
Model-Based Design

INF2140 Parallel Programming: Chapter 8

March 28, 2012

INF2140 Parallel Programming: Chapter 8

Model-Based Design

Design

Concepts: design process:
requirements to models to implementations

Models: check properties of interest:
safety on the appropriate (sub)system
progress on the overall system

Practice: model interpretation - to infer actual system behavior
threads and monitors

Aim: rigorous design process

INF2140 Parallel Programming: Chapter 8

Model-Based Design

8.1 from requirements to models

Model

Java

first make requirements
goals of the system
scenarios (Use Case models)
properties of interest

second make the model
1 identify the main events, actions, and

interactions
2 identify and define the main processes
3 identify and define properties of interest
4 structure the processes into an

architecture
third check the model

check traces of interest
check properties of interest

INF2140 Parallel Programming: Chapter 8

Model-Based Design

a Cruise Control System - requirements

When the car ignition is switched on and the on button is pressed,
the current speed is recorded and the system is enabled: it
maintains the speed of the car at the recorded setting.

Pressing the brake, accelerator or off button disables the
system. Pressing resume or on re-enables the system.

INF2140 Parallel Programming: Chapter 8

Model-Based Design

a Cruise Control System - hardware

Parallel Interface Adapter (PIA) is polled every 100msec. It records
the actions of the sensors:

cruise c. buttons
(on, off, resume)
brake (pressed)
accelerator (pressed)
engine (on, off).

Wheel revolution sensor generates interrupts to enable the car
speed to be calculated.
Output: The cruise control system controls the car speed by
setting the throttle via the digital-to-analogue converter.

INF2140 Parallel Programming: Chapter 8

Model-Based Design

model – design outline

Outline processes and interactions:

Input Speed monitors
the speed when the
engine is on, and
provides the current
speed readings to
speed control.

Sensor Scan monitors
the buttons, brake,
accelerator and
engine events.

Cruise Controller triggers
clear speed and record
speed, and enables or
disables the speed control.

Speed Control clears and
records the speed, and
sets the throttle
accordingly when enabled.

Throttle
sets the
actual
throttle.

Sensors

Prompts Engine

speed setThrottle

INF2140 Parallel Programming: Chapter 8

Model-Based Design

model - design

Main events, actions and interactions.
sensors on, off, resume – the Cruise Control buttons

brake, accelerator – from driver
engine on, engine off – from driver
speed – from wheel sensor of car

prompts clearSpeed, recordSpeed – from Cruise Controller
enableControl, disableControl – from Cruise Controller
setThrottle – from Speed Control
zoom – from Throttle

Identify main processes.
Sensor Scan, Input Speed
Cruise Controller, Speed Control and Throttle

Identify main properties.
safety - disabled when off, brake or accelerator pressed.

Define and structure each process.
INF2140 Parallel Programming: Chapter 8

Model-Based Design

model - structure, actions and interactions

The CONTROL
system is
structured as two
processes.
The main actions
and interactions
are as shown.

set Sen so r s = {engineOn , eng ineOf f , on , o f f ,
resume , brake , a c c e l e r a t o r }

set Engine = {engineOn , eng i n eO f f }
set Prompts = { c l ea rSpeed , recordSpeed ,

enab l eCon t r o l , d i s a b l e C o n t r o l }

INF2140 Parallel Programming: Chapter 8

Model-Based Design

model elaboration - process definitions (not CruiseContr.)
SENSORSCAN = ({ Sen so r s } −> SENSORSCAN) .

// mon i to r speed when eng i n e on
INPUTSPEED = (engineOn −> CHECKSPEED) ,
CHECKSPEED = (speed −> CHECKSPEED

| eng i n eO f f −> INPUTSPEED) .

// zoom when t h r o t t l e s e t
THROTTLE = (s e t T h r o t t l e −> zoom −> THROTTLE) .

// per fo rm speed c o n t r o l when enab l ed
SPEEDCONTROL = DISABLED ,
DISABLED = (enab l eCon t r o l −> ENABLED

| { speed , c l e a rSpeed , r e co rdSpeed } −> DISABLED) ,
ENABLED = (speed −> s e tT h r o t t l e −> ENABLED

| { recordSpeed , e n ab l eCon t r o l } −> ENABLED
| d i s a b l e C o n t r o l −> DISABLED) .

INF2140 Parallel Programming: Chapter 8

Model-Based Design

model elaboration - process definitions of Cruise Controller
set D i s a b l eA c t i o n s = { o f f , brake , a c c e l e r a t o r }
// enab l e when c r u i s i n g , d i s a b l e when d i s a b l e a c t i o n
CRUISECONTROLLER = INACTIVE ,
INACTIVE =(engineOn −> c l e a rSp e ed −> ACTIVE

| D i s a b l eA c t i o n s −> INACTIVE) ,
ACTIVE =(eng i n eO f f −> INACTIVE

| on−>recordSpeed−>enab l eCon t r o l−>CRUISING
| D i s a b l eA c t i o n s −> ACTIVE) ,

CRUISING =(eng i n eO f f −> INACTIVE
| D i s ab l eAc t i o n s−>d i s a b l eC o n t r o l−>STANDBY
| on−>recordSpeed−>enab l eCon t r o l−>CRUISING) ,

STANDBY =(eng i n eO f f −> INACTIVE
| resume −> enab l eCon t r o l −> CRUISING
| on−>recordSpeed−>enab l eCon t r o l−>CRUISING
| D i s a b l eA c t i o n s −> STANDBY
) .

INF2140 Parallel Programming: Chapter 8

Model-Based Design

model - overview of actions

Driver, represented by SensorScan, to CRUISEC. and Car
on, off, resume – push Cruise Control buttons
brake, accelerator – press pedal
engineOn, engineOff – use key

Car, represented by Input Speed, to SPEEDCONTROL
speed – by sensor on wheel

CRUISECONTROLLER to SPEEDCONTROL
clearSpeed, recordSpeed – to control speeding
enableControl, disableControl – to control activity

SPEEDCONTROL to Throttle
setThrottle – for adjusting speed

THROTTLE to Car
zoom – from Throttle, to Car (internal event)

INF2140 Parallel Programming: Chapter 8

Model-Based Design

model - CONTROL subsystem

| | CONTROL = (CRUISECONTROLLER
| | SPEEDCONTROL
) .

Animate to check particular traces:
Is control enabled after the engine is switched on and the on
button is pressed?
Is control disabled when the brake is then pressed?
Is control re-enabled when resume is then pressed?

However, we need analysis to check exhaustively:
Safety: Is the control disabled when off, brake or accelerator is pressed?

Progress: Can every action eventually be selected?

INF2140 Parallel Programming: Chapter 8

Model-Based Design

model - Safety properties

Safety checks are compositional. If no violation at a
subsystem level, then no violation when the subsystem is
composed with other subsystems.
This is because, if the ERROR state of a particular safety
property is unreachable in the LTS of the subsystem, it
remains unreachable in any subsequent parallel composition
which includes the subsystem. Hence. . .

Safety properties should be composed with the appropriate system
or subsystem to which the property refers. In order that the
property can check the actions in its alphabet, these actions must
not be hidden in the system.

INF2140 Parallel Programming: Chapter 8

Model-Based Design

model - Safety properties
property CRUISESAFETY =

({ D i s ab l eAc t i o n s , d i s a b l e C o n t r o l } −> CRUISESAFETY
| {on , resume} −> SAFETYCHECK) ,

SAFETYCHECK =
({on , resume} −> SAFETYCHEC
| D i s a b l eA c t i o n s −> SAFETYACTION
| d i s a b l e C o n t r o l −> CRUISESAFETY) ,

SAFETYACTION =(d i s a b l eC o n t r o l−>CRUISESAFETY) .

| | CONTROL =(CRUISECONTROLLER
| | SPEEDCONTROL
| | CRUISESAFETY) .

Is CRUISESAFETY violated? - LTS?
INF2140 Parallel Programming: Chapter 8

Model-Based Design

model - Safety properties
Safety analysis using LTSA produces the following violation:

Trace to property violation in CRUISESAFETY:
engineOn :
clearSpeed :
on :
recordSpeed :
enableControl :
engineOff
off
off

Strange circumstances! If the system is enabled by switching the
engine on and pressing the on button, and then the engine is
switched off, it appears that the control system is not disabled.

INF2140 Parallel Programming: Chapter 8

Model-Based Design

model - Safety properties

What if the engine is switched on again?
We can investigate further using animation ..

engineOn
clearSpeed
on
recordSpeed
enableControl
engineOff
engineOn
speed
setThrottle
speed
setThrottle
...

The car will accelerate and
zoom off when the engine is
switched on again!
.. using LTS? Action hiding
and minimization can help to
reduce the size of an LTS
diagram and make it easier
to interpret ..

INF2140 Parallel Programming: Chapter 8

Model-Based Design

Model LTS for CONTROLMINIMIZED
minimal
| | CONTROLMINIMIZED =
(CRUISECONTROLLER | | SPEEDCONTROL) @ { Sensor s , speed } .

engineOn

off
brake
accelerator
speed

off
brake
acceleratorengineOff

on

speed

off
brake

accelerator

engineOff

on
speed

engineOn

off
brake
accelerator
speed

speed off
brake
accelerator

engineOff

on
resume

speed

0 1 2 3 4 5

using progress?
INF2140 Parallel Programming: Chapter 8

Model-Based Design

model - Progress properties
Check the model for progress properties with no safety property and
no hidden actions:
Progress violation for actions: :
{accelerator, brake, clearSpeed, disableControl, enableControl,

engineOff, engineOn, off, on, recordSpeed, resume} :
Trace to terminal set of states:

engineOn :
clearSpeed :
on :
recordSpeed :
enableControl :
engineOff :
engineOn :

Cycle in terminal set: :
speed :
setThrottle :

Actions in terminal set: {setThrottle, speed} :
INF2140 Parallel Programming: Chapter 8

Model-Based Design

model - revised cruise controller
Modify CRUISECONTROLLER so that control is disabled when
the engine is switched off:

CRUISING = (eng i n eO f f −> disableControl −> INACTIVE
| D i s a b l eA c t i o n s −> d i s a b l e C o n t r o l −> STANDBY
| on −> recordSpeed−>enab l eCon t r o l−>CRUISING) ,

Modify the safety property:

property IMPROVEDSAFETY = {D i s ab l eAc t i o n s ,
d i s a b l eC o n t r o l , engineOff −> IMPROVEDSAFETY

| {on , resume} −> SAFETYCHECK) ,
SAFETYCHECK = ({on , resume} −> SAFETYCHECK

| { D i s ab l eAc t i o n s , engineOff −> SAFETYACTION
| d i s a b l e C o n t r o l −> IMPROVEDSAFETY) ,

SAFETYACTION =(d i s a b l e C o n t r o l −> IMPROVEDSAFETY) .

OK now?
INF2140 Parallel Programming: Chapter 8

Model-Based Design

revised CONTROLMINIMIZED

engineOn

off
brake
accelerator
speed

off
brake
accelerator

engineOff

on

speed

off
brake

accelerator

engineOff

on
speed

off
brake
accelerator

engineOff

on
resume

speed

0 1 2 3

No deadlocks/errors

INF2140 Parallel Programming: Chapter 8

Model-Based Design

model analysis

We can now proceed to compose the whole system:

| | CONTROL =
(CRUISECONTROLLER | | SPEEDCONTROL | | CRUISESAFETY
)@ { Sensor s , speed , s e t T h r o t t l e } .

| | CRUISECONTROLSYSTEM =
(CONTROL | | SENSORSCAN | | INPUTSPEED | | THROTTLE) .

No deadlocks/errors
Deadlock?
Safety?
Progress?

INF2140 Parallel Programming: Chapter 8

Model-Based Design

model - Progress properties

Progress checks are not compositional. Even if there is no
violation at a subsystem level, there may still be a violation
when the subsystem is composed with other subsystems.
This is because an action in the subsystem may satisfy
progress yet be unreachable when the subsystem is composed
with other subsystems which constrain its behavior. Hence. . .

Progress checks should be conducted on the complete target
system after satisfactory completion of the safety checks.
Progress? No progress violations detected

INF2140 Parallel Programming: Chapter 8

Model-Based Design

model - system sensitivities
What about progress under adverse conditions? Check for system
sensitivities.

| | SPEEDHIGH = CRUISECONTROLSYSTEM << { speed } .

Progress violation for actions:
{engineOn, engineOff, on, off, brake, accelerator,

resume, setThrottle, zoom}
Path to terminal set of states:

engineOn
tau

Actions in terminal set:
{speed}

The system may be sensitive to the priority of the action speed.
INF2140 Parallel Programming: Chapter 8

Model-Based Design

Further safety checks

We test the revised system with all relevant driver actions visible.

| | CONTROL =
(CRUISECONTROLLER | | SPEEDCONTROL | | IMPROVEDSAFETY)

@ { Sensor s , speed , s e tTh r o t t l e , zoom } .
| | CRUISECONTROLSYSTEM =

(CONTROL | | SENSORSCAN | | INPUTSPEED | | THROTTLE)
@ { Sensor s , speed , s e tTh r o t t l e , zoom } .

We may now obtain the following trace (ignoring tau actions):

engineOn, on, speed, off, setThrottle, zoom

So the revised model may zoom the car after the off button is
pressed! Not safe!

We need a safety proerty to test this!
INF2140 Parallel Programming: Chapter 8

Model-Based Design

model - stronger safety specification

The system should not change the speed when the system is
disabled, i.e. no zoom when disabled.

property SAFE =
(zoom −> ERROR
| e n ab l eCon t r o l −> SF) ,

SF = (zoom −> SF
| d i s a b l e C o n t r o l −> SAFE
| e n ab l eCon t r o l −> SF) .

This safety property is not satisfied!

Exercise: revise the model.

INF2140 Parallel Programming: Chapter 8

Model-Based Design

model interpretation

Models can be used to indicate system sensitivities.
If it is possible that erroneous situations detected in the model
may occur in the implemented system, then the model should
be revised to find a design which ensures that those violations
are avoided.
However, if it is considered that the real system will not exhibit
this behavior, then no further model revisions are necessary.

Model interpretation and correspondence to the implementation are
important in determining the relevance and adequacy of the model
design and its analysis.

INF2140 Parallel Programming: Chapter 8

Model-Based Design

The central role of design architecture

Design architecture describes the gross organization and global
structure of the system in terms of its constituent components.

We consider that the models for analysis and implementation should
be considered as elaborated views of this basic design structure.

INF2140 Parallel Programming: Chapter 8

Model-Based Design

8.2 from model to implementation

Model

Java

identify the main active entities
to be implemented as threads

identify the main (shared) passive entities
to be implemented as monitors

identify the interactive display
environment

to be implemented as associated classes

structure the classes as a class diagram

INF2140 Parallel Programming: Chapter 8

Model-Based Design

cruise control system - class diagram
cruisecontroller & speedcontrol:

enableControl()
disableControl()
recordSpeed()
clearSpeed()

Applet

CruiseControl

Controller
brake()
accelerator()
engineOff()
engineOn()
on()
off()
resume()

SpeedControl

CarSimulator

CarSpeed
setThrottle()
getSpeed()

Runnable

CruiseDisplay

car

control

sc

disp

disp

cs

SpeedControl interacts with the car simulation via interf. CarSpeed.
INF2140 Parallel Programming: Chapter 8

Model-Based Design

cruise control system - class controller
c l a s s C o n t r o l l e r {// c r u i s e c o n t r o l l e r s t a t e s

f i n a l s t a t i c i n t INACTIVE = 0 ;
f i n a l s t a t i c i n t ACTIVE = 1 ;
f i n a l s t a t i c i n t CRUISING = 2 ;
f i n a l s t a t i c i n t STANDBY = 3 ;
pr i va te i n t c o n t r o l S t a t e = INACTIVE ; // i n i t i a l s t .
pr i va te SpeedCont ro l s c ;

C o n t r o l l e r (CarSpeed cs , C r u i s eD i s p l a y d i s p)
{ sc= new SpeedCont ro l (cs , d i s p) ; }

synchronized void brake ()
{ i f (c o n t r o l S t a t e==CRUISING)

{ sc . d i s a b l e C o n t r o l () ; c o n t r o l S t a t e=STANDBY; }}
synchronized void a c c e l e r a t o r ()
{ i f (c o n t r o l S t a t e==CRUISING)

{ sc . d i s a b l e C o n t r o l () ; c o n t r o l S t a t e=STANDBY; }}

Controller is a passive entity. Hence we implement it as a monitor.
INF2140 Parallel Programming: Chapter 8

Model-Based Design

cruise control system - class controller (part 2)
synchronized void eng i n eO f f ()

{ i f (c o n t r o l S t a t e !=INACTIVE)
{ i f (c o n t r o l S t a t e==CRUISING)
sc .disableControl() ; c o n t r o l S t a t e=INACTIVE ;}}

synchronized void engineOn ()
{ i f (c o n t r o l S t a t e==INACTIVE)
{ sc . c l e a r Sp e ed () ; c o n t r o l S t a t e=ACTIVE ;}}

synchronized void on (){ i f (c o n t r o l S t a t e !=INACTIVE)
{ sc . r e co rdSpeed () ; s c . e n ab l eCon t r o l () ;
c o n t r o l S t a t e=CRUISING ;}}

synchronized void o f f (){ i f (c o n t r o l S t a t e==CRUISING)
{ sc . d i s a b l e C o n t r o l () ; c o n t r o l S t a t e=STANDBY;}}

synchronized void resume (){ i f (c o n t r o l S t a t e==STANDBY)
{ sc . e n ab l eCon t r o l () ; c o n t r o l S t a t e=CRUISING ;}}

}

This is a direct translation from the model!
INF2140 Parallel Programming: Chapter 8

Model-Based Design

cruise control system - class SpeedControl
c l a s s SpeedCont ro l implements Runnable {

f i n a l s t a t i c i n t DISABLED = 0 ; // speed c o n t r o l s t .
f i n a l s t a t i c i n t ENABLED = 1 ;
pr i va te i n t s t a t e = DISABLED ; // i n i t i a l s t a t e
pr i va te i n t s e tSpeed = 0 ; // t a r g e t speed
pr i va te Thread s p e e dC o n t r o l l e r ;
pr i va te CarSpeed cs ; // i n t e r f a c e to c o n t r o l speed
pr i va te C r u i s eD i s p l a y d i s p ;

SpeedCont ro l (CarSpeed cs , C r u i s eD i s p l a y d i s p){
t h i s . c s=cs ; t h i s . d i s p=d i s p ;
d i s p . d i s a b l e () ; d i s p . r e c o r d (0) ; }

synchronized void r e co rdSpeed (){
se tSpeed=cs . getSpeed () ; d i s p . r e c o r d (se tSpeed) ; }

synchronized void c l e a r Sp e ed (){ i f (s t a t e==DISABLED)
{ se tSpeed=0; d i s p . r e c o r d (se tSpeed) ; }}

INF2140 Parallel Programming: Chapter 8

Model-Based Design

cruise control system - class SpeedControl (Part 2)

synchronized void e n ab l eCon t r o l (){
i f (s t a t e==DISABLED)
{ d i s p . enab l e () ; s p e e dC o n t r o l l e r= new Thread (t h i s) ;
s p e e dC o n t r o l l e r . s t a r t () ; s t a t e=ENABLED; }

}
synchronized void d i s a b l e C o n t r o l (){

i f (s t a t e==ENABLED)
{ d i s p . d i s a b l e () ; s t a t e=DISABLED;}}

SpeedControl is an active entity - when enabled, a new
thread is created which periodically obtains car speed and sets
the throttle.

INF2140 Parallel Programming: Chapter 8

Model-Based Design

cruise control system - class SpeedControl (Part 3)
synchronized pub l i c void run () {
t ry { // the speed c o n t r o l l e r t h r ead
whi le (s t a t e==ENABLED) {
double e r r o r =(f l o a t) (setSpeed−cs . getSpeed ()) / 6 . 0 ;
double s t e ady = (double) s e tSpeed / 12 . 0 ;
c s . s e t T h r o t t l e (s t e ady+e r r o r) ;

// s i m p l i f i e d f e edback c o n t r o l
wa i t (5 0 0) ;
} catch (I n t e r r u p t e dE x c e p t i o n e) {}

s p e e dC o n t r o l l e r=nu l l ; }

SpeedControl is an example of a class that combines both
synchronized access methods (to update local variables) and a
thread.
run also synchronized

INF2140 Parallel Programming: Chapter 8

Model-Based Design

Summary

Concepts: design process:
from requirements to models to implementations

design architecture
Models: check properties of interest

safety: compose safety properties at appropriate (sub)system
progress: apply progress check on the final target system model

Practice: model interpretation - to infer actual system behavior
threads and monitors

Aim: rigorous design process

INF2140 Parallel Programming: Chapter 8

Model-Based Design

course outline

basic topics
2. Processes and Threads
3. Concurrent Execution
4. Shared Objects & Interference
5. Monitors & Condition Synchronization
6. Deadlock
7. Safety and Liveness Properties
8. Model-based Design

advanced topics
9. Dynamic systems
10. Message Passing
11. Concurrent Software Architectures
12. Timed Systems
13. Program Verification
14. Logical Properties

INF2140 Parallel Programming: Chapter 8

Model-Based Design

