
INF4820: Algorithms for AI and NLP

— INF4820 —
Algorithms for AI and NLP

Common Lisp Essentials

Erik Velldal & Stephan Oepen

Language Technology Group (LTG)

August 26, 2015



Topic of the day

Lisp
2



Lisp

I Conceived in the late 1950s by
John McCarthy – one of the
founding fathers of AI.

I Originally intended as a
mathematical formalism.

I A family of high-level languages.

I Several dialects, e.g. Scheme,
Clojure, Emacs Lisp, and
Common Lisp.

I Although a multi-paradigm
language, functional style
prevalent.

3



Basic common lisp in a couple of minutes

I Testing a few expressions at the REPL;

I the read–eval–print loop.

I (= the interactive Lisp-environment)

I ‘?’ represents the REPL prompt and
‘→’ what an expression evaluates to.

I Atomic data types like numbers,
booleans, and strings are self
evaluating.

I Symbols evaluate to whatever value
they are bound to.

Examples

? "this is a string"
→ "this is a string"

? 42
→ 42

? t
→ t

? nil
→ nil

? pi
→ 3.141592653589793d0

? foo
→ error; unbound

4



Basic common lisp in a couple of minutes

I Testing a few expressions at the REPL;

I the read–eval–print loop.

I (= the interactive Lisp-environment)

I ‘?’ represents the REPL prompt and
‘→’ what an expression evaluates to.

I Atomic data types like numbers,
booleans, and strings are self
evaluating.

I Symbols evaluate to whatever value
they are bound to.

Examples

? "this is a string"
→ "this is a string"

? 42
→ 42

? t
→ t

? nil
→ nil

? pi
→ 3.141592653589793d0

? foo
→ error; unbound

4



Basic common lisp in a couple of minutes

I Testing a few expressions at the REPL;

I the read–eval–print loop.

I (= the interactive Lisp-environment)

I ‘?’ represents the REPL prompt and
‘→’ what an expression evaluates to.

I Atomic data types like numbers,
booleans, and strings are self
evaluating.

I Symbols evaluate to whatever value
they are bound to.

Examples
? "this is a string"
→ "this is a string"

? 42
→ 42

? t
→ t

? nil
→ nil

? pi
→ 3.141592653589793d0

? foo
→ error; unbound

4



Basic common lisp in a couple of minutes

I Testing a few expressions at the REPL;

I the read–eval–print loop.

I (= the interactive Lisp-environment)

I ‘?’ represents the REPL prompt and
‘→’ what an expression evaluates to.

I Atomic data types like numbers,
booleans, and strings are self
evaluating.

I Symbols evaluate to whatever value
they are bound to.

Examples
? "this is a string"
→ "this is a string"

? 42
→ 42

? t
→ t

? nil
→ nil

? pi
→ 3.141592653589793d0

? foo
→ error; unbound

4



Basic common lisp in a couple of minutes

I Testing a few expressions at the REPL;

I the read–eval–print loop.

I (= the interactive Lisp-environment)

I ‘?’ represents the REPL prompt and
‘→’ what an expression evaluates to.

I Atomic data types like numbers,
booleans, and strings are self
evaluating.

I Symbols evaluate to whatever value
they are bound to.

Examples
? "this is a string"
→ "this is a string"

? 42
→ 42

? t
→ t

? nil
→ nil

? pi
→ 3.141592653589793d0

? foo
→ error; unbound

4



Basic common lisp in a couple of minutes

I Testing a few expressions at the REPL;

I the read–eval–print loop.

I (= the interactive Lisp-environment)

I ‘?’ represents the REPL prompt and
‘→’ what an expression evaluates to.

I Atomic data types like numbers,
booleans, and strings are self
evaluating.

I Symbols evaluate to whatever value
they are bound to.

Examples
? "this is a string"
→ "this is a string"

? 42
→ 42

? t
→ t

? nil
→ nil

? pi
→ 3.141592653589793d0

? foo
→ error; unbound

4



Basic common lisp in a couple of minutes

I Testing a few expressions at the REPL;

I the read–eval–print loop.

I (= the interactive Lisp-environment)

I ‘?’ represents the REPL prompt and
‘→’ what an expression evaluates to.

I Atomic data types like numbers,
booleans, and strings are self
evaluating.

I Symbols evaluate to whatever value
they are bound to.

Examples
? "this is a string"
→ "this is a string"

? 42
→ 42

? t
→ t

? nil
→ nil

? pi
→ 3.141592653589793d0

? foo
→ error; unbound

4



Basic common lisp in a couple of minutes

I Testing a few expressions at the REPL;

I the read–eval–print loop.

I (= the interactive Lisp-environment)

I ‘?’ represents the REPL prompt and
‘→’ what an expression evaluates to.

I Atomic data types like numbers,
booleans, and strings are self
evaluating.

I Symbols evaluate to whatever value
they are bound to.

Examples
? "this is a string"
→ "this is a string"

? 42
→ 42

? t
→ t

? nil
→ nil

? pi
→ 3.141592653589793d0

? foo
→ error; unbound

4



Basic common lisp in a couple of minutes

I Testing a few expressions at the REPL;

I the read–eval–print loop.

I (= the interactive Lisp-environment)

I ‘?’ represents the REPL prompt and
‘→’ what an expression evaluates to.

I Atomic data types like numbers,
booleans, and strings are self
evaluating.

I Symbols evaluate to whatever value
they are bound to.

Examples
? "this is a string"
→ "this is a string"

? 42
→ 42

? t
→ t

? nil
→ nil

? pi
→ 3.141592653589793d0

? foo
→ error; unbound

4



A note on terminology

I Lisp manipulates so-called symbolic expressions.

I AKA s-expressions or sexps.
I Two fundamental types of sexps;

1. atoms (e.g., nil, t, numbers, strings, symbols)
2. lists containing other sexps.

I Sexps are used to represent both data and code.

5



Function calls

I “Parenthesized prefix notation”

I First element (prefix) = operator
(i.e. the procedure or function).

I The rest of the list is the operands
(i.e. the arguments or parameters).

I Use nesting (of lists) to build
compound expressions.

I Expressions can span multiple lines;
indentation for readability.

Examples
? (+ 1 2)
→ 3

? (+ 1 2 10 7 5)
→ 25

? (/ (+ 10 20) 2)
→ 15

? (* (+ 42 58)
(- (/ 8 2) 2))

→ 200

6



Function calls

I “Parenthesized prefix notation”

I First element (prefix) = operator
(i.e. the procedure or function).

I The rest of the list is the operands
(i.e. the arguments or parameters).

I Use nesting (of lists) to build
compound expressions.

I Expressions can span multiple lines;
indentation for readability.

Examples
? (+ 1 2)
→ 3

? (+ 1 2 10 7 5)
→ 25

? (/ (+ 10 20) 2)
→ 15

? (* (+ 42 58)
(- (/ 8 2) 2))

→ 200

6



Function calls

I “Parenthesized prefix notation”

I First element (prefix) = operator
(i.e. the procedure or function).

I The rest of the list is the operands
(i.e. the arguments or parameters).

I Use nesting (of lists) to build
compound expressions.

I Expressions can span multiple lines;
indentation for readability.

Examples
? (+ 1 2)
→ 3

? (+ 1 2 10 7 5)
→ 25

? (/ (+ 10 20) 2)
→ 15

? (* (+ 42 58)
(- (/ 8 2) 2))

→ 200

6



Function calls

I “Parenthesized prefix notation”

I First element (prefix) = operator
(i.e. the procedure or function).

I The rest of the list is the operands
(i.e. the arguments or parameters).

I Use nesting (of lists) to build
compound expressions.

I Expressions can span multiple lines;
indentation for readability.

Examples
? (+ 1 2)
→ 3

? (+ 1 2 10 7 5)
→ 25

? (/ (+ 10 20) 2)
→ 15

? (* (+ 42 58)
(- (/ 8 2) 2))

→ 200

6



The syntax and semantics of CL

? (expt (- 8 4) 2)
→ 16

I You now know (almost) all there is to know about the rules of CL.

I The first element of a list names a function that is invoked with the
values of all remaining elements as its arguments.

I A few exceptions, called special forms, with their own evaluation rules.

7



Creating our own functions

I The special form defun associates a function definition with a symbol:

General form

(defun name (parameter1 . . . parametern) body)

Example

? (defun average (x y)
(/ (+ x y) 2))

? (average 10 20)
→15

8



Creating our own functions

I The special form defun associates a function definition with a symbol:

General form

(defun name (parameter1 . . . parametern) body)

Example

? (defun average (x y)
(/ (+ x y) 2))

? (average 10 20)
→15

8



Creating our own functions

I The special form defun associates a function definition with a symbol:

General form

(defun name (parameter1 . . . parametern) body)

Example

? (defun average (x y)
(/ (+ x y) 2))

? (average 10 20)
→15

8



Some other special forms

I defparameter declares a ‘global variable’ and assigns a value:

? (defparameter *foo* 42)
? *foo* → 42

I Conditional evaluation with if and cond:

Examples
? (if (numberp *foo*)

"number"
"something else")

→ "number"

? (cond ((< *foo* 3) "less")
((> *foo* 3) "more")
(t "equal"))

→ "more"

General form
(if 〈predicate〉

〈then clause〉
〈else clause〉)

(cond (〈predicate1〉 〈clause1〉)
(〈predicate2〉 〈clause2〉)
(〈predicatei〉 〈clausei〉)
(t 〈default clause〉))

9



Some other special forms

I defparameter declares a ‘global variable’ and assigns a value:

? (defparameter *foo* 42)
? *foo* → 42

I Conditional evaluation with if and cond:

Examples
? (if (numberp *foo*)

"number"
"something else")

→ "number"

? (cond ((< *foo* 3) "less")
((> *foo* 3) "more")
(t "equal"))

→ "more"

General form
(if 〈predicate〉

〈then clause〉
〈else clause〉)

(cond (〈predicate1〉 〈clause1〉)
(〈predicate2〉 〈clause2〉)
(〈predicatei〉 〈clausei〉)
(t 〈default clause〉))

9



The ‘Hello World!’ of functional programming

I Classic example: the factorial
function.

I A recursive procedure: calls itself,
directly or indirectly.

I May seem circular, but is
well-defined as long as there’s a
base case terminating the recursion.

I For comparison: a non-recursive
implementation (in Python).

n! =
{

1 if n = 0
n × (n − 1)! if n > 0

(defun fac (n)
(if (= n 0)

1
(* n (fac (- n 1)))))

def fac(n):
r = 1
while (n > 0):

r = r * n
n = n - 1

return r

10



The ‘Hello World!’ of functional programming

I Classic example: the factorial
function.

I A recursive procedure: calls itself,
directly or indirectly.

I May seem circular, but is
well-defined as long as there’s a
base case terminating the recursion.

I For comparison: a non-recursive
implementation (in Python).

n! =
{

1 if n = 0
n × (n − 1)! if n > 0

(defun fac (n)
(if (= n 0)

1
(* n (fac (- n 1)))))

def fac(n):
r = 1
while (n > 0):

r = r * n
n = n - 1

return r

10



The ‘Hello World!’ of functional programming

I Classic example: the factorial
function.

I A recursive procedure: calls itself,
directly or indirectly.

I May seem circular, but is
well-defined as long as there’s a
base case terminating the recursion.

I For comparison: a non-recursive
implementation (in Python).

n! =
{

1 if n = 0
n × (n − 1)! if n > 0

(defun fac (n)
(if (= n 0)

1
(* n (fac (- n 1)))))

def fac(n):
r = 1
while (n > 0):

r = r * n
n = n - 1

return r

10



The ‘Hello World!’ of functional programming

I Classic example: the factorial
function.

I A recursive procedure: calls itself,
directly or indirectly.

I May seem circular, but is
well-defined as long as there’s a
base case terminating the recursion.

I For comparison: a non-recursive
implementation (in Python).

n! =
{

1 if n = 0
n × (n − 1)! if n > 0

(defun fac (n)
(if (= n 0)

1
(* n (fac (- n 1)))))

def fac(n):
r = 1
while (n > 0):

r = r * n
n = n - 1

return r

10



The ‘Hello World!’ of functional programming

I Classic example: the factorial
function.

I A recursive procedure: calls itself,
directly or indirectly.

I May seem circular, but is
well-defined as long as there’s a
base case terminating the recursion.

I For comparison: a non-recursive
implementation (in Python).

n! =
{

1 if n = 0
n × (n − 1)! if n > 0

(defun fac (n)
(if (= n 0)

1
(* n (fac (- n 1)))))

def fac(n):
r = 1
while (n > 0):

r = r * n
n = n - 1

return r
10



A special case of recursion: Tail recursion
I A more efficient way to
define n! recursively.

I Use a helper procedure
with an accumulator
variable to collect the
product along the way.

I The recursive call is in tail
position:

(defun fac (n)
(fac-iter 1 1 n))

(defun fac-iter (prod count n)
(if (> count n)

prod
(fac-iter (* count prod)

(+ count 1)
n)))

I no work remains to be done in the calling function.

I Once we reach the base case, the return value is ready.

I Most CL compilers do tail call optimization, so that the recursion is
executed as an iterative loop.

I (The next lecture will cover CL’s built-in loop construct.)

11



A special case of recursion: Tail recursion
I A more efficient way to
define n! recursively.

I Use a helper procedure
with an accumulator
variable to collect the
product along the way.

I The recursive call is in tail
position:

(defun fac (n)
(fac-iter 1 1 n))

(defun fac-iter (prod count n)
(if (> count n)

prod
(fac-iter (* count prod)

(+ count 1)
n)))

I no work remains to be done in the calling function.

I Once we reach the base case, the return value is ready.

I Most CL compilers do tail call optimization, so that the recursion is
executed as an iterative loop.

I (The next lecture will cover CL’s built-in loop construct.)

11



A special case of recursion: Tail recursion
I A more efficient way to
define n! recursively.

I Use a helper procedure
with an accumulator
variable to collect the
product along the way.

I The recursive call is in tail
position:

(defun fac (n)
(fac-iter 1 1 n))

(defun fac-iter (prod count n)
(if (> count n)

prod
(fac-iter (* count prod)

(+ count 1)
n)))

I no work remains to be done in the calling function.

I Once we reach the base case, the return value is ready.

I Most CL compilers do tail call optimization, so that the recursion is
executed as an iterative loop.

I (The next lecture will cover CL’s built-in loop construct.)

11



A special case of recursion: Tail recursion
I A more efficient way to
define n! recursively.

I Use a helper procedure
with an accumulator
variable to collect the
product along the way.

I The recursive call is in tail
position:

(defun fac (n)
(fac-iter 1 1 n))

(defun fac-iter (prod count n)
(if (> count n)

prod
(fac-iter (* count prod)

(+ count 1)
n)))

I no work remains to be done in the calling function.

I Once we reach the base case, the return value is ready.

I Most CL compilers do tail call optimization, so that the recursion is
executed as an iterative loop.

I (The next lecture will cover CL’s built-in loop construct.)

11



A special case of recursion: Tail recursion
I A more efficient way to
define n! recursively.

I Use a helper procedure
with an accumulator
variable to collect the
product along the way.

I The recursive call is in tail
position:

(defun fac (n)
(fac-iter 1 1 n))

(defun fac-iter (prod count n)
(if (> count n)

prod
(fac-iter (* count prod)

(+ count 1)
n)))

I no work remains to be done in the calling function.

I Once we reach the base case, the return value is ready.

I Most CL compilers do tail call optimization, so that the recursion is
executed as an iterative loop.

I (The next lecture will cover CL’s built-in loop construct.)
11



Tracing the processes

Recursive
(defun fac (n)

(if (= n 0)
1
(* n (fac (- n 1)))))

? (fac 7)
⇒ (* 7 (fac 6))
⇒ (* 7 (* 6 (fac 5)))
⇒ (* 7 (* 6 (* 5 (fac 4))))
⇒ (* 7 (* 6 (* 5 (* 4 (fac 3)))))
⇒ (* 7 (* 6 (* 5 (* 4 (* 3 (fac 2))))))
⇒ (* 7 (* 6 (* 5 (* 4 (* 3 (* 2 (fac 1)))))))
⇒ (* 7 (* 6 (* 5 (* 4 (* 3 (* 2 1))))))
⇒ (* 7 (* 6 (* 5 (* 4 (* 3 2)))))
⇒ (* 7 (* 6 (* 5 (* 4 6))))
⇒ (* 7 (* 6 (* 5 24)))
⇒ (* 7 (* 6 120))
⇒ (* 7 720)
→ 5040

Iterative (tail recursive)
(defun fac (n)

(fac-iter 1 1 n))

(defun fac-iter (prod count n)
(if (> count n)

prod
(fac-iter (* count prod)

(+ count 1)
n)))

? (fac 7)
⇒ (fac-iter 1 1 7)
⇒ (fac-iter 1 2 7)
⇒ (fac-iter 2 3 7)
⇒ (fac-iter 6 4 7)
⇒ (fac-iter 24 5 7)
⇒ (fac-iter 120 6 7)
⇒ (fac-iter 720 7 7)
⇒ (fac-iter 5040 8 7)
→ 5040

12



Tracing the processes

Recursive
(defun fac (n)

(if (= n 0)
1
(* n (fac (- n 1)))))

? (fac 7)
⇒ (* 7 (fac 6))
⇒ (* 7 (* 6 (fac 5)))
⇒ (* 7 (* 6 (* 5 (fac 4))))
⇒ (* 7 (* 6 (* 5 (* 4 (fac 3)))))
⇒ (* 7 (* 6 (* 5 (* 4 (* 3 (fac 2))))))
⇒ (* 7 (* 6 (* 5 (* 4 (* 3 (* 2 (fac 1)))))))
⇒ (* 7 (* 6 (* 5 (* 4 (* 3 (* 2 1))))))
⇒ (* 7 (* 6 (* 5 (* 4 (* 3 2)))))
⇒ (* 7 (* 6 (* 5 (* 4 6))))
⇒ (* 7 (* 6 (* 5 24)))
⇒ (* 7 (* 6 120))
⇒ (* 7 720)
→ 5040

Iterative (tail recursive)
(defun fac (n)

(fac-iter 1 1 n))

(defun fac-iter (prod count n)
(if (> count n)

prod
(fac-iter (* count prod)

(+ count 1)
n)))

? (fac 7)
⇒ (fac-iter 1 1 7)
⇒ (fac-iter 1 2 7)
⇒ (fac-iter 2 3 7)
⇒ (fac-iter 6 4 7)
⇒ (fac-iter 24 5 7)
⇒ (fac-iter 120 6 7)
⇒ (fac-iter 720 7 7)
⇒ (fac-iter 5040 8 7)
→ 5040

12



The quote operator
I A special form making expressions self-evaluating.
I The quote operator (or simply ‘'’) suppresses evaluation.

? pi→ 3.141592653589793d0

? (quote pi) → pi

? 'pi → pi

? foobar → error; unbound variable

? 'foobar → foobar

? (* 2 pi) → 6.283185307179586d0

? '(* 2 pi) → (* 2 pi)

? () → error; missing procedure

? '() → ()

13



The quote operator
I A special form making expressions self-evaluating.
I The quote operator (or simply ‘'’) suppresses evaluation.

? pi→ 3.141592653589793d0

? (quote pi) → pi

? 'pi → pi

? foobar → error; unbound variable

? 'foobar → foobar

? (* 2 pi) → 6.283185307179586d0

? '(* 2 pi) → (* 2 pi)

? () → error; missing procedure

? '() → ()

13



The quote operator
I A special form making expressions self-evaluating.
I The quote operator (or simply ‘'’) suppresses evaluation.

? pi→ 3.141592653589793d0

? (quote pi) → pi

? 'pi → pi

? foobar → error; unbound variable

? 'foobar → foobar

? (* 2 pi) → 6.283185307179586d0

? '(* 2 pi) → (* 2 pi)

? () → error; missing procedure

? '() → ()

13



The quote operator
I A special form making expressions self-evaluating.
I The quote operator (or simply ‘'’) suppresses evaluation.

? pi→ 3.141592653589793d0

? (quote pi) → pi

? 'pi → pi

? foobar → error; unbound variable

? 'foobar → foobar

? (* 2 pi) → 6.283185307179586d0

? '(* 2 pi) → (* 2 pi)

? () → error; missing procedure

? '() → ()

13



The quote operator
I A special form making expressions self-evaluating.
I The quote operator (or simply ‘'’) suppresses evaluation.

? pi→ 3.141592653589793d0

? (quote pi) → pi

? 'pi → pi

? foobar → error; unbound variable

? 'foobar → foobar

? (* 2 pi) → 6.283185307179586d0

? '(* 2 pi) → (* 2 pi)

? () → error; missing procedure

? '() → ()

13



The quote operator
I A special form making expressions self-evaluating.
I The quote operator (or simply ‘'’) suppresses evaluation.

? pi→ 3.141592653589793d0

? (quote pi) → pi

? 'pi → pi

? foobar → error; unbound variable

? 'foobar → foobar

? (* 2 pi) → 6.283185307179586d0

? '(* 2 pi) → (* 2 pi)

? () → error; missing procedure

? '() → ()

13



The quote operator
I A special form making expressions self-evaluating.
I The quote operator (or simply ‘'’) suppresses evaluation.

? pi→ 3.141592653589793d0

? (quote pi) → pi

? 'pi → pi

? foobar → error; unbound variable

? 'foobar → foobar

? (* 2 pi) → 6.283185307179586d0

? '(* 2 pi) → (* 2 pi)

? () → error; missing procedure

? '() → ()

13



The quote operator
I A special form making expressions self-evaluating.
I The quote operator (or simply ‘'’) suppresses evaluation.

? pi→ 3.141592653589793d0

? (quote pi) → pi

? 'pi → pi

? foobar → error; unbound variable

? 'foobar → foobar

? (* 2 pi) → 6.283185307179586d0

? '(* 2 pi) →

(* 2 pi)

? () → error; missing procedure

? '() → ()

13



The quote operator
I A special form making expressions self-evaluating.
I The quote operator (or simply ‘'’) suppresses evaluation.

? pi→ 3.141592653589793d0

? (quote pi) → pi

? 'pi → pi

? foobar → error; unbound variable

? 'foobar → foobar

? (* 2 pi) → 6.283185307179586d0

? '(* 2 pi) → (* 2 pi)

? () → error; missing procedure

? '() → ()

13



The quote operator
I A special form making expressions self-evaluating.
I The quote operator (or simply ‘'’) suppresses evaluation.

? pi→ 3.141592653589793d0

? (quote pi) → pi

? 'pi → pi

? foobar → error; unbound variable

? 'foobar → foobar

? (* 2 pi) → 6.283185307179586d0

? '(* 2 pi) → (* 2 pi)

? () →

error; missing procedure

? '() → ()

13



The quote operator
I A special form making expressions self-evaluating.
I The quote operator (or simply ‘'’) suppresses evaluation.

? pi→ 3.141592653589793d0

? (quote pi) → pi

? 'pi → pi

? foobar → error; unbound variable

? 'foobar → foobar

? (* 2 pi) → 6.283185307179586d0

? '(* 2 pi) → (* 2 pi)

? () → error; missing procedure

? '() → ()

13



The quote operator
I A special form making expressions self-evaluating.
I The quote operator (or simply ‘'’) suppresses evaluation.

? pi→ 3.141592653589793d0

? (quote pi) → pi

? 'pi → pi

? foobar → error; unbound variable

? 'foobar → foobar

? (* 2 pi) → 6.283185307179586d0

? '(* 2 pi) → (* 2 pi)

? () → error; missing procedure

? '() →

()

13



The quote operator
I A special form making expressions self-evaluating.
I The quote operator (or simply ‘'’) suppresses evaluation.

? pi→ 3.141592653589793d0

? (quote pi) → pi

? 'pi → pi

? foobar → error; unbound variable

? 'foobar → foobar

? (* 2 pi) → 6.283185307179586d0

? '(* 2 pi) → (* 2 pi)

? () → error; missing procedure

? '() → ()
13



Both code and data are s-expressions

I We’ve mentioned how sexps are used to represent both data and code.
I Note the double role of lists:
I Lists are function calls;

? (* 10 (+ 2 3)) → 50

? (bar 1 2) → error; function bar undefined

I But, lists can also be data;

? '(foo bar) → (foo bar)

? (list 'foo 'bar) → (foo bar)

14



Both code and data are s-expressions

I We’ve mentioned how sexps are used to represent both data and code.
I Note the double role of lists:
I Lists are function calls;

? (* 10 (+ 2 3)) → 50

? (bar 1 2) → error; function bar undefined

I But, lists can also be data;

? '(foo bar) → (foo bar)

? (list 'foo 'bar) → (foo bar)

14



Break

http://xkcd.com/297/

Eric Raymond, How to Become a Hacker, 2001:
Lisp is worth learning for the profound enlightenment experience you will
have when you finally get it;
that experience will make you a better programmer for the rest of your
days, even if you should never actually use Lisp itself a lot.

15

http://xkcd.com/297/


LISP = LISt Processing
I cons builds up new lists; first and rest destructure them.

? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3)

? (cons 0 '(1 2 3)) → (0 1 2 3)
? (first '(1 2 3)) → 1
? (rest '(1 2 3)) → (2 3)
? (first (rest '(1 2 3))) → 2
? (rest (rest (rest '(1 2 3)))) → nil

I Many additional list operations (derivable from the above), e.g.

? (list 1 2 3) → (1 2 3)
? (append '(1 2) '(3) '(4 5 6)) → (1 2 3 4 5 6)
? (length '(1 2 3)) → 3
? (reverse '(1 2 3)) → (3 2 1)
? (nth 2 '(1 2 3)) → 3
? (last '(1 2 3)) → (3) Wait, why not 3?

16



LISP = LISt Processing
I cons builds up new lists; first and rest destructure them.

? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3)
? (cons 0 '(1 2 3)) →

(0 1 2 3)
? (first '(1 2 3)) → 1
? (rest '(1 2 3)) → (2 3)
? (first (rest '(1 2 3))) → 2
? (rest (rest (rest '(1 2 3)))) → nil

I Many additional list operations (derivable from the above), e.g.

? (list 1 2 3) → (1 2 3)
? (append '(1 2) '(3) '(4 5 6)) → (1 2 3 4 5 6)
? (length '(1 2 3)) → 3
? (reverse '(1 2 3)) → (3 2 1)
? (nth 2 '(1 2 3)) → 3
? (last '(1 2 3)) → (3) Wait, why not 3?

16



LISP = LISt Processing
I cons builds up new lists; first and rest destructure them.

? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3)
? (cons 0 '(1 2 3)) → (0 1 2 3)

? (first '(1 2 3)) → 1
? (rest '(1 2 3)) → (2 3)
? (first (rest '(1 2 3))) → 2
? (rest (rest (rest '(1 2 3)))) → nil

I Many additional list operations (derivable from the above), e.g.

? (list 1 2 3) → (1 2 3)
? (append '(1 2) '(3) '(4 5 6)) → (1 2 3 4 5 6)
? (length '(1 2 3)) → 3
? (reverse '(1 2 3)) → (3 2 1)
? (nth 2 '(1 2 3)) → 3
? (last '(1 2 3)) → (3) Wait, why not 3?

16



LISP = LISt Processing
I cons builds up new lists; first and rest destructure them.

? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3)
? (cons 0 '(1 2 3)) → (0 1 2 3)
? (first '(1 2 3)) → 1

? (rest '(1 2 3)) → (2 3)
? (first (rest '(1 2 3))) → 2
? (rest (rest (rest '(1 2 3)))) → nil

I Many additional list operations (derivable from the above), e.g.

? (list 1 2 3) → (1 2 3)
? (append '(1 2) '(3) '(4 5 6)) → (1 2 3 4 5 6)
? (length '(1 2 3)) → 3
? (reverse '(1 2 3)) → (3 2 1)
? (nth 2 '(1 2 3)) → 3
? (last '(1 2 3)) → (3) Wait, why not 3?

16



LISP = LISt Processing
I cons builds up new lists; first and rest destructure them.

? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3)
? (cons 0 '(1 2 3)) → (0 1 2 3)
? (first '(1 2 3)) → 1
? (rest '(1 2 3)) → (2 3)

? (first (rest '(1 2 3))) → 2
? (rest (rest (rest '(1 2 3)))) → nil

I Many additional list operations (derivable from the above), e.g.

? (list 1 2 3) → (1 2 3)
? (append '(1 2) '(3) '(4 5 6)) → (1 2 3 4 5 6)
? (length '(1 2 3)) → 3
? (reverse '(1 2 3)) → (3 2 1)
? (nth 2 '(1 2 3)) → 3
? (last '(1 2 3)) → (3) Wait, why not 3?

16



LISP = LISt Processing
I cons builds up new lists; first and rest destructure them.

? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3)
? (cons 0 '(1 2 3)) → (0 1 2 3)
? (first '(1 2 3)) → 1
? (rest '(1 2 3)) → (2 3)
? (first (rest '(1 2 3))) →

2
? (rest (rest (rest '(1 2 3)))) → nil

I Many additional list operations (derivable from the above), e.g.

? (list 1 2 3) → (1 2 3)
? (append '(1 2) '(3) '(4 5 6)) → (1 2 3 4 5 6)
? (length '(1 2 3)) → 3
? (reverse '(1 2 3)) → (3 2 1)
? (nth 2 '(1 2 3)) → 3
? (last '(1 2 3)) → (3) Wait, why not 3?

16



LISP = LISt Processing
I cons builds up new lists; first and rest destructure them.

? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3)
? (cons 0 '(1 2 3)) → (0 1 2 3)
? (first '(1 2 3)) → 1
? (rest '(1 2 3)) → (2 3)
? (first (rest '(1 2 3))) → 2

? (rest (rest (rest '(1 2 3)))) → nil

I Many additional list operations (derivable from the above), e.g.

? (list 1 2 3) → (1 2 3)
? (append '(1 2) '(3) '(4 5 6)) → (1 2 3 4 5 6)
? (length '(1 2 3)) → 3
? (reverse '(1 2 3)) → (3 2 1)
? (nth 2 '(1 2 3)) → 3
? (last '(1 2 3)) → (3) Wait, why not 3?

16



LISP = LISt Processing
I cons builds up new lists; first and rest destructure them.

? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3)
? (cons 0 '(1 2 3)) → (0 1 2 3)
? (first '(1 2 3)) → 1
? (rest '(1 2 3)) → (2 3)
? (first (rest '(1 2 3))) → 2
? (rest (rest (rest '(1 2 3)))) →

nil

I Many additional list operations (derivable from the above), e.g.

? (list 1 2 3) → (1 2 3)
? (append '(1 2) '(3) '(4 5 6)) → (1 2 3 4 5 6)
? (length '(1 2 3)) → 3
? (reverse '(1 2 3)) → (3 2 1)
? (nth 2 '(1 2 3)) → 3
? (last '(1 2 3)) → (3) Wait, why not 3?

16



LISP = LISt Processing
I cons builds up new lists; first and rest destructure them.

? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3)
? (cons 0 '(1 2 3)) → (0 1 2 3)
? (first '(1 2 3)) → 1
? (rest '(1 2 3)) → (2 3)
? (first (rest '(1 2 3))) → 2
? (rest (rest (rest '(1 2 3)))) → nil

I Many additional list operations (derivable from the above), e.g.

? (list 1 2 3) → (1 2 3)
? (append '(1 2) '(3) '(4 5 6)) → (1 2 3 4 5 6)
? (length '(1 2 3)) → 3
? (reverse '(1 2 3)) → (3 2 1)
? (nth 2 '(1 2 3)) → 3
? (last '(1 2 3)) → (3) Wait, why not 3?

16



LISP = LISt Processing
I cons builds up new lists; first and rest destructure them.

? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3)
? (cons 0 '(1 2 3)) → (0 1 2 3)
? (first '(1 2 3)) → 1
? (rest '(1 2 3)) → (2 3)
? (first (rest '(1 2 3))) → 2
? (rest (rest (rest '(1 2 3)))) → nil

I Many additional list operations (derivable from the above), e.g.

? (list 1 2 3) → (1 2 3)

? (append '(1 2) '(3) '(4 5 6)) → (1 2 3 4 5 6)
? (length '(1 2 3)) → 3
? (reverse '(1 2 3)) → (3 2 1)
? (nth 2 '(1 2 3)) → 3
? (last '(1 2 3)) → (3) Wait, why not 3?

16



LISP = LISt Processing
I cons builds up new lists; first and rest destructure them.

? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3)
? (cons 0 '(1 2 3)) → (0 1 2 3)
? (first '(1 2 3)) → 1
? (rest '(1 2 3)) → (2 3)
? (first (rest '(1 2 3))) → 2
? (rest (rest (rest '(1 2 3)))) → nil

I Many additional list operations (derivable from the above), e.g.

? (list 1 2 3) → (1 2 3)
? (append '(1 2) '(3) '(4 5 6)) → (1 2 3 4 5 6)

? (length '(1 2 3)) → 3
? (reverse '(1 2 3)) → (3 2 1)
? (nth 2 '(1 2 3)) → 3
? (last '(1 2 3)) → (3) Wait, why not 3?

16



LISP = LISt Processing
I cons builds up new lists; first and rest destructure them.

? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3)
? (cons 0 '(1 2 3)) → (0 1 2 3)
? (first '(1 2 3)) → 1
? (rest '(1 2 3)) → (2 3)
? (first (rest '(1 2 3))) → 2
? (rest (rest (rest '(1 2 3)))) → nil

I Many additional list operations (derivable from the above), e.g.

? (list 1 2 3) → (1 2 3)
? (append '(1 2) '(3) '(4 5 6)) → (1 2 3 4 5 6)
? (length '(1 2 3)) → 3

? (reverse '(1 2 3)) → (3 2 1)
? (nth 2 '(1 2 3)) → 3
? (last '(1 2 3)) → (3) Wait, why not 3?

16



LISP = LISt Processing
I cons builds up new lists; first and rest destructure them.

? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3)
? (cons 0 '(1 2 3)) → (0 1 2 3)
? (first '(1 2 3)) → 1
? (rest '(1 2 3)) → (2 3)
? (first (rest '(1 2 3))) → 2
? (rest (rest (rest '(1 2 3)))) → nil

I Many additional list operations (derivable from the above), e.g.

? (list 1 2 3) → (1 2 3)
? (append '(1 2) '(3) '(4 5 6)) → (1 2 3 4 5 6)
? (length '(1 2 3)) → 3
? (reverse '(1 2 3)) → (3 2 1)

? (nth 2 '(1 2 3)) → 3
? (last '(1 2 3)) → (3) Wait, why not 3?

16



LISP = LISt Processing
I cons builds up new lists; first and rest destructure them.

? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3)
? (cons 0 '(1 2 3)) → (0 1 2 3)
? (first '(1 2 3)) → 1
? (rest '(1 2 3)) → (2 3)
? (first (rest '(1 2 3))) → 2
? (rest (rest (rest '(1 2 3)))) → nil

I Many additional list operations (derivable from the above), e.g.

? (list 1 2 3) → (1 2 3)
? (append '(1 2) '(3) '(4 5 6)) → (1 2 3 4 5 6)
? (length '(1 2 3)) → 3
? (reverse '(1 2 3)) → (3 2 1)
? (nth 2 '(1 2 3)) → 3

? (last '(1 2 3)) → (3) Wait, why not 3?

16



LISP = LISt Processing
I cons builds up new lists; first and rest destructure them.

? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3)
? (cons 0 '(1 2 3)) → (0 1 2 3)
? (first '(1 2 3)) → 1
? (rest '(1 2 3)) → (2 3)
? (first (rest '(1 2 3))) → 2
? (rest (rest (rest '(1 2 3)))) → nil

I Many additional list operations (derivable from the above), e.g.

? (list 1 2 3) → (1 2 3)
? (append '(1 2) '(3) '(4 5 6)) → (1 2 3 4 5 6)
? (length '(1 2 3)) → 3
? (reverse '(1 2 3)) → (3 2 1)
? (nth 2 '(1 2 3)) → 3
? (last '(1 2 3)) → (3)

Wait, why not 3?

16



LISP = LISt Processing
I cons builds up new lists; first and rest destructure them.

? (cons 1 (cons 2 (cons 3 nil))) → (1 2 3)
? (cons 0 '(1 2 3)) → (0 1 2 3)
? (first '(1 2 3)) → 1
? (rest '(1 2 3)) → (2 3)
? (first (rest '(1 2 3))) → 2
? (rest (rest (rest '(1 2 3)))) → nil

I Many additional list operations (derivable from the above), e.g.

? (list 1 2 3) → (1 2 3)
? (append '(1 2) '(3) '(4 5 6)) → (1 2 3 4 5 6)
? (length '(1 2 3)) → 3
? (reverse '(1 2 3)) → (3 2 1)
? (nth 2 '(1 2 3)) → 3
? (last '(1 2 3)) → (3) Wait, why not 3?

16



Lists are really chained ‘cons cells’

(1 2 3)

((1 2) 3)

�
��	

@
@@R

1

�
��	

@
@@R

2

�
��	

@
@@R

3 nil

�
��	

@
@@R

�
��	

?1

�
���

@
@@R

3 nil

�
��	

@
@@R

2 nil

(cons 1 (cons 2 (cons 3 nil)))

(cons (cons 1 (cons 2 nil)) (cons 3 nil))

17



Lists are really chained ‘cons cells’

(1 2 3) ((1 2) 3)

�
��	

@
@@R

1

�
��	

@
@@R

2

�
��	

@
@@R

3 nil

�
��	

@
@@R

�
��	

?1

�
���

@
@@R

3 nil

�
��	

@
@@R

2 nil

(cons 1 (cons 2 (cons 3 nil))) (cons (cons 1 (cons 2 nil)) (cons 3 nil))

17



Assigning values: ‘Generalized variables’

I setf provides a uniform way of assigning values to variables.

I General form:

(setf place value)

I . . . where place can either be a variable named by a symbol or some
other storage location:

? (defparameter *foo* 42)
? (setf *foo* (+ *foo* 1))
? *foo* → 43
? (setf *foo* '(2 2 3))
? (setf (first *foo*) 1)
? *foo* → (1 2 3)

18



Assigning values: ‘Generalized variables’

I setf provides a uniform way of assigning values to variables.
I General form:

(setf place value)

I . . . where place can either be a variable named by a symbol or some
other storage location:

? (defparameter *foo* 42)
? (setf *foo* (+ *foo* 1))
? *foo* → 43
? (setf *foo* '(2 2 3))
? (setf (first *foo*) 1)
? *foo* → (1 2 3)

18



Assigning values: ‘Generalized variables’

I setf provides a uniform way of assigning values to variables.
I General form:

(setf place value)

I . . . where place can either be a variable named by a symbol or some
other storage location:

? (defparameter *foo* 42)

? (setf *foo* (+ *foo* 1))
? *foo* → 43
? (setf *foo* '(2 2 3))
? (setf (first *foo*) 1)
? *foo* → (1 2 3)

18



Assigning values: ‘Generalized variables’

I setf provides a uniform way of assigning values to variables.
I General form:

(setf place value)

I . . . where place can either be a variable named by a symbol or some
other storage location:

? (defparameter *foo* 42)
? (setf *foo* (+ *foo* 1))

? *foo* → 43
? (setf *foo* '(2 2 3))
? (setf (first *foo*) 1)
? *foo* → (1 2 3)

18



Assigning values: ‘Generalized variables’

I setf provides a uniform way of assigning values to variables.
I General form:

(setf place value)

I . . . where place can either be a variable named by a symbol or some
other storage location:

? (defparameter *foo* 42)
? (setf *foo* (+ *foo* 1))
? *foo* → 43

? (setf *foo* '(2 2 3))
? (setf (first *foo*) 1)
? *foo* → (1 2 3)

18



Assigning values: ‘Generalized variables’

I setf provides a uniform way of assigning values to variables.
I General form:

(setf place value)

I . . . where place can either be a variable named by a symbol or some
other storage location:

? (defparameter *foo* 42)
? (setf *foo* (+ *foo* 1))
? *foo* → 43
? (setf *foo* '(2 2 3))

? (setf (first *foo*) 1)
? *foo* → (1 2 3)

18



Assigning values: ‘Generalized variables’

I setf provides a uniform way of assigning values to variables.
I General form:

(setf place value)

I . . . where place can either be a variable named by a symbol or some
other storage location:

? (defparameter *foo* 42)
? (setf *foo* (+ *foo* 1))
? *foo* → 43
? (setf *foo* '(2 2 3))
? (setf (first *foo*) 1)

? *foo* → (1 2 3)

18



Assigning values: ‘Generalized variables’

I setf provides a uniform way of assigning values to variables.
I General form:

(setf place value)

I . . . where place can either be a variable named by a symbol or some
other storage location:

? (defparameter *foo* 42)
? (setf *foo* (+ *foo* 1))
? *foo* → 43
? (setf *foo* '(2 2 3))
? (setf (first *foo*) 1)
? *foo* → (1 2 3)

18



Some other macros for assignment

Example Type of x Effect

(incf x y) number (setf x (+ x y))

(incf x) number (incf x 1)

(decf x y) number (setf x (- x y))

(decf x) number (decf x 1)

(push y x) list (setf x (cons y x))

(pop x) list (let ((y (first x)))
(setf x (rest x)) y)

(pushnew y x) list (if (member y x)
x
(push y x))

19



Local variables
I Sometimes we want to store intermediate results.
I let and let* create temporary value bindings for symbols.

? (defparameter *foo* 42)

? (defparameter *bar* 100)

? (let ((*bar* 7)
(baz 1))

(+ baz *bar* *foo*))

→

50

? *bar* → 100
? baz → error; unbound variable

I Bindings valid only in the body of let.
I Previously existing bindings are shadowed within the lexical scope.
I let* is like let but binds sequentially.

20



Local variables
I Sometimes we want to store intermediate results.
I let and let* create temporary value bindings for symbols.

? (defparameter *foo* 42)

? (defparameter *bar* 100)

? (let ((*bar* 7)
(baz 1))

(+ baz *bar* *foo*))

→ 50

? *bar* → 100
? baz → error; unbound variable

I Bindings valid only in the body of let.
I Previously existing bindings are shadowed within the lexical scope.
I let* is like let but binds sequentially.

20



Local variables
I Sometimes we want to store intermediate results.
I let and let* create temporary value bindings for symbols.

? (defparameter *foo* 42)

? (defparameter *bar* 100)

? (let ((*bar* 7)
(baz 1))

(+ baz *bar* *foo*))

→ 50

? *bar* →

100
? baz → error; unbound variable

I Bindings valid only in the body of let.
I Previously existing bindings are shadowed within the lexical scope.
I let* is like let but binds sequentially.

20



Local variables
I Sometimes we want to store intermediate results.
I let and let* create temporary value bindings for symbols.

? (defparameter *foo* 42)

? (defparameter *bar* 100)

? (let ((*bar* 7)
(baz 1))

(+ baz *bar* *foo*))

→ 50

? *bar* → 100

? baz → error; unbound variable

I Bindings valid only in the body of let.
I Previously existing bindings are shadowed within the lexical scope.
I let* is like let but binds sequentially.

20



Local variables
I Sometimes we want to store intermediate results.
I let and let* create temporary value bindings for symbols.

? (defparameter *foo* 42)

? (defparameter *bar* 100)

? (let ((*bar* 7)
(baz 1))

(+ baz *bar* *foo*))

→ 50

? *bar* → 100
? baz →

error; unbound variable

I Bindings valid only in the body of let.
I Previously existing bindings are shadowed within the lexical scope.
I let* is like let but binds sequentially.

20



Local variables
I Sometimes we want to store intermediate results.
I let and let* create temporary value bindings for symbols.

? (defparameter *foo* 42)

? (defparameter *bar* 100)

? (let ((*bar* 7)
(baz 1))

(+ baz *bar* *foo*))

→ 50

? *bar* → 100
? baz → error; unbound variable

I Bindings valid only in the body of let.
I Previously existing bindings are shadowed within the lexical scope.
I let* is like let but binds sequentially.

20



Local variables
I Sometimes we want to store intermediate results.
I let and let* create temporary value bindings for symbols.

? (defparameter *foo* 42)

? (defparameter *bar* 100)

? (let ((*bar* 7)
(baz 1))

(+ baz *bar* *foo*))

→ 50

? *bar* → 100
? baz → error; unbound variable

I Bindings valid only in the body of let.
I Previously existing bindings are shadowed within the lexical scope.

I let* is like let but binds sequentially.

20



Local variables
I Sometimes we want to store intermediate results.
I let and let* create temporary value bindings for symbols.

? (defparameter *foo* 42)

? (defparameter *bar* 100)

? (let ((*bar* 7)
(baz 1))

(+ baz *bar* *foo*))

→ 50

? *bar* → 100
? baz → error; unbound variable

I Bindings valid only in the body of let.
I Previously existing bindings are shadowed within the lexical scope.
I let* is like let but binds sequentially.

20



Predicates
I A predicate tests some condition.
I Evaluates to a boolean truth value:

I nil (the empty list) means false.
I Anything non-nil (including t) means true.

? (listp ’(1 2 3)) → t

? (null (rest ’(1 2 3))) → nil

? (evenp 2) → t

? (defparameter foo 42)

? (or (not (numberp foo))
(and (>= foo 0)

(<= foo 42))) → t

I Plethora of equality tests: eq, eql, equal, and equalp.
21



Equality for one and all
I eq tests object identity; it is not useful for numbers or characters.
I eql is like eq, but well-defined on numbers and characters.
I equal tests structural equivalence
I equalp is like equal but insensitive to case and numeric type.

? (eq (list 1 2 3) ’(1 2 3)) → nil

? (equal (list 1 2 3) ’(1 2 3)) → t

? (eq 42 42) → ? [implementation-dependent]

? (eql 42 42) → t

? (eql 42 42.0) → nil

? (equalp 42 42.0) → t

? (equal "foo" "foo") → t

? (equalp "FOO" "foo") → t

I Also many type-specialized tests like =, string=, etc.

22



Equality for one and all
I eq tests object identity; it is not useful for numbers or characters.
I eql is like eq, but well-defined on numbers and characters.
I equal tests structural equivalence
I equalp is like equal but insensitive to case and numeric type.

? (eq (list 1 2 3) ’(1 2 3)) → nil

? (equal (list 1 2 3) ’(1 2 3)) → t

? (eq 42 42) → ? [implementation-dependent]

? (eql 42 42) → t

? (eql 42 42.0) → nil

? (equalp 42 42.0) → t

? (equal "foo" "foo") → t

? (equalp "FOO" "foo") → t

I Also many type-specialized tests like =, string=, etc.

22



Equality for one and all
I eq tests object identity; it is not useful for numbers or characters.
I eql is like eq, but well-defined on numbers and characters.
I equal tests structural equivalence
I equalp is like equal but insensitive to case and numeric type.

? (eq (list 1 2 3) ’(1 2 3)) → nil

? (equal (list 1 2 3) ’(1 2 3)) → t

? (eq 42 42) → ? [implementation-dependent]

? (eql 42 42) → t

? (eql 42 42.0) → nil

? (equalp 42 42.0) → t

? (equal "foo" "foo") → t

? (equalp "FOO" "foo") → t

I Also many type-specialized tests like =, string=, etc.

22



Equality for one and all
I eq tests object identity; it is not useful for numbers or characters.
I eql is like eq, but well-defined on numbers and characters.
I equal tests structural equivalence
I equalp is like equal but insensitive to case and numeric type.

? (eq (list 1 2 3) ’(1 2 3)) → nil

? (equal (list 1 2 3) ’(1 2 3)) → t

? (eq 42 42) → ? [implementation-dependent]

? (eql 42 42) → t

? (eql 42 42.0) → nil

? (equalp 42 42.0) → t

? (equal "foo" "foo") → t

? (equalp "FOO" "foo") → t

I Also many type-specialized tests like =, string=, etc.

22



Equality for one and all
I eq tests object identity; it is not useful for numbers or characters.
I eql is like eq, but well-defined on numbers and characters.
I equal tests structural equivalence
I equalp is like equal but insensitive to case and numeric type.

? (eq (list 1 2 3) ’(1 2 3)) → nil

? (equal (list 1 2 3) ’(1 2 3)) → t

? (eq 42 42) → ? [implementation-dependent]

? (eql 42 42) → t

? (eql 42 42.0) → nil

? (equalp 42 42.0) → t

? (equal "foo" "foo") → t

? (equalp "FOO" "foo") → t

I Also many type-specialized tests like =, string=, etc.

22



Equality for one and all
I eq tests object identity; it is not useful for numbers or characters.
I eql is like eq, but well-defined on numbers and characters.
I equal tests structural equivalence
I equalp is like equal but insensitive to case and numeric type.

? (eq (list 1 2 3) ’(1 2 3)) → nil

? (equal (list 1 2 3) ’(1 2 3)) → t

? (eq 42 42) → ? [implementation-dependent]

? (eql 42 42) → t

? (eql 42 42.0) → nil

? (equalp 42 42.0) → t

? (equal "foo" "foo") → t

? (equalp "FOO" "foo") → t

I Also many type-specialized tests like =, string=, etc.

22



Equality for one and all
I eq tests object identity; it is not useful for numbers or characters.
I eql is like eq, but well-defined on numbers and characters.
I equal tests structural equivalence
I equalp is like equal but insensitive to case and numeric type.

? (eq (list 1 2 3) ’(1 2 3)) → nil

? (equal (list 1 2 3) ’(1 2 3)) → t

? (eq 42 42) → ? [implementation-dependent]

? (eql 42 42) → t

? (eql 42 42.0) → nil

? (equalp 42 42.0) → t

? (equal "foo" "foo") → t

? (equalp "FOO" "foo") → t

I Also many type-specialized tests like =, string=, etc.

22



Equality for one and all
I eq tests object identity; it is not useful for numbers or characters.
I eql is like eq, but well-defined on numbers and characters.
I equal tests structural equivalence
I equalp is like equal but insensitive to case and numeric type.

? (eq (list 1 2 3) ’(1 2 3)) → nil

? (equal (list 1 2 3) ’(1 2 3)) → t

? (eq 42 42) → ? [implementation-dependent]

? (eql 42 42) → t

? (eql 42 42.0) → nil

? (equalp 42 42.0) → t

? (equal "foo" "foo") → t

? (equalp "FOO" "foo") → t

I Also many type-specialized tests like =, string=, etc.

22



Equality for one and all
I eq tests object identity; it is not useful for numbers or characters.
I eql is like eq, but well-defined on numbers and characters.
I equal tests structural equivalence
I equalp is like equal but insensitive to case and numeric type.

? (eq (list 1 2 3) ’(1 2 3)) → nil

? (equal (list 1 2 3) ’(1 2 3)) → t

? (eq 42 42) → ? [implementation-dependent]

? (eql 42 42) → t

? (eql 42 42.0) → nil

? (equalp 42 42.0) → t

? (equal "foo" "foo") → t

? (equalp "FOO" "foo") → t

I Also many type-specialized tests like =, string=, etc.

22



Equality for one and all
I eq tests object identity; it is not useful for numbers or characters.
I eql is like eq, but well-defined on numbers and characters.
I equal tests structural equivalence
I equalp is like equal but insensitive to case and numeric type.

? (eq (list 1 2 3) ’(1 2 3)) → nil

? (equal (list 1 2 3) ’(1 2 3)) → t

? (eq 42 42) → ? [implementation-dependent]

? (eql 42 42) → t

? (eql 42 42.0) → nil

? (equalp 42 42.0) → t

? (equal "foo" "foo") → t

? (equalp "FOO" "foo") → t

I Also many type-specialized tests like =, string=, etc.
22



Rewind: A note on symbol semantics
I Symbols can have values as functions and variables at the same time.
I #’ (sharp-quote) gives us the function object bound to a symbol.

? (defun foo (x)
(* x 1000))

? (defparameter foo 42) → 2

? (foo foo) → 42000

? foo → 42

? #’foo → #<Interpreted Function FOO>

? (funcall #’foo foo) → 42000

I #’ and funcall (as well as apply) are useful when passing around
functions as arguments.

23



Rewind: A note on symbol semantics
I Symbols can have values as functions and variables at the same time.
I #’ (sharp-quote) gives us the function object bound to a symbol.

? (defun foo (x)
(* x 1000))

? (defparameter foo 42) → 2

? (foo foo) → 42000

? foo → 42

? #’foo → #<Interpreted Function FOO>

? (funcall #’foo foo) → 42000

I #’ and funcall (as well as apply) are useful when passing around
functions as arguments.

23



Rewind: A note on symbol semantics
I Symbols can have values as functions and variables at the same time.
I #’ (sharp-quote) gives us the function object bound to a symbol.

? (defun foo (x)
(* x 1000))

? (defparameter foo 42) → 2

? (foo foo) →

42000

? foo → 42

? #’foo → #<Interpreted Function FOO>

? (funcall #’foo foo) → 42000

I #’ and funcall (as well as apply) are useful when passing around
functions as arguments.

23



Rewind: A note on symbol semantics
I Symbols can have values as functions and variables at the same time.
I #’ (sharp-quote) gives us the function object bound to a symbol.

? (defun foo (x)
(* x 1000))

? (defparameter foo 42) → 2

? (foo foo) → 42000

? foo → 42

? #’foo → #<Interpreted Function FOO>

? (funcall #’foo foo) → 42000

I #’ and funcall (as well as apply) are useful when passing around
functions as arguments.

23



Rewind: A note on symbol semantics
I Symbols can have values as functions and variables at the same time.
I #’ (sharp-quote) gives us the function object bound to a symbol.

? (defun foo (x)
(* x 1000))

? (defparameter foo 42) → 2

? (foo foo) → 42000

? foo → 42

? #’foo → #<Interpreted Function FOO>

? (funcall #’foo foo) → 42000

I #’ and funcall (as well as apply) are useful when passing around
functions as arguments.

23



Rewind: A note on symbol semantics
I Symbols can have values as functions and variables at the same time.
I #’ (sharp-quote) gives us the function object bound to a symbol.

? (defun foo (x)
(* x 1000))

? (defparameter foo 42) → 2

? (foo foo) → 42000

? foo → 42

? #’foo → #<Interpreted Function FOO>

? (funcall #’foo foo) → 42000

I #’ and funcall (as well as apply) are useful when passing around
functions as arguments.

23



Rewind: A note on symbol semantics
I Symbols can have values as functions and variables at the same time.
I #’ (sharp-quote) gives us the function object bound to a symbol.

? (defun foo (x)
(* x 1000))

? (defparameter foo 42) → 2

? (foo foo) → 42000

? foo → 42

? #’foo → #<Interpreted Function FOO>

? (funcall #’foo foo) → 42000

I #’ and funcall (as well as apply) are useful when passing around
functions as arguments.

23



Rewind: A note on symbol semantics
I Symbols can have values as functions and variables at the same time.
I #’ (sharp-quote) gives us the function object bound to a symbol.

? (defun foo (x)
(* x 1000))

? (defparameter foo 42) → 2

? (foo foo) → 42000

? foo → 42

? #’foo → #<Interpreted Function FOO>

? (funcall #’foo foo) → 42000

I #’ and funcall (as well as apply) are useful when passing around
functions as arguments.

23



Higher-order functions

I Functions that accept functions as arguments or return values.
I Functions in Lisp are first-class objects.

I Can be created at run-time, passed as arguments, returned as values,
stored in variables. . . just like any other data type.

? (defun filter (list test)
(cond ((null list) nil)

((funcall test (first list))
(cons (first list)

(filter (rest list) test)))
(t (filter (rest list) test))))

? (defparameter foo '(11 22 33 44 55))

? (filter foo #'evenp)
→ (22 44)

24



Higher-order functions

I Functions that accept functions as arguments or return values.
I Functions in Lisp are first-class objects.

I Can be created at run-time, passed as arguments, returned as values,
stored in variables. . . just like any other data type.

? (defun filter (list test)
(cond ((null list) nil)

((funcall test (first list))
(cons (first list)

(filter (rest list) test)))
(t (filter (rest list) test))))

? (defparameter foo '(11 22 33 44 55))

? (filter foo #'evenp)
→ (22 44)

24



Higher-order functions

I Functions that accept functions as arguments or return values.
I Functions in Lisp are first-class objects.

I Can be created at run-time, passed as arguments, returned as values,
stored in variables. . . just like any other data type.

? (defun filter (list test)
(cond ((null list) nil)

((funcall test (first list))
(cons (first list)

(filter (rest list) test)))
(t (filter (rest list) test))))

? (defparameter foo '(11 22 33 44 55))

? (filter foo #'evenp)
→ (22 44)

24



Higher-order functions

I Functions that accept functions as arguments or return values.
I Functions in Lisp are first-class objects.

I Can be created at run-time, passed as arguments, returned as values,
stored in variables. . . just like any other data type.

? (defun filter (list test)
(cond ((null list) nil)

((funcall test (first list))
(cons (first list)

(filter (rest list) test)))
(t (filter (rest list) test))))

? (defparameter foo '(11 22 33 44 55))

? (filter foo #'evenp)
→ (22 44)

24



Higher-order functions

I Functions that accept functions as arguments or return values.
I Functions in Lisp are first-class objects.

I Can be created at run-time, passed as arguments, returned as values,
stored in variables. . . just like any other data type.

? (defun filter (list test)
(cond ((null list) nil)

((funcall test (first list))
(cons (first list)

(filter (rest list) test)))
(t (filter (rest list) test))))

? (defparameter foo '(11 22 33 44 55))

? (filter foo #'evenp)
→ (22 44)

24



Anonymous functions

I We can also pass function arguments without first binding them to a
name, using lambda expressions: (lambda (parameters) body)

I A function definition without the defun and symbol part.

? (filter foo
#’(lambda (x)

(and (> x 20)
(< x 50))))

→ (22 33 44)

I Typically used for ad-hoc functions that are only locally relevant and
simple enough to be expressed inline.

I Or, when constructing functions as return values.

25



Anonymous functions

I We can also pass function arguments without first binding them to a
name, using lambda expressions: (lambda (parameters) body)

I A function definition without the defun and symbol part.

? (filter foo
#’(lambda (x)

(and (> x 20)
(< x 50))))

→ (22 33 44)

I Typically used for ad-hoc functions that are only locally relevant and
simple enough to be expressed inline.

I Or, when constructing functions as return values.

25



Anonymous functions

I We can also pass function arguments without first binding them to a
name, using lambda expressions: (lambda (parameters) body)

I A function definition without the defun and symbol part.

? (filter foo
#’(lambda (x)

(and (> x 20)
(< x 50))))

→ (22 33 44)

I Typically used for ad-hoc functions that are only locally relevant and
simple enough to be expressed inline.

I Or, when constructing functions as return values.

25



Returning functions

I We have seen how to create anonymous functions using lambda and
pass them as arguments.

I Now let’s combine that with a function that itself returns another
function (which we then bind to a variable).

? (defparameter foo '(11 22 33 44 55))

? (defun make-range-test (lower upper)
#'(lambda (x)

(and (> x lower)
(< x upper))))

? (filter foo (make-range-test 10 30))

→ (11 22)

26



Returning functions

I We have seen how to create anonymous functions using lambda and
pass them as arguments.

I Now let’s combine that with a function that itself returns another
function (which we then bind to a variable).

? (defparameter foo '(11 22 33 44 55))

? (defun make-range-test (lower upper)
#'(lambda (x)

(and (> x lower)
(< x upper))))

? (filter foo (make-range-test 10 30))

→ (11 22)

26



Returning functions

I We have seen how to create anonymous functions using lambda and
pass them as arguments.

I Now let’s combine that with a function that itself returns another
function (which we then bind to a variable).

? (defparameter foo '(11 22 33 44 55))

? (defun make-range-test (lower upper)
#'(lambda (x)

(and (> x lower)
(< x upper))))

? (filter foo (make-range-test 10 30))

→ (11 22)

26



Programming in INF4820

I In the IFI Linux environment, we have available Allegro Common Lisp,
a commercial Lisp interpreter and compiler.

I We will provide a pre-configured, integrated setup with emacs and the
SLIME Lisp interaction mode.

I Several open-source Lisp implementations exist, e.g. Clozure or SBCL;
compatible with SLIME, so feel free to experiment (at some later point).

I First-time users, please spend some time studying basic keyboard
commands, for example: C-h t and M-x doctor RET.

I See the getting started guide and emacs cheat sheet on the course page.
I Obligatory assignment 1 is out now, and due Wed. 9th Sept.

I See course page or just run ’svn update’.

27



Next week

More Common Lisp.
I More on argument lists (optional arguments, keywords, defaults).

I More data types: Hash-tables, a-lists, arrays, sequences, and structures

I More higher-order functions.

I Iteration (loop) and mapping.

28


