
Dynamic Systems

INF2140 Parallel Programming: Lecture 9

April 18, 2012

INF2140 Parallel Programming: Lecture 9

Dynamic Systems

Dynamic Systems

Concepts:
Dynamic creation and deletion of processes
Resource allocation example:
varying number of users and resources.
Master-slave interaction

Models
Static: fixed populations with cyclic behavior

Practice
Dynamic creation and deletion of threads
(The number of active threads varies during execution)
Resource allocation algorithms
Java’s join() method

INF2140 Parallel Programming: Lecture 9

Dynamic Systems

Golf Club Program

Players at a Golf Club hire golf balls and then return them after use.

Player d4 is
waiting for
four balls

Expert players tend not to lose any golf balls and only hire one or
two. Novice players hire more balls, so that they have spares during
the game in case of loss. However, they buy replacements for lost
balls so that they return the same number that they originally hired.

INF2140 Parallel Programming: Lecture 9

Dynamic Systems

Golf Club: Java Implementation

The Java interface Allocator
permits us to develop a few
implementations of the golf ball
allocator without modifying the
rest of the program.

The DisplayAllocator class
implements this interface and
delegates calls to get and put
to SimpleAllocator.

public interface Allocator {
public void get(int n) throws InterruptedException;
public void put(int n);

}

INF2140 Parallel Programming: Lecture 9

Dynamic Systems

Java Implementation: SimpleAllocator Monitor

public class SimpleAllocator implements Allocator{
private int available;
public SimpleAllocator(int n)

{ available = n; }
synchronized public void get(int n)

throws InterruptedException {
while (n>available) wait ();
available -= n;

}
synchronized public void put(int n) {

available += n;
notifyAll ();

}
}

get blocks a calling thread until
sufficient golf balls are available

A novice thread requesting a large number of balls
may be overtaken and remain blocked!

INF2140 Parallel Programming: Lecture 9

Dynamic Systems

Java Implementation: Player Thread

class Player extends Thread {
private GolfClub gc; private String name;
private int nballs;

Player(GolfClub g, int n, String s) {
gc = g; name = s; nballs =n; }

public void run() {
try { gc.getGolfBalls(nballs ,name);

Thread.sleep(gc.playTime);
gc.relGolfBalls(nballs ,name);

} catch (InterruptedException e){}
}

}

The run() method terminates after releasing the golf balls.
New player threads are created dynamically.

INF2140 Parallel Programming: Lecture 9

Dynamic Systems

Golf Club Model

Allocator:

const N=5 // maximum #golf balls
range B=0..N // available range

ALLOCATOR = BALL[N],
BALL[b:B] = (when (b>0) get[i:1..b]->BALL[b-i]

|put[j:1..N] ->BALL[b+j]).

The allocator will accept requests for up to b balls,
and block requests for more than b balls.

Players:
How do we model the potentially
infinite stream of dynamically
created player threads?

Cannot model infinite state
spaces, but can model infinite
(repetitive) behaviors.

INF2140 Parallel Programming: Lecture 9

Dynamic Systems

Golf Club Model

range R=1..N // request range

PLAYER = (need[b:R]->PLAYER[b]),
PLAYER[b:R] = (get[b]->put[b]->PLAYER[b]).

set Experts = {alice ,bob ,chris}
set Novices = {dave ,eve}
set Players = {Experts ,Novices}

HANDICAP = ({ Novices .{need [3..N]},Experts.need [1..2]}
-> HANDICAP) +{ Players.need[R]}.

Fixed population of golfers: infinite stream of requests.
Players is the union of Experts and Novices.
Constraint on need action of each player.

INF2140 Parallel Programming: Lecture 9

Dynamic Systems

Golf Club Model: Analysis

CARPARKCONTROL(N=4) = SPACES[N],
SPACES[i:0..N] = (when(i>0) arrive->SPACES[i-1]

ALLOCATOR
get
put

get
need

Players:PLAYER

put

HANDICAP

Players.need

GOLFCLUB

|| GOLFCLUB =(Players:PLAYER
|| Players :: ALLOCATOR
|| HANDICAP).

Safety? Do players return the right number of balls?
Liveness? Are players eventually allocated balls ?

INF2140 Parallel Programming: Lecture 9

Dynamic Systems

Golf Club Model: Liveness

progress NOVICE = {Novices.get[R]}
progress EXPERT = {Experts.get[R]}
|| ProgressCheck = GOLFCLUB >>{Players.put[R]}.

Progress violation: NOVICE
Trace to terminal set of states:
alice.need.2
bob.need.2
chris.need.2
chris.get.2
dave.need.5
eve.need.5
Cycle in terminal set:
alice.get.2
alice.put.2
Actions in terminal set:
{alice , bob , chris }.{get , put }[2]

Novice players dave and
eve suffer starvation.
They are continually
overtaken by the experts
alice, bob, and chris.

INF2140 Parallel Programming: Lecture 9

Dynamic Systems

Fair Allocation

Allocation in arrival order, using tickets:

const TM = 5 // maximum ticket
range T = 1..TM // ticket values
TICKET = NEXT[1],
NEXT[t:T] = (ticket[t]->NEXT[t%TM +1]).

Players and Allocator:

PLAYER = (need[b:R]->PLAYER[b]),
PLAYER[b:R]= (ticket[t:T]->get[b][t]->put[b]

->PLAYER[b]).
ALLOCATOR = BALL[N][1],
BALL[b:B][t:T] =
(when (b>0) get[i:1..b][t]->BALL[b-i][t%TM+1]
|put[j:1..N] ->BALL[b+j][t]).

INF2140 Parallel Programming: Lecture 9

Dynamic Systems

Fair Allocation: Analysis

Ticketing increases the size of the model for analysis.
We compensate by modifying the HANDICAP constraint:

HANDICAP =
({ Novices .{need [4]}, Experts.need[1]}-> HANDICAP
) +{ Players.need[R]}.

Experts use 1 ball, Novices use 4 balls.

|| GOLFCLUB =(Players:PLAYER
|| Players ::(ALLOCATOR || TICKET)
|| HANDICAP).

Safety? Liveness?

progress NOVICE = {Novices.get[R][T]}
progress EXPERT = {Experts.get[R][T]}

INF2140 Parallel Programming: Lecture 9

Dynamic Systems

Revised Golf Club Program - FairAllocator Monitor

public class FairAllocator implements Allocator {
private int available;
private long turn = 0; //next ticket to be dispensed
private long next = 0; //next ticket to be served

public FairAllocator(int n) { available = n; }

synchronized public void get(int n)
throws InterruptedException {

long myturn = turn; ++turn;
while (n>available || myturn != next) wait ();
++next; available -= n; notifyAll ();

}
synchronized public void put(int n) {

available += n; notifyAll ();
}

}

Block calling thread until
sufficient balls and next turn.

Why is it necessary for get to include notifyAll()?
INF2140 Parallel Programming: Lecture 9

Dynamic Systems

Revised Golf Club Program - FairAllocator

Players g1 and h1 are waiting. Even though two balls are available,
they cannot overtake player f4.

What happens if c, d and e all return their golf balls?

INF2140 Parallel Programming: Lecture 9

Dynamic Systems

Bounded Allocation

Allocation in arrival order is not efficient. Bounded allocation
allows experts to overtake novices but denies starvation by setting
an upper bound on the number of times a novice can be overtaken.
We model players who have overtaken others as a set.

const False = 0
const True = 1
range Bool = 0..1

ELEMENT(Id=0) = IN[False],
IN[b:Bool] = (add[Id] -> IN[True]

| remove[Id] -> IN[False]
| contains[Id][b] -> IN[b]).

||SET = (forall[i:T] (ELEMENT(i))).

A SET is modeled as the parallel composition of elements

INF2140 Parallel Programming: Lecture 9

Dynamic Systems

Bounded Allocation: Allocator model

We model bounded overtaking using tickets, where ticket numbers
indicate the order in which players make their requests. The allocator
records which ticket number is next.

Overtaking occurs when we allocate balls to a player whose turn,
indicated by his/her ticket number—is subsequent to a waiting player
with the next ticket. The overtaking player is added to the overtaking
set, and a count ot is incremented to indicate the number of times next
has been overtaken.

When the count equals the bound, we allow allocation to the next player
only. When allocation is made to the next player, we update next to
indicate the next (waiting) player. We skip the ticket numbers of
overtaking players who already received their allocation, remove each of
these intervening players from the overtaking set and decrement the
overtaking count ot accordingly.

(This is done in the local process, WHILE, in the ALLOCATOR model.)

INF2140 Parallel Programming: Lecture 9

Dynamic Systems

Bounded Allocation: Allocator model

ALLOCATOR = BALL[N][1][0] , // initially N balls ,
BALL[b:B][next:T][ot:0..Bd] = //1 is next , empty set

(when (b>0 && ot <Bd) get[i:1..b][turn:T] ->
if (turn!=next) then

(add[turn] -> BALL[b-i][next][ot+1])
else WHILE[b-i][next%TM+1][ot]

|when (b>0 && ot==Bd) get[i:1..b][next] ->
WHILE[b-i][next%TM+1][ot]

|put[j:1..N] -> BALL[b+j][next][ot]
),

WHILE[b:B][next:T][ot:0..Bd] =
(contains[next][yes:Bool] ->

if (yes) then
(remove[next] -> WHILE[b][next%TM+1][ot -1])

else BALL[b][next][ot])+{ add[T],remove[T]}.

INF2140 Parallel Programming: Lecture 9

Dynamic Systems

Bounded Allocation: Allocator model

where

const N = 5 // maximum #golf balls
const Bd = 2 // bound on overtaking
range B = 0..N // available range

const TM = N + Bd // maximum ticket
range T = 1..TM // ticket values

|| GOLFCLUB = (Players:PLAYER
|| ALLOCATOR || TICKET ||SET
|| HANDICAP
)/ {Players.get/get , Players.put/put ,

Players.ticket/ticket }.

INF2140 Parallel Programming: Lecture 9

Dynamic Systems

Bounded Allocation: An Explanatory Trace

eve.need.4 // Experts Eve and Dave
dave.need.4
chris.need.1 // Novices Alice , Bob and Chris
alice.need.1
bob.need.1
alice.ticket .1
alice.get .1.1 // Alice gets 1 ball , ticket 1
contains .2.0 // Ticket 2 is next
bob.ticket .2
bob.get .1.2 // Two allocated , three available
contains .3.0 // Ticket 3 is next
dave.ticket .3 // Dave needs four balls: waits
chris.ticket .4
chris.get .1.4 // Chris overtakes
add.4
eve.ticket .5 // Eve needs four balls: waits
alice.put.1
alice.ticket .6
alice.get .1.6 // Alice overtakes
add.6
bob.put.1
bob.ticket .7
bob.get .1.7 // Bob overtakes: bound reached
add.7

Using animation,
we can perform
a scenario and
produce a trace.

INF2140 Parallel Programming: Lecture 9

Dynamic Systems

Bounded Allocation: An Explanatory Trace

Exhaustive checking:

Safety?

Liveness?

Can we also specify the bounded nature
of this allocator as a safety property?

INF2140 Parallel Programming: Lecture 9

Dynamic Systems

Bounded Allocation: Safety Property

For each player, check that he/she is not overtaken more than
bound times. Overtaking is indicated by an allocation to a player
whose ticket t lies between the player’s turn and the latest ticket.

property BOUND(P=’alice) =
({ Players \{[P]}}. ticket[T] -> BOUND
|[P]. ticket[t:T] -> WAITING[t][t][0]
|[Players].get[R][T] -> BOUND),

WAITING[turn:T][latest:T][overtaken :0..Bd] =
([P].get[b:R][turn] -> BOUND
|{ Players \{[P]}}. get[b:R][t:T] ->

if ((t>turn && (t<= latest || latest <turn))
||(t<turn && (t<= latest && latest <turn)))

then WAITING[turn][latest][overtaken +1]
else WAITING[turn][latest][overtaken]

|Players.ticket[last:T] ->WAITING[turn][last][overtaken]).

Action labels used in expressions or as parameter values
must be prefixed with a single quote.

INF2140 Parallel Programming: Lecture 9

Dynamic Systems

Bounded Overtaking Allocator: Implementation

Implementation of the BoundedOvertakingAllocator

Monitor follows
the algorithm in
the model.

Novice player f4 has been overtaken by expert players g1, h1, and
i1. Since the overtaking bound of three has been exceeded, players
j1 and k1 are blocked although there are two golf balls available.

INF2140 Parallel Programming: Lecture 9

Dynamic Systems

Master-Slave Program

A Master thread creates a
Slave thread to perform some
task (eg. I/O) and continues.

Later, the Master synchronizes
with the Slave to collect the
result.

How can we avoid busy waiting
for the Master?

Java class Thread provides
method join() which waits for
the thread to die, i.e. by
returning from run() or as a
result of stop().

INF2140 Parallel Programming: Lecture 9

Dynamic Systems

Java Implementation: Master-Slave

class Master implements Runnable {
ThreadPanel slaveDisplay; SlotCanvas resultDisplay;
Master(ThreadPanel tp, SlotCanvas sc)

{slaveDisplay=tp; resultDisplay=sc;}

public void run() {
try {

String res=null;
while(true) {

while (! ThreadPanel.rotate ());
if (res!=null) resultDisplay.leave(res);
Slave s = new Slave (); // create new slave thread
Thread st = slaveDisplay.start(s,false);
while (ThreadPanel.rotate ()); // continue execution
st.join (); // wait for slave termination
res = String.valueOf(s.result ()); //get and display
resultDisplay.enter(res); } // result from slave

} catch (InterruptedException e){}
}

}
Slave thread is created and started
using the ThreadPanel method

start.INF2140 Parallel Programming: Lecture 9

Dynamic Systems

Java Implementation: Master-Slave

class Slave implements Runnable {
int rotations = 0;

public void run() {
try {

while (! ThreadPanel.rotate ()) ++ rotations;
} catch (InterruptedException e){}

}

int result (){
return rotations;

}
}

Slave method result need not be synchronized to
avoid interference with the Master thread. Why not?

INF2140 Parallel Programming: Lecture 9

Dynamic Systems

Master-Slave Model

join is
modeled by a
synchronized
action.

SLAVE = (start ->rotate ->join ->SLAVE).
MASTER = (slave.start ->rotate

->slave.join ->rotate ->MASTER).

|| MASTER_SLAVE = (MASTER || slave:SLAVE).

slave.rotate
and rotate are
interleaved,
i.e., concurrent

INF2140 Parallel Programming: Lecture 9

Dynamic Systems

Dynamic Systems

Concepts:
Dynamic creation and deletion of processes
Resource allocation example:
varying number of users and resources.
Master-slave interaction

Models
Static: fixed populations with cyclic behavior

Practice
Dynamic creation and deletion of threads
(the number of active threads varies during execution)
Resource allocation algorithms
Java’s join() method

INF2140 Parallel Programming: Lecture 9

Dynamic Systems

