INF 3300, INF4300
Week 36 exercise solution
Niblack’s method

Lars Aurdal,
Norsk Regnesentral,
September 11th 2006
Niblack’s method, remember…

1. Simple and efficient method for adaptive thresholding

2. The local threshold is set at:

\[t(i, j) = \mu(i, j) + w\sigma(i, j) \]
1. The values for local mean and standard deviation is calculated over a local $M \times N$ window.

2. The parameters are the weight w and the window size.
% Niblack's method
% Prepare

clear all
close all

% Read image, convert to graylevels
% and show histogram

i=imread('francis.jpg');
i=double(rgb2gray(i));
figure;
imshow(i,[0 255])

% Calculate histogram and plot

figure
ih=histc(i(1:prod(size(i))),0:255);
bar(ih)

% Select filter size, this works fairly well

N=31;

% Calculate local means and variance, this is a neat trick in Matlab

localMean = filter2(ones(N), i) / (N*N);
localVar = filter2(ones(N), i.^2) /(N*N) -
localMean.^2;
localStd=sqrt(localVar);

% Here goes the magick

weight=-0.8;
t=localMean+weight*localStd;

% Display different results

figure
imshow(t,[0 255])
it=i<t;
figure
imshow(it,[0 1])
Niblack’s method, original image and histogram

No evident way to place the threshold
Niblack’s method, local values and result
Otsu’s method, η vector at peak

Peak at 190
Otsu’s method, threshold result at maximum η value

No global threshold will solve this problem