
Lecture 3:

Coordinate Systems and Transformations

Topics:

1. Coordinate systems and frames

2. Change of frames

3. Affine transformations

4. Rotation, translation, scaling, and shear

5. Rotation about an arbitrary axis

Chapter 4, Sections 4.3, 4.5, 4.6, 4.7, 4.8, 4.9.

1

Coordinate systems and frames

Recall that a vector v ∈ lR3 can be represented as a linear combination of

three linearly independent basis vectors v1, v2, v3,

v = α1v1 + α2v2 + α3v3.

The scalars α1, α2, α3 are the coordinates of v. We typically choose

v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1) .

v2

v1

v3

α1

v = α1v1 + α2v2 + α3v3

2

Suppose we want to (linearly) change the basis vectors v1, v2, v3 to u1, u2,

u3. We express the new basis vectors as combinations of the old ones,

u1 = a11v1 + a12v2 + a13v3,

u2 = a21v1 + a22v2 + a23v3,

u3 = a31v1 + a32v2 + a33v3,

and thus obtain a 3 × 3 ‘change of basis’ matrix

M =





a11 a12 a13

a21 a22 a23

a31 a32 a33



 .

If the two representations of a given vector v are

v = aT





v1

v2

v3



 , and v = bT





u1

u2

u3



 ,

where a = (α1 α2 α3)
T

and b = (β1 β2 β3)
T
, then

aT





v1

v2

v3



 = v = bT





u1

u2

u3



 = bT M





v1

v2

v3



 ,

which implies that

a = MT b and b = (MT)−1a.

3

This 3D coordinate system is not, however, rich enough for use in computer

graphics. Though the matrix M could be used to rotate and scale vectors,

it cannot deal with points, and we want to be able to translate points

(and objects).

In fact an arbitary affine transformation can be achieved by multiplication

by a 3× 3 matrix and shift by a vector. However, in computer graphics we

prefer to use frames to achieve the same thing.

A frame is a richer coordinate system in which we have a reference point

P0 in addition to three linearly independent basis vectors v1, v2, v3, and we

represent vectors v and points P , differently, as

v = α1v1 + α2v2 + α3v3,

P = P0 + α1v1 + α2v2 + α3v3.

We can use vector and matrix notation and re-express the vector v and

point P as

v = (α1 α2 α3 0)







v1

v2

v3

P0






, and P = (α1 α2 α3 1)







v1

v2

v3

P0






.

The coefficients α1, α2, α3, 0 and α1, α2, α3, 1 are the homogeneous coor-

dinates of v and P respectively.

4

Change of frames

Suppose we want to change from the frame (v1, v2, v3, P0) to a new frame

(u1, u2, u3, Q0). We express the new basis vectors and reference point in

terms of the old ones,

u1 = a11v1 + a12v2 + a13v3,

u2 = a21v1 + a22v2 + a23v3,

u3 = a31v1 + a32v2 + a33v3,

Q0 = a41v1 + a42v2 + a43v3 + P0,

and thus obtain a 4 × 4 matrix

M =







a11 a12 a13 0
a21 a22 a23 0
a31 a32 a33 0
a41 a42 a43 1






.

Similar to 3D vector coordinates, we suppose now that a and b are the

homogeneous representations of the same point or vector with respect to

the two frames. Then

aT







v1

v2

v3

P0






= bT







u1

u2

u3

Q0






= bT M







v1

v2

v3

P0






,

which implies that

a = MT b and b = (MT)−1a.

5

Affine transformations

The transposed matrix

MT =







a11 a21 a31 a41

a12 a22 a32 a42

a13 a23 a33 a43

0 0 0 1






,

simply represents an arbitrary affine transformation, having 12 degrees

of freedom. These degrees of freedom can be viewed as the nine elements

of a 3 × 3 matrix plus the three components of a vector shift.

The most important affine transformations are rotations, scalings,

and translations, and in fact all affine transformations can be expressed

as combinaitons of these three.

Affine transformations preserve line segments. If a line segment

P (α) = (1 − α)P0 + αP1

is expressed in homogeneous coordinates as

p(α) = (1 − α)p0 + αp1,

with respect to some frame, then an affine transformation matrix M sends

the line segment P into the new one,

Mp(α) = (1 − α)Mp0 + αMp1.

Similarly, affine transformations map triangles to triangles and tetrahedra

to tetrahedra. Thus many objects in OpenGL can be transformed by trans-

forming their vertices only.

6

Rotation, translation, scaling, and shear

Translation is an operation that displaces points by a fixed distance in a

given direction. If the displacement vector is d then the point P will be

moved to

P ′ = P + d.

We can write this equation in homeogeneous coordinates as

p′ = p + d,

where

p =







x
y
z
1






, p′ =







x′

y′

z′

1






, d =







αx

αy

αz

0






.

so that

x′ = x + αx, y′ = y + αy, z′ = z + αz.

So the transformation matrix T which gives p′ = Tp is clearly

T = T (αx, αy, αz) =







1 0 0 αx

0 1 0 αy

0 0 1 αz

0 0 0 1






,

called the translation matrix. One can check that the inverse is

T−1(αx, αy, αz) = T (−αx,−αy,−αz).

7

Rotation depends on an axis of rotation and the angle turned through.

Consider first rotation in the plane, about the origin. If a point (x, y) with

coordinates

x = ρ cosφ, y = ρ sinφ,

is rotated through an angle θ, then the new position is (x′, y′), where

x′ = ρ cos(φ + θ), y′ = ρ sin(φ + θ).

Expanding these latter expressions, we find

x′ = x cos θ − y sin θ,

y′ = x sin θ + y cos θ,

or
(

x′

y′

)

=

(

cos θ − sin θ
sin θ cos θ

) (

x
y

)

.

x

y

x

y

8

Thus the three rotation matrices corresponding to rotation about the z, x,

and y axes in lR3 are:

Rz = Rz(θ) =







cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1






,

Rx = Rx(θ) =







1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1






,

Ry = Ry(θ) =







cos θ 0 sin θ 0
0 1 0 0

− sin θ 0 cos θ 0
0 0 0 1






.

All three give positive rotations for positive θ with respect to the right

hand rule for the axes x, y, z. If R = R(θ) denotes any of these matrices,

its inverse is clearly

R−1(θ) = R(−θ) = RT (θ).

Translations and rotations are examples of solid-body transforma-

tions: transformations which do not alter the size or shape of an object.

9

Scaling can be applied in any of the three axes independently. If we send

a point (x, y, z) to the new point

x′ = βxx, y′ = βyy, z′ = βzz,

then the corresponding matrix becomes

S = S(βx, βy, βz) =







βx 0 0 0
0 βy 0 0
0 0 βz 0
0 0 0 1






,

with inverse

S−1(βx, βy, βz) = S(1/βx, 1/βy, 1/βz).

If the scaling factors βx, βy, βz are equal then the scaling is uniform:

objects retain their shape but alter their size. Otherwise the scaling is

non-uniform and the object is deformed.

10

Shears can be constructed from translations, rotations, and scalings, but

are sometimes of independent interest.

x

y

z

x

y

z

A shear in the x direction is defined by

x′ = x + (cot θ)y, y′ = y, z′ = z,

for some scalar a. The corresponding shearing matrix is therefore

Hx(θ) =







1 cot θ 0 0
0 1 0 0
0 0 1 0
0 0 0 1






,

with inverse

H−1
x (θ) = Hx(−θ).

11

Rotation about an arbitrary axis

How do we find the matrix which rotates an object about an arbitrary point

p0 and around a direction u = p2 − p1, through an angle θ?

x

y

z

p0

p1

p2

u

The answer is to concatenate some of the matrices we have already

developed. We will assume that u has length 1. The first step is to use

translation to reduce the problem to that of rotation about the origin:

M = T (p0) R T (−p0).

To find the rotation matrix R for rotation around the vector u, we first

align u with the z axis using two rotations θx and θy. Then we can apply

a rotation of θ around the z-axis and afterwards undo the alignments, thus

R = Rx(−θx)Ry(−θy)Rz(θ)Ry(θy)Rx(θx).

12

It remains to calculate θx and θy from u = (αx, αy, αz). The first rotation

Rx(θx) will rotate the vector u around the x axis until it lies in the y = 0

plane. Using simple trigonometry, we find that

cos θx = αz/d, sin θx = αy/d,

where d =
√

α2
y + α2

z, so, without needing θx explicitly, we find

Rx(θx) =







1 0 0 0
0 αz/d −αy/d 0
0 αy/d αz/d 0
0 0 0 1






.

In the second alignment we find

cos θy = d, sin θy = −αx,

and so

Ry(θy) =







d 0 αx 0
0 1 0 0

−αx 0 d 0
0 0 0 1






.

13

Example in OpenGL

The following OpenGL sequence sets the model-view matrix to represent a

45-degree rotation about the line through the origin and the point (1, 2, 3)

with a fixed point of (4, 5, 6):

void myinit(void)

{

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

glTranslatef(4.0, 5.0, 6.0);

glRotatef(45.0, 1.0, 2.0, 3.0);

glTranslatef(-4.0, -5.0, -6.0);

}

OpenGL concatenates the three matrices into the single matrix

C = T (4, 5, 6) R(45, 1, 2, 3) T (−4,−5,−6).

Each vertex p specified after this code will be multiplied by C to yield q,

q = Cp.

14

Spinning the Cube

The following program rotates a cube, using the three buttons of the mouse.

There are three callbacks:

glutDisplayFunc(display);

glutIdleFunc(spincube);

glutMouseFunc(mouse);

The display callback sets the model-view matrix with three angles deter-

mined by the mouse callback, and then draws the cube (see Section 4.4 of

the book).

void display()

{

glClear(GL_COLOR_BUFFER_BIT GL_DEPTH_BUFFER_BIT);

glLoadIdentity();

glRotatef(theta[0], 1.0, 0.0, 0.0);

glRotatef(theta[1], 0.0, 1.0, 0.0);

glRotatef(theta[2], 0.0, 0.0, 1.0);

colorcube();

glutSwapBuffers();

}

15

The mouse callback selects the axis of rotation.

void mouse(int btn, int state, int x, int y)

{

if(btn == GLUT_LEFT_BUTTON && state == GLUT_DOWN) axis = 0;

if(btn == GLUT_MIDDLE_BUTTON && state == GLUT_DOWN) axis = 1;

if(btn == GLUT_RIGHT_BUTTON && state == GLUT_DOWN) axis = 2;

}

The idle callback increments the angle of the chosen axis by 2 degrees.

void spincube()

{

theta[axis] += 2.0;

if(theta[axis] >= 360.0) theta[axis] -= 360.0;

glutPostRedisplay();

}

16

A little bit about quarternions

Quarternions offer an alternative way of describing rotations, and have been

used in hardware implementations.

In the complex plane, rotation through an angle φ can be expressed as

multiplication by the complex number

eiφ = cos φ + i sinφ.

This rotates a given point reiθ in the complex plane to the new point

reiθeiφ = rei(θ+φ).

Analogously, quarternions can be used to elegantly describe rotations in

three dimensions. A quarternion consists of a scalar and a vector,

a = (q0, q1, q2, q3) = (q0,q).

We can write the vector part q as

q = q1i + q2j + q3k,

where i, j, k play a similar role to that of the unit vectors in lR3, and obey

the properties

i2 = j2 = k2 = −1,

and

ij = k = −ji, jk = i = −kj, ki = j = −ik.

17

These properties imply that the sum and multiple of two quarternions a =

(q0,q) and b = (p0,p) are

a + b = (q0 + p0, q + p),

and

ab = (q0p0 − q · p, q0p + p0q + q × p).

The magnitude and inverse of a are

|a| =
√

q2
0 + q · q, a−1 =

1

|a|
(q0,−q).

Rotation. Suppose now that v is a unit vector in lR3, and let p be an

arbitrary point. Denote by p′ the rotation of p about the axis v, placed at

the origin. To find p′ using quarternions, we let r be the quarterion

r = (cos(θ/2), sin(θ/2)v),

of unit length, whose inverse is clearly

r−1 = (cos(θ/2),− sin(θ/2)v).

Then if p and p′ are the quarternions

p = (0,p), p′ = (0,p′),

we claim that

p′ = r−1pr.

18

Let’s check that this is correct! Following the rule for multiplication, a little

computation shows that p′ does indeed have the form (0,p′), and that

p′ = cos2
θ

2
p + sin2 θ

2
(v · p)v + 2 sin

θ

2
cos

θ

2
(v × p) + sin2 θ

2
v × (v × p).

But using the identity

p = (v · p)v − v × (v × p), (1)

and the multiple-angle formulas for cos and sin, this simplifies to

p′ = (v · p)v + cos θ(v × p) × v + sin θ(v × p).

This formula can easily be verified from a geometric interpretation. It is

a linear combination of three orthogonal vectors. The first term (v · p)v

is the projection of p onto the axis of rotation, and the second and third

terms describe a rotation in the plane perpendicular to v.

Notice also that the formula clearly represents an affine transformation;

all terms are linear in p. The formula can be used to find the coefficients

of the corresponding transformation matrix directly.

19

