— INF4820 —
Algorithms for Al and NLP

Common Lisp Essentials

Erik Velldal & Stephan Oepen
Language Technology Group (LTG)

August 26, 2015

Topic of the day

Lisp

Conceived in the late 1950s by
John McCarthy — one of the
founding fathers of Al.

Originally intended as a
mathematical formalism.

A family of high-level languages.

Several dialects, e.g. Scheme,
Clojure, Emacs Lisp, and
Common Lisp.

Although a multi-paradigm
language, functional style
prevalent.

Basic common lisp in a couple of minutes

\4

Testing a few expressions at the REPL;

v

the read—eval—print loop.
» (= the interactive Lisp-environment)

» ‘7" represents the REPL prompt and
‘—" what an expression evaluates to.

Basic common lisp in a couple of minutes

» Testing a few expressions at the REPL;
» the read—eval—print loop.
» (= the interactive Lisp-environment)

» ‘7" represents the REPL prompt and
‘—" what an expression evaluates to.

» Atomic data types like numbers,
booleans, and strings are self
evaluating.

Basic common lisp in a couple of minutes

? "this is a string"

> Testing a few expressions at the REPL; . wipig is a string”

» the read—eval—print loop.
» (= the interactive Lisp-environment)

» ‘7" represents the REPL prompt and
‘—" what an expression evaluates to.

» Atomic data types like numbers,
booleans, and strings are self
evaluating.

Basic common lisp in a couple of minutes

Examples
? "this is a string"

> Testing a few expressions at the REPL; . wipig is a string”

» the read—eval—print loop. 2 49

» (= the interactive Lisp-environment) — 42

» ‘7" represents the REPL prompt and
‘—" what an expression evaluates to.

» Atomic data types like numbers,
booleans, and strings are self
evaluating.

Basic common lisp in a couple of minutes

Examples

? "this is a string"
> Testing a few expressions at the REPL; . wipis is a string”

» the read—eval—print loop. 2 49

» (= the interactive Lisp-environment) — 42

» ‘7" represents the REPL prompt and 7t
‘—" what an expression evaluates to. — t

» Atomic data types like numbers,
booleans, and strings are self
evaluating.

Basic common lisp in a couple of minutes

Examples
? "this is a string"

> Testing a few expressions at the REPL; . wipig is a string”

» the read—eval—print loop.

7 42
» (= the interactive Lisp-environment) — 42
» ‘7" represents the REPL prompt and 7t
‘—" what an expression evaluates to. — t
» Atomic data types like numbers, ?nil
booleans, and strings are self — nil

evaluating.

Basic common lisp in a couple of minutes

Examples

? "this is a string"
> Testing a few expressions at the REPL; . wipis is a string”

» the read—eval—print loop. 2 49

» (= the interactive Lisp-environment) — 42

» ‘7" represents the REPL prompt and 7t
‘—" what an expression evaluates to. — t

» Atomic data types like numbers, ?nil
booleans, and strings are self — nil
evaluating.

» Symbols evaluate to whatever value
they are bound to.

Basic common lisp in a couple of minutes

Examples

? "this is a string"
> Testing a few expressions at the REPL; . wipis is a string”

» the read—eval—print loop. 2 49
» (= the interactive Lisp-environment) — 42
» ‘7" represents the REPL prompt and 7t

‘—" what an expression evaluates to. — t
» Atomic data types like numbers, ?nil

booleans, and strings are self — nil

evaluating.

7 pi

» Symbols evaluate to whatever value —\ 3.141592653589793d0

they are bound to.

Basic common lisp in a couple of minutes

Examples

? "this is a string"
> Testing a few expressions at the REPL; . wipis is a string”

» the read—eval—print loop.

742
» (= the interactive Lisp-environment) — 42
» ‘7" represents the REPL prompt and 7t
‘—" what an expression evaluates to. — t
» Atomic data types like numbers, ?nil
booleans, and strings are self — nil
evaluating.
7 pi
» Symbols evaluate to whatever value —y 3.141592653589793d0
they are bound to.
? foo

— error; unbound

A note on terminology

v

Lisp manipulates so-called symbolic expressions.

v

AKA s-expressions or sexps.

v

Two fundamental types of sexps;
1. atoms (e.g., nil, t, numbers, strings, symbols)

2. lists containing other sexps.

» Sexps are used to represent both data and code.

Function calls

» “Parenthesized prefix notation”
7 (+12)
= &

» First element (prefix) = operator
(i.e. the procedure or function).

» The rest of the list is the operands
(i.e. the arguments or parameters).

» Use nesting (of lists) to build
compound expressions.

» Expressions can span multiple lines;
indentation for readability.

Function calls

» “Parenthesized prefix notation”
» First element (prefix) = operator 7(+12)
— 3

(i.e. the procedure or function).

» The rest of the list is the operands ?7(+ 12107 5)
(i.e. the arguments or parameters). — 25

» Use nesting (of lists) to build
compound expressions.

» Expressions can span multiple lines;
indentation for readability.

Function calls

» “Parenthesized prefix notation”
» First element (prefix) = operator T(+12)
— 3

(i.e. the procedure or function).

» The rest of the list is the operands ?7(+ 12107 5)

(i.e. the arguments or parameters). — 25
» Use nesting (of lists) to build 7 (/ (+ 10 20) 2)
compound expressions. — 15

» Expressions can span multiple lines;
indentation for readability.

Function calls

» “Parenthesized prefix notation”

» First element (prefix) = operator
(i.e. the procedure or function).

» The rest of the list is the operands
(i.e. the arguments or parameters).

» Use nesting (of lists) to build
compound expressions.

» Expressions can span multiple lines;
indentation for readability.

Examples

?(+12)
— 3

?7(+ 1210 7 5)
— 25

? (/ (+ 10 20) 2)
— 15

? (x (+ 42 58)
(- (/ 82 2))
— 200

The syntax and semantics of CL

7 (expt (- 8 4) 2)
— 16

» You now know (almost) all there is to know about the rules of CL.

» The first element of a list names a function that is invoked with the
values of all remaining elements as its arguments.

» A few exceptions, called special forms, with their own evaluation rules.

Creating our own functions

» The special form defun associates a function definition with a symbol:

General form

(defun name (parametery ... parameter,) body)

Creating our own functions

» The special form defun associates a function definition with a symbol:

General form

(defun name (parametery ... parameter,) body)

Example

7 (defun average (x y)

(/ (+ xy) 2)

Creating our own functions

» The special form defun associates a function definition with a symbol:

General form

(defun name (parametery ... parameter,) body)

Example
7 (defun average (x y)

(/ (+ xy) 2)

? (average 10 20)
—15

Some other special forms

» defparameter declares a ‘global variable’ and assigns a value:

? (defparameter *foo* 42)
7 *xfoox — 42

» Conditional evaluation with if and cond:

Examples General form

7 (if (numberp *foo*) (if (predicate)
"number" (then clause)
"something else") (else clause))

— "number"

Some other special forms

» defparameter declares a ‘global variable’ and assigns a value:

? (defparameter *foo* 42)
7 *xfoox — 42

» Conditional evaluation with if and cond:

Examples General form

7 (if (numberp *foo*) (if (predicate)
"number" (then clause)
"something else") (else clause))

— "number"

? (cond ((< *xfoo* 3) "less") (cond ((predicate;) (clausej))
((> *foo* 3) "more") ((predicates) (clauses))
(t "equal")) ({predicate;) (clause;))

. "more” (t (default clause)))

The ‘Hello World!" of functional programming

ol 1 if n=20
 lax(n=1) ifn>0

» Classic example: the factorial
function.

10

The ‘Hello World!" of functional programming

» Classic example: the factorial
function.

» A recursive procedure: calls itself,
directly or indirectly.

=

1
nx (n—1)!

if n=20
if n >0

10

The ‘Hello World!" of functional programming

ol 1 if n=20
 lax(n=1) ifn>0

» Classic example: the factorial

function.
(defun fac (n)
» A recursive procedure: calls itself, (if (= n 0)
directly or indirectly. 1

(x n (fac (- n 1)))))

10

The ‘Hello World!" of functional programming

ol 1 if n=20
 lax(n=1) ifn>0

» Classic example: the factorial

function.
(defun fac (n)
» A recursive procedure: calls itself, (if (= n 0)
directly or indirectly. 1
» May seem circular, but is (* n (fac (- n 1)))))

well-defined as long as there's a
base case terminating the recursion.

10

The ‘Hello World!" of functional programming

Classic example: the factorial
function.

A recursive procedure: calls itself,
directly or indirectly.

May seem circular, but is
well-defined as long as there's a
base case terminating the recursion.

For comparison: a non-recursive
implementation (in Python).

if n=20
if n >0

n! = L
- \nx(n—1)

(defun fac (n)
(if (= n 0)
1
(* n (fac (- n 1)))))

def fac(n):

r =1
while (n > 0):
r=7r1%*n
n=n-1

return r
10

A special case of recursion: Tail recursion

» A more efficient way to
define n! recursively.

» Use a helper procedure
with an accumulator
variable to collect the
product along the way.

(defun fac (n)
(fac-iter 1 1 n))

(defun fac-iter (prod count n)
(if (> count n)
prod
(fac-iter (* count prod)
(+ count 1)

n)))

11

A special case of recursion: Tail recursion

» A more efficient way to
define n! recursively.

» Use a helper procedure
with an accumulator
variable to collect the
product along the way.

(defun fac (n)
(fac-iter 1 1 n))

(defun fac-iter (prod count n)
(if (> count n)
prod
(fac-iter (* count prod)
(+ count 1)

n)))

11

A special case of recursion: Tail recursion

» A more efficient way to

define n! recursively. (deftom Zoe (@)

(fac-iter 1 1 n))
» Use a helper procedure

with an accumulator (defun fac-iter (prod count n)
variable to collect the (if (> count n)
product along the way. prod
(fac-iter (* count prod)
» The recursive call is in tail (+ count 1)
position: n)))

» no work remains to be done in the calling function.

» Once we reach the base case, the return value is ready.

11

A special case of recursion: Tail recursion

» A more efficient way to

define n! recursively. (deftom Zoe (@)

(fac-iter 1 1 n))
» Use a helper procedure

with an accumulator (defun fac-iter (prod count n)
variable to collect the (if (> count n)
product along the way. prod
(fac-iter (* count prod)
» The recursive call is in tail (+ count 1)
position: n)))

» no work remains to be done in the calling function.
» Once we reach the base case, the return value is ready.

» Most CL compilers do tail call optimization, so that the recursion is
executed as an iterative loop.

11

A special case of recursion: Tail recursion

>

\4

A more efficient way to

define n! recursively. (deftom Zoe (@)

(fac-iter 1 1 n))
Use a helper procedure

with an accumulator (defun fac-iter (prod count n)
variable to collect the (if (> count n)
product along the way. prod

(fac-iter (* count prod)
The recursive call is in tail (+ count 1)
position: n)))

no work remains to be done in the calling function.
Once we reach the base case, the return value is ready.

Most CL compilers do tail call optimization, so that the recursion is
executed as an iterative loop.

(The next lecture will cover CL's built-in 1oop construct.)

11

Tracing the processes

Recursive Iterative (tail recursive)

(defun fac (n)
(= n 0)
1
(x n (fac (- n 1)))))

(if

7 (fac
= (*
> (*

7)
(fac
(* 6
(* 6
(* 6
(x 6
(* 6
(x 6
(* 6
(x 6
(* 6
(* 6
)

6))

(fac
(* 5
(* 5
(* 5
(* 5
(x 5
(* 5
(* 5
(* 5
120))

5)))
(fac
(*x 4
(x 4
(x 4
(x 4
(* 4
(*x 4

)

24)))

4))))

(fac 3)))))

(* 3 (fac 2))))))

(* 3 (x 2 (fac 1)))))))
(* 3 (x 2 1))

G 3 2)))))

6))))

(defun fac (n)
(fac-iter 1 1 n))

(defun fac-iter (prod count n)
(if (> count n)

prod

(fac-iter (* count prod)

7 (fac 7)

= (fac-iter
= (fac-iter
= (fac-iter
= (fac-iter
= (fac-iter
= (fac-iter
= (fac-iter
= (fac-iter
— 5040

(+ count 1)

n)))

)
)
)
)

DN ==
W
~N NN~

24 5 7)

120 6 7)
720 7 7)
5040 8 7)

Tracing the processes

Recursive Iterative (tail recursive)

(defun fac (n)
(= n 0)

1
(x n (fac (- n 1)))))

(if

7 (fac
= (*
> (*

7)
(fac
(* 6
(* 6
(* 6
(x 6
(* 6
(x 6
(* 6
(x 6
(* 6
(* 6
)

6))

(fac
(* 5
(* 5
(* 5
(* 5
(x 5
(* 5
(* 5
(* 5
120))

5)))
(fac
(*x 4
(x 4
(x 4
(x 4
(* 4
(*x 4

)

24)))

4))))

(fac 3)))))

(* 3 (fac 2))))))

(* 3 (x 2 (fac 1)))))))
(* 3 (* 2 1))))))

G 3 2)))))

6))))

(defun fac (n)
(fac-iter 1 1 n))

(defun fac-iter (prod count n)
(if (> count n)

prod

(fac-iter (* count prod)

7 (fac 7)

= (fac-iter
= (fac-iter
= (fac-iter
= (fac-iter
= (fac-iter
= (fac-iter
= (fac-iter
= (fac-iter
— 5040

(+ count 1)

n)))

)
)
)
)

DN ==
W
~N NN~

24 5 7)

120 6 7)
720 7 7)
5040 8 7)

The quote operator

» A special form making expressions self-evaluating.

» The quote operator (or simply ‘") suppresses evaluation.

13

The quote operator

» A special form making expressions self-evaluating.

» The quote operator (or simply ‘") suppresses evaluation.

7 pi— 3.141592653589793d0

The quote operator

» A special form making expressions self-evaluating.

» The quote operator (or simply ‘") suppresses evaluation.
7 pi— 3.141592653589793d0

7 (quote pi) — pi

The quote operator

» A special form making expressions self-evaluating.

» The quote operator (or simply ‘") suppresses evaluation.

7 pi— 3.141592653589793d0
7 (quote pi) — pi

7 'pi — pi

The quote operator

» A special form making expressions self-evaluating.

» The quote operator (or simply ‘") suppresses evaluation.
7 pi— 3.141592653589793d0

7 (quote pi) — pi

7 'pi — pi

? foobar — error; unbound variable

The quote operator

» A special form making expressions self-evaluating.

» The quote operator (or simply ‘") suppresses evaluation.
7 pi— 3.141592653589793d0

7 (quote pi) — pi

7 'pi — pi

? foobar — error; unbound variable

7?7 'foobar — foobar

The quote operator

» A special form making expressions self-evaluating.

» The quote operator (or simply ‘") suppresses evaluation.
7 pi— 3.141592653589793d0

7 (quote pi) — pi

7 'pi — pi

? foobar — error; unbound variable

? 'foobar — foobar

7 (x 2 pi) — 6.283185307179586d0

The quote operator

» A special form making expressions self-evaluating.

» The quote operator (or simply ‘") suppresses evaluation.
7 pi— 3.141592653589793d0

7 (quote pi) — pi

7 'pi — pi

? foobar — error; unbound variable

-~

'foobar — foobar

-~

(x 2 pi) — 6.283185307179586d0

7 1 (% 2 pi) —

The quote operator

» A special form making expressions self-evaluating.

» The quote operator (or simply ‘") suppresses evaluation.
7 pi— 3.141592653589793d0

7 (quote pi) — pi

7 'pi — pi

? foobar — error; unbound variable

-~

'foobar — foobar

-~

(x 2 pi) — 6.283185307179586d0

? '(* 2 pi) — (* 2 pi)

The quote operator

» A special form making expressions self-evaluating.

» The quote operator (or simply ‘") suppresses evaluation.
7 pi— 3.141592653589793d0

7 (quote pi) — pi

7 'pi — pi

? foobar — error; unbound variable

-~

'foobar — foobar

-~

(x 2 pi) — 6.283185307179586d0
? '(* 2 pi) — (* 2 pi)

70 —

The quote operator

» A special form making expressions self-evaluating.

» The quote operator (or simply ‘") suppresses evaluation.
7 pi— 3.141592653589793d0

7 (quote pi) — pi

7 'pi — pi

? foobar — error; unbound variable

-~

'foobar — foobar

-~

(x 2 pi) — 6.283185307179586d0
? '(* 2 pi) — (* 2 pi)

? () — error; missing procedure

The quote operator

» A special form making expressions self-evaluating.

» The quote operator (or simply ‘") suppresses evaluation.
7 pi— 3.141592653589793d0

7 (quote pi) — pi

7 'pi — pi

? foobar — error; unbound variable

-~

'foobar — foobar

-~

(x 2 pi) — 6.283185307179586d0
7 '(x 2 pi) — (* 2 pi)
? () — error; missing procedure

?7'0 —

The quote operator

» A special form making expressions self-evaluating.

» The quote operator (or simply ‘") suppresses evaluation.
7 pi— 3.141592653589793d0

7 (quote pi) — pi

7 'pi — pi

? foobar — error; unbound variable

-~

'foobar — foobar

-~

(x 2 pi) — 6.283185307179586d0
7 '(x 2 pi) — (* 2 pi)
? () — error; missing procedure

7'0 = 0

Both code and data are s-expressions

» We've mentioned how sexps are used to represent both data and code.
» Note the double role of lists:

» Lists are function calls;

7 (x 10 (+ 2 3)) — 50

? (bar 1 2) — error; function bar undefined

14

Both code and data are s-expressions

» We've mentioned how sexps are used to represent both data and code.
» Note the double role of lists:

» Lists are function calls;

7 (x 10 (+ 2 3)) — 50

? (bar 1 2) — error; function bar undefined
» But, lists can also be data;

? '(foo bar) — (foo bar)
? (list 'foo 'bar) — (foo bar)

14

LI5P 15 QVER HALT A T WONDER IF THECY(LES THESE ARE YOUR
CENTURY QLD AND IT WILL CONTINUE FOREVER FATHER'S PARENTHESES
STILL HAS THIS PERFECT, Z

TIMELESS AIRABOUTIT.

_‘__W_/
A FEW CODERS FROMEACH
NEW GENERATION RE-
DISCOVERING THE LISP ARTS.

http://xked.com/297/

ELEGANT
WEAPONS

FOR A MORE ... CIVILZED AGE.

Eric Raymond, How to Become a Hacker, 2001:

Lisp is worth learning for the profound enlightenment experience you will
have when you finally get it;

that experience will make you a better programmer for the rest of your
days, even if you should never actually use Lisp itself a lot.

15

http://xkcd.com/297/

LISP = LISt Processing

» cons builds up new lists; first and rest destructure them.

? (cons 1 (cons 2 (cons 3 nil))) — (1 2 3)

16

LISP = LISt Processing

» cons builds up new lists; first and rest destructure them.

? (cons 1 (cons 2 (cons 3 nil))) — (1 2 3)
? (cons 0 '(1 2 3)) —

16

LISP = LISt Processing

» cons builds up new lists; first and rest destructure them.

? (cons 1 (cons 2 (cons 3 nil))) — (1 2 3)
? (cons 0 '(1 23)) - (0123)

16

LISP = LISt Processing

» cons builds up new lists; first and rest destructure them.

? (cons 1 (cons 2 (cons 3 nil))) — (1 2 3)
? (cons 0 '(1 23)) - (0123)
? (first '(1 2 3)) — 1

16

LISP = LISt Processing

» cons builds up new lists; first and rest destructure them.

N

(cons 1 (cons 2 (cons 3 nil))) — (1 2 3)
(cons 0 '(1 23)) - (012 3)

(first '(1 2 3)) — 1

(rest '(1 2 3)) — (2 3)

N N

N

16

LISP = LISt Processing

» cons builds up new lists; first and rest destructure them.

? (cons 1 (cons 2 (cons 3 nil))) — (1 2 3)
? (cons 0 '(123)) - (012 3)

? (first '(1 2 3)) — 1

? (rest '(1 2 3)) — (2 3)

? (first (rest '(1 2 3))) —

16

LISP = LISt Processing

» cons builds up new lists; first and rest destructure them.

? (cons 1 (cons 2 (cons 3 nil))) — (1 2 3)
? (cons 0 '(123)) - (012 3)

? (first '(1 2 3)) — 1

? (rest '(1 2 3)) — (2 3)

? (first (rest '(1 2 3))) — 2

16

LISP = LISt Processing

» cons builds up new lists; first and rest destructure them.

? (cons 1 (cons 2 (cons 3 nil))) — (1 2 3)
? (cons 0 '(123)) - (012 3)

? (first '(1 2 3)) — 1

? (rest '(1 2 3)) — (2 3)

? (first (rest '(1 2 3))) — 2

? (rest (rest (rest '(1 2 3)))) —

16

LISP = LISt Processing

» cons builds up new lists; first and rest destructure them.

? (cons 1 (cons 2 (cons 3 nil))) — (1 2 3)
? (cons 0 '(123)) - (012 3)

? (first '(1 2 3)) — 1

? (rest '(1 2 3)) — (2 3)

? (first (rest '(1 2 3))) — 2

? (rest (rest (rest '(1 2 3)))) — nil

16

LISP = LISt Processing

» cons builds up new lists; first and rest destructure them.

? (cons 1 (cons 2 (cons 3 nil))) — (1 2 3)
? (cons 0 '(123)) —»(0123)

? (first '(1 2 3)) — 1

? (rest '(1 2 3)) — (2 3)

? (first (rest '(1 2 3))) — 2

? (rest (rest (rest '(1 2 3)))) — nil

» Many additional list operations (derivable from the above), e.g.

? (list 1 2 3) — (1 2 3)

LISP = LISt Processing

» cons builds up new lists; first and rest destructure them.

? (cons 1 (cons 2 (cons 3 nil))) — (1 2 3)
? (cons 0 '(123)) —»(0123)

? (first '(1 2 3)) — 1

? (rest '(1 2 3)) — (2 3)

? (first (rest '(1 2 3))) — 2

? (rest (rest (rest '(1 2 3)))) — nil

» Many additional list operations (derivable from the above), e.g.

? (list 1 2 3) — (1 2 3)
7 (append '(1 2) '(3) '(456)) - (12345 6)

LISP = LISt Processing

» cons builds up new lists; first and rest destructure them.

? (cons 1 (cons 2 (cons 3 nil))) — (1 2 3)
? (cons 0 '(123)) —»(0123)

? (first '(1 2 3)) — 1

? (rest '(1 2 3)) — (2 3)

? (first (rest '(1 2 3))) — 2

? (rest (rest (rest '(1 2 3)))) — nil

» Many additional list operations (derivable from the above), e.g.

7?7 (list 1 2 3) — (1 2 3)
? (append '(1 2) '(3) '(456)) » (12345 6)
? (length '(1 2 3)) — 3

LISP = LISt Processing

» cons builds up new lists; first and rest destructure them.

? (cons 1 (cons 2 (cons 3 nil))) — (1 2 3)
? (cons 0 '(123)) —»(0123)

? (first '(1 2 3)) — 1

? (rest '(1 2 3)) — (2 3)

? (first (rest '(1 2 3))) — 2

? (rest (rest (rest '(1 2 3)))) — nil

» Many additional list operations (derivable from the above), e.g.

? (list 1 2 3) — (1 2 3)

7 (append '(1 2) '(3) '(456)) (12345 6)
? (length '(1 2 3)) — 3

? (reverse '(1 2 3)) — (3 2 1)

LISP = LISt Processing

» cons builds up new lists; first and rest destructure them.

? (cons 1 (cons 2 (cons 3 nil))) — (1 2 3)
? (cons 0 '(123)) —»(0123)

? (first '(1 2 3)) — 1

? (rest '(1 2 3)) — (2 3)

? (first (rest '(1 2 3))) — 2

? (rest (rest (rest '(1 2 3)))) — nil

» Many additional list operations (derivable from the above), e.g.

? (list 1 2 3) — (1 2 3)

7 (append '(1 2) '(3) '(456)) (12345 6)
? (length '(1 2 3)) — 3

? (reverse '(1 2 3)) — (3 2 1)

? (nth 2 '(1 2 3)) —3

LISP = LISt Processing

» cons builds up new lists; first and rest destructure them.

? (cons 1 (cons 2 (cons 3 nil))) — (1 2 3)
? (cons 0 '(123)) —»(0123)

? (first '(1 2 3)) — 1

? (rest '(1 2 3)) — (2 3)

? (first (rest '(1 2 3))) — 2

? (rest (rest (rest '(1 2 3)))) — nil

» Many additional list operations (derivable from the above), e.g.

? (list 1 2 3) — (1 2 3)

7 (append '(1 2) '(3) '(456)) (12345 6)
? (length '(1 2 3)) — 3

? (reverse '(1 2 3)) — (3 2 1)

? (nth 2 '(1 2 3)) —+ 3

? (last '(1 2 3)) — (3)

LISP = LISt Processing

» cons builds up new lists; first and rest destructure them.

? (cons 1 (cons 2 (cons 3 nil))) — (1 2 3)
? (cons 0 '(123)) —»(0123)

? (first '(1 2 3)) — 1

? (rest '(1 2 3)) — (2 3)

? (first (rest '(1 2 3))) — 2

? (rest (rest (rest '(1 2 3)))) — nil

» Many additional list operations (derivable from the above), e.g.

? (list 1 2 3) — (1 2 3)

7 (append '(1 2) '(3) '(456)) (12345 6)
? (length '(1 2 3)) — 3

? (reverse '(1 2 3)) — (3 2 1)

? (ath 2 '(123)) —3

? (last '(1 2 3)) — (3) Wait, why not 37

16

Lists are really chained ‘cons cells’

(12 3)

N
N
SN

nil

(cons 1 (cons 2 (cons 3 nil)))

17

Lists are really chained ‘cons cells’

(12 3) (1 2) 3)

TN VAN
N RN

1 nil

7 Na N

nil

(cons 1 (cons 2 (cons 3 nil))) (cons (cons 1 (cons 2 nil)) (coms 3 nil))

17

Assigning values: ‘Generalized variables’

» setf provides a uniform way of assigning values to variables.

18

Assigning values: ‘Generalized variables’

» setf provides a uniform way of assigning values to variables.

» General form:
(setf place walue)

» ...where place can either be a variable named by a symbol or some
other storage location:

18

Assigning values: ‘Generalized variables’

» setf provides a uniform way of assigning values to variables.

» General form:
(setf place walue)

» ...where place can either be a variable named by a symbol or some
other storage location:

7 (defparameter *foo* 42)

18

Assigning values: ‘Generalized variables’

» setf provides a uniform way of assigning values to variables.

» General form:
(setf place walue)

» ...where place can either be a variable named by a symbol or some
other storage location:

7 (defparameter *foo* 42)

? (setf *xfoox (+ *xfoox 1))

18

Assigning values: ‘Generalized variables’

» setf provides a uniform way of assigning values to variables.
» General form:

(setf place walue)

» ...where place can either be a variable named by a symbol or some
other storage location:

7 (defparameter *foo* 42)
7 (setf *foo* (+ *xfoox 1))

7 *foo*x — 43

18

Assigning values: ‘Generalized variables’

» setf provides a uniform way of assigning values to variables.
» General form:

(setf place walue)

» ...where place can either be a variable named by a symbol or some
other storage location:

7 (defparameter *foo* 42)
7 (setf *foo* (+ *xfoox 1))
? xfoo*x — 43

? (setf *foox '(2 2 3))

18

Assigning values: ‘Generalized variables’

» setf provides a uniform way of assigning values to variables.
» General form:

(setf place walue)

» ...where place can either be a variable named by a symbol or some
other storage location:

7 (defparameter *foo* 42)
7 (setf *foox (+ *foo*x 1))
? *foo* — 43

7 (setf *foox '(2 2 3))

7 (setf (first *foox) 1)

18

Assigning values: ‘Generalized variables’

» setf provides a uniform way of assigning values to variables.
» General form:

(setf place walue)

» ...where place can either be a variable named by a symbol or some
other storage location:

7 (defparameter *foo* 42)
7 (setf *foox (+ *foo*x 1))
? *foo* — 43

? (setf *foox '(2 2 3))

7 (setf (first *foox) 1)
7 *foox — (1 2 3)

18

Some other macros for assignment

Example Type of x Effect

(incf x y) number (setf x (+ x y))
(incf x) number (incf x 1)

(decf x y) number (setf x (- x y))
(decf x) number (decf x 1)

(push y x) list (setf x (cons y x))
(pop x) list (let ((y (first x)))

(pushnew y x)

list

(setf x (rest x)) y)
(if (member y x)

x
(push y x))

19

Local variables

» Sometimes we want to store intermediate results.

» let and let* create temporary value bindings for symbols.

7 (defparameter *foox 42)

? (defparameter *barx 100)

? (let ((kbar* 7)
(baz 1))
(+ baz *bar* *xfoox))

20

Local variables

» Sometimes we want to store intermediate results.

» let and let* create temporary value bindings for symbols.

7 (defparameter *foox 42)

? (defparameter *barx 100)

? (let ((kbar* 7)
(baz 1))
(+ baz *bar* *xfoox))

— 50

20

Local variables

» Sometimes we want to store intermediate results.
» let and let* create temporary value bindings for symbols.

7 (defparameter *foox 42)

? (defparameter *barx 100)

? (let ((kbar* 7)
(baz 1))
(+ baz *bar* *xfoox))

— 50

7 *barx —

20

Local variables

» Sometimes we want to store intermediate results.
» let and let* create temporary value bindings for symbols.

7 (defparameter *foox 42)

? (defparameter *barx 100)

? (let ((kbar* 7)
(baz 1))
(+ baz *bar* *xfoox))

— 50

? *barx — 100

20

Local variables

» Sometimes we want to store intermediate results.
» let and let* create temporary value bindings for symbols.

7 (defparameter *foox 42)

? (defparameter *barx 100)

? (let ((kbar* 7)
(baz 1))
(+ baz *bar* *xfoox))

— 50
? *barx — 100

? baz —

20

Local variables

» Sometimes we want to store intermediate results.
» let and let* create temporary value bindings for symbols.

7 (defparameter *foox 42)

? (defparameter *barx 100)

? (let ((kbar* 7)
(baz 1))
(+ baz *bar* *xfoox))

— 50
? *barx — 100

? baz — error; unbound variable

20

Local variables

» Sometimes we want to store intermediate results.
» let and let* create temporary value bindings for symbols.

7 (defparameter *foox 42)

? (defparameter *barx 100)

? (let ((kbar* 7)
(baz 1))
(+ baz *bar* *xfoox))

— 50
? ¥bar* — 100
? baz — error; unbound variable

» Bindings valid only in the body of let.
» Previously existing bindings are shadowed within the lexical scope.

20

Local variables

» Sometimes we want to store intermediate results.
» let and let* create temporary value bindings for symbols.

7 (defparameter *foox 42)

? (defparameter *barx 100)

? (let ((kbar* 7)
(baz 1))
(+ baz *bar* *xfoox))

— 50
? *barx — 100

? baz — error; unbound variable

» Bindings valid only in the body of let.
» Previously existing bindings are shadowed within the lexical scope.
» let* is like 1et but binds sequentially.

20

Predicates

» A predicate tests some condition.
» Evaluates to a boolean truth value:

» nil (the empty list) means false.
» Anything non-nil (including t) means true.

7 (listp (1 2 3)) — ¢
? (null (rest ’(1 2 3))) — nil
7 (evenp 2) — t

7 (defparameter foo 42)

? (or (not (numberp foo))
(and (>= foo 0)
(<= foo 42))) — t

» Plethora of equality tests: eq, eql, equal, and equalp.

21

Equality for one and all

eq tests object identity; it is not useful for numbers or characters.
eql is like eq, but well-defined on numbers and characters.
equal tests structural equivalence

v v . vyvYy

equalp is like equal but insensitive to case and numeric type.

22

Equality for one and all

eq tests object identity; it is not useful for numbers or characters.
eql is like eq, but well-defined on numbers and characters.
equal tests structural equivalence

equalp is like equal but insensitive to case and numeric type.

? (eq (1ist 1 2 3) (1 2 3)) — nil

22

Equality for one and all

eq tests object identity; it is not useful for numbers or characters.
eql is like eq, but well-defined on numbers and characters.
equal tests structural equivalence

equalp is like equal but insensitive to case and numeric type.

? (eq (1ist 1 2 3) (1 2 3)) — nil

? (equal (list 1 2 3) °(1 2 3)) —t

22

Equality for one and all

v v . vyvYy

eq tests object identity; it is not useful for numbers or characters.
eql is like eq, but well-defined on numbers and characters.
equal tests structural equivalence

equalp is like equal but insensitive to case and numeric type.

? (eq (1ist 1 2 3) (1 2 3)) — nil

? (equal (list 1 2 3) °(1 2 3)) —t

? (eq 42 42) — ? [implementation-dependent]

22

Equality for one and all

v v . vyvYy

eq tests object identity; it is not useful for numbers or characters.
eql is like eq, but well-defined on numbers and characters.
equal tests structural equivalence

equalp is like equal but insensitive to case and numeric type.

? (eq (1ist 1 2 3) (1 2 3)) — nil
? (equal (list 1 2 3) ’(1 2 3)) — t
? (eq 42 42) — ? [implementation-dependent]

? (eql 42 42) — t

22

Equality for one and all

> eq tests object identity; it is not useful for numbers or characters.
» eql is like eq, but well-defined on numbers and characters.

» equal tests structural equivalence

» equalp is like equal but insensitive to case and numeric type.

? (eq (1ist 1 2 3) (1 2 3)) — nil

? (equal (list 1 2 3) °(1 2 3)) —t

? (eq 42 42) — ? [implementation-dependent]
? (eql 42 42) — t

7 (eql 42 42.0) — nil

22

Equality for one and all

> eq tests object identity; it is not useful for numbers or characters.
» eql is like eq, but well-defined on numbers and characters.

» equal tests structural equivalence

» equalp is like equal but insensitive to case and numeric type.

? (eq (1ist 1 2 3) (1 2 3)) — nil

? (equal (list 1 2 3) °(1 2 3)) —t

? (eq 42 42) — ? [implementation-dependent]
? (eql 42 42) — t

7 (eql 42 42.0) — nil

? (equalp 42 42.0) — t

22

Equality for one and all

> eq tests object identity; it is not useful for numbers or characters.
» eql is like eq, but well-defined on numbers and characters.

» equal tests structural equivalence

» equalp is like equal but insensitive to case and numeric type.

? (eq (1ist 1 2 3) (1 2 3)) — nil

? (equal (list 1 2 3) °(1 2 3)) —t

? (eq 42 42) — ? [implementation-dependent]
? (eql 42 42) — t

7 (eql 42 42.0) — nil

? (equalp 42 42.0) — t

-~

(equal "foo" "foo") — t

22

Equality for one and all

> eq tests object identity; it is not useful for numbers or characters.
» eql is like eq, but well-defined on numbers and characters.

» equal tests structural equivalence

» equalp is like equal but insensitive to case and numeric type.

? (eq (1ist 1 2 3) (1 2 3)) — nil

? (equal (list 1 2 3) °(1 2 3)) —t

? (eq 42 42) — ? [implementation-dependent]
? (eql 42 42) — t

7 (eql 42 42.0) — nil

? (equalp 42 42.0) — t

-~

(equal "foo" "foo") — t

? (equalp "FOO" "foo") — t

22

Equality for one and all

> eq tests object identity; it is not useful for numbers or characters.
» eql is like eq, but well-defined on numbers and characters.

» equal tests structural equivalence

» equalp is like equal but insensitive to case and numeric type.

? (eq (1ist 1 2 3) (1 2 3)) — nil

? (equal (list 1 2 3) °(1 2 3)) —t

? (eq 42 42) — ? [implementation-dependent]
? (eql 42 42) — t

7 (eql 42 42.0) — nil

? (equalp 42 42.0) — t

-~

(equal "foo" "foo") — t

? (equalp "FOO" "foo") — t

» Also many type-specialized tests like =, string=, etc.

22

Rewind: A note on symbol semantics

» Symbols can have values as functions and variables at the same time.

» #° (sharp-quote) gives us the function object bound to a symbol.

? (defun foo (x)
(x x 1000))

23

Rewind: A note on symbol semantics

» Symbols can have values as functions and variables at the same time.

» #° (sharp-quote) gives us the function object bound to a symbol.

? (defun foo (x)
(x x 1000))

? (defparameter foo 42) — 2

23

Rewind: A note on symbol semantics

» Symbols can have values as functions and variables at the same time.

» #° (sharp-quote) gives us the function object bound to a symbol.

? (defun foo (x)
(x x 1000))

? (defparameter foo 42) — 2

? (foo foo) —

23

Rewind: A note on symbol semantics

» Symbols can have values as functions and variables at the same time.

» #° (sharp-quote) gives us the function object bound to a symbol.

? (defun foo (x)
(x x 1000))

? (defparameter foo 42) — 2

? (foo foo) — 42000

23

Rewind: A note on symbol semantics

» Symbols can have values as functions and variables at the same time.

» #° (sharp-quote) gives us the function object bound to a symbol.

? (defun foo (x)
(x x 1000))

? (defparameter foo 42) — 2
? (foo foo) — 42000

? foo — 42

23

Rewind: A note on symbol semantics

» Symbols can have values as functions and variables at the same time.

» #° (sharp-quote) gives us the function object bound to a symbol.

? (defun foo (x)
(x x 1000))

? (defparameter foo 42) — 2
? (foo foo) — 42000
? foo — 42

? #’foo — #<Interpreted Function FOO0>

23

Rewind: A note on symbol semantics

» Symbols can have values as functions and variables at the same time.

» #° (sharp-quote) gives us the function object bound to a symbol.

? (defun foo (x)
(x x 1000))

? (defparameter foo 42) — 2

? (foo foo) — 42000

? foo — 42

? #’foo — #<Interpreted Function FOO0>

? (funcall #’foo foo) — 42000

23

Rewind: A note on symbol semantics

» Symbols can have values as functions and variables at the same time.

» #° (sharp-quote) gives us the function object bound to a symbol.

? (defun foo (x)
(x x 1000))

? (defparameter foo 42) — 2

? (foo foo) — 42000

? foo — 42

? #’foo — #<Interpreted Function FOO0>

? (funcall #’foo foo) — 42000

» #’ and funcall (as well as apply) are useful when passing around
functions as arguments.

23

Higher-order functions

» Functions that accept functions as arguments or return values.

» Functions in Lisp are first-class objects.

» Can be created at run-time, passed as arguments, returned as values,
stored in variables. . . just like any other data type.

24

Higher-order functions

» Functions that accept functions as arguments or return values.

» Functions in Lisp are first-class objects.

» Can be created at run-time, passed as arguments, returned as values,
stored in variables. . . just like any other data type.

? (defun filter (list test)
(cond ((null list) nil)
((funcall test (first list))
(cons (first list)
(filter (rest list) test)))
(t (filter (rest 1list) test))))

24

Higher-order functions

» Functions that accept functions as arguments or return values.

» Functions in Lisp are first-class objects.

» Can be created at run-time, passed as arguments, returned as values,
stored in variables. . . just like any other data type.

? (defun filter (list test)
(cond ((null list) nil)
((funcall test (first list))
(cons (first list)
(filter (rest list) test)))
(t (filter (rest 1list) test))))

24

Higher-order functions

» Functions that accept functions as arguments or return values.

» Functions in Lisp are first-class objects.

» Can be created at run-time, passed as arguments, returned as values,
stored in variables. . . just like any other data type.

? (defun filter (list test)
(cond ((null list) nil)
((funcall test (first list))
(cons (first list)
(filter (rest list) test)))
(t (filter (rest 1list) test))))

7 (defparameter foo '(11 22 33 44 55))

24

Higher-order functions

» Functions that accept functions as arguments or return values.

» Functions in Lisp are first-class objects.

» Can be created at run-time, passed as arguments, returned as values,
stored in variables. . . just like any other data type.

? (defun filter (list test)
(cond ((null list) nil)
((funcall test (first list))
(cons (first list)
(filter (rest list) test)))
(t (filter (rest 1list) test))))

7 (defparameter foo '(11 22 33 44 55))

? (filter foo #'evenp)
— (22 44)

24

Anonymous functions

» We can also pass function arguments without first binding them to a
name, using lambda expressions: (lambda (parameters) body)

» A function definition without the defun and symbol part.

? (filter foo
#’ (lambda (x)
(and (> x 20)
(< x 50))))
— (22 33 44)

25

Anonymous functions

» We can also pass function arguments without first binding them to a
name, using lambda expressions: (lambda (parameters) body)

» A function definition without the defun and symbol part.

? (filter foo
#’ (lambda (x)
(and (> x 20)
(< x 50))))
— (22 33 44)

» Typically used for ad-hoc functions that are only locally relevant and
simple enough to be expressed inline.

25

Anonymous functions

» We can also pass function arguments without first binding them to a
name, using lambda expressions: (lambda (parameters) body)

» A function definition without the defun and symbol part.

? (filter foo
#’ (lambda (x)
(and (> x 20)
(< x 50))))
— (22 33 44)

» Typically used for ad-hoc functions that are only locally relevant and
simple enough to be expressed inline.

» Or, when constructing functions as return values.

25

Returning functions

» We have seen how to create anonymous functions using lambda and
pass them as arguments.

» Now let's combine that with a function that itself returns another
function (which we then bind to a variable).

26

Returning functions

» We have seen how to create anonymous functions using lambda and
pass them as arguments.

» Now let's combine that with a function that itself returns another
function (which we then bind to a variable).

? (defparameter foo '(11 22 33 44 55))

? (defun make-range-test (lower upper)
#'(lambda (x)
(and (> x lower)
(< x upper))))

26

Returning functions

» We have seen how to create anonymous functions using lambda and
pass them as arguments.

» Now let's combine that with a function that itself returns another
function (which we then bind to a variable).

? (defparameter foo '(11 22 33 44 55))

? (defun make-range-test (lower upper)
#'(lambda (x)
(and (> x lower)
(< x upper))))

? (filter foo (make-range-test 10 30))

— (11 22)

26

Programming in INF4820

» In the IFI Linux environment, we have available Allegro Common Lisp,
a commercial Lisp interpreter and compiler.

» We will provide a pre-configured, integrated setup with emacs and the
SLIME Lisp interaction mode.

» Several open-source Lisp implementations exist, e.g. Clozure or SBCL;
compatible with SLIME, so feel free to experiment (at some later point).

» First-time users, please spend some time studying basic keyboard
commands, for example: C-h t and M-x doctor RET.

» See the getting started guide and emacs cheat sheet on the course page.

» Obligatory assignment 1 is out now, and due Wed. 9th Sept.
» See course page or just run 'svn update’

27

Next week

More Common Lisp.

» More on argument lists (optional arguments, keywords, defaults).

» More data types: Hash-tables, a-lists, arrays, sequences, and structures
» More higher-order functions.

» Iteration (loop) and mapping.

28

