
Timed Systems

INF2140 Parallel Programming: Lecture 12

May 2, 2012

INF2140 Parallel Programming: Lecture 12

Timed Systems

Timed Systems

Concepts:
discrete time
ticks from a global clock
timing consistency: time-stop

Models
relative speed of processes
maximal progress
output intervals, jitter, timeout

Practice
thread-based vs. event-based models
timeout
asynchronous tasks
timed objects and time manager
two-phase clock

INF2140 Parallel Programming: Lecture 12

Timed Systems

Modelling Timed Systems

Processes execute at arbitrary relative speeds (Chap. 3)
Delay between two actions can take arbitrarily long time

How can we make processes aware of the passage of time?
How can processes synchronize execution with time?
Simplification: Assume that execution time of actions is
negligible compared to external events.
Example: What is the difference between two single clicks of
a mouse, and a double click?
Discrete model of time
Passage of time signalled by a “tick” from a global clock
The processes share the ticks

INF2140 Parallel Programming: Lecture 12

Timed Systems

Doubleclick

DOUBLECLICK(D=3) =
(tick -> DOUBLECLICK
|click -> PERIOD [1]
),

PERIOD[t:1..D] =
(when (t==D) tick -> DOUBLECLICK
|when (t<D) tick -> PERIOD[t+1]
|click -> doubleclick -> DOUBLECLICK
).

The model does not say anything about the intervals between ticks.
(Here, it could be every second. In a hardware model, it could be nanoseconds.)

More accuracy = more ticks between the clicks
= more states in the model

INF2140 Parallel Programming: Lecture 12

Timed Systems

Timing Consistency

We now look at timing in models with multiple processes

Producer: produces an item every Tp seconds
Consumer: takes an item every Tc seconds

Are the timings of the two processes compatible?

INF2140 Parallel Programming: Lecture 12

Timed Systems

Timed Producer Consumer
Producer: produce item, wait Tp ticks, repeat:

PRODUCER(Tp=3) =
(item -> DELAY [1]),

DELAY[t:1..Tp] =
(when(t==Tp) tick -> PRODUCER
|when(t<Tp) tick -> DELAY[t+1]
).

Consumer: let time pass, consume item, wait Tc ticks, repeat:

CONSUMER(Tc=3) =
(item -> DELAY [1] | tick -> CONSUMER),

DELAY[t:1..Tc] =
(when(t==Tc) tick -> CONSUMER
|when(t<Tc) tick -> DELAY[t+1]
).

INF2140 Parallel Programming: Lecture 12

Timed Systems

Timed Producer Consumer

Can we express different relative speeds of Producer and Consumer?
Case 1: Producer and Consumer work at the same speed: Tp = Tc = 2

||SAME = (PRODUCER (2) || CONSUMER (2)).

Case 2: Producer is slower than Consumer: Tp = 3,Tc = 2

|| SLOWER = (PRODUCER (3) || CONSUMER (2)).

Case 3: Producer is faster than Consumer: Tp = 2,Tc = 3

|| FASTER = (PRODUCER (2) || CONSUMER (3)).

Why do we get a deadlock here?

Time-stop: Deadlocks caused by timing inconsistencies
If the composed system does not produce time-stop, we say the
timing assumptions of the processes are consistent

INF2140 Parallel Programming: Lecture 12

Timed Systems

Maximal Progress

Assume now that we have a store with a certain capacity. Producer fills the
store with items and Consumer takes items from the store. Let Producer and
Consumer have the same rate.

STORE(N=3) = STORE[0],
STORE[i:0..N] = (put -> STORE[i+1]

|when(i>0) get -> STORE[i-1]
).

||SYS = (PRODUCER (1)/{ put/item}
|| CONSUMER (1)/{ get/item}
||STORE
).

We get a safety violation! Why?
Consumer can always choose to let time pass.

INF2140 Parallel Programming: Lecture 12

Timed Systems

Maximal Progress

If Consumer always chooses to let time pass, the store will
overflow.
We must ensure that an action occurs as soon as all
participants are ready to do it.
This is called maximal progress.
In FSP, we can ensure maximal progress using action priority

|| NEW_SYS = SYS >>{tick}.

After a tick, all actions that can occur,
will happen before the next tick

INF2140 Parallel Programming: Lecture 12

Timed Systems

Maximal Progress

We have assumed that the execution time of actions is
negligible
However, we don’t want to allow infinitely many actions before
time progresses
We can check that time must eventually progress. How?

Define a progress property and check for progress:

progress TIME = {tick}

INF2140 Parallel Programming: Lecture 12

Timed Systems

Maximal Progress
Is time guaranteed to progress here? Why/why not?

PROG = (start -> LOOP | tick -> PROG),
LOOP = (compute -> LOOP |tick -> LOOP).
||CHECK = PROG >>{tick}.

progress TIME = {tick}

Is time guaranteed to progress here? Why/why not?

PROG2 = (start -> LOOP | tick -> PROG2),
LOOP = (compute -> LOOP |tick -> LOOP

|end -> tick -> PROG2).
|| CHECK2 = PROG2 >>{tick}.

progress TIME = {tick}

This loop models a finite number of iterations.
INF2140 Parallel Programming: Lecture 12

Timed Systems

Output in an Interval

This simple model of global ticks is surprisingly expressive
In a system with congestion, response time may vary
How can we model that output occurs within atime interval?

OUTPUT(Min=1,Max=3) =
(start -> OUTPUT [1] | tick -> OUTPUT),

OUTPUT[t:1.. Max] =
(when (t>Min && t<=Max) output -> OUTPUT
|when (t<Max) tick -> OUTPUT[t+1]
).

Output can occur at any time between Min and Max ticks

INF2140 Parallel Programming: Lecture 12

Timed Systems

Jitter

Output occurs at a predictable rate but at unpredictable times
This timing uncertainty is called jitter in comm. systems
Jitter = periodic output at any time in a time interval

JITTER(Max=2) =
(start -> JITTER [1] | tick -> JITTER),

JITTER[t:1.. Max] =
(output -> FINISH[t]
|when (t<Max) tick -> JITTER[t+1]
|when (t==Max) output -> FINISH[t]),

FINISH[t:1.. Max] =
(when (t<Max) tick -> FINISH[t+1]
|when (t==Max) tick -> JITTER).

INF2140 Parallel Programming: Lecture 12

Timed Systems

Timeout

Timeout can be modelled in FSP by using a separate process
Action setTO starts the timer
Action resetTO stops the timer

TIMEOUT(D=1)
= (setTO -> TIMEOUT [0]

|{tick ,resetTO} -> TIMEOUT),
TIMEOUT[t:0..D]

= (when (t<D) tick -> TIMEOUT[t+1]
|when (t==D)timeout -> TIMEOUT
|resetTO -> TIMEOUT).

INF2140 Parallel Programming: Lecture 12

Timed Systems

Timeout

TIMEOUT(D=1) = (setTO -> TIMEOUT [0]
|{tick ,resetTO} -> TIMEOUT),

TIMEOUT[t:0..D]
= (when (t<D) tick -> TIMEOUT[t+1]

|when (t==D)timeout -> TIMEOUT
|resetTO -> TIMEOUT).

RECEIVE = (start -> setTO -> WAIT),
WAIT = (timeout -> RECEIVE

|receive -> resetTO -> RECEIVE).

|| RECEIVER(D=2) = (RECEIVE || TIMEOUT(D))
>>{receive ,tick ,timeout ,start}
@{receive ,tick ,timeout ,start}.

Give interface actions low priority, so system
using RECEIVER has priority for other (regular) actions

INF2140 Parallel Programming: Lecture 12

Timed Systems

Java Implementation

Two approaches to implementing discrete time in Java

Thread-based approach :
The global clock is passive
Most similar to the previous chapters of the book

Event-driven approach:
The global clock is active
Time advance triggers activities in the objects
Approach discussed in the book

INF2140 Parallel Programming: Lecture 12

Timed Systems

Thread-based Approach

If we are working with machine-time:

sleep(long ms)
can be called on a thread
causes the thread to suspend execution for ms milliseconds

wait(long ms)
can be called on a lock
causes the thread to suspend execution until it is either
notified on the lock or ms milliseconds have passed
when the thread resumes execution, it does not know
if it woke up from the timeout or not

INF2140 Parallel Programming: Lecture 12

Timed Systems

Timeout Monitor

class TimeoutMonitor {
boolean notified = false;

public synchronized boolean timer(long ms)
throws InterruptedException {

if (! notified) wait(ms);
// Client reactivated with notification: notified
return notified;

}
public synchronized void alert (){

notified= true;
notifyAll ();
// Notified monitor

}
}

INF2140 Parallel Programming: Lecture 12

Timed Systems

Combining Timeout with Computation

Idea: Make the execution asynchronous
Let a Client class spawn a Server class which extends Thread

public class Server
extends Thread implements Runnable {

TimeoutMonitor tm; String result = "no result";

public Server(TimeoutMonitor timeoutmon){
tm=timeoutmon; }

public String get (){ return result; }
public void run() {

try { Thread.sleep (4000); // Long exec. time
result = "execution completed";
tm.alert (); // Server completed execution

} catch (InterruptedException e) { }
}}

INF2140 Parallel Programming: Lecture 12

Timed Systems

Combining Timeout with Computation

public class Client {
public static String result="";

public static void main(String [] args){
try {

TimeoutMonitor tm = new TimeoutMonitor ();
Server ts = new Server(tm);
ts.start (); // start job
boolean noTimeout=tm.timer (10); // start timer
if (noTimeout) result=ts.get(); // get result

} catch (InterruptedException e) {}
// Finished execution with result: result
}

}

INF2140 Parallel Programming: Lecture 12

Timed Systems

Asynchronous Tasks

We can generalize this picture, using asynchronous tasks
The Server class of our example is essentially an Executor
The run method of Server is a Task to be executed
The result of a Task execution, is stored in a Future object
If the return value of the Task is a type T, the associated
future will have the type Future<T>
Method to access return value: future.get()

INF2140 Parallel Programming: Lecture 12

Timed Systems

Asynchronous Tasks

public class AsyncCall {
public static void main(String [] args)
throws Exception {

ExecutorService executor =
Executors.newSingleThreadExecutor ();

Future <String > future =
executor.submit(new Task ()); // Start execution

String result = future.get(); // Wait for result
System.out.println(result);
executor.shutdownNow ();

}
}
class Task implements Callable <String > {

public String call() throws Exception {
Thread.sleep (4000); return "Ready!"; }

}

INF2140 Parallel Programming: Lecture 12

Timed Systems

Asynchronous Tasks with Timeout

public class TimeOutTest {
public static void main(String [] args)
throws Exception {

ExecutorService executor =
Executors.newSingleThreadExecutor ();

Future <String > future =
executor.submit(new Task ()); // Start execution

try {
String result = future.get(5, TimeUnit.SECONDS);
System.out.println(result); // Finish correctly

} catch (TimeoutException e) {...} // Timeout!
}
executor.shutdownNow ();

}}

INF2140 Parallel Programming: Lecture 12

Timed Systems

Event-driven Approach: Timed Objects

Advantage compared to thread-based approach:
avoids context-switching.
Basic Idea: A TimeManager triggers activities in the objects
Timed Objects: These activities follow a predefined order
TimeStop: exception to catch timing inconsistencies

public interface Timed {
void pretick () throws TimeStop;
void tick ();

}

INF2140 Parallel Programming: Lecture 12

Timed Systems

Countdown Timer

Simple FSP model

COUNTDOWN (N=3) = COUNTDOWN[N],
COUNTDOWN[i:0..N] =

(when(i>0) tick -> COUNTDOWN[i-1]
|when(i==0) beep -> STOP
).

INF2140 Parallel Programming: Lecture 12

Timed Systems

Countdown Timer

class TimedCountDown implements Timed {
TimeManager clock; int i;

TimedCountDown(int N, TimeManager clock) {
i = N; this.clock = clock;
clock.addTimed(this); // Get ticks

}
public void pretick () throws TimeStop {

if(i==0) { ... // Do beep action
clock.removeTimed(this); } // No more ticks

}
public void tick (){ --i; }

}

INF2140 Parallel Programming: Lecture 12

Timed Systems

Timed Producer Consumer
Producer: produce item, wait Tp ticks, repeat:

PRODUCER(Tp=3) =
(item -> DELAY [1]),

DELAY[t:1..Tp] =
(when(t==Tp) tick -> PRODUCER
|when(t<Tp) tick -> DELAY[t+1]
).

Consumer: let time pass, consume item, wait Tc ticks, repeat:

CONSUMER(Tc=3) =
(item -> DELAY [1] | tick -> CONSUMER),

DELAY[t:1..Tc] =
(when(t==Tc) tick -> CONSUMER
|when(t<Tc) tick -> DELAY[t+1]
).

INF2140 Parallel Programming: Lecture 12

Timed Systems

Timed Producer-Consumer

class ProducerConsumer {
TimeManager clock = new TimeManager (1000);
Producer producer = new Producer (2);
Consumer consumer = new Consumer (3);

ProducerConsumer () {clock.start ();}

class Producer implements Timed { ... }
class Consumer implements Timed { ... }

}

INF2140 Parallel Programming: Lecture 12

Timed Systems

Timed Producer

class Producer implements Timed {
int Tp,t;

Producer(int Tp) {
this.Tp = Tp; t=1;
clock.addTimed(this);

}
public void pretick () throws TimeStop {

if (t==1) consumer.item(new Object ());
}
public void tick() {

System.out.println("Tick producer");
if (t<Tp) { ++t;return ;}
if (t==Tp) {t=1;}

}
}

INF2140 Parallel Programming: Lecture 12

Timed Systems

Timed Consumer

class Consumer implements Timed {
int Tc,t; Object consuming = null;

Consumer(int Tc) {
this.Tc = Tc; t=1; clock.addTimed(this);

}
void item(Object x) throws TimeStop {

// ... println (" Transfer ");
if (consuming !=null) throw new TimeStop ();
consuming = x; }

public void pretick () {}
public void tick() {

// ... println ("Tick consumer "+(consuming !=null));
if (consuming ==null) return;
if (t<Tc) { ++t; return ;}
if (t==Tc) {consuming=null; t=1;}}}

INF2140 Parallel Programming: Lecture 12

Timed Systems

Time Manager

public class TimeManager extends Thread {
int delay; // clocked: why volatile? why immutable?
volatile ImmutableList <Timed > clocked = null;

public TimeManager(int d) {delay = d;}

public void addTimed(Timed el) {
clocked = ImmutableList.add(clocked ,el);

}
public void removeTimed(Timed el) {

clocked = ImmutableList.remove(clocked ,el);
}
public void run () { ... }

}

INF2140 Parallel Programming: Lecture 12

Timed Systems

Time Manager

public class TimeManager extends Thread { ...
public void run () {

try {
while(true) {

try { // broadcast of pretick and tick
for (Timed e: clocked) e.pretick ();
for (Timed e :clocked) e.tick ();

} catch (TimeStop s) {
System.out.println("*** TimeStop");
return;

}
Thread.sleep(delay);

}
} catch (InterruptedException e){}

}}

INF2140 Parallel Programming: Lecture 12

Timed Systems

Two-Phase Clock

In FSP: Maximal progress
In Java: Two-phase clock (pretick & tick)
Each Timed object has one opportunity to perform an action:
the pretick
A multi-way interaction between objects will require several
clock-cycles (in contrast to FSP)
Although it can be done in one cycle in FSP, we must take care
that multiway interaction in one cycle is not required in Java
(e.g., by introducing a tick between a request and the reply)
Thread-based approach

looser coupling between time and execution in Java
to implement logical (program) time, let the TimeOutMonitor
class be a Timed Object (and use wait() instead of wait(ms))

INF2140 Parallel Programming: Lecture 12

Timed Systems

Timed Systems: Summary

Concepts:
discrete time
ticks from a global clock
timing consistency: time-stop

Models
relative speed of processes
maximal progress
output intervals, jitter, timeout

Practice
thread-based vs. event-based models
timeout
asynchronous tasks
timed objects and time manager
two-phase clock

INF2140 Parallel Programming: Lecture 12

Timed Systems

