
Semaphores
(and Eventcounts)

Otto J. Anshus
University of {Tromsø, Oslo}

“The Wa” (Wawa) at Princeton

• See the “too much milk” problem last week
• Wawa

– http://www.wawa.com/
– http://www.absoluteastronomy.com/encyclopedia/w/wa/wawa_food_markets.htm

– http://www.urinal.net/wawa/

Concurrency: Double buffering

Put (t,g)

/* Copy */
t := s;

Input sequence f

Output sequence g

Get (s,f) s

t

Get(s,f);

Repeat

Copy;

cobegin

Put(t,g);

Get(s,f);

coend;

until completed;

/* Fill s and empty t concurrently */

•Put and Get are disjunct

•… but not with regards to Copy!

(Threads)

Specifies
concurrent
execution

Concurrency: Double buffering

Put (t,g)

/* Copy */
t := s;

Input sequence f

Output sequence g

Get (s,f) s

t

Three threads executing concurrently:

{put_thread||get_thread||copy_thread} /* Assume preemptive scheduling by
kernel */

Proposed code:

copy_thread:: *{acq(lock_t); acq(lock_s); t=f; rel(lock_s); rel(lock_t);}

get_thread:: *{ack(lock_s); s=f; rel(lock_s);}

put_thread:: *{ack(lock_t): g=t; rel(lock_t);}

/* Fill s and empty t concurrently: OS Kernel will do preemptive scheduling of GET, COPY and PUT*/

•Not bad, but NO ORDER

Threads specifies
concurrent execution

Protecting a Shared Variable

• Remember: we need a shared address space
– threads inside a process share adr. Space

• Acquire(mutex); count++; Release(mutex);
• (1) Acquire(mutex) system call

– User level library
• (2) Push parameters onto stack
• (3) Trap to kernel (int instruction)

– Kernel level
• Int handler

– (4) Verify valid pointer to mutex
– Jump to code for Acquire()

• (5) mutex closed: block caller: insert(current, mutex_queue)
• (6) mutex open: get lock

– User level: (7) execute count++
• (8) Release(mutex) system call

Issues

• How “long” is the critical section?
• Competition for a mutex/lock

– Uncontended = rarely in use by someone else
– Contended = often used by someone else
– Held = currently in use by someone

• Think about the results of these options
– Spinning on low-cont. lock
– Spinning on high-cont. lock
– Blocking on low-cont. lock
– Blocking on high-cont. lock

By the way …

• “test and set” works at both user and kernel level

Block/unblock syscalls

• Block
– Sleep on token

• Unblock
– Wakes up first sleeper

• By the way
– Remember that “test and set” works both at user and kernel

level

Implementing Block and Unblock

• Block (lock)
– Spin on lock.guard
– Save context to TCB
– Enqueue TCB
– Clear spin lock.guard
– goto scheduler

• UnBlock(lock)
– Spin on lock.guard
– Dequeue a TCB
– Put TCB in ready_queue
– Clear spin lock.guard

Two Kinds of Synchronization

Acquire (l_id); Release (l_id);

MUTEX

CONDITION
SYNCHRONIZATION

SIGNAL

LOCK is initially CLOSED

Acquire will
block first caller
until Release

Acquire will let
first caller through,
and then block
next until Release

Threads inside one
process: Shared address
space. They can access
the same variables

Acquire (l_id);

 <CR>

Release (l_ id);

Acquire (l_id);

 <CR>

Release (l_id);

LOCK is initially OPEN

Process w/two threads

Think about ...

• Mutual exclusion using Acquire - Release:
– Easy to forget one of them
– Difficult to debug. must check all threads for correct use:

“Acquire-CR-Release”
– No help from the compiler?

• It does not understand that we mean to say MUTEX
• But could

– check to see if we always match them “left-right”
– associating a variable with a Mutex, and never allow

access to the variable outside of CR

Semaphores (Dijkstra, 1965)

• “Down(s)”/“Wait(s)”/“P(s)”
– Atomic
– DELAY (block, or busy

wait) if not positive
– Decrement semaphore

value by 1

P(s) {
 if (--s < 0)
 Block(s);
}

V(s) {
 if (++s <= 0)
 Unblock(s);
}

• “Up(s)”,”Signal(s)”, “V(s)”
– Atomic
– Increment semaphore by 1
– Wake up a waiting thread if

any

s is NOT accessible through other means than calling P and V

Can get negative s: counts number of waiting threadsMUTEX

Semaphores w/Busy Wait

V(s):

s++;

P(s):

while (s <= 0) {};
s--;

ATOMIC
(NB: mutex around
while can create a
problem…)

• Starvation possible (in theory)?

• Does it matter in practise?

The Structure of a Semaphore

sem_wait_queue

Threads waiting to get return after calling P (s) when s was <=0s

V (s) P (s)

integer

+1 -1

Unblock one waiting thread
(FIFO is fair)

Block calling threads
when s <=0

•Atomic: Disable interrupts

•Atomic: P() and V() as System calls

•Atomic: Entry-Exit protocols

Using Semaphores

s := 1;

P (s);
 <CR>
V(s);

P (s);
 <CR>
V(s);

s := 8;

P (s);
 <max 8>
V(s);

P (s);
 <max 8>
V(s);

s := 0;

P (s); V (s);

A blocks until B says V

A B

One thread gets in, next blocks
until V is executed

Up to 8 threads can pass P, the ninth
will block until V is said by one of
the eight already in there

NB: remember to set the
initial semaphore value!

“The Signal” “The
Mutex”

“The Team”

Simple to debug?

P (x);

V (y);

…..
P (y);

V (x);

…..

What will happen?

x := 0;

y := 0;

A B

THEY ARE FOREVER WAITING FOR EACH OTHERS SIGNAL

Bounded Buffer using Semaphores

PUT (msg):
 P(nonfull);
 P(mutex);
 <insert>
 V(mutex);
 V(nonempty);

GET (buf):
 P(nonempty);
 P(mutex);
 <remove>
 V(mutex);
 V(nonfull);

out

in

Capacity: N

B

Producer

PUT (msg):
GET (buf):

Consumer

Use one semaphore for
each condition we must
wait for to become TRUE:

•B empty: nonempty:=0;

•B full: nonfull:=N

•B mutex: mutex:=1;

Rules for the buffer B:

•No Get when empty

•No Put when full

•B shared, so must have
mutex between Put and
Get

•Is Mutex needed when only 1 P and 1 C?

•PUT at one end, GET at other end

Implementing Semaphores w/mutex

Hemmendinger’s solution (1988)

Kearn’s Solution (1988)

Hemmendinger’s Correction (1989)

Hsieh’s Solution (1989)

Implementing Semaphores w/Eventcount

Dining Philosophers

•Each: 2 forks to eat

•5 philosophers: 10 forks to let
all eat concurrently

•5 forks: 2 can eat concurrently

i

i i+1
i+1

states
•Free

Get L; Get R if free else Put L;
•Starvation possible

Mutex on whole table:
•1 can eat at a time

P(mutex);
 eat;
V(mutex);

Ti

Get L; Get R;
•Deadlock possible

P(s(i));
 P(s(i+1));
 eat;
 V(s(i+1));
V(s(i));

S(i) = 1
initially

Ti

Ti

Dining Philosophers

i

i i+1
i+1

states
•Thinking

•Eating

•Want

While (1) {
 <think>
 ENTRY;
 <eat>
 EXIT;
}

Ti

S(i) = 0 initially

P(mutex);
 state(i):=Want;
 if (state(i-1) !=Eating AND state(i+1) != Eating)
 {/*Safe to eat*/
 state(i):=Eating;
 V(s(i)); /*Because */ }
V(mutex);
P(s(i)); /*Init was 0!! I or neighbor must say V(i) to myself!*/

P(mutex);
 state(i):=Thinking;
 if (state(i-1)=Want AND state(i-2) !=Eating)
 {
 state(i-1):=Eating;
 V(s(i-1)); /*Start Left neighbor*/
 }
/*Analogue for Right neighbor*/
V(mutex);

To avoid starvation they could look after each other:

•Entry: If L and R is not eating I can

•Exit: If L (R) wants to eat and L.L (R.R) is not
eating I start him eating

Dining Philosophers

i

i i+1
i+1

s

Get L; Get R;
•Deadlock possible

P(s(i));
 P(s(i+1));
 eat;
 V(s(i+1));
V(s(i));

S(i) = 1
initially

T1, T2, T3, T4:

T5

P(s(i)):
 P(s(i+1));
 <eat>
 V(s(i+1));
V(s(i));

P(s(1));
 P(s(5));
 <eat>
 V(s(5));
V(s((1));

•Remove the danger of
circular waiting (deadlock)

•T1-T4: Get L; Get R;

•T5: Get R; Get L;

Can we in a simple way do better
than this one?

•Non-symmetric solution. Still
quite elegant

Event Count (Reed 1977)

• Init(ec)
– Set the eventcount to 0

• Read(ec)
– Return the value of eventcount ec

• Advance(ec)
– Atomically increment ec by 1

• Await(ec, v)
– Wait until the expression ec >= v is TRUE

Bounded Buffer with Event Count

• Does this work for more than one producer and consumer?

producer() {
 int next = 0;

 while (1) {
 produce an item
 next++;
 await(out, next - N);
 put the item in buffer;
 advance(in);
 }
}

consumer() {
 int next = 0;

 while (1) {
 next++;
 await(in, next);
 take an item from buffer;
 advance(out);
 consume the item;
 }
}

in=out=0;

•No, we will get multiple events happening, need a sequencer

out

in

Capacity: N

B

Sequencers
• Ticket(T) returns an ascending integer number, starting at 0

– Atomic op
– Just like an automatic ticket machine

• Multi-producer code
producer() {

int t;
while (1) {

produce item;
t=ticket(T);
await(in, t); /* sync w/producers */
await(out, t-N+1); /* sync w/consumers */
buffer[t%N]=item;
advance(in);

}
}

• What about the consumer?

