
Final Repetition and Questions

INF2140 Parallel Programming

May 23, 2012

INF2140 Parallel Programming

Final Repetition and Questions

Plan

repetition of FSP
main concepts
a major example

Readers Writers example
FSP things
safety and progress
fairness
analysis and implementation

INF2140 Parallel Programming

Final Repetition and Questions

Rough overview FSP to Java

FSP Java
(main) process thread
process after comma part of thread
process[index] thread with variable
process definition run method
action method
indexed action method with parameter
recursion while/recursion in run
alphabet interface
labeling/prefixing (:) instantiation/creation
process sharing (::) not relevant (caller/callee)
high priority (>>) no fairness mechanisms
low priority (<<) no fairness mechanisms
hiding non-visible methods

INF2140 Parallel Programming

Final Repetition and Questions

Classic example: Readers Writers

look at deadlock
safety
liveness
fairness
analysis and implementation

INF2140 Parallel Programming

Final Repetition and Questions

Light blue
indicates
database
access.

A shared database is accessed by two kinds of processes.
Readers execute transactions that examine the database while
Writers both examine and update the database.
A Writer must have exclusive access to the database;
any number of Readers may concurrently access it.

INF2140 Parallel Programming

Final Repetition and Questions

readers/writers model

Events or actions of interest? acquireRead,
releaseRead, acquireWrite, releaseWrite
Identify processes. Readers, Writers & the RW_Lock
Identify properties. RW_Safe RW_Progress
Define each process and interactions (structure).

INF2140 Parallel Programming

Final Repetition and Questions

readers/writers model: READER & WRITER

set Actions =
{acquireRead,releaseRead,acquireWrite,releaseWrite}

READER = (acquireRead->examine->releaseRead->READER)
+ Actions
\ {examine}.

WRITER = (acquireWrite->modify->releaseWrite->WRITER)
+ Actions
\ {modify}.

The alphabet extension ensures that the other access actions cannot
occur freely for any prefixed instance of the process (as before).

Action hiding is used as actions examine and modify are not
relevant for access synchronisation.

INF2140 Parallel Programming

Final Repetition and Questions

readers/writers model: RW_LOCK

const False = 0 const True = 1
range Bool = False..True
const Nread = 2 // Maximum readers
const Nwrite= 2 // Maximum writers

RW_LOCK = RW[0][False],

RW[readers:0..Nread][writing:Bool] =
(when (!writing)
acquireRead -> RW[readers+1][writing]

| releaseRead -> RW[readers-1][writing]
| when(readers == 0 && !writing)
acquireWrite->RW[readers][True]

| releaseWrite -> RW[readers][False]
).

RW_LOCK maintains a count of the number
of readers, and a Boolean for the writers.

INF2140 Parallel Programming

Final Repetition and Questions

readers/writers model: safety

property SAFE_RW
= (acquireRead -> READING[1]

| acquireWrite -> WRITING
),

READING[i:1..Nread]
= (acquireRead -> READING[i+1]

| when (i>1) releaseRead -> READING[i-1]
| when (i==1) releaseRead -> SAFE_RW
),

WRITING = (releaseWrite -> SAFE_RW).

We can check that RW_LOCK satisfies the property:

||READWRITELOCK = (RW_LOCK || SAFE_RW).

Safety Analysis ? LTS?

INF2140 Parallel Programming

Final Repetition and Questions

readers/writers model

An ERROR occurs if a reader
or writer is badly behaved
(release before acquire or
more than two readers).

We can now compose the
READWRITELOCK with
READER and WRITER
processes according to our
structure

||READERS_WRITERS
= (reader[1..Nread] :READER
|| writer[1..Nwrite]:WRITER
||{reader[1..Nread],

writer[1..Nwrite]}::READWRITELOCK).

Safety and
Progress
Analysis ?

INF2140 Parallel Programming

Final Repetition and Questions

readers/writers - progress

progress WRITE = {writer[1..Nwrite].acquireWrite}
progress READ = {reader[1..Nread].acquireRead}

WRITE: eventually one of the writers will acquireWrite
READ: eventually one of the readers will acquireRead

Adverse conditions using action priority?

We lower the priority of the release actions
for both readers and writers.

||RW_PROGRESS = READERS_WRITERS
>>{reader[1..Nread].releaseRead,

writer[1..Nwrite].releaseWrite}.

Progress Analysis ? LTS?

INF2140 Parallel Programming

Final Repetition and Questions

readers/writers model - progress

Progress violation: WRITE
Path to terminal set of states:
reader.1.acquireRead
Actions in terminal set:
{reader.1.acquireRead,reader.1.releaseRead,
reader.2.acquireRead,reader.2.releaseRead}

Writer
starvation: The
number of
readers never
drops to zero.

Try the
applet!

INF2140 Parallel Programming

Final Repetition and Questions

readers/writers implementation - monitor interface

i n t e r f a ce ReadWrite {
pub l i c void acqu i r eRead ()

throws I n t e r r u p t e dE x c e p t i o n ;
pub l i c void r e l e a s eRead () ;
pub l i c void a cqu i r eWr i t e ()

throws I n t e r r u p t e dE x c e p t i o n ;
pub l i c void r e l e a s eW r i t e () ;

}

We define an interface that identifies the monitor methods that
must be implemented, and develop a number of alternative
implementations of this interface.

Firstly, the safe READWRITELOCK.

INF2140 Parallel Programming

Final Repetition and Questions

readers/writers implementation - ReadWriteSafe

c l a s s ReadWri teSafe implements ReadWrite {
pr i va te i n t r e a d e r s =0;
pr i va te boolean w r i t i n g = f a l s e ;

pub l i c synchronized void acqu i r eRead ()
throws I n t e r r u p t e dE x c e p t i o n {

whi le (w r i t i n g) wa i t () ;
++r e a d e r s ; }

pub l i c synchronized void r e l e a s eRead () {
−−r e a d e r s ;
i f (r e a d e r s==0) n o t i f y () ; }

Unblock a single writer when no more readers.

INF2140 Parallel Programming

Final Repetition and Questions

readers/writers implementation - ReadWriteSafe

pub l i c synchronized void a cqu i r eWr i t e ()
throws I n t e r r u p t e dE x c e p t i o n {

whi le (r e ade r s >0 | | w r i t i n g) wa i t () ;
w r i t i n g = true ;

}

pub l i c synchronized void r e l e a s eW r i t e () {
w r i t i n g = f a l s e ;
n o t i f y A l l () ;

}
}

// Unblock all readers and writers

However, this monitor implementation suffers from the WRITE
progress problem: possible writer starvation if the number of
readers never drops to zero.

Solution?
INF2140 Parallel Programming

Final Repetition and Questions

readers/writers - writer priority

Strategy:
Block readers
if there is a
writer waiting.

set Actions = {acquireRead,releaseRead,acquireWrite,
releaseWrite,requestWrite}

WRITER =(requestWrite ->acquireWrite->modify
->releaseWrite->WRITER)

+ Actions \ {modify}.

INF2140 Parallel Programming

Final Repetition and Questions

readers/writers model - writer priority

RW_LOCK = RW[0][False][0],

RW[readers:0..Nread][writing:Bool][waitingW : 0..Nwrite]
= (when (!writing && waitingW == 0)

acquireRead -> RW[readers+1][writing][waitingW]
| releaseRead -> RW[readers-1][writing][waitingW]

|when (readers==0 && !writing)
acquireWrite -> RW[readers][True][waitingW − 1]

| releaseWrite -> RW[readers][False][waitingW]
| requestWrite -> RW[readers][writing][waitingW + 1]
).

waitingW number of writer requests.
Safety and Progress Analysis ?

INF2140 Parallel Programming

Final Repetition and Questions

readers/writers model - writer priority

property RW_SAFE:

No deadlocks/errors

progress READ and WRITE:

Progress violation: READ
Path to terminal set of states:
writer.1.requestWrite
writer.2.requestWrite
Actions in terminal set:
{writer.1.requestWrite, writer.1.acquireWrite,
writer.1.releaseWrite, writer.2.requestWrite,
writer.2.acquireWrite, writer.2.releaseWrite}

Reader starvation:
if always a writer waiting.

In practice, this may be satisfactory as there are usually more read accesses
than writes, and readers generally want the most up to date information.

INF2140 Parallel Programming

Final Repetition and Questions

readers/writers implementation - ReadWritePriority

c l a s s ReadWr i t eP r i o r i t y implements ReadWrite {
pr i va te i n t r e a d e r s =0;
pr i va te boolean w r i t i n g = f a l s e ;
pr i va te i n t waitingW =0 ; // no o f wa i t i n g Wr i t e r s .

pub l i c synchronized void acqu i r eRead ()
throws I n t e r r u p t e dE x c e p t i o n {

whi le (w r i t i n g | | waitingW>0) wa i t () ;
++r e a d e r s ;

}

pub l i c synchronized void r e l e a s eRead () {
−−r e a d e r s ;
i f (r e a d e r s==0) notifyAll() ;

} // May also be readers waiting

INF2140 Parallel Programming

Final Repetition and Questions

readers/writers implementation - ReadWritePriority

synchronized pub l i c void a cqu i r eWr i t e ()
throws I n t e r r u p t e dE x c e p t i o n {

++waitingW ;
whi le (r e ade r s >0 | | w r i t i n g) wa i t () ;
– –waitingW ;
w r i t i n g = true ;

}

synchronized pub l i c void r e l e a s eW r i t e () {
w r i t i n g = f a l s e ;
n o t i f y A l l () ;

}
}

Both READ and WRITE progress properties can be satisfied by
introducing a turn variable as in the Single Lane Bridge.

INF2140 Parallel Programming

Final Repetition and Questions

readers/writers model - fair model

RW_LOCK = RW[0][False][0][False],

RW[readers:0..Nread][writing:Bool][waitW:0..Nwrite]
[rt:Bool] =
(when (!writing &&(waitW==0 ||rt))
acquireRead -> RW[readers+1][writing][waitW][rt]
|releaseRead -> RW[readers-1][writing][waitW][False]
|when (readers==0 && !writing)
acquireWrite ->RW[readers][True][waitW-1][rt]
|releaseWrite ->RW[readers][False][waitW][True]
|requestWrite ->RW[readers][writing][waitW+1][rt]
).

rt “readers turn” used for fairness.
waitW are the waiting writers, as before.

Safety and Progress Analysis ?
INF2140 Parallel Programming

Final Repetition and Questions

