
Shared Objects & Mutual Exclusion

INF2140 Parallel Programming: Lecture 4

Feb. 08, 2012

INF2140 Parallel Programming: Lecture 4

Shared Objects & Mutual Exclusion

Concurrent Execution

Concepts
Process interference
Mutual exclusion

Models
Model checking for interference
Modeling mutual exclusion

Practice
Multithreaded Java programs
Thread interference in shared Java objects
Mutual exclusion in Java
(synchronized objects and methods)

INF2140 Parallel Programming: Lecture 4

Shared Objects & Mutual Exclusion

Multi-threaded Programs in Java

Concurrency in Java occurs when more than one thread is alive.
ThreadDemo has two threads which rotate displays.

INF2140 Parallel Programming: Lecture 4

Shared Objects & Mutual Exclusion

ThreadDemo Model

Interpret run, pause,
interrupt as inputs,
rotate as an output.

ROTATOR = PAUSED ,
PAUSED = (run ->RUN | pause ->PAUSED

|interrupt ->STOP),
RUN = (pause ->PAUSED |{run ,rotate}->RUN

|interrupt ->STOP).
|| THREAD_DEMO = (a:ROTATOR || b:ROTATOR)

/{stop/{a,b}. interrupt }.

INF2140 Parallel Programming: Lecture 4

Shared Objects & Mutual Exclusion

ThreadDemo: Implementation in Java

ThreadDemo creates two ThreadPanel displays when initialized.
ThreadPanel manages the display and control buttons, and
delegates calls to rotate() to DisplayThread.
Rotator implements the runnable interface.

INF2140 Parallel Programming: Lecture 4

Shared Objects & Mutual Exclusion

Rotator Class

class Rotator implements Runnable {

public void run() {
try {

while(true) ThreadPanel.rotate ();
} catch(InterruptedException e) { }

}
}

Rotator implements the runnable interface, calling
ThreadPanel.rotate() to move the display.

run() finishes if an exception is raised by Thread.interrupt().

INF2140 Parallel Programming: Lecture 4

Shared Objects & Mutual Exclusion

ThreadPanel Class

public class ThreadPanel extends Panel {
// construct display with title and segment color c
public ThreadPanel(String title , Color c) {...}
// rotate display of current thread 6 degrees
public static boolean rotate ()

throws InterruptedException {...}
// create and start a new thread with target r
public void start(Runnable r) {
thread = new DisplayThread(canvas ,r ,...);
thread.start ();}
// stop the thread using Thread.interrupt ()
public void stop() {thread.interrupt ();}}

ThreadPanel manages the display and control buttons for a thread.
Calls to rotate() are delegated to DisplayThread.
Threads are created by start(), and terminated by stop().

INF2140 Parallel Programming: Lecture 4

Shared Objects & Mutual Exclusion

ThreadDemo Class

public class ThreadDemo extends Applet {
ThreadPanel A; ThreadPanel B;
public void init() {

A = new ThreadPanel("Thread A",Color.blue);
B = new ThreadPanel("Thread B",Color.blue);
add(A); add(B);}

public void start() {
A.start(new Rotator ());
B.start(new Rotator ());}

public void stop() {
A.stop (); B.stop (); }}

ThreadDemo creates two ThreadPanel displays when initialized
and two threads when started.

ThreadPanel is used extensively in later demonstration programs.

INF2140 Parallel Programming: Lecture 4

Shared Objects & Mutual Exclusion

Interference

So far, we have discussed the execution of multiple processes,
modeling concurrent execution by interleaving and executing
multiple threads in Java
Process interaction modeled by shared atomic actions
How do real processes or threads interact?

The simplest way for Java threads to interact, is via a
shared object: an object whose methods can be invoked
by a set of threads

INF2140 Parallel Programming: Lecture 4

Shared Objects & Mutual Exclusion

Ornamental Garden Problem

People enter an ornamental garden through either of two turnstiles.

Management wants to know how many people are in the garden at
any time.

The concurrent program consists of two concurrent threads and a
shared counter object.

INF2140 Parallel Programming: Lecture 4

Shared Objects & Mutual Exclusion

Ornamental Garden Problem: Class Diagram

The Turnstile thread simulates the periodic arrival of a visitor to
the garden every second by sleeping for a second and then invoking
the increment() method of the counter object.

INF2140 Parallel Programming: Lecture 4

Shared Objects & Mutual Exclusion

Ornamental Garden Program

The Counter object and Turnstile threads are created by the
go() method of the Garden applet:

private void go() {
counter = new Counter(counterD);
west = new Turnstile(westD ,counter);
east = new Turnstile(eastD ,counter);
west.start ();
east.start ();

}

Note that counterD, westD, and eastD are objects of class
NumberCanvas (used in Chapter 2).

INF2140 Parallel Programming: Lecture 4

Shared Objects & Mutual Exclusion

Ornamental Garden: The Turnstile Class

class Turnstile extends Thread {
NumberCanvas display; Counter people;
Turnstile(NumberCanvas n,Counter c)

{ display = n; people = c; }

public void run() {
try{display.setvalue (0);

for (int i=1;i<= Garden.MAX;i++){
// sleep 0.5 sec. between arrivals
Thread.sleep (500);
display.setvalue(i); people.increment ();}

} catch (InterruptedException e){ }}
}

The run() method exits and the thread terminates after
Garden.MAX visitors have entered.

INF2140 Parallel Programming: Lecture 4

Shared Objects & Mutual Exclusion

Ornamental Garden: The Counter Class

class Counter {
int value =0;
NumberCanvas display;
Counter(NumberCanvas n) {
display=n;
display.setvalue(value);

}

void increment () {
int temp = value; //read value
Simulate.HWinterrupt ();
value=temp +1; //write value
display.setvalue(value);

}
}

Hardware interrupts can
occur at arbitrary times.

The counter simulates a
hardware interrupt during
an increment(), between
reading and writing to the
shared counter value.

Interrupt randomly calls
Thread.sleep() to force
a thread switch.

INF2140 Parallel Programming: Lecture 4

Shared Objects & Mutual Exclusion

Ornamental Garden Program: Display

After the East and West turnstile threads have each incremented
its counter 20 times, the garden people counter is not the sum of
the counts displayed. Counter increments have been lost. Why?

INF2140 Parallel Programming: Lecture 4

Shared Objects & Mutual Exclusion

Concurrent Method Activations

Java method activations are not atomic:
The thread objects east and west may be executing the code for
the increment method at the same time.

INF2140 Parallel Programming: Lecture 4

Shared Objects & Mutual Exclusion

Ornamental Garden Model (1)

Process VAR models read and write access to the shared counter.
Increment is modeled inside TURNSTILE since Java method
activations are not atomic; i.e., thread objects east and west
may interleave their read and write actions.

INF2140 Parallel Programming: Lecture 4

Shared Objects & Mutual Exclusion

Ornamental Garden Model (2)

const N = 4
range T = 0..N

set VarAlpha = {value.{read[T],write[T]}}

VAR = VAR[0],
VAR[u:T] = (read[u] ->VAR[u]

|write[v:T]->VAR[v]).

The alphabet of the
shared process VAR is
declared explicitly as
a set constant,
VarAlpha.

INF2140 Parallel Programming: Lecture 4

Shared Objects & Mutual Exclusion

Ornamental Garden Model (3)

TURNSTILE = (go -> RUN),
RUN = (arrive -> INCREMENT

|end -> TURNSTILE),
INCREMENT = (value.read[x:T]

-> value.write[x+1]->RUN
)+ VarAlpha.

The TURNSTILE
alphabet is extended
with VarAlpha to
ensure no unintended
free (autonomous)
actions in VAR; e.g.,
value.write[0].

|| GARDEN =(east:TURNSTILE ||west:TURNSTILE
|| {east ,west ,display }:: value:VAR)
/{go/{east ,west}.go ,

end/{east ,west}.end} .

All actions in the
shared VAR must be
controlled (shared)
by a TURNSTILE.

INF2140 Parallel Programming: Lecture 4

Shared Objects & Mutual Exclusion

Checking for Errors: Animation

Scenario checking:
use animation to
produce a trace.

Is this trace
correct?

INF2140 Parallel Programming: Lecture 4

Shared Objects & Mutual Exclusion

Checking for Errors: Exhaustive Analysis (1)

Exhaustive checking - compose the model with a TEST process
which sums the arrivals and checks against the display value:

TEST = TEST[0],
TEST[v:T] =

(when (v<N){east.arrive ,west.arrive}->TEST[v+1]
|end ->CHECK[v]),

CHECK[v:T] =
(display.value.read[u:T] ->

(when (u==v) right -> TEST[v]
|when (u!=v) wrong -> ERROR)

)+{ display.VarAlpha }.

Like STOP, ERROR is a predefined FSP local process (state),
numbered -1 in the equivalent LTS.

INF2140 Parallel Programming: Lecture 4

Shared Objects & Mutual Exclusion

Checking for Errors: Exhaustive Analysis (2)

|| TESTGARDEN = (GARDEN || TEST).

Use LTSA to perform an exhaustive search for ERROR.

Trace to property violation in TEST:
go
east.arrive
east.value.read.0
west.arrive
west.value.read.0
east.value.write.1
west.value.write.1
end
display.value.read.1
wrong

LTSA produces
the shortest path
to reach ERROR.

INF2140 Parallel Programming: Lecture 4

Shared Objects & Mutual Exclusion

Interference and Mutual Exclusion

Destructive update, caused by the arbitrary interleaving of
read and write actions, is called interference.

Interference bugs are extremely difficult to locate.
The general solution is to give methods
mutually exclusive access to shared objects.
Mutual exclusion can be modeled as atomic actions.

INF2140 Parallel Programming: Lecture 4

Shared Objects & Mutual Exclusion

Mutual Exclusion in Java

Concurrent activations of a method in Java can be made
mutually exclusive by prefixing the method with the
keyword synchronized, which uses a lock on the object.

We correct the COUNTER class by deriving a class from it, where we
make the increment method synchronized:

class SynchronizedCounter extends Counter {

SynchronizedCounter(NumberCanvas n)
{super(n);}

synchronized void increment () { // acquire lock
super.increment ();

} // release lock
}

INF2140 Parallel Programming: Lecture 4

Shared Objects & Mutual Exclusion

Mutual Exclusion: The Ornamental Garden

Java associates a lock with every object. The compiler inserts code
to acquire the lock before executing the body of the synchronized
method and code to release the lock before the method returns.
Concurrent threads are blocked until the lock is released.

INF2140 Parallel Programming: Lecture 4

Shared Objects & Mutual Exclusion

Java’s Synchronized Statement

Access to an object may also be made mutually exclusive by using
the synchronized statement:

synchronized (object) { statements }

A less elegant way to correct the example would be to modify the
Turnstile.run() method:

synchronized(people) {people.increment ();}

Why is this “less elegant”?

To ensure mutually exclusive access to an object,
all object methods should be synchronized

INF2140 Parallel Programming: Lecture 4

Shared Objects & Mutual Exclusion

Modeling Mutual Exclusion

To add locking to our model, define a LOCK, compose it with the
shared VAR in the garden, and modify the alphabet set :

LOCK = (acquire ->release ->LOCK).
|| LOCKVAR = (LOCK || VAR).

set VarAlpha = {value.{read[T],write[T],
acquire , release }}

Modify TURNSTILE to acquire and release the lock:

TURNSTILE = (go -> RUN),
RUN = (arrive -> INCREMENT |end -> TURNSTILE),
INCREMENT = (value.acquire

-> value.read[x:T]->value.write[x+1]
-> value.release ->RUN

)+ VarAlpha.

INF2140 Parallel Programming: Lecture 4

Shared Objects & Mutual Exclusion

Revised Ornamental Garden Model: Checking for Errors

A sample animation
execution trace

Use TEST and LTSA
to perform an
exhaustive check.

Is TEST satisfied?

go
east.arrive
east.value.acquire
east.value.read.0
east.value.write.1
east.value.release
west.arrive
west.value.acquire
west.value.read.1
west.value.write.2
west.value.release
end
display.value.read.2
right

INF2140 Parallel Programming: Lecture 4

Shared Objects & Mutual Exclusion

COUNTER: Abstraction Using Action Hiding (1)

const N = 4
range T = 0..N
VAR = VAR[0],
VAR[u:T] = (read[u]->VAR[u]

| write[v:T]->VAR[v]).

LOCK = (acquire ->release ->LOCK).

INCREMENT =
(acquire ->read[x:T]

->(when (x<N) write[x+1]
->release ->increment ->INCREMENT))

+{read[T],write[T]}.

|| COUNTER = (INCREMENT ||LOCK||VAR)
@{increment }.

We have seen that shared
actions can be made
atomic by using locks.

We can abstract the
details of locks by hiding,
and model shared objects
directly in terms of their
synchronized methods,

SynchronizedCounter:
we hide read, write,
acquire, release
actions

INF2140 Parallel Programming: Lecture 4

Shared Objects & Mutual Exclusion

COUNTER: Abstraction Using Action Hiding (2)

Minimized
LTS:

We can give a more abstract, simpler description of a COUNTER
which generates the same LTS:

COUNTER = COUNTER [0]
COUNTER[v:T] =

(when (v<N) increment -> COUNTER[v+1]).

This model therefore exhibits “equivalent” behavior; i.e., it has the
same observable behavior.

INF2140 Parallel Programming: Lecture 4

Shared Objects & Mutual Exclusion

Summary

Concepts
Process interference
Mutual exclusion

Models
Model checking for interference
Modeling mutual exclusion

Practice
Multithreaded Java programs
Thread interference in shared Java objects
Mutual exclusion in Java
(synchronized objects and methods)

INF2140 Parallel Programming: Lecture 4

Shared Objects & Mutual Exclusion

