
Concurrent Architectures

INF2140 Parallel Programming: Chapter 11

April 25, 2012

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Concurrent Architectures or “Design Patterns”

Software architectures identify software components and their
interaction

In the context of this course architectures are process
structures together with they way processes interact

The aim is to ignore many of the details concerned with
specific applications

Study structures that can be used in many different situations
and applications

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Overall

4

7© Wolfgang Emmerich, Mark Handley 1998 - 2003

Prime SievePrime Sieve

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

8© Wolfgang Emmerich, Mark Handley 1998 - 2003

Prime Sieve FSP ModelPrime Sieve FSP Model

! General idea:

• Generate a stream of numbers from 2 to N.

• Create one filter for each prime number between 2
and N that filters all the numbers that are multiples
and only outputs the others.

• Interconnect Filters by Pipes.

! Leads to Filter Pipeline:

Gen Pipe Filter Pipe Filter Pipe Filter

Demo

Architectural styles are re-occurring patterns of components
and connectors
We discuss three particular architectural styles:

Filter pipelines
Supervisor workers

Linda tuple space (for shared data)

Announcer listener

Each occur commonly in concurrent and distributed systems.

2

3© Wolfgang Emmerich, Mark Handley 1998 - 2003

MotivationMotivation

! Exploiting parallel execution on multiple processors

! Communication between different processors by a
connector called “bag”

• Supervisor creates tasks and puts them into bag

• Workers pick tasks from bag and perform them

! Workers may themselves be supervisors

4© Wolfgang Emmerich, Mark Handley 1998 - 2003

Supervisor-Worker ArchitectureSupervisor-Worker Architecture

“BAG”

WORKER WORKER WORKER

SUPERVISOR

2

3© Wolfgang Emmerich, Mark Handley 1998 - 2003

MotivationMotivation

! Notification of events:

• Events originate in one location (announcer)

• Communicated to multiple interested parties
(listeners)

! Announcer does not know listeners.

! Listeners do not know announcer.

! Communication is managed by connector called event
manager.

4© Wolfgang Emmerich, Mark Handley 1998 - 2003

Announcer-Listener ArchitectureAnnouncer-Listener Architecture

EVENTMANAGER

LISTENER

LISTENER

LISTENER

ANNOUNCER

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Concurrent Architectures: Filter Pipelines

Outline
Motivation
Concurrent Prime Sieve of Eratosthenes
Modelling Prime Sieve in FSP
Buffer Tolerance
Abstraction from Filter Tasks
Architectural Property Analysis
(Java Prime Sieve Implementation)
Buffering

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Filter Pipelines

Filters receive input value stream and transform them into
output value stream.
We consider filters with one input and one output stream
Filters are connected by pipelines

Redirect output of one filter to input of next
May buffer values to de-couple processes from each other

Example (Unix):
cat c340.txt 1b11.txt d50.txt | sort | less

4

7© Wolfgang Emmerich, Mark Handley 1998 - 2003

Prime SievePrime Sieve

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

8© Wolfgang Emmerich, Mark Handley 1998 - 2003

Prime Sieve FSP ModelPrime Sieve FSP Model

! General idea:

• Generate a stream of numbers from 2 to N.

• Create one filter for each prime number between 2
and N that filters all the numbers that are multiples
and only outputs the others.

• Interconnect Filters by Pipes.

! Leads to Filter Pipeline:

Gen Pipe Filter Pipe Filter Pipe Filter

Demo

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Example: Prime Sieve

Goal: compute primes between 2 and N
Classic algorithm by Eratosthenes known as the Prime Sieve:

f o r (i : 2 . . N) s i e v e [i] := i ;
f o r (i : 2 . . N){

i f (s i e v e [i] !=0) p r i n t (i) ;
f o r (j : i . . N){

i f (s i e v e [j]% i =0) s i e v e [j] :=0 ;
}

}

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Prime Sieve

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
2,3,0,5,0,7,0,9, 0,11, 0,13, 0,15, 0,17, 0,19, 0
2,3,0,5,0,7,0,0, 0,11, 0,13, 0, 0, 0,17, 0,19, 0
...

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Prime Sieve FSP Model

Idea:
Generate a Stream of numbers 2..N
Create one Filter for each number between 2 and N that filters
all the numbers that are multiples and only outputs the others
Interconnect Filters by Pipes

Leads to Filter Pipeline:

4

7© Wolfgang Emmerich, Mark Handley 1998 - 2003

Prime SievePrime Sieve

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

8© Wolfgang Emmerich, Mark Handley 1998 - 2003

Prime Sieve FSP ModelPrime Sieve FSP Model

! General idea:

• Generate a stream of numbers from 2 to N.

• Create one filter for each prime number between 2
and N that filters all the numbers that are multiples
and only outputs the others.

• Interconnect Filters by Pipes.

! Leads to Filter Pipeline:

Gen Pipe Filter Pipe Filter Pipe Filter

Demo

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

PRIME Sieve in FSP (I)

const MAX = 5
range NUM = 2 . .MAX
set S = { [NUM] , eos }

// Pipe p r o c e s s b u f f e r s e l ement s from s e t S :
PIPE=(put [x : S]−>get [x]−>PIPE) .

// GEN p r o c e s s ou tpu t s numbers from 2 to MAX
// f o l l ow e d by the s i g n a l eos :
GEN = GEN[2] ,
GEN[x :NUM]=(out . put [x]−>

i f x < MAX then GEN[x+1]
e l s e (out . put . eos−>end−>GEN)

) .

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Prime Sieve in FSP (II)

// I n i t i a l i z e from the f i r s t i n pu t from prev s t ag e
FILTER=(i n . ge t [p :NUM] −> prime [p] −> FILTER [p]
| i n . ge t . eos −> ENDFILTER) ,

// F i l t e r a l l i n p u t s t ha t a r e mu l t i p l e s o f p
FILTER [p :NUM]=(i n . ge t [x :NUM]−>

i f x%p!=0 then (out . put [x]−>FILTER [p])
e l s e FILTER [p]

| i n . ge t . eos−>ENDFILTER
) ,

// Terminate f i l t e r on eos
ENDFILTER=(out . put . eos −> end −> FILTER) .

... −→in FILTER[p] out −→ ...

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Prime Sieve in FSP (III)

Glue everything together:

| | PRIMES(N=4)=
(gen :GEN
| | p i p e [0 . . N−1] : PIPE
| | f i l t e r [0 . . N−1] : FILTER)
/{ p i p e [0] / gen . out ,

p i p e [i : 0 . . N−1]/ f i l t e r [i] . in ,
p i p e [i : 1 . . N−1]/ f i l t e r [i −1] . out ,
end/{ f i l t e r [0 . . N−1] . end , gen . end}}

@{ f i l t e r [0 . . N−1] . pr ime , end } .

end is made global

filter [i − 1]out −→ pipe[i] −→in filter [i]

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Buffering

The Prime Sieve Model so far has just one buffer slot.
Does it behave the same with no buffering?
Does it behave the same with more buffering?
Explosion in state space occurs if we attempt to model bigger
buffer space in pipes.

Why use buffering?
Performance

avoid context switches
run filters in parallel

Network
cannot avoid buffering

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Unbuffered pipeline

Will our architecture work in the unbuffered case?
Remodel and try:

Remove pipes, and directly plumb one filter into the next:

| | PRIMESUNBUF(N=4)
= (gen :GEN

| | f i l t e r [0 . . N−1] : FILTER)
/{ p i p e [0] / gen . out . put ,

p i p e [i : 0 . . N−1]/ f i l t e r [i] . i n .get ,
p i p e [i : 1 . . N−1]/ f i l t e r [i −1] . out .put ,
end /{ f i l t e r [0 . . N−1] . end , gen . end}

}@{ f i l t e r [0 . . N−1] . pr ime , end } .

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Abstraction from Application Details

From an architectural point of view it is not important that
integers are passed as buffer elements
We can abstract from this application detail

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

General Filter Pipeline

Abstract out the details of what is passed down the pipe,
and what is actually prime:

| | AGEN = GEN/{ out . put / out . put [NUM] } .
| | AFILTER = FILTER/{ out . put / out . put [NUM] ,

i n . ge t / i n . ge t [NUM] , pr ime / pr ime [NUM] } .
| | APIPE = PIPE/{ put / put [NUM] , ge t / ge t [NUM] } .

As before, but using APIPE, AGEN and AFILTER:

| | PRIMES(N=4)=(gen :AGEN | | p i p e [0 . . N−1] :APIPE
| | f i l t e r [0 . . N−1] :AFILTER)
/{ p i p e [0] / gen . out ,

p i p e [i : 0 . . N−1]/ f i l t e r [i] . in ,
p i p e [i : 1 . . N−1]/ f i l t e r [i −1] . out ,
end/{ f i l t e r [0 . . N−1] . end , gen . end}

} .

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

General Filter Pipeline with Buffered Pipelines
Multi-stage pipe defined using recursive definition:

| | MPIPE(B=4) =
i f B == 1 then APIPE
e l s e (APIPE/{mid/ get } | | MPIPE(B−1)/{mid/ put })
@{put , ge t } .

As before, but using MPIPE:

| | PRIMES(N=4)=(gen :AGEN | | p i p e [0 . . N−1] :MPIPE
| | f i l t e r [0 . . N−1] :AFILTER)
/{ p i p e [0] / gen . out ,

p i p e [i : 0 . . N−1]/ f i l t e r [i] . in ,
p i p e [i : 1 . . N−1]/ f i l t e r [i −1] . out ,
end/{ f i l t e r [0 . . N−1] . end , gen . end}

} .

-put-> APIPE -mid-> APIPE -mid-> APIPE -mid-> APIPE -get->
INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Architectural Property Analysis

Refer to properties for abstract model
Concerned with structure and interaction
not with detailed operations

General properties
Absence of deadlocks?
Eventual termination?
Ordering of results: Do filters produce results in the correct
order?

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Architectural Properties in FSP

Absence of deadlocks: As usual
Termination of the system:

progress TERMINATION = {end}

Production of (prime) results in proper order:

property
PRIMEP(N=4)=PRIMEP [0] ,
PRIMEP [i : 0 . . N]=

(when(i<N) f i l t e r [i] . pr ime−>PRIMEP [i +1]
| end−>PRIMEP) .

| |ORDER_CHECK=(PRIMES | | PRIMEP) .

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Summary: Filter Pipelines

Concurrent Software Architectures?
Modelling Filters & Pipelines in FSP
Abstraction from Filter Tasks
Impact of Buffering
Architectural Property Analysis
Buffering

4

7© Wolfgang Emmerich, Mark Handley 1998 - 2003

Prime SievePrime Sieve

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

8© Wolfgang Emmerich, Mark Handley 1998 - 2003

Prime Sieve FSP ModelPrime Sieve FSP Model

! General idea:

• Generate a stream of numbers from 2 to N.

• Create one filter for each prime number between 2
and N that filters all the numbers that are multiples
and only outputs the others.

• Interconnect Filters by Pipes.

! Leads to Filter Pipeline:

Gen Pipe Filter Pipe Filter Pipe Filter

Demo

Next: Supervisor-Worker Architectures

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Supervisor-Worker architecture model

Outline
Motivation
Linda Tuple Spaces
Modelling Tuple Spaces in FSP
(Implementing Tuple Spaces in Java)
Supervisor-Worker Model
(Supervisor-Worker Java Implementation)

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Supervisor-Worker model

Motivation

Exploiting parallel execution on multiple processors
Communication between different processors by a connector
called bag

Supervisor creates tasks and puts them into bag
Workers pick tasks from bag and perform them

Workers may themselves be supervisors

2

3© Wolfgang Emmerich, Mark Handley 1998 - 2003

MotivationMotivation

! Exploiting parallel execution on multiple processors

! Communication between different processors by a
connector called “bag”

• Supervisor creates tasks and puts them into bag

• Workers pick tasks from bag and perform them

! Workers may themselves be supervisors

4© Wolfgang Emmerich, Mark Handley 1998 - 2003

Supervisor-Worker ArchitectureSupervisor-Worker Architecture

“BAG”

WORKER WORKER WORKER

SUPERVISOR

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Linda Tuple Spaces

is a primitive for implementing “bag” connectors.
A tuple is a tagged data record:

Tuples are exchanged in tuple spaces using associative memory.
Available basic operations:

out(“tag”,expr1,..,exprn)
in(“tag”,field1,..,fieldn)
rd(“tag”,field1,..,fieldn)
inp(“tag”,field1,..,fieldn)
rdp(“tag”,field1,..,fieldn)

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Linda basic operations

out("tag",expr1,..,exprn)

Execution completes when the expressions have been evaluated and
the resulting tuple deposited in the tuple space.

in("tag",field1,..,fieldn)
Execution blocks until the tuple space contains a tuple matching
the specified fields. Input to a variable v by ?v.

rd("tag",field1,..,fieldn)
Like in, but does not remove tuple from tuple space.

inp("tag",field1,..,fieldn)
rdp("tag",field1,..,fieldn)

Non-blocking versions of in and rd, returning true if there is a
match.

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Linda “in” operation

in("tag",field1,..,fieldn)

fields are either:
the name of a local variable (?var) in the process calling in
an expression to evaluate

A tuple in tuple-space matches the in request if:
the tag is identical
the number of fields is the same
the expressions equal the values in the tuple.
the variables have the same type as the values in the tuple.

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Tuple Space Model in FSP
const Fa l s e = 0
const True = 1
range Bool = Fa l s e . . True
const N = 2 //Maximum Number o f t u p l e c o p i e s
set Tuples = {any}
set TupleAlpha = {{ in , out , rd , rdp [Bool] ,

i np [Bool] } . Tup les }
TUPLE(T=’any) = TUPLE [0] ,
TUPLE[i : 0 . . N] = (out [T] −> TUPLE[i +1]

|when (i >0) i n [T] −> TUPLE[i −1]
|when (i >0) i np [True] [T] −> TUPLE[i −1]
|when (i ==0) i np [F a l s e] [T] −> TUPLE[i]
|when (i >0) rd [T] −> TUPLE[i]
| rdp [i >0] [T] −> TUPLE[i]) .

| | TUPLESPACE = f o r a l l [t : Tup les] TUPLE(t) .

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Tuple Model LTS

Note: in the action names, 0 corresponds to false, 1 to true.

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Tuple Space Java Implementation

pub l i c i n t e r f a ce TupleSpace {
// d e p o s i t s data i n t u p l e space
pub l i c void out (S t r i n g tag , Object data) ;
// e x t r a c t s o b j e c t w i th tag from t u p l e space
pub l i c Object i n (S t r i n g tag) throws
I n t e r r u p t e dE x c e p t i o n ;
// r e ad s o b j e c t w i th tag from t u p l e space
pub l i c Object rd (S t r i n g tag) throws
I n t e r r u p t e dE x c e p t i o n ;
// e x t r a c t s o b j e c t i f a v a i l e l s e r e t u r n n u l l
pub l i c Bool i np (S t r i n g tag) ;
// read o b j e c t i f a v a i l e l s e r e t u r n f a l s e
pub l i c Bool rdp (S t r i n g tag) ;
}

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Supervisor-Worker Algorithm: Outline

Supervisor:

forall tasks do out("task",..)
forall results do in("result",..)
out("stop")

Worker:

while not rdp("stop") do
in("task",..)
compute result
out("result",..)

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Supervisor-Worker Model

// Need a maximum on d u p l i c a t e t u p l e s :
const N = 2
// Three t u p l e t yp e s :
set Tuples = { task , r e s u l t , s top }
// Tuple a l phabe t :
set TupleAlpha =
{{ in , out , rd , rdp [Bool] , i np [Bool] } . Tup les }
// Sup e r v i s o r ou tpu t s ta sk s , i n p u t s r e s u l t s ,
// and then s i g n a l s the worke r s to t e rm i na t e :
SUPERVISOR = TASK[1] ,
TASK[i : 1 . . N] = (out . t a s k −>

i f i<N then TASK[i +1] e l s e RESULT [1]) ,
RESULT [i : 1 . . N]= (i n . r e s u l t −>

i f i<N then RESULT [i +1] e l s e FINISH) ,
FINISH = (out . stop−>end−>STOP)+TupleAlpha .

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Supervisor-Worker Model

Worker checks if it needs to stop, else inputs task, outputs results:

WORKER = (rdp [b : Bool] . s top−>
i f (! b) then (i n . task−>out . r e s u l t −>WORKER)
e l s e (end −> STOP))+TupleAlpha .

Hack to avoid spurious deadlock detection: ended may be repeated

ENDING = (end −>ENDED) , ENDED = (ended−>ENDED) .

Glue it all together:

| | SUPERVISOR_WORKER=(s u p e r v i s o r : SUPERVISOR
| | { redWork , blueWork } :WORKER
| | { s u p e r v i s o r , redWork , blueWork } : : TUPLESPACE
| | ENDING)
/{ end/{ s u p e r v i s o r , redWork , blueWork } . end } .

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Supervisor and Worker LTS

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Analysis of Supervisor-Worker Model
Trace to DEADLOCK:

supervisor.out.task 1 task
supervisor.out.task 2 tasks
redWork.rdp.0.stop no stop yet
redWork.in.task 1 task
redWork.out.result
supervisor.in.result
redWork.rdp.0.stop no stop yet
redWork.in.task 0 tasks
redWork.out.result
supervisor.in.result
redWork.rdp.0.stop no stop yet
supervisor.out.stop stop issued

Supervisor only outputs stop after red worker tries to read it.
Red is waiting for a new task that never arrives.

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Deadlock Free Algorithm: Outline

Supervisor:

forall tasks do out("task",..)
forall results do in("result",..)
out("task", stop) // Note: stop as task!

Worker:

while true do
in("task",..)
if value is stop // Note: checking stop

then out("task",stop); exit
compute result
out("result",..)

Note: stop is a special task, which can be checked by Worker.
INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Deadlock Free Model
set Tuples = { task , task.stop , r e s u l t }
// Sup e r v i s o r as be fo r e , e x cep t d i f f e r e n t s top method :
SUPERVISOR = TASK[1] ,
TASK[i : 1 . . N] = (out . t a s k −>

i f i<N then TASK[i +1] e l s e RESULT [1]) ,
RESULT [i : 1 . . N] = (i n . r e s u l t −>

i f i<N then RESULT [i +1] e l s e FINISH) ,
FINISH=(out.task.stop−>end−>STOP)+TupleAlpha .

WORKER=(i n . t a s k −> out . r e s u l t −> WORKER
| in.task.stop->out.task.stop−>end−>STOP
)+ TupleAlpha .

//Check f o r p r ope r t e rm i n a t i o n :
progress TERMINATION={ended}

Note: Worker inputs task.stop and re-emits it for other workers.

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Supervisor-Worker Examples

Booking agents: any number of agents booking seats.
Clients hand out booking tasks.
Agents find available seats from a tuple space.

Computing area under a curve
Approximate using rectangles
Parallelize task by delegating computation of different
rectangles to one of 4 workers
Supervisor adds results computed by 4 workers

Concurrent execution of a sequential program
find independent subproblems, and formulate tasks
control information flow by tuple space

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Summary: Linda Tuple Spaces and Supervisor-Worker

Motivation
Modelling Tuple Spaces in FSP
Implementing Tuple Spaces in Java
Supervisor-Worker Model
(Supervisor-Worker Java Implementation)

Note: any number of workers, and supervisors.
need not know about each other!

2

3© Wolfgang Emmerich, Mark Handley 1998 - 2003

MotivationMotivation

! Exploiting parallel execution on multiple processors

! Communication between different processors by a
connector called “bag”

• Supervisor creates tasks and puts them into bag

• Workers pick tasks from bag and perform them

! Workers may themselves be supervisors

4© Wolfgang Emmerich, Mark Handley 1998 - 2003

Supervisor-Worker ArchitectureSupervisor-Worker Architecture

“BAG”

WORKER WORKER WORKER

SUPERVISOR

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Announcer/Listener architecture model

Outline
Motivation
Announcer-Listener Model
Announcer-Listener Safety and Progress
Announcer-Listener Implementation
Summary

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Announcer/Listener architecture model: Motivation

Notification of events:
Events originate in one location (announcer)
Communicated to multiple interested parties (listeners)

Announcer does not know listeners.
Listeners do not know announcer.
Communication is managed by a connector called event
manager.

2

3© Wolfgang Emmerich, Mark Handley 1998 - 2003

MotivationMotivation

! Notification of events:

• Events originate in one location (announcer)

• Communicated to multiple interested parties
(listeners)

! Announcer does not know listeners.

! Listeners do not know announcer.

! Communication is managed by connector called event
manager.

4© Wolfgang Emmerich, Mark Handley 1998 - 2003

Announcer-Listener ArchitectureAnnouncer-Listener Architecture

EVENTMANAGER

LISTENER

LISTENER

LISTENER

ANNOUNCER

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Application Examples

User Interface Frameworks:
AWT Listeners are ordinary objects.
Events are mouse clicks, button presses.
Events cause operations to be invoked in Listeners.

CORBA Event Service:
Event Producers are Announcers
Event Channels are Event Managers
Event Consumers are Listeners
Used, for example in distributed stock tickers.

PayTV broadcasting
customers register and pay, or deregister
event managers control access rights
announcer sends out programs

Email (imap)

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Filtering and Recursive Events

Listeners may only be interested in a subset of events
They register with Event Manager using a “pattern” of events
they wish to receive.

Listeners may themselves be announcers and forward events
into subsequent Event Managers.
Listeners do not have to be active processes.

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Announcer-Listener Model (part I)
set L i s t e n e r = {a , b , c , d}
set Pat t e rn = {pat1 , pat2 }

REGISTER = IDLE ,
IDLE = (r e g i s t e r [p : Pa t t e rn] −> MATCH[p]

| announce [Pa t t e rn] −> IDLE) ,

MATCH[p : Pa t t e rn] = (announce [a : Pa t t e rn]−> i f (a == p)
then (even t [a] −> MATCH[p] | d e r e g i s t e r −>IDLE)
e l s e MATCH[p]

| d e r e g i s t e r −> IDLE) .

| | EVENTMANAGER = (L i s t e n e r : REGISTER)
/{ announce / L i s t e n e r . announce } .

One Event Manager for each listener.
Here, a listener may only register for one pattern.

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Announcer-Listener Model - (part II)
ANNOUNCER = (announce [Pa t t e rn] −> ANNOUNCER) .

LISTENER(P=’ p a t t e r n) = (r e g i s t e r [P] −> LISTENING) ,
LISTENING = (compute −> LISTENING

| even t [P] −> d e r e g i s t e r −> STOP
| even t [P] −> LISTENING
)+{ r e g i s t e r [Pa t t e rn] } .

| | ANNOUNCER_LISTENER =
(a : LISTENER (’ pat1) | | b : LISTENER (’ pat2)
| | c : LISTENER (’ pat1) | | d : LISTENER (’ pat2)
| | EVENTMANAGER
| | ANNOUNCER
| | L i s t e n e r : SAFE) .

SAFE considered next
INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Announcer-Listener Analysis

Safety-Properties:
Listeners receive events when and only when they are
registered for them
Listeners only receive events that match the patterns they
have registered for

Progress-Properties
Announcer should be able to announce events independent of
state of Listeners

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Example: Announcer-Listener Analysis

Safety Properties:
Listener only receives events when it is registered.
Listener only receives the events for which it registered.

property SAFE = (r e g i s t e r [p : Pa t t e rn] −> SAFE [p]) ,
SAFE [p : Pa t t e rn] = (even t [p] −> SAFE [p]

| d e r e g i s t e r −> SAFE) .

Progress Properties:
The announcer can announce, no matter who is listening.

progress ANNOUNCE[p : Pa t t e rn] = {announce [p] }

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Example: Announcer-Listener Model - Box Mover Game I
set L i s t e n e r = {a , b , c , d}
set Pat t e rn = {pat1 , pat2 }

REGISTER = IDLE ,
IDLE = (r e g i s t e r [p : Pa t t e rn] −> MATCH[p]

| announce [Pa t t e rn] −> IDLE) ,
MATCH[p : Pa t t e rn] = (announce [a : Pa t t e rn]−> i f (a == p)

then (even t [a] −> MATCH[p] | d e r e g i s t e r −> IDLE)
e l s e MATCH[p]

| d e r e g i s t e r −> IDLE) .

| | EVENTMANAGER = (L i s t e n e r : REGISTER)
/{ announce / L i s t e n e r . announce } .

ANNOUNCER = (announce [Pa t t e rn] −> ANNOUNCER) .

BOXMOVER(P=’ p a t t e r n) = (r e g i s t e r [P]−>LISTENING) ,

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Example: Announcer-Listener Model - Box Mover Game II

LISTENING =(compute−>// compute and d i s p l a y p o s i t i o n
(timeout −> LISTENING // no mouse even t
| even t [P] −> timeout −> LISTENING // miss
| e ven t [P] −> d e r e g i s t e r −> STOP) // h i t

)+{ r e g i s t e r [Pa t t e rn] } .

| | ANNOUNCER_LISTENER =
(a :BOXMOVER(’ pat1) | | b :BOXMOVER(’ pat2)
| | c :BOXMOVER(’ pat1) | | d :BOXMOVER(’ pat2)
| | EVENTMANAGER | | ANNOUNCER | | L i s t e n e r : SAFE) .

progress ANNOUNCE[p : Pa t t e rn] = {announce [p] }
property SAFE = (r e g i s t e r [p : Pa t t e rn] −> SAFE [p]) ,

SAFE [p : Pa t t e rn]= (even t [p] −> SAFE [p]
| d e r e g i s t e r −> SAFE) .

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Summary

Filter pipelines
buffering with 0 or more slots
one-to-one, but may be generalized to many-to-many

Supervisor workers and Linda tuple space
any-to-any (without knowing identities)

Announcer-Listener
one-to-many
broadcasting

4

7© Wolfgang Emmerich, Mark Handley 1998 - 2003

Prime SievePrime Sieve

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

8© Wolfgang Emmerich, Mark Handley 1998 - 2003

Prime Sieve FSP ModelPrime Sieve FSP Model

! General idea:

• Generate a stream of numbers from 2 to N.

• Create one filter for each prime number between 2
and N that filters all the numbers that are multiples
and only outputs the others.

• Interconnect Filters by Pipes.

! Leads to Filter Pipeline:

Gen Pipe Filter Pipe Filter Pipe Filter

Demo

2

3© Wolfgang Emmerich, Mark Handley 1998 - 2003

MotivationMotivation

! Exploiting parallel execution on multiple processors

! Communication between different processors by a
connector called “bag”

• Supervisor creates tasks and puts them into bag

• Workers pick tasks from bag and perform them

! Workers may themselves be supervisors

4© Wolfgang Emmerich, Mark Handley 1998 - 2003

Supervisor-Worker ArchitectureSupervisor-Worker Architecture

“BAG”

WORKER WORKER WORKER

SUPERVISOR

2

3© Wolfgang Emmerich, Mark Handley 1998 - 2003

MotivationMotivation

! Notification of events:

• Events originate in one location (announcer)

• Communicated to multiple interested parties
(listeners)

! Announcer does not know listeners.

! Listeners do not know announcer.

! Communication is managed by connector called event
manager.

4© Wolfgang Emmerich, Mark Handley 1998 - 2003

Announcer-Listener ArchitectureAnnouncer-Listener Architecture

EVENTMANAGER

LISTENER

LISTENER

LISTENER

ANNOUNCER

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

