
— INF4820 —
Algorithms for AI and NLP

More Common Lisp

Erik Velldal & Stephan Oepen

Language Technology Group (LTG)

September 2, 2015

Agenda

Previous lecture
I Common Lisp essentials
I S-expressions (= atoms + lists of s-expressions)
I Recursion
I Quote
I List processing

Today
I More Common Lisp
I Higher-order functions
I Iteration and loop
I More data structures (alists, arrays, hash-tables, structs, and more)

2

Agenda

Previous lecture
I Common Lisp essentials
I S-expressions (= atoms + lists of s-expressions)
I Recursion
I Quote
I List processing

Today
I More Common Lisp
I Higher-order functions
I Iteration and loop
I More data structures (alists, arrays, hash-tables, structs, and more)

2

Higher-order functions

I = functions taking other functions as arguments or return values.

? (defun filter (list pred)
(cond ((null list) nil)

((funcall pred (first list))
(cons (first list)

(filter (rest list) pred)))
(t (filter (rest list) pred))))

? (filter '(11 22 33 44 55) #'evenp)
→ (22 44)

? (filter '(11 22 33 44 55) #'oddp)
→ (11 33 55)

3

Higher-order functions

I = functions taking other functions as arguments or return values.

? (defun filter (list pred)
(cond ((null list) nil)

((funcall pred (first list))
(cons (first list)

(filter (rest list) pred)))
(t (filter (rest list) pred))))

? (filter '(11 22 33 44 55) #'evenp)
→ (22 44)

? (filter '(11 22 33 44 55) #'oddp)
→ (11 33 55)

3

Higher-order functions

I = functions taking other functions as arguments or return values.

? (defun filter (list pred)
(cond ((null list) nil)

((funcall pred (first list))
(cons (first list)

(filter (rest list) pred)))
(t (filter (rest list) pred))))

? (filter '(11 22 33 44 55) #'evenp)
→ (22 44)

? (filter '(11 22 33 44 55) #'oddp)
→ (11 33 55)

3

Higher-order functions

I = functions taking other functions as arguments or return values.

? (defun filter (list pred)
(cond ((null list) nil)

((funcall pred (first list))
(cons (first list)

(filter (rest list) pred)))
(t (filter (rest list) pred))))

? (filter '(11 22 33 44 55) #'evenp)
→ (22 44)

? (filter '(11 22 33 44 55) #'oddp)
→ (11 33 55)

3

Higher-order functions

I = functions taking other functions as arguments or return values.

? (defun filter (list pred)
(cond ((null list) nil)

((funcall pred (first list))
(cons (first list)

(filter (rest list) pred)))
(t (filter (rest list) pred))))

? (filter '(11 22 33 44 55) #'evenp)
→ (22 44)

? (filter '(11 22 33 44 55) #'oddp)
→ (11 33 55)

3

Higher-order functions

I = functions taking other functions as arguments or return values.

? (defun filter (list pred)
(cond ((null list) nil)

((funcall pred (first list))
(cons (first list)

(filter (rest list) pred)))
(t (filter (rest list) pred))))

? (filter '(11 22 33 44 55) #'evenp)
→ (22 44)

? (filter '(11 22 33 44 55) #'oddp)
→ (11 33 55)

3

Higher-order functions

I = functions taking other functions as arguments or return values.

? (defun filter (list pred)
(cond ((null list) nil)

((funcall pred (first list))
(cons (first list)

(filter (rest list) pred)))
(t (filter (rest list) pred))))

? (filter '(11 22 33 44 55) #'evenp)
→ (22 44)

? (filter '(11 22 33 44 55) #'oddp)
→ (11 33 55)

3

Higher-order functions

I = functions taking other functions as arguments or return values.

? (defun filter (list pred)
(cond ((null list) nil)

((funcall pred (first list))
(cons (first list)

(filter (rest list) pred)))
(t (filter (rest list) pred))))

? (filter '(11 22 33 44 55) #'evenp)
→ (22 44)

? (filter '(11 22 33 44 55) #'oddp)
→ (11 33 55)

3

Higher-order functions

I = functions taking other functions as arguments or return values.

? (defun filter (list pred)
(cond ((null list) nil)

((funcall pred (first list))
(cons (first list)

(filter (rest list) pred)))
(t (filter (rest list) pred))))

? (filter '(11 22 33 44 55) #'evenp)
→ (22 44)

? (filter '(11 22 33 44 55) #'oddp)
→ (11 33 55)

3

Anonymous functions

I We can create functions without naming them with defun:

(lambda (parameters) body)

instead of

(defun name (parameters) body)

I For example:

? (filter '(11 22 33 44 55)
#'(lambda (x)

(and (> x 20)
(< x 50))))

→ (22 33 44)

4

Anonymous functions

I We can create functions without naming them with defun:

(lambda (parameters) body)

instead of

(defun name (parameters) body)

I For example:

? (filter '(11 22 33 44 55)
#'(lambda (x)

(and (> x 20)
(< x 50))))

→ (22 33 44)

4

Returning functions

I Having a function return another function is easy:
I Make the return value a lambda expression.

? (defun create-range-test (lower upper)
#'(lambda (x)

(and (> x lower)
(< x upper))))

? (defparameter foo '(11 22 33 44 55)

? (filter foo (create-range-test 10 30))
→ (11 22)

? (filter foo (create-range-test 20 50))
→ (22 33 44)

5

Returning functions

I Having a function return another function is easy:
I Make the return value a lambda expression.

? (defun create-range-test (lower upper)
#'(lambda (x)

(and (> x lower)
(< x upper))))

? (defparameter foo '(11 22 33 44 55)

? (filter foo (create-range-test 10 30))
→ (11 22)

? (filter foo (create-range-test 20 50))
→ (22 33 44)

5

Returning functions

I Having a function return another function is easy:
I Make the return value a lambda expression.

? (defun create-range-test (lower upper)
#'(lambda (x)

(and (> x lower)
(< x upper))))

? (defparameter foo '(11 22 33 44 55)

? (filter foo (create-range-test 10 30))
→ (11 22)

? (filter foo (create-range-test 20 50))
→ (22 33 44)

5

Parameter lists: Variable arities and ordering

Optional parameters
? (defun foo (x &optional y (z 42))

(list x y z))

? (foo 1) → (1 nil 42)

? (foo 1 2 3) → (1 2 3)

Keyword parameters
? (defun foo (x &key y (z 42))

(list x y z))

? (foo 1) → (1 nil 42)

? (foo 1 :z 3 :y 2) → (1 2 3)

Rest parameters
? (defun avg (x &rest rest)

(let ((numbers (cons x rest)))
(/ (apply #'+ numbers)

(length numbers))))

? (avg 3) → 3

? (avg 1 2 3 4 5 6 7) → 4

6

Parameter lists: Variable arities and ordering

Optional parameters
? (defun foo (x &optional y (z 42))

(list x y z))

? (foo 1) → (1 nil 42)

? (foo 1 2 3) → (1 2 3)

Keyword parameters
? (defun foo (x &key y (z 42))

(list x y z))

? (foo 1) → (1 nil 42)

? (foo 1 :z 3 :y 2) → (1 2 3)

Rest parameters
? (defun avg (x &rest rest)

(let ((numbers (cons x rest)))
(/ (apply #'+ numbers)

(length numbers))))

? (avg 3) → 3

? (avg 1 2 3 4 5 6 7) → 4

6

Parameter lists: Variable arities and ordering

Optional parameters
? (defun foo (x &optional y (z 42))

(list x y z))

? (foo 1) → (1 nil 42)

? (foo 1 2 3) → (1 2 3)

Keyword parameters
? (defun foo (x &key y (z 42))

(list x y z))

? (foo 1) → (1 nil 42)

? (foo 1 :z 3 :y 2) → (1 2 3)

Rest parameters
? (defun avg (x &rest rest)

(let ((numbers (cons x rest)))
(/ (apply #'+ numbers)

(length numbers))))

? (avg 3) → 3

? (avg 1 2 3 4 5 6 7) → 4

6

Macros

I Pitch: programs that generate programs.

I Macros provide a way for our code to manipulate itself (before it’s
passed to the compiler).

I Can implement transformations that extend the syntax of the language.

I Allows us to control (or even prevent) the evaluation of arguments.

I We’ve already used some built-in Common Lisp macros:
and, or, if, cond, defun, setf, etc.

I Although macro writing is out of the scope of this course, let’s look at
perhaps the best example of how macros can redefine the syntax of the
language – for good or for worse, depending on who you ask:

I loop

7

Macros

I Pitch: programs that generate programs.

I Macros provide a way for our code to manipulate itself (before it’s
passed to the compiler).

I Can implement transformations that extend the syntax of the language.

I Allows us to control (or even prevent) the evaluation of arguments.

I We’ve already used some built-in Common Lisp macros:
and, or, if, cond, defun, setf, etc.

I Although macro writing is out of the scope of this course, let’s look at
perhaps the best example of how macros can redefine the syntax of the
language – for good or for worse, depending on who you ask:

I loop

7

Iteration

I While recursion is a powerful
control structure,

I sometimes iteration comes
more natural.

I dolist and dotimes are fine
for simple iteration.

I But loop is much more
versatile.

(let ((evens nil))
(dolist (x '(0 1 2 3 4 5))

(when (evenp x)
(push x evens)))

(reverse evens))

→ (0 2 4)

(let ((evens nil))
(dotimes (x 6)

(when (evenp x)
(push x evens)))

(reverse evens))

→ (0 2 4)

(loop for x below 6
when (evenp x)
collect x)

→ (0 2 4)

8

Iteration

I While recursion is a powerful
control structure,

I sometimes iteration comes
more natural.

I dolist and dotimes are fine
for simple iteration.

I But loop is much more
versatile.

(let ((evens nil))
(dolist (x '(0 1 2 3 4 5))

(when (evenp x)
(push x evens)))

(reverse evens))

→ (0 2 4)

(let ((evens nil))
(dotimes (x 6)

(when (evenp x)
(push x evens)))

(reverse evens))

→ (0 2 4)

(loop for x below 6
when (evenp x)
collect x)

→ (0 2 4)

8

Iteration

I While recursion is a powerful
control structure,

I sometimes iteration comes
more natural.

I dolist and dotimes are fine
for simple iteration.

I But loop is much more
versatile.

(let ((evens nil))
(dolist (x '(0 1 2 3 4 5))

(when (evenp x)
(push x evens)))

(reverse evens))

→ (0 2 4)

(let ((evens nil))
(dotimes (x 6)

(when (evenp x)
(push x evens)))

(reverse evens))

→ (0 2 4)

(loop for x below 6
when (evenp x)
collect x)

→ (0 2 4)
8

Iteration with loop

(loop
for i from 10 to 50 by 10
collect i)

→ (10 20 30 40 50)

I Illustrates the power of syntax extension through macros;

I loop is basically a mini-language for iteration.

I Reduced uniformity: different syntax based on special keywords.

I Paul Graham on loop: “one of the worst flaws in Common Lisp”.

I But non-Lispy as it may be, loop is extremely general and powerful!

9

Iteration with loop

(loop
for i from 10 to 50 by 10
collect i)

→ (10 20 30 40 50)

I Illustrates the power of syntax extension through macros;

I loop is basically a mini-language for iteration.

I Reduced uniformity: different syntax based on special keywords.

I Paul Graham on loop: “one of the worst flaws in Common Lisp”.

I But non-Lispy as it may be, loop is extremely general and powerful!

9

loop: a few more examples

? (loop
for i below 10
when (oddp i)
sum i)

→ 25

? (loop for x across "foo" collect x)

→ (#\f #\o #\o)

? (loop
with foo = '(a b c d)
for i in foo
for j from 0
until (eq i 'c)
do (format t "~a: ~a ~%" j i))

;
0: A
1: B

10

loop: a few more examples

? (loop
for i below 10
when (oddp i)
sum i)

→ 25

? (loop for x across "foo" collect x)

→ (#\f #\o #\o)

? (loop
with foo = '(a b c d)
for i in foo
for j from 0
until (eq i 'c)
do (format t "~a: ~a ~%" j i))

;
0: A
1: B

10

loop: a few more examples

? (loop
for i below 10
when (oddp i)
sum i)

→ 25

? (loop for x across "foo" collect x)

→ (#\f #\o #\o)

? (loop
with foo = '(a b c d)
for i in foo
for j from 0
until (eq i 'c)
do (format t "~a: ~a ~%" j i))

;
0: A
1: B

10

loop: a few more examples

? (loop for foo in '(1 2 3) collect foo)
→ (1 2 3)

? (loop for foo on '(1 2 3) collect foo)
→ ((1 2 3) (2 3) (3))

? (loop for foo on '(1 2 3) append foo)
→ (1 2 3 2 3 3)

? (loop
for i from 1 to 10
when (evenp i)
collect i into evens
else collect i into odds
finally (return (list evens odds)))

→ ((2 4 6 8 10) (1 3 5 7 9))

11

loop: a few more examples

? (loop for foo in '(1 2 3) collect foo)
→ (1 2 3)

? (loop for foo on '(1 2 3) collect foo)
→ ((1 2 3) (2 3) (3))

? (loop for foo on '(1 2 3) append foo)
→ (1 2 3 2 3 3)

? (loop
for i from 1 to 10
when (evenp i)
collect i into evens
else collect i into odds
finally (return (list evens odds)))

→ ((2 4 6 8 10) (1 3 5 7 9))

11

loop: a few more examples

? (loop for foo in '(1 2 3) collect foo)
→ (1 2 3)

? (loop for foo on '(1 2 3) collect foo)
→ ((1 2 3) (2 3) (3))

? (loop for foo on '(1 2 3) append foo)
→ (1 2 3 2 3 3)

? (loop
for i from 1 to 10
when (evenp i)
collect i into evens
else collect i into odds
finally (return (list evens odds)))

→ ((2 4 6 8 10) (1 3 5 7 9))

11

loop: a few more examples

? (loop for foo in '(1 2 3) collect foo)
→ (1 2 3)

? (loop for foo on '(1 2 3) collect foo)
→ ((1 2 3) (2 3) (3))

? (loop for foo on '(1 2 3) append foo)
→ (1 2 3 2 3 3)

? (loop
for i from 1 to 10
when (evenp i)
collect i into evens
else collect i into odds
finally (return (list evens odds)))

→ ((2 4 6 8 10) (1 3 5 7 9))

11

loop: The Swiss Army Knife of Iteration

I Iteration over lists or vectors: for symbol { in | on | across } sequence
I Counting through ranges:

for symbol [from number] { to | downto } number [by number]
I Iteration over hash tables:

for symbol being each { hash-key | hash-value } in hash table
I Stepwise computation: for symbol = sexp then sexp
I Accumulation: { collect | append | sum | minimize | count | . . . } sexp
I Control: { while | until | repeat | when | unless | . . . } sexp
I Local variables: with symbol = sexp
I Initialization and finalization: { initially | finally } sexp+

I All of these can be combined freely, e.g. iterating through a list,
counting a range, and stepwise computation, all in parallel.

I Note: without at least one accumulator, loop will only return nil.

12

Input and output
I Reading and writing is mediated through streams.

I The symbol t indicates the default stream, the terminal.

? (format t "~a is the ~a.~%" 42 "answer")
; 42 is the answer.
→ nil

I (read-line stream nil) reads one line of text from stream,
returning it as a string.

I (read stream nil) reads one well-formed s-expression.

I The second reader argument asks to return nil upon end-of-file.

(with-open-file (stream "sample.txt" :direction :input)
(loop

for line = (read-line stream nil)
while line do (format t "~a~%" line)))

13

Input and output
I Reading and writing is mediated through streams.

I The symbol t indicates the default stream, the terminal.

? (format t "~a is the ~a.~%" 42 "answer")
; 42 is the answer.
→ nil

I (read-line stream nil) reads one line of text from stream,
returning it as a string.

I (read stream nil) reads one well-formed s-expression.

I The second reader argument asks to return nil upon end-of-file.

(with-open-file (stream "sample.txt" :direction :input)
(loop

for line = (read-line stream nil)
while line do (format t "~a~%" line)))

13

Input and output
I Reading and writing is mediated through streams.

I The symbol t indicates the default stream, the terminal.

? (format t "~a is the ~a.~%" 42 "answer")
; 42 is the answer.
→ nil

I (read-line stream nil) reads one line of text from stream,
returning it as a string.

I (read stream nil) reads one well-formed s-expression.

I The second reader argument asks to return nil upon end-of-file.

(with-open-file (stream "sample.txt" :direction :input)
(loop

for line = (read-line stream nil)
while line do (format t "~a~%" line)))

13

Recap: Equality for one and all
I eq tests object identity; it is not useful for numbers or characters.
I eql is like eq, but well-defined on numbers and characters.
I equal tests structural equivalence
I equalp is like equal but insensitive to case and numeric type.

? (eq '(1 2 3) '(1 2 3)) → nil

? (equal '(1 2 3) '(1 2 3)) → t

? (eq 42 42) → ? [implementation-dependent]

? (eql 42 42) → t

? (eql 42 42.0) → nil

? (equalp 42 42.0) → t

? (equal "foo" "foo") → t

? (equalp "FOO" "foo") → t

I Also many type-specialized tests like =, string=, etc.

14

Recap: Equality for one and all
I eq tests object identity; it is not useful for numbers or characters.
I eql is like eq, but well-defined on numbers and characters.
I equal tests structural equivalence
I equalp is like equal but insensitive to case and numeric type.

? (eq '(1 2 3) '(1 2 3)) → nil

? (equal '(1 2 3) '(1 2 3)) → t

? (eq 42 42) → ? [implementation-dependent]

? (eql 42 42) → t

? (eql 42 42.0) → nil

? (equalp 42 42.0) → t

? (equal "foo" "foo") → t

? (equalp "FOO" "foo") → t

I Also many type-specialized tests like =, string=, etc.

14

Recap: Equality for one and all
I eq tests object identity; it is not useful for numbers or characters.
I eql is like eq, but well-defined on numbers and characters.
I equal tests structural equivalence
I equalp is like equal but insensitive to case and numeric type.

? (eq '(1 2 3) '(1 2 3)) → nil

? (equal '(1 2 3) '(1 2 3)) → t

? (eq 42 42) → ? [implementation-dependent]

? (eql 42 42) → t

? (eql 42 42.0) → nil

? (equalp 42 42.0) → t

? (equal "foo" "foo") → t

? (equalp "FOO" "foo") → t

I Also many type-specialized tests like =, string=, etc.

14

Recap: Equality for one and all
I eq tests object identity; it is not useful for numbers or characters.
I eql is like eq, but well-defined on numbers and characters.
I equal tests structural equivalence
I equalp is like equal but insensitive to case and numeric type.

? (eq '(1 2 3) '(1 2 3)) → nil

? (equal '(1 2 3) '(1 2 3)) → t

? (eq 42 42) → ? [implementation-dependent]

? (eql 42 42) → t

? (eql 42 42.0) → nil

? (equalp 42 42.0) → t

? (equal "foo" "foo") → t

? (equalp "FOO" "foo") → t

I Also many type-specialized tests like =, string=, etc.

14

Recap: Equality for one and all
I eq tests object identity; it is not useful for numbers or characters.
I eql is like eq, but well-defined on numbers and characters.
I equal tests structural equivalence
I equalp is like equal but insensitive to case and numeric type.

? (eq '(1 2 3) '(1 2 3)) → nil

? (equal '(1 2 3) '(1 2 3)) → t

? (eq 42 42) → ? [implementation-dependent]

? (eql 42 42) → t

? (eql 42 42.0) → nil

? (equalp 42 42.0) → t

? (equal "foo" "foo") → t

? (equalp "FOO" "foo") → t

I Also many type-specialized tests like =, string=, etc.

14

Recap: Equality for one and all
I eq tests object identity; it is not useful for numbers or characters.
I eql is like eq, but well-defined on numbers and characters.
I equal tests structural equivalence
I equalp is like equal but insensitive to case and numeric type.

? (eq '(1 2 3) '(1 2 3)) → nil

? (equal '(1 2 3) '(1 2 3)) → t

? (eq 42 42) → ? [implementation-dependent]

? (eql 42 42) → t

? (eql 42 42.0) → nil

? (equalp 42 42.0) → t

? (equal "foo" "foo") → t

? (equalp "FOO" "foo") → t

I Also many type-specialized tests like =, string=, etc.

14

Recap: Equality for one and all
I eq tests object identity; it is not useful for numbers or characters.
I eql is like eq, but well-defined on numbers and characters.
I equal tests structural equivalence
I equalp is like equal but insensitive to case and numeric type.

? (eq '(1 2 3) '(1 2 3)) → nil

? (equal '(1 2 3) '(1 2 3)) → t

? (eq 42 42) → ? [implementation-dependent]

? (eql 42 42) → t

? (eql 42 42.0) → nil

? (equalp 42 42.0) → t

? (equal "foo" "foo") → t

? (equalp "FOO" "foo") → t

I Also many type-specialized tests like =, string=, etc.

14

Recap: Equality for one and all
I eq tests object identity; it is not useful for numbers or characters.
I eql is like eq, but well-defined on numbers and characters.
I equal tests structural equivalence
I equalp is like equal but insensitive to case and numeric type.

? (eq '(1 2 3) '(1 2 3)) → nil

? (equal '(1 2 3) '(1 2 3)) → t

? (eq 42 42) → ? [implementation-dependent]

? (eql 42 42) → t

? (eql 42 42.0) → nil

? (equalp 42 42.0) → t

? (equal "foo" "foo") → t

? (equalp "FOO" "foo") → t

I Also many type-specialized tests like =, string=, etc.

14

Recap: Equality for one and all
I eq tests object identity; it is not useful for numbers or characters.
I eql is like eq, but well-defined on numbers and characters.
I equal tests structural equivalence
I equalp is like equal but insensitive to case and numeric type.

? (eq '(1 2 3) '(1 2 3)) → nil

? (equal '(1 2 3) '(1 2 3)) → t

? (eq 42 42) → ? [implementation-dependent]

? (eql 42 42) → t

? (eql 42 42.0) → nil

? (equalp 42 42.0) → t

? (equal "foo" "foo") → t

? (equalp "FOO" "foo") → t

I Also many type-specialized tests like =, string=, etc.

14

Recap: Equality for one and all
I eq tests object identity; it is not useful for numbers or characters.
I eql is like eq, but well-defined on numbers and characters.
I equal tests structural equivalence
I equalp is like equal but insensitive to case and numeric type.

? (eq '(1 2 3) '(1 2 3)) → nil

? (equal '(1 2 3) '(1 2 3)) → t

? (eq 42 42) → ? [implementation-dependent]

? (eql 42 42) → t

? (eql 42 42.0) → nil

? (equalp 42 42.0) → t

? (equal "foo" "foo") → t

? (equalp "FOO" "foo") → t

I Also many type-specialized tests like =, string=, etc.
14

You’ve already seen lists. . .

. . . now we’ll do a quick tour of

some other

data
structures

15

Arrays
I Integer-indexed container (indices count from zero)

? (defparameter array (make-array 5)) → #(nil nil nil nil nil)
? (setf (aref array 0) 42)→ 42
? array → #(42 nil nil nil nil)

I Can be fixed-sized (default) or dynamically adjustable.
I Can also represent ‘grids’ of multiple dimensions:

? (defparameter array (make-array '(2 5) :initial-element 0))
→ #((0 0 0 0 0) (0 0 0 0 0))

? (incf (aref array 1 2)) → 1

0 1 2 3 4

0 0 0 0 0 0

1 0 0 1 0 0

16

Arrays
I Integer-indexed container (indices count from zero)

? (defparameter array (make-array 5)) → #(nil nil nil nil nil)
? (setf (aref array 0) 42)→ 42
? array → #(42 nil nil nil nil)

I Can be fixed-sized (default) or dynamically adjustable.

I Can also represent ‘grids’ of multiple dimensions:

? (defparameter array (make-array '(2 5) :initial-element 0))
→ #((0 0 0 0 0) (0 0 0 0 0))

? (incf (aref array 1 2)) → 1

0 1 2 3 4

0 0 0 0 0 0

1 0 0 1 0 0

16

Arrays
I Integer-indexed container (indices count from zero)

? (defparameter array (make-array 5)) → #(nil nil nil nil nil)
? (setf (aref array 0) 42)→ 42
? array → #(42 nil nil nil nil)

I Can be fixed-sized (default) or dynamically adjustable.
I Can also represent ‘grids’ of multiple dimensions:

? (defparameter array (make-array '(2 5) :initial-element 0))
→ #((0 0 0 0 0) (0 0 0 0 0))

? (incf (aref array 1 2)) → 1

0 1 2 3 4

0 0 0 0 0 0

1 0 0 1 0 0
16

Arrays: Specializations and generalizations
I Vectors = specialized type of arrays: one-dimensional.
I Strings = specialized type of vectors (similarly: bit vectors).
I Vectors and lists are subtypes of an abstract data type sequence.
I Large number of built-in sequence functions, e.g.:

? (length "foo") → 3

? (elt "foo" 0) → #\f

? (count-if #'numberp '(1 a "2" 3 (b))) →

2

? (subseq "foobar" 3 6) → "bar"

? (substitute #\a #\o "hoho") → "haha"

? (remove 'a '(a b b a)) → (b b)

? (some #'listp '(1 a "2" 3 (b))) →

t

? (sort '(1 2 1 3 1 0) #'<) → (0 1 1 1 2 3)

I And many others: position, every, count, remove-if, find, merge,
map, reverse, concatenate, reduce, . . .

17

Arrays: Specializations and generalizations
I Vectors = specialized type of arrays: one-dimensional.
I Strings = specialized type of vectors (similarly: bit vectors).
I Vectors and lists are subtypes of an abstract data type sequence.
I Large number of built-in sequence functions, e.g.:

? (length "foo") → 3

? (elt "foo" 0) → #\f

? (count-if #'numberp '(1 a "2" 3 (b))) →

2

? (subseq "foobar" 3 6) → "bar"

? (substitute #\a #\o "hoho") → "haha"

? (remove 'a '(a b b a)) → (b b)

? (some #'listp '(1 a "2" 3 (b))) →

t

? (sort '(1 2 1 3 1 0) #'<) → (0 1 1 1 2 3)

I And many others: position, every, count, remove-if, find, merge,
map, reverse, concatenate, reduce, . . .

17

Arrays: Specializations and generalizations
I Vectors = specialized type of arrays: one-dimensional.
I Strings = specialized type of vectors (similarly: bit vectors).
I Vectors and lists are subtypes of an abstract data type sequence.
I Large number of built-in sequence functions, e.g.:

? (length "foo") → 3

? (elt "foo" 0) → #\f

? (count-if #'numberp '(1 a "2" 3 (b))) →

2

? (subseq "foobar" 3 6) → "bar"

? (substitute #\a #\o "hoho") → "haha"

? (remove 'a '(a b b a)) → (b b)

? (some #'listp '(1 a "2" 3 (b))) →

t

? (sort '(1 2 1 3 1 0) #'<) → (0 1 1 1 2 3)

I And many others: position, every, count, remove-if, find, merge,
map, reverse, concatenate, reduce, . . .

17

Arrays: Specializations and generalizations
I Vectors = specialized type of arrays: one-dimensional.
I Strings = specialized type of vectors (similarly: bit vectors).
I Vectors and lists are subtypes of an abstract data type sequence.
I Large number of built-in sequence functions, e.g.:

? (length "foo") → 3

? (elt "foo" 0) → #\f

? (count-if #'numberp '(1 a "2" 3 (b))) →

2

? (subseq "foobar" 3 6) → "bar"

? (substitute #\a #\o "hoho") → "haha"

? (remove 'a '(a b b a)) → (b b)

? (some #'listp '(1 a "2" 3 (b))) →

t

? (sort '(1 2 1 3 1 0) #'<) → (0 1 1 1 2 3)

I And many others: position, every, count, remove-if, find, merge,
map, reverse, concatenate, reduce, . . .

17

Arrays: Specializations and generalizations
I Vectors = specialized type of arrays: one-dimensional.
I Strings = specialized type of vectors (similarly: bit vectors).
I Vectors and lists are subtypes of an abstract data type sequence.
I Large number of built-in sequence functions, e.g.:

? (length "foo") → 3

? (elt "foo" 0) → #\f

? (count-if #'numberp '(1 a "2" 3 (b))) → 2

? (subseq "foobar" 3 6) → "bar"

? (substitute #\a #\o "hoho") → "haha"

? (remove 'a '(a b b a)) → (b b)

? (some #'listp '(1 a "2" 3 (b))) →

t

? (sort '(1 2 1 3 1 0) #'<) → (0 1 1 1 2 3)

I And many others: position, every, count, remove-if, find, merge,
map, reverse, concatenate, reduce, . . .

17

Arrays: Specializations and generalizations
I Vectors = specialized type of arrays: one-dimensional.
I Strings = specialized type of vectors (similarly: bit vectors).
I Vectors and lists are subtypes of an abstract data type sequence.
I Large number of built-in sequence functions, e.g.:

? (length "foo") → 3

? (elt "foo" 0) → #\f

? (count-if #'numberp '(1 a "2" 3 (b))) → 2

? (subseq "foobar" 3 6) → "bar"

? (substitute #\a #\o "hoho") → "haha"

? (remove 'a '(a b b a)) → (b b)

? (some #'listp '(1 a "2" 3 (b))) →

t

? (sort '(1 2 1 3 1 0) #'<) → (0 1 1 1 2 3)

I And many others: position, every, count, remove-if, find, merge,
map, reverse, concatenate, reduce, . . .

17

Arrays: Specializations and generalizations
I Vectors = specialized type of arrays: one-dimensional.
I Strings = specialized type of vectors (similarly: bit vectors).
I Vectors and lists are subtypes of an abstract data type sequence.
I Large number of built-in sequence functions, e.g.:

? (length "foo") → 3

? (elt "foo" 0) → #\f

? (count-if #'numberp '(1 a "2" 3 (b))) → 2

? (subseq "foobar" 3 6) → "bar"

? (substitute #\a #\o "hoho") → "haha"

? (remove 'a '(a b b a)) → (b b)

? (some #'listp '(1 a "2" 3 (b))) →

t

? (sort '(1 2 1 3 1 0) #'<) → (0 1 1 1 2 3)

I And many others: position, every, count, remove-if, find, merge,
map, reverse, concatenate, reduce, . . .

17

Arrays: Specializations and generalizations
I Vectors = specialized type of arrays: one-dimensional.
I Strings = specialized type of vectors (similarly: bit vectors).
I Vectors and lists are subtypes of an abstract data type sequence.
I Large number of built-in sequence functions, e.g.:

? (length "foo") → 3

? (elt "foo" 0) → #\f

? (count-if #'numberp '(1 a "2" 3 (b))) → 2

? (subseq "foobar" 3 6) → "bar"

? (substitute #\a #\o "hoho") → "haha"

? (remove 'a '(a b b a)) → (b b)

? (some #'listp '(1 a "2" 3 (b))) →

t

? (sort '(1 2 1 3 1 0) #'<) → (0 1 1 1 2 3)

I And many others: position, every, count, remove-if, find, merge,
map, reverse, concatenate, reduce, . . .

17

Arrays: Specializations and generalizations
I Vectors = specialized type of arrays: one-dimensional.
I Strings = specialized type of vectors (similarly: bit vectors).
I Vectors and lists are subtypes of an abstract data type sequence.
I Large number of built-in sequence functions, e.g.:

? (length "foo") → 3

? (elt "foo" 0) → #\f

? (count-if #'numberp '(1 a "2" 3 (b))) → 2

? (subseq "foobar" 3 6) → "bar"

? (substitute #\a #\o "hoho") → "haha"

? (remove 'a '(a b b a)) → (b b)

? (some #'listp '(1 a "2" 3 (b))) →

t
? (sort '(1 2 1 3 1 0) #'<) → (0 1 1 1 2 3)

I And many others: position, every, count, remove-if, find, merge,
map, reverse, concatenate, reduce, . . .

17

Arrays: Specializations and generalizations
I Vectors = specialized type of arrays: one-dimensional.
I Strings = specialized type of vectors (similarly: bit vectors).
I Vectors and lists are subtypes of an abstract data type sequence.
I Large number of built-in sequence functions, e.g.:

? (length "foo") → 3

? (elt "foo" 0) → #\f

? (count-if #'numberp '(1 a "2" 3 (b))) → 2

? (subseq "foobar" 3 6) → "bar"

? (substitute #\a #\o "hoho") → "haha"

? (remove 'a '(a b b a)) → (b b)

? (some #'listp '(1 a "2" 3 (b))) → t

? (sort '(1 2 1 3 1 0) #'<) → (0 1 1 1 2 3)

I And many others: position, every, count, remove-if, find, merge,
map, reverse, concatenate, reduce, . . .

17

Arrays: Specializations and generalizations
I Vectors = specialized type of arrays: one-dimensional.
I Strings = specialized type of vectors (similarly: bit vectors).
I Vectors and lists are subtypes of an abstract data type sequence.
I Large number of built-in sequence functions, e.g.:

? (length "foo") → 3

? (elt "foo" 0) → #\f

? (count-if #'numberp '(1 a "2" 3 (b))) → 2

? (subseq "foobar" 3 6) → "bar"

? (substitute #\a #\o "hoho") → "haha"

? (remove 'a '(a b b a)) → (b b)

? (some #'listp '(1 a "2" 3 (b))) → t
? (sort '(1 2 1 3 1 0) #'<) → (0 1 1 1 2 3)

I And many others: position, every, count, remove-if, find, merge,
map, reverse, concatenate, reduce, . . .

17

Arrays: Specializations and generalizations
I Vectors = specialized type of arrays: one-dimensional.
I Strings = specialized type of vectors (similarly: bit vectors).
I Vectors and lists are subtypes of an abstract data type sequence.
I Large number of built-in sequence functions, e.g.:

? (length "foo") → 3

? (elt "foo" 0) → #\f

? (count-if #'numberp '(1 a "2" 3 (b))) → 2

? (subseq "foobar" 3 6) → "bar"

? (substitute #\a #\o "hoho") → "haha"

? (remove 'a '(a b b a)) → (b b)

? (some #'listp '(1 a "2" 3 (b))) → t
? (sort '(1 2 1 3 1 0) #'<) → (0 1 1 1 2 3)

I And many others: position, every, count, remove-if, find, merge,
map, reverse, concatenate, reduce, . . .

17

Sequence functions and keyword parameters

I Many higher-order sequence functions take functional arguments
through keyword parameters.

I When meaningful, built-in functions allow :test, :key, :start, etc.
I Use function objects of built-in, user-defined, or anonymous functions.

? (member "bar" '("foo" "bar" "baz"))
→ nil

? (member "bar" '("foo" "bar" "baz") :test #'equal)
→ ("bar" "baz")

? (defparameter bar '(("baz" 23) ("bar" 47) ("foo" 11)))

? (sort bar #'< :key #'(lambda (foo) (first (rest foo))))
→ (("foo" 11) ("baz" 23) ("bar" 47))

18

Sequence functions and keyword parameters

I Many higher-order sequence functions take functional arguments
through keyword parameters.

I When meaningful, built-in functions allow :test, :key, :start, etc.
I Use function objects of built-in, user-defined, or anonymous functions.

? (member "bar" '("foo" "bar" "baz"))
→

nil

? (member "bar" '("foo" "bar" "baz") :test #'equal)
→ ("bar" "baz")

? (defparameter bar '(("baz" 23) ("bar" 47) ("foo" 11)))

? (sort bar #'< :key #'(lambda (foo) (first (rest foo))))
→ (("foo" 11) ("baz" 23) ("bar" 47))

18

Sequence functions and keyword parameters

I Many higher-order sequence functions take functional arguments
through keyword parameters.

I When meaningful, built-in functions allow :test, :key, :start, etc.
I Use function objects of built-in, user-defined, or anonymous functions.

? (member "bar" '("foo" "bar" "baz"))
→ nil

? (member "bar" '("foo" "bar" "baz") :test #'equal)
→ ("bar" "baz")

? (defparameter bar '(("baz" 23) ("bar" 47) ("foo" 11)))

? (sort bar #'< :key #'(lambda (foo) (first (rest foo))))
→ (("foo" 11) ("baz" 23) ("bar" 47))

18

Sequence functions and keyword parameters

I Many higher-order sequence functions take functional arguments
through keyword parameters.

I When meaningful, built-in functions allow :test, :key, :start, etc.
I Use function objects of built-in, user-defined, or anonymous functions.

? (member "bar" '("foo" "bar" "baz"))
→ nil

? (member "bar" '("foo" "bar" "baz") :test #'equal)
→

("bar" "baz")

? (defparameter bar '(("baz" 23) ("bar" 47) ("foo" 11)))

? (sort bar #'< :key #'(lambda (foo) (first (rest foo))))
→ (("foo" 11) ("baz" 23) ("bar" 47))

18

Sequence functions and keyword parameters

I Many higher-order sequence functions take functional arguments
through keyword parameters.

I When meaningful, built-in functions allow :test, :key, :start, etc.
I Use function objects of built-in, user-defined, or anonymous functions.

? (member "bar" '("foo" "bar" "baz"))
→ nil

? (member "bar" '("foo" "bar" "baz") :test #'equal)
→ ("bar" "baz")

? (defparameter bar '(("baz" 23) ("bar" 47) ("foo" 11)))

? (sort bar #'< :key #'(lambda (foo) (first (rest foo))))
→ (("foo" 11) ("baz" 23) ("bar" 47))

18

Sequence functions and keyword parameters

I Many higher-order sequence functions take functional arguments
through keyword parameters.

I When meaningful, built-in functions allow :test, :key, :start, etc.
I Use function objects of built-in, user-defined, or anonymous functions.

? (member "bar" '("foo" "bar" "baz"))
→ nil

? (member "bar" '("foo" "bar" "baz") :test #'equal)
→ ("bar" "baz")

? (defparameter bar '(("baz" 23) ("bar" 47) ("foo" 11)))

? (sort bar #'< :key #'(lambda (foo) (first (rest foo))))
→

(("foo" 11) ("baz" 23) ("bar" 47))

18

Sequence functions and keyword parameters

I Many higher-order sequence functions take functional arguments
through keyword parameters.

I When meaningful, built-in functions allow :test, :key, :start, etc.
I Use function objects of built-in, user-defined, or anonymous functions.

? (member "bar" '("foo" "bar" "baz"))
→ nil

? (member "bar" '("foo" "bar" "baz") :test #'equal)
→ ("bar" "baz")

? (defparameter bar '(("baz" 23) ("bar" 47) ("foo" 11)))

? (sort bar #'< :key #'(lambda (foo) (first (rest foo))))
→ (("foo" 11) ("baz" 23) ("bar" 47))

18

Associative key–value look-up

I Several built-in possibilities.

I In order of increasing power:
I Plists (property lists)
I Alists (association lists)
I Hash tables

19

Plists (property lists)

I A property list is a list of alternating keys and values:

? (defparameter plist (list :artist "Elvis" :title "Blue Hawaii"))

? (getf plist :artist) → "Elvis"

? (getf plist :year) → nil

? (setf (getf plist :year) 1961) → 1961

? (remf plist :title) → t

? plist → (:artist "Elvis" :year 1961)

I getf and remf always test using eq (not allowing :test argument);

I restricts what we can use as keys (typically symbols / keywords).

I Association lists (alists) are more flexible.

20

Plists (property lists)

I A property list is a list of alternating keys and values:

? (defparameter plist (list :artist "Elvis" :title "Blue Hawaii"))

? (getf plist :artist) → "Elvis"

? (getf plist :year) → nil

? (setf (getf plist :year) 1961) → 1961

? (remf plist :title) → t

? plist → (:artist "Elvis" :year 1961)

I getf and remf always test using eq (not allowing :test argument);

I restricts what we can use as keys (typically symbols / keywords).

I Association lists (alists) are more flexible.

20

Plists (property lists)

I A property list is a list of alternating keys and values:

? (defparameter plist (list :artist "Elvis" :title "Blue Hawaii"))

? (getf plist :artist) → "Elvis"

? (getf plist :year) → nil

? (setf (getf plist :year) 1961) → 1961

? (remf plist :title) → t

? plist → (:artist "Elvis" :year 1961)

I getf and remf always test using eq (not allowing :test argument);

I restricts what we can use as keys (typically symbols / keywords).

I Association lists (alists) are more flexible.

20

Plists (property lists)

I A property list is a list of alternating keys and values:

? (defparameter plist (list :artist "Elvis" :title "Blue Hawaii"))

? (getf plist :artist) → "Elvis"

? (getf plist :year) → nil

? (setf (getf plist :year) 1961) → 1961

? (remf plist :title) → t

? plist → (:artist "Elvis" :year 1961)

I getf and remf always test using eq (not allowing :test argument);

I restricts what we can use as keys (typically symbols / keywords).

I Association lists (alists) are more flexible.

20

Plists (property lists)

I A property list is a list of alternating keys and values:

? (defparameter plist (list :artist "Elvis" :title "Blue Hawaii"))

? (getf plist :artist) → "Elvis"

? (getf plist :year) → nil

? (setf (getf plist :year) 1961) → 1961

? (remf plist :title) → t

? plist → (:artist "Elvis" :year 1961)

I getf and remf always test using eq (not allowing :test argument);

I restricts what we can use as keys (typically symbols / keywords).

I Association lists (alists) are more flexible.

20

Plists (property lists)

I A property list is a list of alternating keys and values:

? (defparameter plist (list :artist "Elvis" :title "Blue Hawaii"))

? (getf plist :artist) → "Elvis"

? (getf plist :year) → nil

? (setf (getf plist :year) 1961) → 1961

? (remf plist :title) → t

? plist → (:artist "Elvis" :year 1961)

I getf and remf always test using eq (not allowing :test argument);

I restricts what we can use as keys (typically symbols / keywords).

I Association lists (alists) are more flexible.

20

Plists (property lists)

I A property list is a list of alternating keys and values:

? (defparameter plist (list :artist "Elvis" :title "Blue Hawaii"))

? (getf plist :artist) → "Elvis"

? (getf plist :year) → nil

? (setf (getf plist :year) 1961) → 1961

? (remf plist :title) → t

? plist → (:artist "Elvis" :year 1961)

I getf and remf always test using eq (not allowing :test argument);

I restricts what we can use as keys (typically symbols / keywords).

I Association lists (alists) are more flexible.

20

Alists (association lists)
I An association list is a list of pairs of keys and values:

? (defparameter alist (pairlis '(:artist :title)
'("Elvis" "Blue Hawaii")))

→ ((:artist . "Elvis") (:title . "Blue Hawaii"))

? (assoc :artist alist) → (:artist . "Elvis")

? (setf alist (acons :year 1961 alist))
→ ((:artist . "Elvis") (:title . "Blue Hawaii") (:year . 1961))

I Note: The result of cons’ing something to an atomic value other than
nil is displayed as a dotted pair; (cons 'a 'b) → (a . b)

I With the :test keyword argument we can specify the lookup test
function used by assoc; keys can be any data type.

I With look-up in a plist or alist, in the worst case, every element in the
list has to be searched (linear complexity in list length).

21

Alists (association lists)
I An association list is a list of pairs of keys and values:

? (defparameter alist (pairlis '(:artist :title)
'("Elvis" "Blue Hawaii")))

→ ((:artist . "Elvis") (:title . "Blue Hawaii"))

? (assoc :artist alist) → (:artist . "Elvis")

? (setf alist (acons :year 1961 alist))
→ ((:artist . "Elvis") (:title . "Blue Hawaii") (:year . 1961))

I Note: The result of cons’ing something to an atomic value other than
nil is displayed as a dotted pair; (cons 'a 'b) → (a . b)

I With the :test keyword argument we can specify the lookup test
function used by assoc; keys can be any data type.

I With look-up in a plist or alist, in the worst case, every element in the
list has to be searched (linear complexity in list length).

21

Alists (association lists)
I An association list is a list of pairs of keys and values:

? (defparameter alist (pairlis '(:artist :title)
'("Elvis" "Blue Hawaii")))

→ ((:artist . "Elvis") (:title . "Blue Hawaii"))

? (assoc :artist alist) → (:artist . "Elvis")

? (setf alist (acons :year 1961 alist))
→ ((:artist . "Elvis") (:title . "Blue Hawaii") (:year . 1961))

I Note: The result of cons’ing something to an atomic value other than
nil is displayed as a dotted pair; (cons 'a 'b) → (a . b)

I With the :test keyword argument we can specify the lookup test
function used by assoc; keys can be any data type.

I With look-up in a plist or alist, in the worst case, every element in the
list has to be searched (linear complexity in list length).

21

Alists (association lists)
I An association list is a list of pairs of keys and values:

? (defparameter alist (pairlis '(:artist :title)
'("Elvis" "Blue Hawaii")))

→ ((:artist . "Elvis") (:title . "Blue Hawaii"))

? (assoc :artist alist) → (:artist . "Elvis")

? (setf alist (acons :year 1961 alist))
→ ((:artist . "Elvis") (:title . "Blue Hawaii") (:year . 1961))

I Note: The result of cons’ing something to an atomic value other than
nil is displayed as a dotted pair; (cons 'a 'b) → (a . b)

I With the :test keyword argument we can specify the lookup test
function used by assoc; keys can be any data type.

I With look-up in a plist or alist, in the worst case, every element in the
list has to be searched (linear complexity in list length).

21

Alists (association lists)
I An association list is a list of pairs of keys and values:

? (defparameter alist (pairlis '(:artist :title)
'("Elvis" "Blue Hawaii")))

→ ((:artist . "Elvis") (:title . "Blue Hawaii"))

? (assoc :artist alist) → (:artist . "Elvis")

? (setf alist (acons :year 1961 alist))
→ ((:artist . "Elvis") (:title . "Blue Hawaii") (:year . 1961))

I Note: The result of cons’ing something to an atomic value other than
nil is displayed as a dotted pair; (cons 'a 'b) → (a . b)

I With the :test keyword argument we can specify the lookup test
function used by assoc; keys can be any data type.

I With look-up in a plist or alist, in the worst case, every element in the
list has to be searched (linear complexity in list length).

21

Alists (association lists)
I An association list is a list of pairs of keys and values:

? (defparameter alist (pairlis '(:artist :title)
'("Elvis" "Blue Hawaii")))

→ ((:artist . "Elvis") (:title . "Blue Hawaii"))

? (assoc :artist alist) → (:artist . "Elvis")

? (setf alist (acons :year 1961 alist))
→ ((:artist . "Elvis") (:title . "Blue Hawaii") (:year . 1961))

I Note: The result of cons’ing something to an atomic value other than
nil is displayed as a dotted pair; (cons 'a 'b) → (a . b)

I With the :test keyword argument we can specify the lookup test
function used by assoc; keys can be any data type.

I With look-up in a plist or alist, in the worst case, every element in the
list has to be searched (linear complexity in list length).

21

Hash tables

I While lists are inefficient for indexing large data sets, and arrays
restricted to numeric keys, hash tables efficiently handle a large number
of (almost) arbitrary type keys.

I Any of the four built-in equality tests can be used for key comparison.

? (defparameter table (make-hash-table :test #'equal))

? (gethash "foo" table) → nil
? (setf (gethash "foo" table) 42) → 42

I ‘Trick’ to test, insert and update in one go (specifying 0 as the default):

? (incf (gethash "bar" table 0)) → 1
? (gethash "bar" table) → 1

I Hash table iteration: use maphash or specialized loop directives.

22

Hash tables

I While lists are inefficient for indexing large data sets, and arrays
restricted to numeric keys, hash tables efficiently handle a large number
of (almost) arbitrary type keys.

I Any of the four built-in equality tests can be used for key comparison.

? (defparameter table (make-hash-table :test #'equal))
? (gethash "foo" table) → nil

? (setf (gethash "foo" table) 42) → 42

I ‘Trick’ to test, insert and update in one go (specifying 0 as the default):

? (incf (gethash "bar" table 0)) → 1
? (gethash "bar" table) → 1

I Hash table iteration: use maphash or specialized loop directives.

22

Hash tables

I While lists are inefficient for indexing large data sets, and arrays
restricted to numeric keys, hash tables efficiently handle a large number
of (almost) arbitrary type keys.

I Any of the four built-in equality tests can be used for key comparison.

? (defparameter table (make-hash-table :test #'equal))
? (gethash "foo" table) → nil
? (setf (gethash "foo" table) 42) → 42

I ‘Trick’ to test, insert and update in one go (specifying 0 as the default):

? (incf (gethash "bar" table 0)) → 1
? (gethash "bar" table) → 1

I Hash table iteration: use maphash or specialized loop directives.

22

Hash tables

I While lists are inefficient for indexing large data sets, and arrays
restricted to numeric keys, hash tables efficiently handle a large number
of (almost) arbitrary type keys.

I Any of the four built-in equality tests can be used for key comparison.

? (defparameter table (make-hash-table :test #'equal))
? (gethash "foo" table) → nil
? (setf (gethash "foo" table) 42) → 42

I ‘Trick’ to test, insert and update in one go (specifying 0 as the default):

? (incf (gethash "bar" table 0)) → 1
? (gethash "bar" table) → 1

I Hash table iteration: use maphash or specialized loop directives.

22

Hash tables

I While lists are inefficient for indexing large data sets, and arrays
restricted to numeric keys, hash tables efficiently handle a large number
of (almost) arbitrary type keys.

I Any of the four built-in equality tests can be used for key comparison.

? (defparameter table (make-hash-table :test #'equal))
? (gethash "foo" table) → nil
? (setf (gethash "foo" table) 42) → 42

I ‘Trick’ to test, insert and update in one go (specifying 0 as the default):

? (incf (gethash "bar" table 0)) → 1
? (gethash "bar" table) → 1

I Hash table iteration: use maphash or specialized loop directives.
22

Structures (‘structs’)
I defstruct creates a new abstract data type with named slots.

I Encapsulates a group of related data (i.e. an ‘object’).

I Each structure type is a new type distinct from all existing Lisp types.

I Defines a new constructor, slot accessors, and a type predicate.

? (defstruct album
(artist "unknown")
(title "unknown"))

? (defparameter foo (make-album :artist "Elvis"))
→ #S(album :artist "Elvis" :title "unknown")

? (listp foo) → nil

? (album-p foo) → t

? (setf (album-title foo) "Blue Hawaii")

? foo → #S(album :artist "Elvis" :title "Blue Hawaii")

23

Structures (‘structs’)
I defstruct creates a new abstract data type with named slots.

I Encapsulates a group of related data (i.e. an ‘object’).

I Each structure type is a new type distinct from all existing Lisp types.

I Defines a new constructor, slot accessors, and a type predicate.

? (defstruct album
(artist "unknown")
(title "unknown"))

? (defparameter foo (make-album :artist "Elvis"))

→ #S(album :artist "Elvis" :title "unknown")

? (listp foo) → nil

? (album-p foo) → t

? (setf (album-title foo) "Blue Hawaii")

? foo → #S(album :artist "Elvis" :title "Blue Hawaii")

23

Structures (‘structs’)
I defstruct creates a new abstract data type with named slots.

I Encapsulates a group of related data (i.e. an ‘object’).

I Each structure type is a new type distinct from all existing Lisp types.

I Defines a new constructor, slot accessors, and a type predicate.

? (defstruct album
(artist "unknown")
(title "unknown"))

? (defparameter foo (make-album :artist "Elvis"))
→ #S(album :artist "Elvis" :title "unknown")

? (listp foo) → nil

? (album-p foo) → t

? (setf (album-title foo) "Blue Hawaii")

? foo → #S(album :artist "Elvis" :title "Blue Hawaii")

23

Structures (‘structs’)
I defstruct creates a new abstract data type with named slots.

I Encapsulates a group of related data (i.e. an ‘object’).

I Each structure type is a new type distinct from all existing Lisp types.

I Defines a new constructor, slot accessors, and a type predicate.

? (defstruct album
(artist "unknown")
(title "unknown"))

? (defparameter foo (make-album :artist "Elvis"))
→ #S(album :artist "Elvis" :title "unknown")

? (listp foo) → nil

? (album-p foo) → t

? (setf (album-title foo) "Blue Hawaii")

? foo → #S(album :artist "Elvis" :title "Blue Hawaii")

23

Structures (‘structs’)
I defstruct creates a new abstract data type with named slots.

I Encapsulates a group of related data (i.e. an ‘object’).

I Each structure type is a new type distinct from all existing Lisp types.

I Defines a new constructor, slot accessors, and a type predicate.

? (defstruct album
(artist "unknown")
(title "unknown"))

? (defparameter foo (make-album :artist "Elvis"))
→ #S(album :artist "Elvis" :title "unknown")

? (listp foo) → nil

? (album-p foo) → t

? (setf (album-title foo) "Blue Hawaii")

? foo → #S(album :artist "Elvis" :title "Blue Hawaii")

23

Structures (‘structs’)
I defstruct creates a new abstract data type with named slots.

I Encapsulates a group of related data (i.e. an ‘object’).

I Each structure type is a new type distinct from all existing Lisp types.

I Defines a new constructor, slot accessors, and a type predicate.

? (defstruct album
(artist "unknown")
(title "unknown"))

? (defparameter foo (make-album :artist "Elvis"))
→ #S(album :artist "Elvis" :title "unknown")

? (listp foo) → nil

? (album-p foo) → t

? (setf (album-title foo) "Blue Hawaii")

? foo → #S(album :artist "Elvis" :title "Blue Hawaii")

23

Good Lisp style

Bottom-up design
I Instead of trying to solve everything with one large function: Build your
program with layers of smaller functions.

I Eliminate repetition and patterns.

I Related; define abstraction barriers.
I Separate the code that uses a given data abstraction from the code that
implement that data abstraction.

I Promotes code re-use:
I Makes the code shorter and easier to read, debug and maintain.

I Somewhat more mundane:
I Adhere to the time-honored 80 column rule.
I Close multiple parens on the same line.
I Use Emacs’ auto-indentation (TAB).

24

Good Lisp style

Bottom-up design
I Instead of trying to solve everything with one large function: Build your
program with layers of smaller functions.

I Eliminate repetition and patterns.

I Related; define abstraction barriers.
I Separate the code that uses a given data abstraction from the code that
implement that data abstraction.

I Promotes code re-use:
I Makes the code shorter and easier to read, debug and maintain.

I Somewhat more mundane:
I Adhere to the time-honored 80 column rule.
I Close multiple parens on the same line.
I Use Emacs’ auto-indentation (TAB).

24

Next week

I Can we automatically infer the meaning of words?

I Distributional semantics

I Vector spaces: Spatial models for representing data

I Semantic spaces

25

