
Monitors & Condition Synchronization

INF2140 Parallel Programming: Lecture 5

Feb. 15, 2012

INF2140 Parallel Programming: Lecture 5

Monitors & Condition Synchronization

Monitors & condition Synchronization

Concepts: monitors:
encapsulated data + access procedures
mutual exclusion + condition synchronization
single access procedure active in the monitor

Models: guarded actions
Practice: private data and synchronized methods (exclusion).

wait(), notify() and notifyAll() for condition synch.

single thread active in the monitor at a time

INF2140 Parallel Programming: Lecture 5

Monitors & Condition Synchronization

5.1 Condition synchronization

A controller is required for a carpark, which only permits cars to
enter when the carpark is not full and does not permit cars to leave
when there are no cars in the carpark. Car arrival and departure are
simulated by separate threads.

INF2140 Parallel Programming: Lecture 5

Monitors & Condition Synchronization

carpark model

Events or actions of interest?
arrive and depart

Identify processes.
arrivals, departures and carpark control

Define each process and interactions (structure).

ARRIVALS CARPARK
CONTROL

DEPARTURES arrive depart

CARPARK

INF2140 Parallel Programming: Lecture 5

Monitors & Condition Synchronization

carpark model

CARPARKCONTROL(N=4) = SPACES[N],
SPACES[i:0..N] = (when(i>0) arrive->SPACES[i-1]

| when(i<N) depart->SPACES[i+1]).

ARRIVALS = (arrive->ARRIVALS).
DEPARTURES = (depart->DEPARTURES).

||CARPARK = (ARRIVALS||CARPARKCONTROL(4)||DEPARTURES).

Guarded actions are used to control arrive and depart.
LTS?

INF2140 Parallel Programming: Lecture 5

Monitors & Condition Synchronization

carpark program

Model - all entities are processes interacting by actions
Program - need to identify threads and monitors

thread - active entity which initiates (output) actions
monitor - passive entity which responds to (input) actions.

For the carpark?

ARRIVALS CARPARK
CONTROL

DEPARTURES arrive depart

CARPARK

INF2140 Parallel Programming: Lecture 5

Monitors & Condition Synchronization

carpark program - class diagram

We omit DisplayThread and GraphicCanvas threads managed by
ThreadPanel.

	

Applet Runnable

ThreadPanel

CarParkControl

Arrivals

Departures

DisplayCarParkCarParkCanvas

CarPark
arrivals,
departures

arrive()
depart()

carDisplay

carpark

disp

INF2140 Parallel Programming: Lecture 5

Monitors & Condition Synchronization

carpark program

Arrivals and Departures implement Runnable.
CarParkControl provides the control (condition
synchronization).
Instances of these are created by the start() method of the
CarPark applet:

public void start () {
CarParkControl c =

new DisplayCarPark(carDisplay ,Places);
arrivals.start(new Arrivals(c));
departures.start(new Departures(c));

}

INF2140 Parallel Programming: Lecture 5

Monitors & Condition Synchronization

carpark program - Arrivals and Departures threads

class Arrivals implements Runnable {
CarParkControl carpark;
Arrivals(CarParkControl c) {carpark = c;}
public void run() { try {

while(true) {
ThreadPanel.rotate (330);
carpark.arrive ();
ThreadPanel.rotate (30); }

} catch (InterruptedException e){}
}

}

Similarly: Departures which call carpark.depart().
How do we implement the control of CarParkControl?

INF2140 Parallel Programming: Lecture 5

Monitors & Condition Synchronization

Carpark program - CarParkControl monitor

class CarParkControl {
protected int spaces;
protected int capacity;

CarParkControl(int n)
{capacity = spaces = n;}

synchronized void arrive () {
... --spaces; ... }

synchronized void depart () {
... ++ spaces; ... }

}

Mutual excl. by
synch. methods
Condition
synchronization?
Block if full?
(spaces==0)
Block if empty?
(spaces==N)

INF2140 Parallel Programming: Lecture 5

Monitors & Condition Synchronization

condition synchronization in Java

Java provides a thread wait set per monitor (actually per object)
with the following methods:

public final void notify()
Wakes up a single thread waiting on this object’s wait set.
public final void notifyAll()
Wakes up all threads that are waiting on this object’s wait set.
public final void wait() throws InterruptedException
Waits to be notified by another thread. The waiting thread
releases the synchronization lock associated with the monitor.
When notified, the thread must wait to reacquire the monitor
before resuming execution.

INF2140 Parallel Programming: Lecture 5

Monitors & Condition Synchronization

condition synchronization in Java

We refer to a thread entering a monitor when it acquires the
mutual exclusion lock associated with the monitor and exiting the
monitor when it releases the lock.

Wait() - causes the thread to exit the monitor, permitting other
threads to enter the monitor.

Thread gA Thread B

wait()
notify()

Monitor

data

INF2140 Parallel Programming: Lecture 5

Monitors & Condition Synchronization

Monitor locking by wait and notify

wait()

Monitor

data

wait

Thread E

Thread B

Thread F

Thread A

notify()

Thread B

Thread F

Thread E

Thread A

Thread C

Thread A

INF2140 Parallel Programming: Lecture 5

Monitors & Condition Synchronization

condition synchronization in Java

FSP : when cond act -> NEWSTAT
Java:

throws InterruptedException
{

while (!cond) wait ();
// modify monitor data

notifyAll ()
}

The while loop is necessary to retest cond to ensure that
cond is indeed satisfied when it re-enters the monitor.
notifyAll() is necessary to wake other threads waiting to enter
the monitor – now that the monitor has been changed.

INF2140 Parallel Programming: Lecture 5

Monitors & Condition Synchronization

CarParkControl – condition synchronization
class CarParkControl {

protected int spaces;
protected int capacity;
CarParkControl(int n){ capacity =spaces =n;}
synchronized void arrive ()

throws InterruptedException {
while (spaces ==0) wait ();
--spaces; notifyAll (); }

synchronized void depart ()
throws InterruptedException {
while (spaces == capacity) wait ();
++ spaces; notifyAll (); }

}

Is it safe to use notify() here, rather than notifyAll()?
INF2140 Parallel Programming: Lecture 5

Monitors & Condition Synchronization

models to monitors - summary

Active entities (initiating actions) are implemented as threads.
Passive entities (responding to actions) are implemented as monitors.

Each guarded action in the model of a monitor is implemented
as a synchronized method which uses a while loop and
wait() to implement the guard. The while loop condition is
the negation of the model guard condition.
Changes in the state of the monitor are signaled to waiting
threads using notify() or notifyAll().

INF2140 Parallel Programming: Lecture 5

Monitors & Condition Synchronization

5.2 Semaphores

Semaphores are widely used for dealing with inter-process
synchronization in operating systems. Semaphore s is like an
integer variable that can take only non-negative values.
The only operations permitted on s are up(s) and down(s).
Blocked processes are held in a FIFO queue.

down(s): if s >0 then decrement s else block execution of the calling
process

up(s): if processes blocked on s then awaken one of them else
increment s

INF2140 Parallel Programming: Lecture 5

Monitors & Condition Synchronization

modelling semaphores

To ensure analyzability, we only model semaphores that take a
finite range of values. If this range is exceeded then we regard this
as an ERROR. N is the initial value.

const Max = 3
range Int = 0..Max

SEMAPHORE(N=0) = SEMA[N],
SEMA[v:Int] = (up->SEMA[v+1]

|when(v>0) down->SEMA[v-1]
),

SEMA[Max+1] = ERROR.

LTS?

INF2140 Parallel Programming: Lecture 5

Monitors & Condition Synchronization

modelling semaphores

Action down is only accepted when value v of the semaphore is
greater than 0.
Action up is not guarded.
Trace to a violation:

up -> up -> up -> up

INF2140 Parallel Programming: Lecture 5

Monitors & Condition Synchronization

semaphore demo - model

Three processes p[1..3] use a shared semaphore mutex to ensure
mutually exclusive access (action critical) to some resource.

LOOP = (mutex.down->critical->mutex.up->LOOP).
||SEMADEMO = (p[1..3]:LOOP

||{p[1..3]}::mutex:SEMAPHORE(1)).

For mutual exclusion, the semaphore initial value is 1. Why?
Is the ERROR state reachable for SEMADEMO?
Is a binary semaphore sufficient (i.e. Max=1) ?

LTS?

INF2140 Parallel Programming: Lecture 5

Monitors & Condition Synchronization

semaphore demo - model

INF2140 Parallel Programming: Lecture 5

Monitors & Condition Synchronization

semaphore demo - testing the model

LOOP = (mutex.down -> critical -> mutex.up -> LOOP).
||SEMADEMO = (p[1..3]: LOOP

|| {p[1..3]}::mutex:SEMAPHORE(2)
|| {p[1..3]}::TEST).

TEST = ({mutex.down,mutex.up} -> TEST
| critical -> (critical -> ERROR

| {mutex.down,mutex.up} -> TEST)).

Try with SEMAPHORE(1) and SEMAPHORE(2).

INF2140 Parallel Programming: Lecture 5

Monitors & Condition Synchronization

semaphores in Java

public class Semaphore {
private int value;

public Semaphore (int initial)
{value = initial ;}

synchronized public void up()
{ ++value; notifyAll (); }

synchronized public void down()
throws InterruptedException {

while (value== 0) wait ();
--value; }

}

Semaphores are
passive objects,
therefore implemented
as monitors.
(In practice,
semaphores are a
low-level mechanism
often used in
implementing the
higher-level monitor
construct.)
Is it safe to use
notify() here rather
than notifyAll()?

INF2140 Parallel Programming: Lecture 5

Monitors & Condition Synchronization

SEMADEMO display

INF2140 Parallel Programming: Lecture 5

Monitors & Condition Synchronization

5.5 Monitor Invariants

An invariant for a monitor is an assertion concerning the variables it
encapsulates. This assertion must hold whenever there is no thread
executing inside the monitor i.e. on thread entry to and exit from a
monitor .

CarParkControl Invariant: 0 <= space
Semaphore) Invariant: 0 <= value

Invariants can be helpful in understanding a monitor, and also in
reasoning about correctness of monitors using a logical proof-based
approach. In this course we use a model-based approach amenable
to mechanical checking.

INF2140 Parallel Programming: Lecture 5

Monitors & Condition Synchronization

Summary

Concepts
monitors: encapsulated data + access procedures

mutual exclusion + condition synchronization

Model
guarded actions

Practice
private data and synchronized methods in Java
wait(), notify() and notifyAll() for condition synchronization
single thread active in the monitor at a time

INF2140 Parallel Programming: Lecture 5

Monitors & Condition Synchronization

