0], // shared channel chan
SENDER[e:M] = (chan.send[e]-> SENDER [(e+1)%10]).

RECEIVER = (chan.receive[v:M]-> RECEIVER).

// relabeling to model synchronization
|| SyncMsg = (SENDER || RECEIVER)

/{chan/chan.{send ,receive }}.

How can this be modeled
directly without the need
for relabeling?

message operation FSP model
send(e,chan) chan.[e]
v = receive(chan) chan.[v:M]

INF2140 Parallel Programming: Lecture 10

Message Passing

Selective Receive

Channels
c1
c2
cn

How
should we deal
with multiple
channels?

Sender
send(e,c) Sender
send(e,c) Sender[n]
send(en,cn)

Select
statement...

How would
we model
this in FSP?

select
when G1 and v1=receive(chan1) => S1;

or
when G2 and v2=receive(chan2) => S2;

or
...

or
when Gn and vn=receive(chann) => Sn;

end

INF2140 Parallel Programming: Lecture 10

Message Passing

Selective Receive

ARRIVALS CARPARK
CONTROL

DEPARTURES arrive depart

CARPARK

CARPARKCONTROL(N=4) = SPACES[N],
SPACES[i:0..N] = (when(i>0) arrive ->SPACES[i-1]

|when(i<N) depart ->SPACES[i+1]).
ARRIVALS = (arrive ->ARRIVALS).
DEPARTURES = (depart ->DEPARTURES).
|| CARPARK = (ARRIVALS || CARPARKCONTROL (4)|| DEPARTURES).

Interpret as channels

Implementation using message passing?
INF2140 Parallel Programming: Lecture 10

Message Passing

Java Implementation: Selective Receive

class MsgCarPark implements Runnable {
private Channel <Signal > arrive ,depart;
private int spaces ,N;
private StringCanvas disp;

public MsgCarPark(Channel <Signal > a,
Channel <Signal > l,
StringCanvas d,int capacity) {

depart=l; arrive=a; N=spaces=capacity; disp=d;
}
...
public void run() {...}

}

Implement CARPARKCONTROL as a thread MsgCarPark which
receives signals from channels arrive and depart.

INF2140 Parallel Programming: Lecture 10

Message Passing

Java Implementation: Selective Receive

public void run() {
try {

Select sel = new Select ();
sel.add(depart); sel.add(arrive);
while(true) {

ThreadPanel.rotate (12);
arrive.guard(spaces >0);
depart.guard(spaces <N);
switch (sel.choose ()) {
case 1: depart.receive (); display (++ spaces);

break;
case 2: arrive.receive (); display(--spaces);

break;}
}

} catch InterrruptedException {}
} See Applet!

INF2140 Parallel Programming: Lecture 10

Message Passing

Asynchronous Message Passing: Port

Port p
Receiver
v=receive(p)

Sender
send(e,c)
Sender
send(e,c)
Sender[n]
send(en,p)

many-to-one

send(e,p) - send the value of
the expression e to port p. The
process calling the send operation
is not blocked. The message is
queued at the port if the receiver
is not waiting.

v = receive(p) - receive a
value into local variable v from
port p. The process calling the
receive operation is blocked if
there are no messages queued to
the port.

INF2140 Parallel Programming: Lecture 10

Message Passing

Asynchronous Message Passing: Applet

Two senders communicate
with a receiver via an
“unbounded” port.

Each sender sends a
sequence of integer values
from 0 to 9 and then
restarts at 0 again.

Port <Integer > port = new Port <Integer > ();
tx1.start(new Asender(port ,send1disp));
tx2.start(new Asender(port ,send2disp));
rx.start(new Areceiver(port ,recvdisp));

Instances of ThreadPanel Instances of SlotCanvas

INF2140 Parallel Programming: Lecture 10

Message Passing

Java Implementation: Port

class Port <T> extends Selectable {
Queue <T> queue = new LinkedList <T>();

public synchronized void send(T v){
queue.add(v);
signal (); // part of Selectable

}
public synchronized T receive ()

throws InterruptedException {
block (); clearReady (); // part of Selectable
return queue.remove ();

}
}

The implementation of Port is a monitor that has
synchronized access methods for send and receive.

INF2140 Parallel Programming: Lecture 10

Message Passing

Port Model

range M = 0..9 // messages with values up to 9
set S = {[M],[M][M]} // queue up to three messages

PORT //empty state , only send permitted
= (send[x:M]->PORT[x]),

PORT[h:M] //one message queued to port
= (send[x:M]->PORT[x][h]

|receive[h]->PORT),
PORT[t:S][h:M] //two or more messages queued to port

= (send[x:M]->PORT[x][t][h]
|receive[h]->PORT[t]).

// minimise to see result of
// abstracting from data values
||APORT = PORT/{send/send[M],receive/receive[M]}.

LTS? What happens if we can send 4 values?

INF2140 Parallel Programming: Lecture 10

Message Passing

Model of the Applet

S[1..2]:
ASENDER port:PORT ARECEIVER

AsynchMsg

port.receive S[1..2].port.send

ASENDER = ASENDER [0],
ASENDER[e:M] = (port.send[e]->ASENDER [(e+1)%10]).

ARECEIVER = (port.receive[v:M]->ARECEIVER).

|| AsyncMsg = (s[1..2]: ASENDER || ARECEIVER ||port:PORT)
/{s[1..2]. port.send/port.send}.

Safety?

INF2140 Parallel Programming: Lecture 10

Message Passing

Rendezvous: Entry

Rendezvous is a form of request-reply to support client server
communication. Many clients may request service, but only one is
serviced at a time.

Client Server

req=accept(entry)

res=call(entry,req)

reply(entry,res)

Request
message

Reply
message

suspended perform service

INF2140 Parallel Programming: Lecture 10

Message Passing

Rendezvous

res=call(e,req) - send the
value req as a request message
which is queued to the entry e.

The calling process is blocked
until a reply message is received
into the local variable req.

req=accept(e) - receive the value
of the request message from the
entry e into local variable req. The
calling process is blocked if there are
no messages queued to the entry.

reply(e,res) - send the value res
as a reply message to entry e.

The model and implementation use a port for one direction and a
channel for the other. Which is which?

INF2140 Parallel Programming: Lecture 10

Message Passing

Rendezvous: Applet

Two clients call a
server which services
one request at a time.

Entry <String ,String > entry = new Entry <String ,String > ();
clA.start(new Client(entry ,clientAdisp ,"A"));
clB.start(new Client(entry ,clientBdisp ,"B"));
sv.start(new Server(entry ,serverdisp));

Instances of ThreadPanel Instances of SlotCanvas
INF2140 Parallel Programming: Lecture 10

Message Passing

Java Implementation: Entry

Entries are implemented as
extensions of ports, thereby
supporting queuing and
selective receipt.

The call method creates a
channel object on which to
receive the reply message. It
constructs and sends to the
entry a message consisting of
a reference to this channel
and a reference to the req
object. It then awaits the
reply on the channel.

The accept method keeps a copy of
the channel reference; the reply
method sends the reply message to
this channel.

INF2140 Parallel Programming: Lecture 10

Message Passing

Java Implementation: Entry

class Entry <R,P> extends Port <R> {
private CallMsg <R,P> cm;
private Port <CallMsg <R,P>> cp = new Port <CallMsg <R,P>>();

public P call(R req) throws InterruptedException {
Channel <P> clientChan = new Channel <P>();
cp.send(new CallMsg <R,P>(req ,clientChan));
return clientChan.receive ();

}
public R accept () throws InterruptedException {

cm = cp.receive (); return cm.request; }
public void reply(P res) throws InterruptedException {

cm.replychan.send(res); }

private class CallMsg <R,P> {
R request; Channel <P> replychan;
CallMsg(R m, Channel <P> c){ request=m; replychan=c;}

}
} Do call, accept, and reply need to be synchronized methods?

INF2140 Parallel Programming: Lecture 10

Message Passing

Model of Entry and Applet

We reuse the
models for ports
and channels...

CLIENT() entry:ENTRY SERVER

EntryDemo

entry.accept entry.call[M]

set M = {replyA ,replyB} // reply channels

||ENTRY = PORT/{call/send , accept/receive }.

CLIENT(CH=’reply) = (entry.call[CH]->[CH]->CLIENT).

SERVER = (entry.accept[ch:M]->[ch]->SERVER).

|| EntryDemo = (CLIENT(’replyA)|| CLIENT(’replyB)
|| entry:ENTRY || SERVER).

Action labels used in expressions or as parameter

values must be prefixed with a single quote.

INF2140 Parallel Programming: Lecture 10

Message Passing

Rendezvous vs Monitor Method Invocation

What is the difference?
from the point of view of the client?
from the point of view of the server?
mutual exclusion?

Which implementation is more efficient?
in a local context (client and server in same computer)?
in a distributed context (in different computers)?

INF2140 Parallel Programming: Lecture 10

Message Passing

Message Passing: Summary

Concepts:
synchronous message passing - channel
asynchronous message passing - port
send and receive / selective receive
rendezvous bidirectional comms - entry
call and accept ... reply

Models
channel : relabelling, choice, guards
port : message queue, choice, guards
entry : port, channel

Practice
distributed computing (disjoint memory)
threads and monitors (shared memory)

INF2140 Parallel Programming: Lecture 10

Message Passing

