Concurrent Architectures

INF2140 Parallel Programming: Chapter 11

April 25, 2012

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Concurrent Architectures or “Design Patterns”

@ Software architectures identify software components and their
interaction
o In the context of this course architectures are process
structures together with they way processes interact
@ The aim is to ignore many of the details concerned with
specific applications
e Study structures that can be used in many different situations
and applications

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Overall

[cen| 1Pel Fiter pipel [Fite] [Pipe] [Fier]

@ Architectural styles are re-occurring patterns of components
and connectors
@ We discuss three particular architectural styles:
o Filter pipelines
e Supervisor workers
e Linda tuple space (for shared data)

e Announcer listener

@ Each occur commonly in concurrent and distributed systems.

WORKER || WORKER | WORKER

EVENTMANAGER

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Concurrent Architectures: Filter Pipelines

Outline
Motivation

Concurrent Prime Sieve of Eratosthenes
Modelling Prime Sieve in FSP

Buffer Tolerance

Architectural Property Analysis

°
°

°

@ Abstraction from Filter Tasks

°

@ (Java Prime Sieve Implementation)
°

Buffering

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Filter Pipelines

o Filters receive input value stream and transform them into
output value stream.

@ We consider filters with one input and one output stream

o Filters are connected by pipelines

o Redirect output of one filter to input of next
o May buffer values to de-couple processes from each other

e Example (Unix):
o cat c340.txt 1b11.txt d50.txt | sort | less

= == ==

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Example: Prime Sieve

Goal: compute primes between 2 and N
Classic algorithm by Eratosthenes known as the Prime Sieve:

for (i:2..N) sievel[i]:=1i;
for (i:2..N){
if (sieve[i]l=0) print(i);
for (j:i..N){
if (sieve[j]%i=0) sieve[]j]:=0;

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Prime Sieve

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
2,3,0,5,0,7,0,9, 0,11, 0,13, 0,15, 0,17, 0,19, O
2,3,0,5,0,7,0,0, 0,11, 0,13, O, O, 0,17, 0,19, O

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Prime Sieve FSP Model

o ldea:

o Generate a Stream of numbers 2..N

o Create one Filter for each number between 2 and N that filters
all the numbers that are multiples and only outputs the others

e Interconnect Filters by Pipes

@ Leads to Filter Pipeline:

o= == i ==

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

PRIME Sieve in FSP (1)

const MAX = 5
range NUM = 2. .MAX
set S {[NUM] , eos}

// Pipe process buffers elements from set S:
PIPE=(put[x:S]—>get [x]->PIPE).

// GEN process outputs numbers from 2 to MAX
// followed by the signal eos:
GEN = GEN[2],
GEN[x:NUM]=(out . put[x]—>
if x < MAX then GEN[x+1]
else (out.put.eos—>end—>GEN)

).

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Prime Sieve in FSP (I1)

// Initialize from the first input from prev stage
FILTER=(in.get[p:NUM] —> prime[p] —> FILTER[p]
|in.get.eos —> ENDFILTER),

// Filter all inputs that are multiples of p
FILTER[p:NUM]=(in . get [x:NUM—>
if x%p!=0then (out.put[x]->FILTER[p])
else FILTER][p]
|in.get.eos—>ENDFILTER
).
// Terminate filter on eos
ENDFILTER=(out . put.eos —> end —> FILTER).

.. —in FILTER[P] out — ...

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Prime Sieve in FSP (lII)

Glue everything together:

| | PRIMES (N=4)=
(gen:GEN

|| pipe[0..N—1]:PIPE

|| filter [0..N—1]:FILTER)

/{pipe[0]/gen.out,
pipe[i:0..N=1]/filter[i].in,
pipe[i:1..N=1]/filter[i—1].out,
end/{filter [0..N—1].end, gen.end}}

@{filter [0..N—1].prime ,end}.

@ end is made global

filter[i — 1)our — pipeli] —in filter[i]

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Buffering

@ The Prime Sieve Model so far has just one buffer slot.

e Does it behave the same with no buffering?
e Does it behave the same with more buffering?
o Explosion in state space occurs if we attempt to model bigger

buffer space in pipes.
@ Why use buffering?
o Performance

@ avoid context switches
o run filters in parallel

o Network
@ cannot avoid buffering

INF2140 Parallel Programming: Chapter 11

Unbuffered pipeline

Will our architecture work in the unbuffered case?
@ Remodel and try:

Remove pipes, and directly plumb one filter into the next:

| | PRIMESUNBUF (N=4)
= (gen:GEN
|| filter [0..N—1]:FILTER)
/{ pipe[0]/gen.out.put,
pipe[i:0..N=1]/filter[i].in.get,
pipe[i:1..N=1]/filter[i—1].out.put,
end/{filter [0..N—1].end, gen.end}
}e{filter [0..N—1].prime ,end}.

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Abstraction from Application Details

@ From an architectural point of view it is not important that
integers are passed as buffer elements

@ We can abstract from this application detail

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

General Filter Pipeline

Abstract out the details of what is passed down the pipe,
@ and what is actually prime:

| |/ AGEN = GEN/{out.put/out.put[NUM]}.

|| AFILTER = FILTER/{out.put/out.put[NUM],
in.get/in.get[NUM], prime/prime[NUM]}.

|| APIPE = PIPE/{put/put[NUM], get/get[NUM]}.

As before, but using APIPE, AGEN and AFILTER:

|| PRIMES (N=4)=(gen:AGEN || pipe[0..N—1]:APIPE
|| filter [0..N—1]:AFILTER)
/{pipe[0]/gen.out,
pipe[i:0..N=1]/filter[i].in,
pipe[i:1..N=1]/filter[i—1].out,
end/{filter [0..N—1].end, gen.end}

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

General Filter Pipeline with Buffered Pipelines

Multi-stage pipe defined using recursive definition:

|| MPIPE (B=4) =

if B= 1 then APIPE

else (APIPE/{mid/get}||MPIPE(B—1)/{mid/put})
O{put, get}.

As before, but using MPIPE:

|| PRIMES (N=4)=(gen:AGEN || pipe[0..N—1]:MPIPE
|| filter [0..N—1]:AFILTER)
/{pipe[0]/gen.out,
pipe[i:0..N=1]/filter[i].in,
pipe[i:1..N=1]/filter[i—1].out,
end/{filter [0..N—1].end, gen.end}

}

-put-> APIPE -mid-> APIPE -mid-> APIPE -mid-> APIPE =get->

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Architectural Property Analysis

@ Refer to properties for abstract model
o Concerned with structure and interaction
e not with detailed operations
o General properties
o Absence of deadlocks?
e Eventual termination?
e Ordering of results: Do filters produce results in the correct
order?

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Architectural Properties in FSP

@ Absence of deadlocks: As usual

@ Termination of the system:

progress TERMINATION = {end} I

@ Production of (prime) results in proper order:

property
PRIMEP (N=4)=PRIMEP[0] ,
PRIMEP[i:0..N]=
(when(i<N) filter[i].prime—>PRIMEP[i+1]
| end—>PRIMEP).
| |ORDER CHECK=(PRIMES | | PRIMEP).

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Summary: Filter Pipelines

Concurrent Software Architectures?
Modelling Filters & Pipelines in FSP
Abstraction from Filter Tasks
Impact of Buffering

Architectural Property Analysis

Buffering
Next: Supervisor-Worker Architectures

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Supervisor-Worker architecture model

Outline

@ Motivation
Linda Tuple Spaces
Modelling Tuple Spaces in FSP
(Implementing Tuple Spaces in Java)
Supervisor-Worker Model

(Supervisor-Worker Java Implementation)

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Supervisor-Worker model

Motivation

@ Exploiting parallel execution on multiple processors
e Communication between different processors by a connector
called bag
e Supervisor creates tasks and puts them into bag
o Workers pick tasks from bag and perform them

@ Workers may themselves be supervisors

WORKER | WORKER § WORKER

“BAG”

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Linda Tuple Spaces

@ is a primitive for implementing “bag” connectors.
o A tuple is a tagged data record:
o Tuples are exchanged in tuple spaces using associative memory.
@ Available basic operations:
o out("tag”,exprl,...exprn)
in("tag” fieldl,.. fieldn)
rd("tag” fieldl,.. fieldn)
inp(“tag”,field1,..,fieldn)
rdp(“tag”,fieldl,..,fieldn)

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

-
Linda basic operations

@ out("tag",exprl,..,exprn)
Execution completes when the expressions have been evaluated and
the resulting tuple deposited in the tuple space.

e in("tag" fieldl,.. fieldn)
Execution blocks until the tuple space contains a tuple matching
the specified fields. Input to a variable v by ?v.

o rd("tag" fieldl,.. fieldn)
Like in, but does not remove tuple from tuple space.

e inp("tag" fieldl,.. fieldn)

e rdp("tag" fieldl,.. fieldn)

Non-blocking versions of in and rd, returning true if there is a
match.

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Linda “in” operation

in("tag" field1,.. fieldn)

o fields are either:
o the name of a local variable (?var) in the process calling in
@ an expression to evaluate
@ A tuple in tuple-space matches the in request if:
e the tag is identical
e the number of fields is the same
o the expressions equal the values in the tuple.
o the variables have the same type as the values in the tuple.

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Tuple Space Model in FSP

const False =0

const True =1

range Bool = False..True

const N =2 //Maximum Number of tuple copies
set Tuples = {any}

set TupleAlpha = {{in,out,rd,rdp[Bool],
inp[Bool]}. Tuples}
TUPLE(T="any) = TUPLE[0] ,

TUPLE[i:0..N] = (out[T] —> TUPLE[i +1]
|[when (i>0) in[T] —> TUPLE[i —1]
|when (i>0) inp[True][T] —> TUPLE[i —1]
|when (i==0)inp[False][T] —> TUPLE[i]
|when (i>0) rd[T] —> TUPLE[i]
| rdp [i >0][T] —> TUPLE[i]).

| | TUPLESPACE = forall [t:Tuples] TUPLE(t).

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Tuple Model LTS

LTSA - TupleSpace.lts

File Edit Check Build Window Help Options
BEE s REo o B E N M) ot 6o 44
Edit | Output | Draw
TUR
Iy &y outany outany

>< TUPLESPACE

o~

~ B {inp, rdp}[0]any {rd any, rdp[1]any}

v

A

{inany, inp[1]any} {inany, inp[i]any
outany

[api

Note: in the action names, 0 corresponds to false, 1 to true.

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Tuple Space Java Implementation

public interface TupleSpace {

//deposits data in tuple space

public void out(String tag, Object data);
//extracts object with tag from tuple space
public Object in(String tag) throws
InterruptedException;

//reads object with tag from tuple space
public Object rd(String tag) throws
InterruptedException;

//extracts object if avail else return null
public Bool inp(String tag);

//read object if avail else return false
public Bool rdp(String tag);

}

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Supervisor-Worker Algorithm: Outline

@ Supervisor:

forall tasks do out("task",..)
forall results do in("result",..)
out ("stop")

o Worker:

while not rdp("stop") do
in("task",..)
compute result
out ("result",..)

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Supervisor-Worker Model

// Need a maximum on duplicate tuples:
const N = 2
// Three tuple types:
set Tuples = {task,result ,h stop}
// Tuple alphabet:
set TupleAlpha =
{{in,out,rd,rdp[Bool],inp[Bool]}. Tuples}
// Supervisor outputs tasks, inputs results,
// and then signals the workers to terminate:
SUPERVISOR = TASK][1],
TASK[i:1..N] = (out.task —>

if i<N then TASK[i+1] else RESULT[1]),
RESULT[i:1..N]= (in.result —>

if i<N then RESULT[i+1] else FINISH),
FINISH = (out.stop—>end—>STOP)+TupleAlpha.

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Supervisor-Worker Model

Worker checks if it needs to stop, else inputs task, outputs results:

WORKER = (rdp[b:Bool].stop—>
if (!b) then (in.task—>out.result —>WORKER)

else (end —> STOP))+TupleAlpha.

Hack to avoid spurious deadlock detection: ended may be repeated

ENDING = (end —>ENDED), ENDED = (ended—>ENDED).

Glue it all together:

| |SUPERVISOR . WORKER=(supervisor : SUPERVISOR
|| {redWork , blueWork } :WORKER
|| {supervisor ,redWork, blueWork } :: TUPLESPACE

|| ENDING)
/{end /{supervisor ,redWork , blueWork }.end }.

INF2140 Parallel Programming: Chapter 11

Supervisor and Worker LTS

(2 conczz.pdr

Fle Edt View Go Help

A o P

Previous Next

D]

SUPERVISOR

out.task outtask in.result in.result outstop end

rdp.1.stop

WORKER

out.result

(4T T T D

INF2140 Parallel Programming: Chapter 11

Analysis of Supervisor-Worker Model
Trace to DEADLOCK:

supervisor.out.task 1 task
supervisor.out.task 2 tasks
redWork.rdp.0.stop no stop yet
redWork.in.task 1 task

redWork.out.result

supervisor.in.result

redWork.rdp.0.stop no stop yet
redWork.in.task 0 tasks
redWork.out.result

supervisor.in.result

redWork.rdp.0.stop no stop yet
supervisor.out.stop stop issued

Supervisor only outputs stop after red worker tries to read it.

@ Red is waiting for a new task that never arrives.

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Deadlock Free Algorithm: Outline

@ Supervisor:

forall tasks do out("task",..)

forall results do in("result",..)
out ("task", stop) // Note: stop as task!
o Worker:

while true do
in("task",..)
if value is stop // Note: checking stop
then out("task",stop); exit
compute result
out ("result",..)

Note: stop is a special task, which can be checked by Worker.

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Deadlock Free Model

set Tuples = {task ,task.stop,result}
//Supervisor as before,bexcept different stop method:
SUPERVISOR = TASK[1],
TASK[i:1..N] = (out.task —>

if i<N then TASK[i+1] else RESULT[1]),
RESULT[i:1..N] = (in.result —>

if i<N then RESULT[i+1] else FINISH),
FINISH=(out.task.stop—>end—>STOP)+TupleAlpha.

WORKER=(in .task —> out.result —> WORKER
| in.task.stop->out.task.stop—>end—>STOP
)+ TupleAlpha.

//Check for proper termination:

progress TERMINATION={ended}

Note: Worker inputs task.stop and re-emits it for other workers.

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Supervisor-Worker Examples

e Booking agents: any number of agents booking seats.
o Clients hand out booking tasks.
e Agents find available seats from a tuple space.
@ Computing area under a curve
o Approximate using rectangles
o Parallelize task by delegating computation of different
rectangles to one of 4 workers
e Supervisor adds results computed by 4 workers
e Concurrent execution of a sequential program

e find independent subproblems, and formulate tasks
e control information flow by tuple space

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

-
Summary: Linda Tuple Spaces and Supervisor-Worker

Motivation

Modelling Tuple Spaces in FSP
Implementing Tuple Spaces in Java
Supervisor-Worker Model

(Supervisor-Worker Java Implementation)

Note: any number of workers, and supervisors.

@ need not know about each other!

WORKER | WORKER | WORKER

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Announcer/Listener architecture model

Outline
@ Motivation
@ Announcer-Listener Model
@ Announcer-Listener Safety and Progress
@ Announcer-Listener Implementation

@ Summary

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Announcer/Listener architecture model: Motivation

@ Notification of events:

o Events originate in one location (announcer)
o Communicated to multiple interested parties (listeners)

@ Announcer does not know listeners.
o Listeners do not know announcer.

o Communication is managed by a connector called event
manager.

EVENTMANAGER

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Application Examples

@ User Interface Frameworks:

o AWT Listeners are ordinary objects.
o Events are mouse clicks, button presses.
e Events cause operations to be invoked in Listeners.

o CORBA Event Service:

Event Producers are Announcers

Event Channels are Event Managers

Event Consumers are Listeners

Used, for example in distributed stock tickers.

@ PayTV broadcasting

e customers register and pay, or deregister
e event managers control access rights
e announcer sends out programs

e Email (imap)

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Filtering and Recursive Events

o Listeners may only be interested in a subset of events

e They register with Event Manager using a “pattern” of events
they wish to receive.

o Listeners may themselves be announcers and forward events
into subsequent Event Managers.

@ Listeners do not have to be active processes.

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Announcer-Listener Model (part 1)

set Listener = {a,b,c,d}
set Pattern = {patl,pat2}

REGISTER = IDLE,
IDLE = (register[p:Pattern] —> MATCH[p]
| announce[Pattern] —> IDLE),

MATCH[p: Pattern] = (announce[a:Pattern]—>if(a = p)
then(event[a] —> MATCH[p] | deregister —>IDLE)
else MATCH[p]

| deregister —> IDLE).

| |EVENTMANAGER = (Listener : REGISTER)
/{announce/Listener.announce}.

@ One Event Manager for each listener.
@ Here, a listener may only register for one pattern.

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Announcer-Listener Model - (part II)

ANNOUNCER = (announce[Pattern] —> ANNOUNCER).

LISTENER(P='pattern) = (register [P] —> LISTENING),
LISTENING = (compute —> LISTENING

| event[P] —> deregister —> STOP

| event[P] —> LISTENING
)+{register [Pattern]}.

|| ANNOUNCER_LISTENER =

(a:LISTENER('patl) || b:LISTENER('pat2)
|| c:LISTENER('patl) || d:LISTENER('pat2)
|| EVENTMANAGER

|| ANNOUNCER

||

Listener :SAFE).

@ SAFE considered next

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Announcer-Listener Analysis

o Safety-Properties:
o Listeners receive events when and only when they are
registered for them
o Listeners only receive events that match the patterns they
have registered for
@ Progress-Properties

e Announcer should be able to announce events independent of
state of Listeners

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Example: Announcer-Listener Analysis

@ Safety Properties:
o Listener only receives events when it is registered.
o Listener only receives the events for which it registered.
property SAFE = (register[p:Pattern] —> SAFE[p]),
SAFE[p: Pattern] = (event[p] —> SAFE|[p]
| deregister —> SAFE).

@ Progress Properties:

e The announcer can announce, no matter who is listening.

progress ANNOUNCE[p: Pattern] = {announce[p]} I

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Example: Announcer-Listener Model - Box Mover Game |

set Listener = {a,b,c,d}
set Pattern = {patl, pat2}

REGISTER = IDLE,

IDLE = (register[p: Pattern] —> MATCH|[p]

|announce[Pattern] —> IDLE),

MATCH[p: Pattern] = (announce[a:Pattern]—>if(a = p)
then(event[a] —> MATCH[p]| deregister —> IDLE)
else MATCH|[p]

| deregister —> IDLE).

| |EVENTMANAGER = (Listener :REGISTER)
/{announce/Listener.announce}.
ANNOUNCER = (announce[Pattern] —> ANNOUNCER).

BOXMOVER(P='"pattern) = (register [P[->LISTENING),

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

Example: Announcer-Listener Model - Box Mover Game |l

LISTENING =(compute—>// compute and display position
(timeout —> LISTENING // no mouse event
| event [P] —> timeout —> LISTENING // miss
|event [P] —> deregister —> STOP) // hit
)+{register [Pattern]}.

| |ANNOUNCER_LISTENER =
(a:BOXMOVER('patl) || b:BOXMOVER('pat2)
|| c:BOXMOVER('patl) || d:BOXMOVER('pat2)
|| EVENTMANAGER || ANNOUNCER || Listener:SAFE).

progress ANNOUNCE[p: Pattern] = {announce[p]}

property SAFE = (register[p:Pattern] —> SAFE[p]),
SAFE[p: Pattern]= (event[p] —> SAFE[p]

| deregister —> SAFE).

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

-
Summary

o Filter pipelines
o buffering with 0 or more slots
e one-to-one, but may be generalized to many-to-many

@ Supervisor workers and Linda tuple space
e any-to-any (without knowing identities)
@ Announcer-Listener

@ one-to-many
e broadcasting

WORKER || WORKER | WORKER

EVENTMANAGER

INF2140 Parallel Programming: Chapter 11

Concurrent Architectures

