
Java program generation

Introduction
Genova’s generators may be used to generate a complete Java application with GUI,
application and data access code. Four different code generators are involved.

• Generation of java domain classes from the class model in Rose.
• Generation of java GUI client code based on Swing from dialog models. This is

done with Dialog Designer with Java/Jfc as target.
• Generation of database service code with support for complex database operations

from object selections. This is done with Service Designer with Java as target.
• Data access code supported by Object to Relational mappings for Hibernate. The

descriptions are generated by Database Designer, data access generation with
Hibernate as target.

The full application system consists of the generated code together with a runtime
framework of java classes distributed with Genova, genova-runtime.jar. The jar file
contains both class files and java source.

The domain model
See Genova810DokDomenemodell.doc

The Genova models
The two code generators, Client Generator and Server Generator, both uses models
developed in Genova. Client Generator uses the dialog model when generating the GUI
code and it uses the underlying object selection when generating code for manipulating
data in the GUI. Server Generator uses only the object selections as bases for the code it
generate.

Object Selections
Object selections represents a subset of the class model and are used both as a basis for
creating dialogs, generating client code and for generating service code. Object selections
are described in the Dialog Designer manual, chapter 5 “Object Selections”.

Customer
(from customer)

Order

0..n

1

Product

LineItems0..n

1 0..n

1

0..n

1

1

0..n

1

0..n

Figure 1: An UML-model with four associated classes

Figure 2: An object selection based on the UML-model in figure 1

When defining an object selection one first choose a root class. From the root class one
adds one or more classes associated with the root class. Figure 1 shows a class-model
with four associated classes and figure 2 shows an object selection containing these four
classes.

The object selection in figure 2 has two roots, Order and ProductList. The two nodes
Product and ProductList are both nodes representing the class Product.
The following definitions will be used throughout this manual.

Owner and Member roles for an association. In an association between two classes,
one class represents the owner of the association while the other represents the member.
In a one to many association the one side always represent the owner while the many side
represent the member. In figure 1 Customer is the owner and Order is the member in the
association between the two classes.

Downward-related role: In an object selection downward-related roles are the classes
found when following associations in the owner-member direction. In figure 2 LineItems
is downward-related from Order.

Upward-related role: In an object selection upward-related roles are the classes found
when following associations in the member-owner direction. In figure 2 Customer is
upward-related from Order and Product is upward-related from LineItems,

Main tree: A main tree is defined as the classes found when recursively following
downward-related associations from a root node in the object selection. An object
selection may have one or more root nodes and therefore consists of one or more main
trees. An object selection may then be described as one or more main trees with upward-
related sub-trees. In figure 2 the first main tree consists of the root node Order and the
downward-related node LineItems. This main tree has two upward related sub-trees,
Customer and Order. The second main tree consists of the single node productList.

Target role: All actions supported by the server code have a target role. Any role in an
object selection may be the target role. In figure 2, if Product is the target, the path to
target contains the two nodes LineItems and Order.

Path to target: The path to target is the list of nodes in an object selection from the target
role to the root role. The target role itself is not a part of path to target, i.e. if the target
role is a root in the object selection, the path to target is empty.

Main keys: The object selections must contain a complete unique key (main key) for
each class/role. This means that if the main key in class X is a group containing a related
attribute from class Y, then class Y must also be included in the object selection. The
main key is by default the attribute or group specified as the primary key for the class. If
the entire primary key is not present then the first unique attribute or group present is
regarded as the main key. When searching for the first unique key Genova will first
search true all attributes in a class, then all of the groups. If the class is an inherited class
the attributes from the super class is taken before those from the subclass.
Note: Client Generator and Service Generator use the same strategy when picking the
main key. However, Client Generator will only choose between attributes/groups that are
contained in the dialog. The two may therefore disagree about the main key, but the client
code will always send the name of the key the service should use.

Service Generator
Service Generator generates code for the service part of an application. The code
generated is based on the Object Selections together with the specification given in the
Service Designer setup for the wanted target. The only target available at the moment is
Java.

The Java code generated by Service Generator is intended to be used together with code
generated by Client Generator with Java/Jfc as target, but may also be used from any self

written code. The service code uses an implementation of the interface
no.genova.service.DataService to access the database. The runtime library comes with an
implementation based on Hibernate.

Code interface
Service Generator generates a set of methods for each node in the object selection. This
set consists of methods for standard database operations. The methods are defined in the
interface no.genova.service.JGrapeService. The following methods are defined in the
interface:

Object find(ObjectSelection objectSelection, ClientContext ctx)
List findAll(ObjectSelection objectSelection, ClientContext ctx)
Object save(ObjectSelection objectSelection, ClientContext ctx)
Object insert(ObjectSelection objectSelection, ClientContext ctx)
Object update(ObjectSelection objectSelection, ClientContext ctx)
Object delete(ObjectSelection objectSelection, ClientContext ctx)
Object connect(ObjectSelection objectSelection, ClientContext ctx)
Object disconnect(ObjectSelection objectSelection, ClientContext ctx)

The methods all take two parameters, an ObjectSelection containing the data to work on
and a ClientContext describing the user context.

Except for findAll all the other methods return an object that may either be a List of root
objects or a single root object. The client code should always test if the result object is a
List or not. The findAll method will always return a list of objects searched for.

ClientContext
ClientContext may contain the following data

String userId String identifying current user.
String applicationName String identifying current application
String databaseContext String identifying current database context
boolean debug Flag telling if running in debug mode.
Map params Map containing additional parameters.

With the exception of databaseContext, the generated service code does not use the client
context. Any content and usage is left to the application programmers. Usage of
databaseContex is described in XXXX.

ObjectSelection
Object Selection is used to specify the data details needed by the service code to perform
the service action wanted by the client. The class contains the following data

String currentRootName Name of the root node in the object selection
String targetRoleName Name of the target role node in the object selection.

The target role is a node in the tree started from
current root.

String targetMainKey Name of the identifying key for the target role. If it
is not specified, the primary key for the class will be
used.

Map roots Map containing pointers to root nodes identified by
rootName. Will at least contain a pointer to the data
representing current root, but data for additional
roots may be added.

String objectSelectionName Name of the object selection
String applicationName String identifying current service application.
FindData findData Details for Find and FindAll actions. The findData

is not generated by the client code. This data may
be added by the programmer to extent the search
possibilities. See further description of FindData in
XXXX

Action supported by generated code
For each node in an Object Selection, Service Generator supports the following server
side actions:

• Find
• FindAll
• Save
• Insert
• Update
• Delete

All of these actions take an Object Selection role as target and the generated code will do
the action for the target role and all roles below the target role in the Object Selection.
All actions operate on a single occurrence of the target role, even if the role itself is
connected into the Object Selection via a many-association.

Find action
The Find action will identify one occurrence of the target role based on the value of the
main key. This should always identify a single occurrence of the target role. The target
should be one of the root roles in the object selection. If a target object is found all
objects related to the target object will be returned too.

FindAll action
The FindAll action will identify all occurrences of the target role. The target should either
be one of the root roles or one of the upward-related roles in the object selection. For
each object found upward-related objects are also retrieved. The downward-related
objects are not retrieved.

Save/Insert/Update actions
These three actions all do an update of the target role, but with the following restrictions:

• Insert: This action will always try to insert a new occurrence into the database. An

exception is thrown if the object already exists in the database.
• Update: This action will always try to update an existing occurrence of the object.

An exception is thrown if the object does not exist in the database.
• Save: This action will either do an insert, if the object does not exist, or an update,

if the object already exists.

All three actions will not only update the target object, but also all objects in the sub-tree
having the target object as root. In addition these actions will update all objects in the
path from the target and recursively all upward-related objects to the objects in path to
target.

When a save/insert/update-action is updating any other object than the target object, the
action performed on the object depends on the object’s legal function specification in the
object selection. See chapter 5.10, Legal functions, in “Dialog Designer manual” on how
to edit these properties. The generated code uses the Insert and Update specification for
the role:

Insert == true and Update == true
The generated code will do a save action, that is either insert a new of update an existing
occurrence.
Insert == true and Update == false
The generated code will do an insert action. If the object already exists an exception is
thrown.
Insert == false and Update == true
The generated code will do an update action. If the object does not exist an exception is
thrown.
Insert == false and Update == false
The generated code will only try to identify the object. If the object does not exist an
exception is thrown.

The save/insert/update action is always done on a single occurrence of the target role,
even if this role is member of a one-to-many association in the object selection

Delete action
This action will delete an occurrence of the target object from the database. The delete
action will either delete or disconnect related objects from the one deleted. A related
object is deleted if legal function specifies that delete is allowed. If delete is not allowed,
but disconnect is allowed the action will only disconnect the related object from the one
deleted. If neither delete nor disconnect is allowed the action will throw an exception.

Generated code
For an Object Selection, Server Generator generates two java classes for each node. If the
node has role name roleName, the two classes are named roleNameManager and
roleNameDefaultManager. DefaultManager contains all generated code while the
Manager is an initially empty class inheriting from DefaultManager. DefaultManager is
regenerated each time Server Generator is run, while Manger contains your own code and
is never regenerated. All customizing of the generated code should be done in the
Manager class.

Service Generator does not generate code for nodes with the Persistent property set to
False. Nodes in an object selection based on transient classes will always have the
Persistent property set to false. For nodes based on persistent classes from the class
model the default value of the property is True, but it may be changed to False. If a node
has property Persistent False no code is generated for that node and for any nodes related
to the node.

To prevent Service Generator from generating code for such nodes the property should be
set to False.

The DefaultManager class for a object selection role will contain one entry method for
each of the six server actions find, findAll, save, insert, update and delete.

When Service Generator generates code the methods generated for each role depends on
the roles place in the object selection. The following list shows which methods that may
be generated for each node. A method is only generated if needed, i.e. findDownRelated
is only generated if the node has at least one downward-related node in the object
selection, findAsRelated is not generated for root nodes etc.

delete
deleteSingle
deleteRelated
deleteAsRelated
findAll
find
findSingle
findUpRelated
findDownRelated
findAsRelated
identifySingle
identifyAsRelated
insert
insertSingle
insertAsRelated
save
saveSingle
saveUpRelated

saveDownRelated
saveAsRelated
saveAsParent
saveUpRelatedAsParent
update
updateSingle
updateAsRelated

Customizing the generated code
Writing your own code and merging it with the generated code can be done in two
different ways, either by overriding one or more of the generated methods in
DefaultManager or by writing content to hook methods called from the generated code.

Using hook methods
The hook methods are called from the actual code in Default Manger. All hook methods
are implemented in DefaultManager as methods doing nothing. The hooks are intended
as action to be performed before and after the default implementation of actions. Three
different types of hooks exist:

Boolean hooks: The default method returns “true”. Returning “false” from such a hook
tells the generated code to skip the rest of the implementation.

Object hooks: These types of hooks return a domain class. The default method returns
null. Returning an Object from such a hook tells the generated code that the hook did the
job and that the returned object is the result.

Void hooks. No return value, the generated code will always continue after the hook call.

In addition to the normal return, the hooks may throw an exception and by that stopping
the ongoing action.

Example:

Artist saveSingle(Artist targetObject,
 String targetKey,
 FindData findData,
 ClientContext ctx,
 Session session) {
 Artist resultObject = null;
 resultObject = hookSaveSingleStart(
 targetObject,targetKey,
 findData,ctx,session);
 if (resultObject == null) {
 resultObject = findSingle(
 targetObject,targetKey,
 findData,ctx,session);
 if (resultObject != null) {
 resultObject = updateSingle(
 targetObject,targetKey,
 findData,ctx,session);

 }
 else {
 resultObject = insertSingle(
 targetObject,targetKey,
 findData,ctx,session);
 }
 }
 hookSaveSingleEnd(resultObject,ctx,session);
 return resultObject;
}

This example contains calls to two different hooks, hookSaveSingleStart and
hookSaveSingelEnd. If one want to do the actually save oneself, this may be done in the
start hook. Returning an object from that hook will prevent the saveSingle method from
doing its actions. The start hook may also be used to change attributes in the target object
before the save action is performed. In this case the hook should return a null pointer. A
third way to use such a hook is to do checks inside the hooks, maybe to check if the
object to save has all its needed data. If the hook code will prevent the action from taking
place, it should throw an exception.

Code structure

Setup parameters for Java service target
The setup for service target specifies contains the following settings:

Template Directory: %GENOVA8_HOME%\templates\service\java

The directory containing the template files.
Target directory: %GENOVA8_HOME%\target\service\java

The directory that will contain the generated files.
Skip generation of .new files: False

The generated files intended to be filled with manually written
code will not be overwritten, but if the file does not exist it will be
created. Existing files will either be skipped (True) or created at
with a .new extension.

Create full Generated tag: True
All files generated will be tagged with a timestamp string
identifying the generation time. This tagging will give a difference
between different generations of files even if the content is
unchanged. Setting this property to False will prevent the
generation of the timestamp tag.

In the templates the following setup parameters are used:

ServicePackage: example.service

This is the top package containing the generated java service code.
For each object selection the code will be placed in the package
%ServicePackage%.%ObjectSelectionName%.

Client Generator
Client Generator generates code for the GUI part of an application. The code generated is
based on the dialog models and their Object Selections together with the specifications
given in the Client Designer setup for the wanted target.

The code generated for the Java/Jfc target is intended for use together with the code
generated with Server Generator for the Java target. The client code may either access the
service code thru a local interface or it may access the service thru e EJB interface using
Spring. Both interfaces are supported by the distributed framework.

