
Monitors & Condition Synchronization &
Semaphores

INF2140 Parallel Programming. Lecture 6: Chapter 5 Part II

Feb. 29, 2012

INF2140 Parallel Programming. Lecture 6: Chapter 5 Part II

Monitors & Condition Synchronization & Semaphores

Plan today: Monitors and Semaphores

repetition of semaphores
more on implementation of SemaDemo example
Bounded Buffer example

condition synchronization
with semaphores

so-called nested semaphores
deadlock

monitor invariants

INF2140 Parallel Programming. Lecture 6: Chapter 5 Part II

Monitors & Condition Synchronization & Semaphores

Repetition: Monitors

encapsulates data and control
provides mutual exclusion

FSP: a monitor is a process
Java: a monitor is a (passive) object

Conditional synchronization
FSP: simply using conditions
Java: synchronized methods with

while-testing, wait, notify and notifyAll,
using the build-in queue of the monitor object.

Semaphores (see below)

INF2140 Parallel Programming. Lecture 6: Chapter 5 Part II

Monitors & Condition Synchronization & Semaphores

5.2 Semaphores

Semaphores are widely used for dealing with inter-process
synchronization in operating systems. Semaphore s is like an
integer variable that can take only non-negative values.
The only operations permitted on s are up(s) and down(s).
Blocked processes are held in a FIFO queue.

down(s): if s >0 then decrement s else block execution of the calling
process

up(s): if processes blocked on s then awaken one of them else
increment s

INF2140 Parallel Programming. Lecture 6: Chapter 5 Part II

Monitors & Condition Synchronization & Semaphores

modelling semaphores

To ensure analyzability, we only model semaphores that take a
finite range of values. If this range is exceeded then we regard this
as an ERROR. N is the initial value.

const Max = 3
range Int = 0..Max

SEMAPHORE(N=0) = SEMA[N],
SEMA[v:Int] = (up->SEMA[v+1]

|when(v>0) down->SEMA[v-1]
),

SEMA[Max+1] = ERROR.

INF2140 Parallel Programming. Lecture 6: Chapter 5 Part II

Monitors & Condition Synchronization & Semaphores

semaphore demo - model

Three processes p[1..3] use a shared semaphore mutex to ensure
mutually exclusive access (action critical) to some resource.

LOOP = (mutex.down->critical->mutex.up->LOOP).
||SEMADEMO = (p[1..3]:LOOP

||{p[1..3]}::mutex:SEMAPHORE(1)).

For mutual exclusion, the semaphore initial value is 1.

Note: binary semaphore (N=1)

Tested last time with a test process.

INF2140 Parallel Programming. Lecture 6: Chapter 5 Part II

Monitors & Condition Synchronization & Semaphores

semaphore demo - model

INF2140 Parallel Programming. Lecture 6: Chapter 5 Part II

Monitors & Condition Synchronization & Semaphores

semaphores in Java

pub l i c c l a s s Semaphore {
pr i va te i n t v a l u e ;

pub l i c Semaphore (i n t i n i t i a l)
{ v a l u e = i n i t i a l ; }

synchronized pub l i c void up ()
{ ++va l u e ; n o t i f y A l l () ; }

synchronized pub l i c void down ()
throws I n t e r r u p t e dE x c e p t i o n {

whi le (v a l u e== 0) wa i t () ;
−−v a l u e ; }

}

Semaphores are
passive objects,
therefore implemented
as monitors.

Is it safe to use
notify() here rather
than notifyAll()?
Note: each semaphore
implemented by a
separate object (and
its waiting queue).

INF2140 Parallel Programming. Lecture 6: Chapter 5 Part II

Monitors & Condition Synchronization & Semaphores

SEMADEMO display

INF2140 Parallel Programming. Lecture 6: Chapter 5 Part II

Monitors & Condition Synchronization & Semaphores

SEMADEMO

What if we adjust the time that each thread spends in its critical
section?

large resource requirement - more conflict?
(eg. more than 67% of a rotation)?
small resource requirement - no conflict?
(eg. less than 33% of a rotation)?

Hence the time a thread spends in its critical section should be kept
as short as possible.

INF2140 Parallel Programming. Lecture 6: Chapter 5 Part II

Monitors & Condition Synchronization & Semaphores

SEMADEMO program - revised ThreadPanel class
pub l i c c l a s s ThreadPanel extends Pane l {
// c o n s t r u c t d i s p l a y w i th t i t l e , r o t a t i n g a r c c o l o r c

pub l i c ThreadPanel (S t r i n g t i t l e , Co l o r c) { . . . }
// h a s S l i d e r == t r u e c r e a t e s pane l w i th s l i d e r

pub l i c ThreadPanel
(S t r i n g t i t l e , Co l o r c , boolean h a s S l i d e r) { . . . }

// r o t a t e d i s p l a y o f c u r r e n t l y runn ing th r ead 6 deg .
// r e t u r n f a l s e when i n i n i t i a l c o l o r , otherw . t r u e

pub l i c s t a t i c boolean r o t a t e ()
throws I n t e r r u p t e dE x c e p t i o n { . . . }

// r o t a t e d i s p l a y o f c u r r e n t l y runn ing th r ead by deg .
pub l i c s t a t i c void r o t a t e (i n t deg r e e s)

throws I n t e r r u p t e dE x c e p t i o n { . . . }
// c r e a t e a new th r ead wi th t a r g e t r and s t a r t i t

pub l i c void s t a r t (Runnable r) { . . . }
// s top the th r ead u s i n g Thread . i n t e r r u p t ()

pub l i c void s top () { . . . } }
INF2140 Parallel Programming. Lecture 6: Chapter 5 Part II

Monitors & Condition Synchronization & Semaphores

SEMADEMO program - class MutexLoop

c l a s s MutexLoop implements Runnable {
Semaphore mutex ;
MutexLoop (Semaphore sema) {mutex=sema ; }
pub l i c void run () {

t ry {
whi le (true) {

whi le (! ThreadPanel . r o t a t e ()) ;
mutex . down () ; // ge t mutual e x c l u s i o n
whi le (ThreadPanel . r o t a t e ()) ;

// c r i t i c a l a c t i o n s
mutex . up () ; // r e l e a s e mutual e x c l .

}
} catch (I n t e r r u p t e dE x c e p t i o n e){}

} }

INF2140 Parallel Programming. Lecture 6: Chapter 5 Part II

Monitors & Condition Synchronization & Semaphores

Comments: SEMADEMO program - class MutexLoop

Threads and semaphore are created by the applet start()
method.
ThreadPanel.rotate() returns false while executing
non-critical actions (dark color) and true otherwise.

INF2140 Parallel Programming. Lecture 6: Chapter 5 Part II

Monitors & Condition Synchronization & Semaphores

5.3 Bounded Buffer

A bounded buffer consists of a fixed number of slots. Items are put
into the buffer by a producer process and removed by a consumer
process.
It can be used to smooth out transfer rates between the producer
and consumer. (see car park example)

INF2140 Parallel Programming. Lecture 6: Chapter 5 Part II

Monitors & Condition Synchronization & Semaphores

Bounded Buffer - a data -independent model

PRODUCER BUFFER CONSUMER put get

BOUNDEDBUFFER

The behaviour of BOUNDEDBUFFER is independent of the actual
data values, and so can be modelled in a data-independent manner.
LTS:

INF2140 Parallel Programming. Lecture 6: Chapter 5 Part II

Monitors & Condition Synchronization & Semaphores

Bounded Buffer - a data-independent model

BUFFER(N=5) = COUNT[0],
COUNT[i:0..N] = (when (i<N) put->COUNT[i+1]

|when (i>0) get->COUNT[i-1]).

PRODUCER = (put->PRODUCER).
CONSUMER = (get->CONSUMER).

||BOUNDEDBUFFER = (PRODUCER||BUFFER(5)||CONSUMER).

Note: simple condition synchronization.
All values abstracted away!
Here only one producer and consumer.

INF2140 Parallel Programming. Lecture 6: Chapter 5 Part II

Monitors & Condition Synchronization & Semaphores

Bounded Buffer - a data-independent model - multiple users

BUFFER(N=5) = COUNT[0],
COUNT[i:0..N] = (when (i<N) put->COUNT[i+1]

|when (i>0) get->COUNT[i-1]).

PRODUCER = (put->PRODUCER).
CONSUMER = (get->CONSUMER).

||BOUNDEDBUFFER = ({a,b,c}:PRODUCER||{a,b,c}:CONSUMER
||{a,b,c}::BUFFER(5)).

Note: 7 processes
still works as expected?

INF2140 Parallel Programming. Lecture 6: Chapter 5 Part II

Monitors & Condition Synchronization & Semaphores

Bounded Buffer program - buffer monitor

pub l i c i n t e r f a ce Bu f f e r <E> { . . . }
c l a s s Buf f e r Imp l <E> implements Buf f e r<E> { . . .

pub l i c synchronized void put (E o)
throws I n t e r r u p t e dE x c e p t i o n {

whi le (count==s i z e) wa i t () ;
buf [i n] = o ; ++count ; i n = (i n+1)% s i z e ;
n o t i f y A l l () ; }

pub l i c synchronized E get ()
throws I n t e r r u p t e dE x c e p t i o n {

whi le (count==0) wa i t () ;
E o = buf [out] ;
bu f [out]= nu l l ; −−count ; out=(out+1)% s i z e ;
n o t i f y A l l () ;
return (o) ;

} }

INF2140 Parallel Programming. Lecture 6: Chapter 5 Part II

Monitors & Condition Synchronization & Semaphores

Comments: Bounded Buffer program - buffer monitor

Notes:

We separate the interface to permit an alternative
implementation later.
Is it safe to use notify() here rather than notifyAll()?

INF2140 Parallel Programming. Lecture 6: Chapter 5 Part II

Monitors & Condition Synchronization & Semaphores

Bounded Buffer program - producer process

c l a s s Producer implements Runnable {
Bu f f e r buf ;
S t r i n g a l phabe t=" abcde f gh i j k lmnopq r s t uvwxyz " ;
Producer (Bu f f e r b) { buf = b ; }
pub l i c void run () {

t ry {
i n t a i = 0 ;
whi le (true) {

ThreadPanel . r o t a t e (1 2) ;
buf . put (a l phabe t . charAt (a i)) ;
a i =(a i +1) % a l phabe t . l e n g t h () ;
ThreadPanel . r o t a t e (3 4 8) ; }

} catch (I n t e r r u p t e dE x c e p t i o n e){}
} }

INF2140 Parallel Programming. Lecture 6: Chapter 5 Part II

Monitors & Condition Synchronization & Semaphores

Bounded Buffer program - Consumer process

Similarly Consumer which calls buf.get().

INF2140 Parallel Programming. Lecture 6: Chapter 5 Part II

Monitors & Condition Synchronization & Semaphores

5.4 Nested Monitors

Suppose that, in place of using the count variable and condition
synchronization directly, we instead use two semaphores full and
empty to reflect the state of the buffer.

c l a s s SemaBuffer <E> implements Bu f f e r <E> {
. . .
Semaphore f u l l ; // count s number o f i t ems
Semaphore empty ; // count s number o f s pac e s

SemaBuffer (i n t s i z e) {
t h i s . s i z e = s i z e ; buf =(E []) new Object [s i z e] ;
f u l l = new Semaphore (0) ;
empty= new Semaphore (s i z e) ;

} }

INF2140 Parallel Programming. Lecture 6: Chapter 5 Part II

Monitors & Condition Synchronization & Semaphores

Nested Monitors - bounded buffer program

synchronized pub l i c void put (E o)
throws I n t e r r u p t e dE x c e p t i o n {

empty . down () ;
buf [i n] = o ;
++count ; i n=(i n+1)% s i z e ;
f u l l . up () ;

}
synchronized pub l i c E get ()

throws I n t e r r u p t e dE x c e p t i o n {
f u l l . down () ;
E o =buf [out] ; bu f [out]= nu l l ;
−−count ; out=(out+1)% s i z e ;
empty . up () ;
return (o) ;

}

INF2140 Parallel Programming. Lecture 6: Chapter 5 Part II

Monitors & Condition Synchronization & Semaphores

Nested Monitors - bounded buffer program

Comments:
empty is decremented during a put operation, which is
blocked if empty is zero;
full is decremented by a get operation, which is blocked if full
is zero.
Does this behave as desired?

INF2140 Parallel Programming. Lecture 6: Chapter 5 Part II

Monitors & Condition Synchronization & Semaphores

Nested Monitors - bounded buffer FSP model
const Max = 5
range Int = 0..Max
SEMAPHORE ...as before...

BUFFER = (put -> empty.down ->full.up ->BUFFER
|get -> full.down ->empty.up ->BUFFER
).

PRODUCER = (put -> PRODUCER).
CONSUMER = (get -> CONSUMER).

||BOUNDEDBUFFER = (PRODUCER|| BUFFER || CONSUMER
|| empty:SEMAPHORE(5) ||full:SEMAPHORE(0)

)@{put,get}.

Does this behave as desired?
INF2140 Parallel Programming. Lecture 6: Chapter 5 Part II

Monitors & Condition Synchronization & Semaphores

Nested Monitors - bounded buffer model

LTSA analysis predicts a possible DEADLOCK:

Composing
potential DEADLOCK

States Composed: 28 Transitions: 32 in 60ms
Trace to DEADLOCK:

get

The Consumer tries to get a character, but the buffer is empty. It
blocks and releases the lock on the semaphore full. The Producer
tries to put a character into the buffer, but also blocks. Why?

This situation is known as the nested monitor problem.

INF2140 Parallel Programming. Lecture 6: Chapter 5 Part II

Monitors & Condition Synchronization & Semaphores

Nested Monitors - bounded buffer program

synchronized pub l i c Object ge t ()
throws I n t e r r u p t e dE x c e p t i o n {

f u l l . down () ; // i f no i tems , b l o ck !
. . .

}

full

empty

buffer

get down

wait buffer

full full

put

INF2140 Parallel Programming. Lecture 6: Chapter 5 Part II

Monitors & Condition Synchronization & Semaphores

Nested Monitors - revised bounded buffer program

The only way to avoid it in Java is by careful design. In this
example, the deadlock can be removed by ensuring that the
monitor lock for the buffer is not acquired until after semaphores
are decremented.

pub l i c void put (E o)
throws I n t e r r u p t e dE x c e p t i o n {

empty . down () ;
synchronized (t h i s){

buf [i n] = o ; ++count ; i n=(i n+1)% s i z e ;
}
f u l l . up () ;

}

INF2140 Parallel Programming. Lecture 6: Chapter 5 Part II

Monitors & Condition Synchronization & Semaphores

Nested Monitors - revised bounded buffer model

BUFFER = (put -> BUFFER
|get -> BUFFER).

PRODUCER =(empty.down->put->full.up->PRODUCER).
CONSUMER =(full.down->get->empty.up->CONSUMER).

||BOUNDEDBUFFER = (PRODUCER|| BUFFER || CONSUMER
||empty:SEMAPHORE(5) ||full:SEMAPHORE(0))

@{put,get}.

The semaphore actions have been moved to the producer and
consumer. This is exactly as in the implementation where the
semaphore actions are outside the monitor .

Does this behave as desired?
Minimized LTS?

INF2140 Parallel Programming. Lecture 6: Chapter 5 Part II

Monitors & Condition Synchronization & Semaphores

Nested Monitors model - multiple consumers/producers

BUFFER = (put -> BUFFER
|get -> BUFFER).

PRODUCER =(empty.down->put->full.up->PRODUCER).
CONSUMER =(full.down->get->empty.up->CONSUMER).

||BOUNDEDBUFFER = ({a,b,c}:PRODUCER || {a,b,c}:CONSUMER
|| {a,b,c}::BUFFER
|| {a,b,c}::empty:SEMAPHORE(5)
|| {a,b,c}::full :SEMAPHORE(0))

@{{a,b,c}.put,get}.

Does this behave as desired?

INF2140 Parallel Programming. Lecture 6: Chapter 5 Part II

Monitors & Condition Synchronization & Semaphores

5.5 Monitor Invariants
An invariant for a monitor is an assertion concerning the variables
it encapsulates. This assertion must hold whenever there is no
thread executing inside the monitor, i.e., on thread entry to and
exit from a monitor.

CarParkControl Invariant: 0 ≤ spaces ≤ N
Semaphore Invariant: 0 ≤ value
Buffer Invariants:

0 ≤ count ≤ size
0 ≤ in < size
0 ≤ out < size
in = (out + count) modulo size

Invariants can be helpful in reasoning about correctness of monitors
using a logical proof-based approach. Generally we prefer to use a
model-based approach amenable to mechanical checking .

INF2140 Parallel Programming. Lecture 6: Chapter 5 Part II

Monitors & Condition Synchronization & Semaphores

Summary

Concepts
monitors:

encapsulated data + access procedures
mutual exclusion + synchronization

nested monitors
Model

guarded actions
Practice

private data and synchronized methods in Java
wait(), notify() and notifyAll() for condition
synchronization
single thread active in the monitor at a time

INF2140 Parallel Programming. Lecture 6: Chapter 5 Part II

Monitors & Condition Synchronization & Semaphores

