
Safety & Liveness Properties

INF2140 Parallel Programming: Lecture 7 PART II

March 21, 2012

INF2140 Parallel Programming: Lecture 7 PART II

Safety & Liveness Properties



Plan

repetition of main concepts
repetition of Single Lane Bridge example
final implementation of Single Lane Bridge example
Readers Writers example

safety and progress
fairness
analysis and implementation

INF2140 Parallel Programming: Lecture 7 PART II

Safety & Liveness Properties



Repetition

Safety: “A safety property asserts that nothing bad happens.”

test if any path to ERROR/STOP (use LTSA)
property specification

limit valid behaviors, by (explicit or implicit) transitions to
ERROR
program like a normal process (but stop is considered ERROR)
compose with system like a normal process

transparent – may not add behavior
deterministic

INF2140 Parallel Programming: Lecture 7 PART II

Safety & Liveness Properties



Repetition

Liveness: “A liveness property asserts that something good
eventually happens.”

Progress: guarantee that certain events will eventually
happen.
The progress property progress P = {a1,a2..an} asserts that
in an infinite execution of the system, at least one of the
actions a1,a2..an will be executed infinitely often.
Example:
COIN system: progress HEADS = {heads} ?

progress TAILS = {tails} ?

progress TAILS = {heads,tails} ?
LTSA: No progress violations detected.

INF2140 Parallel Programming: Lecture 7 PART II

Safety & Liveness Properties



Repetition

Fairness

Fair Choice (all possible actions chosen infinitely often)
FSP assumes underlying fair choice ( a1->P1 | a2->P2 | ...)
Java has no underlying fairness (notify need not be fair)

Action priority can express scheduling policy
high priority («)
low priority (»)

INF2140 Parallel Programming: Lecture 7 PART II

Safety & Liveness Properties



Progress analysis

A terminal set of states is one in which every state is reachable from
every other state in the set via one or more transitions, and there is
no transition from within the set to any state outside the set.

Terminal sets
for TWOCOIN:
{1,2} and
{3,4,5}

Given fair choice, each terminal set represents an execution in
which each action in the set is executed infinitely often.

Since there is no transition out of a terminal set, any action that is
not used in the set cannot occur infinitely often in all executions of
the system - and hence represents a potential progress violation!

INF2140 Parallel Programming: Lecture 7 PART II

Safety & Liveness Properties



Repetition: Single Lane Bridge

Model (FSP) first version
CONVOY – no overtaking
BRIDGE with counters nr (number of red cars on bridge) + nb
property ONEWAY – to check against collision. OK!

Implementation
direct implementation in Java
conditional notifyAll to be efficient. Progress not violated?

INF2140 Parallel Programming: Lecture 7 PART II

Safety & Liveness Properties



Repetition: Single Lane Bridge: Fairness

progress BLUECROSS = {blue[ID].enter}
progress REDCROSS = {red[ID].enter}
// No progress violations detected.

Progress in FSP assuming fair choice.
Progress also without fair choice?

Model scheduling in FSP, to use in Java. Consider the problematic
issues: congestion of cars. Will blue cars be able to enter? Red?

Revision 1: use priorities and identify waiting lines for blue
and red cars, using counters wr and wb respectively.

gives a deadlock (cars at both ends – no one can enter)

Revision 2: introduce a switch to enforce change in direction:
Boolean bt – blue cars have turn.

INF2140 Parallel Programming: Lecture 7 PART II

Safety & Liveness Properties



Progress - 2nd revision of single lane bridge model

const True = 1
const False = 0
range B = False..True
// bt: true indicates blue turn, false indicates red turn

BRIDGE = BRIDGE[0][0][0][0][True],

BRIDGE[nr:T][nb:T][wr:T][wb:T][bt : B] =
(red[ID].request -> BRIDGE[nr][nb][wr+1][wb][bt]
|when (nb == 0 && (wb == 0 || !bt))
red[ID].enter -> BRIDGE[nr+1][nb][wr-1][wb][bt]
|red[ID].exit -> BRIDGE[nr-1][nb][wr][wb][True]

// and similarly for blue cars:
|blue[ID].request -> BRIDGE[nr][nb][wr][wb+1][bt]
|when (nr == 0 && (wr == 0 || bt))
blue[ID].enter -> BRIDGE[nr][nb+1][wr][wb-1][bt]
|blue[ID].exit -> BRIDGE[nr][nb-1][wr][wb][False] ).

Analysis?
INF2140 Parallel Programming: Lecture 7 PART II

Safety & Liveness Properties



Revised single lane bridge implementation - FairBridge

class FairBridge extends Bridge {
private int nred = 0; // red cars on the bridge
private int nblue = 0; // blue cars on the bridge
private int waitblue = 0; // waiting blue cars
private int waitred = 0; // waiting red cars
private boolean blueturn = true;

synchronized void redEnter()
throws InterruptedException {

++waitred;
while (nblue>0||(waitblue>0 && blueturn)) wait();
--waitred; ++nred;

}
synchronized void redExit(){

--nred; blueturn = true;
if (nred==0)notifyAll();

}

This is a direct
translation from
the model.

INF2140 Parallel Programming: Lecture 7 PART II

Safety & Liveness Properties



Revised single lane bridge implementation: FairBridge

synchronized void blueEnter(){
throws InterruptedException {

++waitblue;
while (nred>0||(waitred>0 && !blueturn)) wait();
--waitblue;
++nblue;

}
synchronized void blueExit(){

--nblue;
blueturn = false;
if (nblue==0) notifyAll();

}
}

The “fair” check box
must be chosen to
select the FairBridge
implementation.

Note that we did not need to introduce a new request monitor method. The
existing enter methods can be modified to increment a wait count before
testing whether or not the caller can access the bridge.

INF2140 Parallel Programming: Lecture 7 PART II

Safety & Liveness Properties



Summary: Single Lane Bridge

FSP model
find deadlock
specify and check safety properties (ONEWAY)
revise model
specify and check progress properties (BLUECROSS,
REDCROSS)
use priorities to reflect Java’s (lack of) underlying progress
control

Java implementation
use FSP, almost direct translation to Java
use conditional notification (for better efficiency)
use FSP to re-analyse implementation choices

Aim: property satisfaction!

INF2140 Parallel Programming: Lecture 7 PART II

Safety & Liveness Properties



Classic example: Readers Writers

look at deadlock
safety
liveness
fairness
analysis and implementation

INF2140 Parallel Programming: Lecture 7 PART II

Safety & Liveness Properties



Light blue
indicates
database
access.

A shared database is accessed by two kinds of processes.
Readers execute transactions that examine the database while
Writers both examine and update the database.
A Writer must have exclusive access to the database;
any number of Readers may concurrently access it.

INF2140 Parallel Programming: Lecture 7 PART II

Safety & Liveness Properties



readers/writers model

Events or actions of interest? acquireRead,
releaseRead, acquireWrite, releaseWrite
Identify processes. Readers, Writers & the RW_Lock
Identify properties. RW_Safe RW_Progress
Define each process and interactions (structure).

INF2140 Parallel Programming: Lecture 7 PART II

Safety & Liveness Properties



readers/writers model: READER & WRITER

set Actions =
{acquireRead,releaseRead,acquireWrite,releaseWrite}

READER = (acquireRead->examine->releaseRead->READER)
+ Actions
\ {examine}.

WRITER = (acquireWrite->modify->releaseWrite->WRITER)
+ Actions
\ {modify}.

The alphabet extension ensures that the other access actions cannot
occur freely for any prefixed instance of the process (as before).

Action hiding is used as actions examine and modify are not
relevant for access synchronisation.

INF2140 Parallel Programming: Lecture 7 PART II

Safety & Liveness Properties



readers/writers model: RW_LOCK

const False = 0 const True = 1
range Bool = False..True
const Nread = 2 // Maximum readers
const Nwrite= 2 // Maximum writers

RW_LOCK = RW[0][False],

RW[readers:0..Nread][writing:Bool] =
( when (!writing)
acquireRead -> RW[readers+1][writing]

| releaseRead -> RW[readers-1][writing]
| when(readers == 0 && !writing)
acquireWrite->RW[readers][True]

| releaseWrite -> RW[readers][False]
).

RW_LOCK maintains a count of the number
of readers, and a Boolean for the writers.

INF2140 Parallel Programming: Lecture 7 PART II

Safety & Liveness Properties



readers/writers model: safety

property SAFE_RW
= ( acquireRead -> READING[1]

| acquireWrite -> WRITING
),

READING[i:1..Nread]
= ( acquireRead -> READING[i+1]

| when (i>1) releaseRead -> READING[i-1]
| when (i==1) releaseRead -> SAFE_RW
),

WRITING = (releaseWrite -> SAFE_RW).

We can check that RW_LOCK satisfies the property:

||READWRITELOCK = (RW_LOCK || SAFE_RW).

Safety Analysis ? LTS?

INF2140 Parallel Programming: Lecture 7 PART II

Safety & Liveness Properties



readers/writers model

An ERROR occurs if a reader
or writer is badly behaved
(release before acquire or
more than two readers).

We can now compose the
READWRITELOCK with
READER and WRITER
processes according to our
structure

||READERS_WRITERS
= (reader[1..Nread] :READER
|| writer[1..Nwrite]:WRITER
||{reader[1..Nread],

writer[1..Nwrite]}::READWRITELOCK).

Safety and
Progress
Analysis ?

INF2140 Parallel Programming: Lecture 7 PART II

Safety & Liveness Properties



readers/writers - progress

progress WRITE = {writer[1..Nwrite].acquireWrite}
progress READ = {reader[1..Nread].acquireRead}

WRITE: eventually one of the writers will acquireWrite
READ: eventually one of the readers will acquireRead

Adverse conditions using action priority?

We lower the priority of the release actions
for both readers and writers.

||RW_PROGRESS = READERS_WRITERS
>>{reader[1..Nread].releaseRead,

writer[1..Nwrite].releaseWrite}.

Progress Analysis ? LTS?

INF2140 Parallel Programming: Lecture 7 PART II

Safety & Liveness Properties



readers/writers model - progress

Progress violation: WRITE
Path to terminal set of states:
reader.1.acquireRead
Actions in terminal set:
{reader.1.acquireRead,reader.1.releaseRead,
reader.2.acquireRead,reader.2.releaseRead}

Writer
starvation: The
number of
readers never
drops to zero.

Try the
applet!

INF2140 Parallel Programming: Lecture 7 PART II

Safety & Liveness Properties



readers/writers implementation - monitor interface

i n t e r f a ce ReadWrite {
pub l i c void acqu i r eRead ( )

throws I n t e r r u p t e dE x c e p t i o n ;
pub l i c void r e l e a s eRead ( ) ;
pub l i c void a cqu i r eWr i t e ( )

throws I n t e r r u p t e dE x c e p t i o n ;
pub l i c void r e l e a s eW r i t e ( ) ;

}

We define an interface that identifies the monitor methods that
must be implemented, and develop a number of alternative
implementations of this interface.

Firstly, the safe READWRITELOCK.

INF2140 Parallel Programming: Lecture 7 PART II

Safety & Liveness Properties



readers/writers implementation - ReadWriteSafe

c l a s s ReadWri teSafe implements ReadWrite {
pr i va te i n t r e a d e r s =0;
pr i va te boolean w r i t i n g = f a l s e ;

pub l i c synchronized void acqu i r eRead ( )
throws I n t e r r u p t e dE x c e p t i o n {

whi le ( w r i t i n g ) wa i t ( ) ;
++r e a d e r s ; }

pub l i c synchronized void r e l e a s eRead ( ) {
−−r e a d e r s ;
i f ( r e a d e r s==0) n o t i f y ( ) ; }

Unblock a single writer when no more readers.

INF2140 Parallel Programming: Lecture 7 PART II

Safety & Liveness Properties



readers/writers implementation - ReadWriteSafe

pub l i c synchronized void a cqu i r eWr i t e ( )
throws I n t e r r u p t e dE x c e p t i o n {

whi le ( r e ade r s >0 | | w r i t i n g ) wa i t ( ) ;
w r i t i n g = true ;

}

pub l i c synchronized void r e l e a s eW r i t e ( ) {
w r i t i n g = f a l s e ;
n o t i f y A l l ( ) ;

}
}

// Unblock all readers and writers

However, this monitor implementation suffers from the WRITE
progress problem: possible writer starvation if the number of
readers never drops to zero.

Solution?
INF2140 Parallel Programming: Lecture 7 PART II

Safety & Liveness Properties



readers/writers - writer priority

Strategy:
Block readers
if there is a
writer waiting.

set Actions = {acquireRead,releaseRead,acquireWrite,
releaseWrite,requestWrite}

WRITER =(requestWrite ->acquireWrite->modify
->releaseWrite->WRITER)

+ Actions \ {modify}.

INF2140 Parallel Programming: Lecture 7 PART II

Safety & Liveness Properties



readers/writers model - writer priority

RW_LOCK = RW[0][False][0],

RW[readers:0..Nread][writing:Bool][waitingW : 0..Nwrite]
= (when (!writing && waitingW == 0)

acquireRead -> RW[readers+1][writing][waitingW]
| releaseRead -> RW[readers-1][writing][waitingW]

|when (readers==0 && !writing)
acquireWrite -> RW[readers][True][waitingW − 1]

| releaseWrite -> RW[readers][False][waitingW]
| requestWrite -> RW[readers][writing][waitingW + 1]
).

waitingW number of writer requests.
Safety and Progress Analysis ?

INF2140 Parallel Programming: Lecture 7 PART II

Safety & Liveness Properties



readers/writers model - writer priority

property RW_SAFE:

No deadlocks/errors

progress READ and WRITE:

Progress violation: READ
Path to terminal set of states:
writer.1.requestWrite
writer.2.requestWrite
Actions in terminal set:
{writer.1.requestWrite, writer.1.acquireWrite,
writer.1.releaseWrite, writer.2.requestWrite,
writer.2.acquireWrite, writer.2.releaseWrite}

Reader starvation:
if always a writer waiting.

In practice, this may be satisfactory as there are usually more read accesses
than writes, and readers generally want the most up to date information.

INF2140 Parallel Programming: Lecture 7 PART II

Safety & Liveness Properties



readers/writers implementation - ReadWritePriority

c l a s s ReadWr i t eP r i o r i t y implements ReadWrite {
pr i va te i n t r e a d e r s =0;
pr i va te boolean w r i t i n g = f a l s e ;
pr i va te i n t waitingW =0 ; // no o f wa i t i n g Wr i t e r s .

pub l i c synchronized void acqu i r eRead ( )
throws I n t e r r u p t e dE x c e p t i o n {

whi le ( w r i t i n g | | waitingW>0) wa i t ( ) ;
++r e a d e r s ;

}

pub l i c synchronized void r e l e a s eRead ( ) {
−−r e a d e r s ;
i f ( r e a d e r s==0) notifyAll() ;

} // May also be readers waiting

INF2140 Parallel Programming: Lecture 7 PART II

Safety & Liveness Properties



readers/writers implementation - ReadWritePriority

synchronized pub l i c void a cqu i r eWr i t e ( )
throws I n t e r r u p t e dE x c e p t i o n {

++waitingW ;
whi le ( r e ade r s >0 | | w r i t i n g ) wa i t ( ) ;
– –waitingW ;
w r i t i n g = true ;

}

synchronized pub l i c void r e l e a s eW r i t e ( ) {
w r i t i n g = f a l s e ;
n o t i f y A l l ( ) ;

}
}

Both READ and WRITE progress properties can be satisfied by
introducing a turn variable as in the Single Lane Bridge.

INF2140 Parallel Programming: Lecture 7 PART II

Safety & Liveness Properties



readers/writers model - fair model

RW_LOCK = RW[0][False][0][False],

RW[readers:0..Nread][writing:Bool][waitW:0..Nwrite]
[rt:Bool] =
(when (!writing &&(waitW==0 ||rt))
acquireRead -> RW[readers+1][writing][waitW][rt]
|releaseRead -> RW[readers-1][writing][waitW][False]
|when (readers==0 && !writing)
acquireWrite ->RW[readers][True][waitW-1][rt]
|releaseWrite ->RW[readers][False][waitW][True]
|requestWrite ->RW[readers][writing][waitW+1][rt]
).

rt “readers turn” used for fairness.
waitW are the waiting writers, as before.

Safety and Progress Analysis ?
INF2140 Parallel Programming: Lecture 7 PART II

Safety & Liveness Properties



Summary

Concepts
properties: true for every possible execution
safety: nothing bad happens
liveness: something good eventually happens

Models
safety: no reachable ERROR/STOP state

compose safety properties at appropriate stages
progress: an action is eventually executed

fair choice and action priority
apply progress check on the
final target system model

Practice
threads and monitors

Aim: property satisfaction

INF2140 Parallel Programming: Lecture 7 PART II

Safety & Liveness Properties


