
Safety & Liveness Properties

INF2140 Parallel Programming: Lecture 7

March 14, 2012

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

safety & liveness properties

Concepts
properties: true for every possible execution
safety: nothing bad happens
liveness: something good eventually happens

Models
safety: no reachable ERROR/STOP state
progress: an action is eventually executed

fair choice and action priority

Practice
threads and monitors

Aim: property satisfaction

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Safety

A safety property asserts that nothing bad happens
STOP or deadlocked state (no outgoing transitions)
ERROR process (-1) to detect erroneous behaviour

ACTUATOR
=(command->ACTION),

ACTION
=(respond->ACTUATOR
|command->ERROR).

analysis using LTSA:
(shortest trace)

Trace to ERROR:
command
command

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Safety - property specification

ERROR conditions state what is not required (cf. exceptions).
In complex systems, it is usually better to specify safety
properties by stating directly what is required.

property SAFE_ACTUATOR
= (command

-> respond
-> SAFE_ACTUATOR
).

analysis using LTSA as before.

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Safety properties

Property: it is polite to knock before entering a room.

Traces: knock->enter enter
knock->knock

property POLITE
= (knock->enter->POLITE).

In all states, all the actions in
the alphabet of a property are
eligible choices.

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Safety properties

Safety property P defines a deterministic process that asserts that
any trace including actions in the alphabet of P, is accepted by P.

Thus, if P is composed with S, then traces of actions in the
alphabet of S ∩ alphabet of P must also be valid traces of P,
otherwise ERROR is reachable.

Transparency of safety properties:
Since all actions in the alphabet of a property are eligible choices,
composing a property with a set of processes does not affect their
correct behavior. However, if a behavior can occur which violates
the safety property, then ERROR is reachable. Properties must be
deterministic to be transparent.

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Safety properties

How can we specify that some action, disaster, never occurs?

property CALM = STOP + {disaster}.

A safety property must be specified so as to include all the
acceptable, valid behaviors in its alphabet.

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Safety - mutual exclusion

LOOP = (mutex.down -> enter -> exit -> mutex.up -> LOOP).
||SEMADEMO = (p[1..3]:LOOP

||{p[1..3]}::mutex:SEMAPHORE(1)).

How do we check that this does indeed ensure
mutual exclusion in the critical section?

property MUTEX =(p[i:1..3].enter -> p[i].exit -> MUTEX).
||CHECK = (SEMADEMO || MUTEX).

Check safety using LTSA.
What happens if semaphore is initialized to 2?

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Single Lane Bridge problem

A bridge over a river is only wide enough to permit a single lane of
traffic. Consequently, cars can only move concurrently if they are
moving in the same direction. A safety violation occurs if two cars
moving in different directions enter the bridge at the same time.

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Single Lane Bridge - model

Events or actions of interest?
enter and exit

Identify processes.
cars and bridge

Identify properties.
oneway

Define each process
and interactions
(structure).

red[ID].
{enter,exit}

blue[ID].
{enter,exit}

BRIDGE

property
ONEWAY

CARS

Single
Lane
Bridge

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Single Lane Bridge - CARS model

const N = 3 // number of each type of car
range T = 0..N // type of car count
range ID= 1..N // car identities

CAR = (enter->exit->CAR).

To model the fact that cars cannot pass each other on the bridge,
we model a CONVOY of cars in the same direction. We will have a
red and a blue convoy of up to N cars for each direction:

||CARS = (red:CONVOY || blue:CONVOY).

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Single Lane Bridge - CONVOY model

NOPASS1 = C[1], //preserves entry order
C[i:ID] = ([i].enter-> C[i%N+1]).
NOPASS2 = C[1], //preserves exit order
C[i:ID] = ([i].exit-> C[i%N+1]).

||CONVOY = ([ID]:CAR||NOPASS1||NOPASS2).

Permits 1.enter-> 2.enter-> 1.exit-> 2.exit
but not 1.enter-> 2.enter-> 2.exit-> 1.exit

ie. no overtaking.
INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Single Lane Bridge - BRIDGE model

Cars can move concurrently on the bridge only if they drive in the
same direction. The bridge maintains counts of blue and red cars
on the bridge. Red cars are only allowed to enter when the blue
count is zero and vice-versa.

BRIDGE = BRIDGE[0][0], // initially empty
BRIDGE[nr:T][nb:T] = //nr is the red count, nb the blue

(when(nb==0)
red[ID].enter -> BRIDGE[nr+1][nb] //nb==0

| red[ID].exit -> BRIDGE[nr-1][nb]
|when (nr==0)

blue[ID].enter-> BRIDGE[nr][nb+1] //nr==0
| blue[ID].exit -> BRIDGE[nr][nb-1]).

Even when 0, exit actions permit the car counts to be decremented.
LTSA maps these undefined states to ERROR.

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Single Lane Bridge - safety property ONEWAY

We now specify a safety property to check that cars do not collide!
While red cars are on the bridge only red cars can enter; similarly
for blue cars. When the bridge is empty, any car may enter.

property ONEWAY =(red[ID].enter -> RED[1]
|blue.[ID].enter -> BLUE[1]),

RED[i:ID] = (red[ID].enter -> RED[i+1]
|when(i==1)red[ID].exit -> ONEWAY
|when(i>1) red[ID].exit -> RED[i-1]
), //i is a count of red cars on the bridge

BLUE[i:ID]= (blue[ID].enter-> BLUE[i+1]
|when(i==1)blue[ID].exit -> ONEWAY
|when(i>1)blue[ID].exit -> BLUE[i-1]
). //i is a count of blue cars on the bridge

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Single Lane Bridge - model analysis

||SingleLaneBridge = (CARS|| BRIDGE||ONEWAY).

Is the safety property ONEWAY violated?

No deadlocks/errors

||SingleLaneBridge = (CARS||ONEWAY).

Without the BRIDGE contraints,
is the safety property ONEWAY violated?

Trace to property violation in ONEWAY:
red.1.enter
blue.1.enter

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Single Lane Bridge: Implementation in Java

Active entities (cars) are implemented as threads.
Passive entity (bridge) is implemented as a monitor.
BridgeCanvas enforces no overtaking.

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Single Lane Bridge: BridgeCanvas

A BridgeCanvas instance is created by the SingleLaneBridge
applet—a ref is passed to each created RedCar and BlueCar object.
class BridgeCanvas extends Canvas {

public void init(int ncars) {...} //set number of cars

//move red car with identity i one step
// returns true for the period on bridge , from just before
public boolean moveRed(int i) // until just after

throws InterruptedException {...}

//move blue car with identity i one step
// returns true for the period on bridge , from just before
public boolean moveBlue(int i) // until just after

throws InterruptedException {...}

public synchronized void freeze (){...} // freeze display
public synchronized void thaw (){...} // unfreeze display

}

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Single Lane Bridge - RedCar

class RedCar implements Runnable {
BridgeCanvas display; Bridge control; int id;

RedCar(Bridge b, BridgeCanvas d, int id) {
display = d; this.id = id; control = b;

}
public void run() {

try {
while(true) {

while (! display.moveRed(id)); // not on bridge
control.redEnter (); // request access to bridge
while (display.moveRed(id)); // move over bridge
control.redExit (); // release access to bridge

}
} catch (InterruptedException e) {}

}
} // Similarly for the BlueCar

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Single Lane Bridge - class Bridge

class Bridge {
synchronized void redEnter ()

throws InterruptedException {}
synchronized void redExit () {}
synchronized void blueEnter ()

throws InterruptedException {}
synchronized void blueExit () {}

}

Class Bridge provides a null implementation of the access
methods, i.e. no constraints on the access to the bridge.

Result?

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Single Lane Bridge

To ensure safety, the “safe” check box must be chosen
in order to select the SafeBridge implementation.

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Single Lane Bridge - SafeBridge

class SafeBridge extends Bridge {

private int nred = 0; // number of red cars on bridge
private int nblue = 0; // number of blue cars on bridge

// Monitor Invariant: nred≥0 and nblue≥0 and
// not (nred >0 and nblue >0)

synchronized void redEnter ()
throws InterruptedException {

while (nblue >0) wait ();
++nred;

}

synchronized void redExit (){
--nred;

if (nred ==0) notifyAll ();
}

This is a direct translation
from the BRIDGE model.

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Single Lane Bridge - SafeBridge

synchronized void blueEnter ()
throws InterruptedException {

while (nred >0) wait ();
++nblue;

}

synchronized void blueExit (){
--nblue;
if (nblue ==0) notifyAll ();

}
}

To avoid unnecessary thread switches, we use conditional
notification to wake up waiting threads only when the number of
cars on the bridge is zero, i.e. when the last car leaves the bridge.

But does every car eventually get an opportunity to cross the
bridge? This is a liveness property.

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Liveness

A safety property asserts that nothing bad happens.
A liveness property asserts that something good eventually
happens.

Single Lane Bridge: Does every car eventually get
an opportunity to cross the bridge?
ie. to make PROGRESS?

A progress property asserts that it is always the case that an action
is eventually executed.
Progress is the opposite of starvation, the name given to a
concurrent programming situation in which an action is never
executed.

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Progress properties - fair choice

Fair Choice: If a choice over a set of transitions is executed
infinitely often, then every transition in the set will be executed
infinitely often.

If a coin were tossed an
infinite number of times,
we would expect that heads
would be chosen infinitely
often and that tails would
be chosen infinitely often.

This requires Fair Choice !

COIN =(toss->heads->COIN
|toss->tails->COIN).

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Progress properties

progress P = {a1,a2..an} defines a progress property P which
asserts that in an infinite execution of a target system, at least one
of the actions a1,a2..an will be executed infinitely often.

COIN system: progress HEADS = {heads} ?
progress TAILS = {tails} ?

LTSA check progress: No progress violations detected.

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Progress properties

Suppose that there were two possible coins that could be picked up:

a trick coin and
a regular coin

TWOCOIN = (pick->COIN|pick->TRICK),
TRICK = (toss->heads->TRICK),
COIN = (toss->heads->COIN|toss->tails->COIN).

TWOCOIN system: progress HEADS = {heads} ?
progress TAILS = {tails} ?

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Progress properties

progress HEADS = {heads}
progress TAILS = {tails}

LTSA check progress Progress violation: TAILS
Trace to terminal set of states:

pick
Actions in terminal set:
{toss, heads}

progress HEADSorTails = {heads,tails}

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Progress analysis

A terminal set of states is one in which every state is reachable from
every other state in the set via one or more transitions, and there is
no transition from within the set to any state outside the set.

Terminal sets
for TWOCOIN:
{1,2} and
{3,4,5}

Given fair choice, each terminal set represents an execution in
which each action in the set is executed infinitely often.

Since there is no transition out of a terminal set, any action that is
not used in the set cannot occur infinitely often in all executions of
the system - and hence represents a potential progress violation!

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Progress analysis

A progress property is violated if analysis finds a terminal set of
states in which none of the actions in the progress set appear.

progress TAILS = {tails} in {1,2}

Default: given fair choice, every action in the alphabet of the
target system will be executed infinitely often. This is equivalent to
specifying a separate progress property for every action.

Default analysis
for TWOCOIN?

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Progress analysis

Default analysis for TWOCOIN:
separate progress property
for every action.

If the default holds, then
every other progress property
holds, i.e. every action is
executed infinitely often and
the system consists of a
single terminal set of states.

Progress violation for actions:
{pick}
Path to terminal set of states:

pick
Actions in terminal set:
{toss, heads, tails}

Progress violation for actions:
{pick, tails}
Path to terminal set of states:

pick
Actions in terminal set:
{toss, heads}

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Progress - single lane bridge

The Single Lane Bridge
implementation can permit
progress violations.
However, if default progress
analysis is applied to the
model then no violations are
detected!
Why not?

progress BLUECROSS = {blue[ID].enter}
progress REDCROSS = {red[ID].enter}
No progress violations detected.

Fair choice means that eventually every possible execution occurs,
including those in which cars do not starve. To detect progress
problems we must check under adverse conditions. We superimpose
some scheduling policy for actions, which models the situation in
which the bridge is congested.

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Progress - action priority

Action priority expressions describe scheduling properties:

High
Priority
(“<<”)

||C = (P||Q)<<{a1,...,an} specifies a composition in
which the actions a1,..,an have higher priority than any
other action in the alphabet of P||Q including the silent
action tau. In any choice in this system which has one or
more of the actions a1,...,an labeling a transition, the
transitions labeled with lower priority actions are discarded.

Low
Priority
(“>>”)

||C = (P||Q)>>{a1,...,an} specifies a composition in
which the actions a1,...,an have lower priority than any
other action in the alphabet of P||Q including the silent
action tau. In any choice in this system which has one or
more transitions not labeled by a1,...,an, the transitions
labeled by a1,...,an are discarded.

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Progress - action priority

NORMAL =(work->play->NORMAL
|sleep->play->NORMAL).

Action priority simplifies the
resulting LTS by discarding lower
priority actions from choices.

||HIGH =(NORMAL)<<{work}.

||LOW =(NORMAL)>>{work}.

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Congested single lane bridge

BLUECROSS - eventually one of the blue cars will be able to enter
REDCROSS - eventually one of the red cars will be able to enter

progress BLUECROSS = {blue[ID].enter}
progress REDCROSS = {red[ID].enter}

Congestion using action priority?
Could give red cars priority over blue (or vice versa) ?
In practice neither has priority over the other.
Instead we merely encourage congestion by lowering the
priority of the exit actions of both cars from the bridge.

||CongestedBridge = (SingleLaneBridge)
>>{red[ID].exit,blue[ID].exit}.

Progress Analysis ? LTS?
INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

congested single lane bridge model

Progress violation: BLUECROSS
Path to terminal set of states:

red.1.enter
red.2.enter

Actions in terminal set:
{red.1.enter, red.1.exit, red.2.enter,
red.2.exit, red.3.enter, red.3.exit}

Progress violation: REDCROSS
Path to terminal set of states:

blue.1.enter
blue.2.enter

Actions in terminal set:
{blue.1.enter, blue.1.exit, blue.2.enter,
blue.2.exit, blue.3.enter, blue.3.exit}

This corresponds with
the observation that,
with more than one
car, it is possible that
whichever color car
enters the bridge, this
color first will
continuously occupy
the bridge preventing
the other color from
ever crossing.

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

congested single lane bridge model

||CongestedBridge = (SingleLaneBridge)
>>{red[ID].exit,blue[ID].exit}.

Will the results be the same if we model congestion by giving car
entry to the bridge high priority?

Can congestion occur if only one car moves in each direction?
INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Progress - revised single lane bridge model

The bridge needs to know whether or not cars are waiting to cross.

Modify CAR:

CAR = (request->enter->exit->CAR).

Modify BRIDGE:

Red cars are only allowed to enter the bridge if there are
no blue cars on the bridge and there are no blue cars
waiting to enter the bridge.

Blue cars are only allowed to enter the bridge if there are
no red cars on the bridge and there are no red cars
waiting to enter the bridge.

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Progress: revised single lane bridge model

Revised version with 4 control variables:

nr: number of red cars on the bridge wr: number of red cars waiting to enter
nb: number of blue cars on the bridge wb: number of blue cars waiting to enter

BRIDGE = BRIDGE[0][0][0][0],
BRIDGE[nr:T][nb:T][wr:T][wb:T] =

(red[ID].request -> BRIDGE[nr][nb][wr+1][wb]
|when (nb==0 && wb==0)

red[ID].enter -> BRIDGE[nr+1][nb][wr-1][wb]
|red[ID].exit -> BRIDGE[nr-1][nb][wr][wb]
|blue[ID].request -> BRIDGE[nr][nb][wr][wb+1]
|when (nr==0 && wr==0)

blue[ID].enter -> BRIDGE[nr][nb+1][wr][wb-1]
|blue[ID].exit -> BRIDGE[nr][nb-1][wr][wb]
).

OK now?
INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Progress - analysis of revised single lane bridge model

Trace to DEADLOCK:
red.1.request
red.2.request
red.3.request
blue.1.request
blue.2.request
blue.3.request

The trace is the scenario in which there
are cars waiting at both ends, and
consequently, the bridge does not allow
either red or blue cars to enter.

Solution?

Introduce asymmetry in the problem (cf. Dining philosophers).

This takes the form of a boolean variable (bt) which breaks the
deadlock by indicating whether it is the turn of blue cars or red cars
to enter the bridge.

Arbitrarily set bt to true initially giving blue initial precedence.

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Progress - 2nd revision of single lane bridge model

const True = 1
const False = 0
range B = False..True
/* bt: true indicates blue turn, false indicates red turn */
BRIDGE = BRIDGE[0][0][0][0][True],
BRIDGE[nr:T][nb:T][wr:T][wb:T][bt:B] =

(red[ID].request -> BRIDGE[nr][nb][wr+1][wb][bt]
|when (nb==0 && (wb==0||!bt))

red[ID].enter -> BRIDGE[nr+1][nb][wr-1][wb][bt]
|red[ID].exit -> BRIDGE[nr-1][nb][wr][wb][True]
|blue[ID].request -> BRIDGE[nr][nb][wr][wb+1][bt]
|when (nr==0 && (wr==0||bt))

blue[ID].enter -> BRIDGE[nr][nb+1][wr][wb-1][bt]
|blue[ID].exit -> BRIDGE[nr][nb-1][wr][wb][False]
).

Analysis?

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Revised single lane bridge implementation - FairBridge

class FairBridge extends Bridge {
private int nred = 0; // red cars on the bridge
private int nblue = 0; // blue cars on the bridge
private int waitblue = 0; // waiting blue cars
private int waitred = 0; // waiting red cars
private boolean blueturn = true;

synchronized void redEnter ()
throws InterruptedException {

++ waitred;
while (nblue >0||(waitblue >0 && blueturn)) wait ();
--waitred; ++nred;

}
synchronized void redExit (){

--nred; blueturn = true;
if (nred ==0) notifyAll ();

}

This is a direct
translation from
the model.

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Revised single lane bridge implementation: FairBridge

synchronized void blueEnter (){
throws InterruptedException {

++ waitblue;
while (nred >0||(waitred >0 && !blueturn)) wait ();
--waitblue;
++nblue;

}
synchronized void blueExit (){

--nblue;
blueturn = false;
if (nblue ==0) notifyAll ();

}
}

The “fair” check box
must be chosen to
select the FairBridge
implementation.

Note that we did not need to introduce a new request monitor method. The
existing enter methods can be modified to increment a wait count before
testing whether or not the caller can access the bridge.

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

Summary

Concepts
properties: true for every possible execution
safety: nothing bad happens
liveness: something good eventually happens

Models
safety: no reachable ERROR/STOP state

compose safety properties at appropriate stages
progress: an action is eventually executed

fair choice and action priority
apply progress check on the
final target system model

Practice
threads and monitors

Aim: property satisfaction

INF2140 Parallel Programming: Lecture 7

Safety & Liveness Properties

