
Concurrent Execution

INF2140 Parallel Programming: Lecture 3

Feb. 01, 2012

INF2140 Parallel Programming: Lecture 3

Concurrent Execution

Concurrent Execution

Concepts
Processes - concurrent execution and interleaving
Process interaction

Models
Parallel composition of asynchronous processes

Interleaving
Interaction

Shared actions
Process labeling
Action relabeling and hiding

Structure diagrams
Practice

Multithreaded Java programs

INF2140 Parallel Programming: Lecture 3

Concurrent Execution

Definitions

Concurrency
Logically simultaneous processing.
Does not imply multiple processing
elements (PEs). Requires interleaved
execution on a single PE.
Parallelism
Physically simultaneous processing.
Involves multiple PEs and/or
independent device operations.

A

Time

B

C

Both concurrency and parallelism require controlled
access to shared resources . We use the terms parallel and
concurrent interchangeably and generally do not
distinguish between real and pseudo-concurrent execution.

INF2140 Parallel Programming: Lecture 3

Concurrent Execution

Modeling Concurrency

How should we model process execution speed?
arbitrary speed (we abstract away time)

How do we model concurrency?
arbitrary relative order of actions from different processes
interleaved execution of processes, but
preserve the order in each process

What is the result?
a general model of execution, independent of scheduling
(asynchronous model of execution)

INF2140 Parallel Programming: Lecture 3

Concurrent Execution

Parallel Composition - Action Interleaving

If P and Q are processes then (P||Q) represents the
concurrent execution of P and Q. The operator || is the
parallel composition operator.

ITCH = (scratch->STOP).
CONVERSE = (think->talk->STOP).

||CONVERSE_ITCH = (ITCH || CONVERSE).

Disjoint
alphabets!

think->talk->scratch
think->scratch->talk
scratch->think->talk

Possible traces as a result of
action interleaving.

INF2140 Parallel Programming: Lecture 3

Concurrent Execution

Parallel Composition - Action Interleaving

2 states 3 states

〈0, 0〉 〈0, 1〉 〈0, 2〉 〈1, 2〉 〈1, 1〉 〈1, 0〉
↗ ↖

from ITCH from CONVERSE 2× 3 states

INF2140 Parallel Programming: Lecture 3

Concurrent Execution

Parallel Composition - Algebraic laws

Commutative: (P||Q) = (Q||P)

Associative: (P||(Q||R)) = ((P||Q)||R)
= (P||Q||R).

Clock radio example:

CLOCK = (tick->CLOCK).
RADIO = (on->off->RADIO).

||CLOCK_RADIO = (CLOCK || RADIO).

Number of states? LTS? Traces?

INF2140 Parallel Programming: Lecture 3

Concurrent Execution

Modeling Interaction - Shared Actions

If processes in a composition have actions in common, these
actions are said to be shared.

Shared actions are the way that process interaction is modeled.
While unshared actions may be arbitrarily interleaved, a shared
action must be executed at the same time by all processes that
participate in the shared action.

INF2140 Parallel Programming: Lecture 3

Concurrent Execution

Modeling Interaction - Shared Actions

MAKER = (make->ready->MAKER).
USER = (ready->use->USER).

||MAKER_USER = (MAKER || USER).

Non-disjoint
alphabets!

MAKER synchronizes with USER when ready.

Traces? Number of states? LTS?

INF2140 Parallel Programming: Lecture 3

Concurrent Execution

Modeling Interaction - Handshake

A handshake is an action acknowledged by another process

MAKERv2 = (make->ready->used->MAKERv2).
USERv2 = (ready->use ->used->USERv2).

||MAKER_USERv2 = (MAKERv2 || USERv2).

3 states
3 states

3× 3 states?

Interaction constrains
the overall behaviour.

4 states

INF2140 Parallel Programming: Lecture 3

Concurrent Execution

Modeling Interaction - Multiple Processes

Multi-party synchronization:
Many processes can participate in the shared action

MAKE_A = (makeA->ready->used->MAKE_A).
MAKE_B = (makeB->ready->used->MAKE_B).
ASSEMBLE = (ready->assemble->used->ASSEMBLE).

||FACTORY = (MAKE_A || MAKE_B || ASSEMBLE).

INF2140 Parallel Programming: Lecture 3

Concurrent Execution

Composite Processes

A composite process is a parallel composition of primitive
processes. These composite processes can be used in the definition
of further compositions.

||MAKERS = (MAKE_A || MAKE_B).

||FACTORY = (ASSEMBLE ||MAKERS).

Substituting the definition for MAKERS in FACTORY and applying
the commutative and associative laws for parallel composition, we
obtain the original definition for FACTORY:

||FACTORY = (MAKE_A || MAKE_B || ASSEMBLE).

INF2140 Parallel Programming: Lecture 3

Concurrent Execution

Process Instances and Labeling

a : P prefixes each action label in the alphabet of P with a.

Two instances of a switch process:

SWITCH = (on->off->SWITCH).
||TWO_SWITCH = (a:SWITCH || b:SWITCH).

An array of instances of the switch process:

||SWITCHES(N=3) = (forall[i:1..N] s[i]:SWITCH).
||SWITCHES(N=3) = (s[i:1..N]:SWITCH).

INF2140 Parallel Programming: Lecture 3

Concurrent Execution

Process Labeling by a Set of Prefix Labels

Let P be a process and {a1, .., ax} a set of labels.

Then {a1, .., ax} :: P replaces
every action with label n in the alphabet of P
with the labels a1.n, . . . , ax .n.
every transition (n->X) in the definition of P
with the transitions ({a1.n, . . . , ax .n}->X).

Process prefixing is useful for modeling shared resources

INF2140 Parallel Programming: Lecture 3

Concurrent Execution

Process Labeling by a Set of Prefix Labels

Example:

RESOURCE = (acquire->release->RESOURCE).

USER = (acquire->use->release->USER).

||RESOURCE_SHARE = (a:USER || b:USER
|| {a,b}::RESOURCE).

INF2140 Parallel Programming: Lecture 3

Concurrent Execution

Process Prefix Labels for Shared Resources

USER = (acquire->use->
release->USER).

a:USER = (a.acquire->a.use->
a.release->USER).

b:USER = (b.acquire->b.use->
b.release->USER).

RESOURCE = (acquire->
release->RESOURCE).

{a,b}::RESOURCE = ({a,b}.acquire->
{a,b}.release->RESOURCE).

INF2140 Parallel Programming: Lecture 3

Concurrent Execution

Process Prefix Labels for Shared Resources

How does the model ensure that
the user that acquires the resource
is the one to release it?

INF2140 Parallel Programming: Lecture 3

Concurrent Execution

Action Relabeling

Relabeling functions are applied to processes to
change the names of action labels.

The general form of the relabeling function is:

P/{newlabel_1/oldlabel_1,... newlabel_n/oldlabel_n}.

Relabeling is useful to ensure that composed processes
synchronize on particular actions.

Note:
In P/{newlabel/oldlabel}, both newlabel and oldlabel can
be sets of labels.

INF2140 Parallel Programming: Lecture 3

Concurrent Execution

Action Relabeling

Example:

CLIENT = (call->wait->continue->CLIENT).

SERVER = (request->service->reply->SERVER).

We can use relabeling to make the processes synchronize

INF2140 Parallel Programming: Lecture 3

Concurrent Execution

Action Relabeling

||CLIENT_SERVER = (CLIENT || SERVER)
/{call/request, reply/wait}.

INF2140 Parallel Programming: Lecture 3

Concurrent Execution

Action Relabeling - Prefix Labels

An alternative formulation of the client server system is described
below using qualified or prefixed labels:

SERVERv2 = (accept.request
->service->accept.reply->SERVERv2).

CLIENTv2 = (call.request
->call.reply->continue->CLIENTv2).

||CLIENT_SERVERv2 = (CLIENTv2 || SERVERv2)
/{call/accept}.

INF2140 Parallel Programming: Lecture 3

Concurrent Execution

Action Hiding - Abstraction to Reduce Complexity

When applied to a process P, the hiding operator \{a1..ax}
removes the action names a1..ax from the alphabet of P and
makes these concealed actions silent. These silent actions are
labeled tau. Silent actions in different processes are not shared.

Sometimes it is more convenient to specify the set of labels to be
exposed:

When applied to a process P, the interface operator @{a1..ax}
hides all actions in the alphabet of P not labeled in the set a1..ax.

INF2140 Parallel Programming: Lecture 3

Concurrent Execution

Action Hiding

These definitions are equivalent:

USER = (acquire->use->
release->USER) \{use}.

USER = (acquire->use->
release->USER)
@{acquire,release}.

Minimization removes hidden tau
actions to produce an LTS with
equivalent observable behavior.

INF2140 Parallel Programming: Lecture 3

Concurrent Execution

Structure Diagrams - Systems as Interacting Processes

P a
b

Process P with
alphabet a,b.

P a b Q m
c d c
x x x

Parallel Composition
(P||Q) / {m/a,m/b,c/d}

P Q a

S
y x Composite process

||S = (P||Q) @ {x,y}

INF2140 Parallel Programming: Lecture 3

Concurrent Execution

Structure Diagrams

We use structure diagrams to capture the structure of
a model expressed by the static combinators:
parallel composition, relabeling, and hiding.

Example
range T = 0..3

BUFF = (in[i:T]->
out[i]->BUFF).

||TWOBUF = ?

a:BUFF b:BUFF
a.out

TWOBUFF

out in
in out in out

INF2140 Parallel Programming: Lecture 3

Concurrent Execution

Structure Diagrams

Structure diagram for CLIENT_SERVER ?

CLIENT = (call->wait->continue->CLIENT).

SERVER = (request->service->reply->SERVER).

||CLIENT_SERVER = (CLIENT || SERVER)
/{call/request, reply/wait}.

CLIENT call request SERVER call

reply wait reply service continue

INF2140 Parallel Programming: Lecture 3

Concurrent Execution

Structure Diagrams

Structure diagram for CLIENT_SERVERv2 ?

SERVERv2 = (accept.request
->service->accept.reply->SERVERv2).

CLIENTv2 = (call.request
->call.reply->continue->CLIENTv2).

||CLIENT_SERVERv2 = (CLIENTv2 || SERVERv2)/{call/accept}.

CLIENTv2 call accept SERVERv2 call

service continue

INF2140 Parallel Programming: Lecture 3

Concurrent Execution

Structure Diagrams - Resource Sharing

RESOURCE = (acquire->release->RESOURCE).
USER = (printer.acquire->use

->printer.release->USER)\{use}.
||PRINTER_SHARE

= (a:USER||b:USER||{a,b}::printer:RESOURCE).

a:USER
printer

b:USER
printer

printer:
RESOURCE

acquire
release

PRINTER_SHARE

INF2140 Parallel Programming: Lecture 3

Concurrent Execution

