— INF4820 —
Algorithms for Al and NLP

More Common Lisp

Erik Velldal & Stephan Oepen

Language Technology Group (LTG)

September 2, 2015

Previous lecture

>

>

>

v

Common Lisp essentials

S-expressions (= atoms + lists of s-expressions)
Recursion

Quote

List processing

Previous lecture

v

Common Lisp essentials

S-expressions (= atoms + lists of s-expressions)
Recursion

Quote

List processing

Today

>

v

More Common Lisp
Higher-order functions
Iteration and loop

More data structures (alists, arrays, hash-tables, structs, and more)

Higher-order functions

» = functions taking other functions as arguments or return values.

Higher-order functions

» = functions taking other functions as arguments or return values.

? (defun filter (list pred)
(cond ((null list) nil)
((funcall pred (first list))
(cons (first list)
(filter (rest list) pred)))
(t (filter (rest list) pred))))

Higher-order functions

» = functions taking other functions as arguments or return values.

? (defun filter (list pred)
(cond ((null list) nil)
((funcall pred (first list))
(cons (first list)
(filter (rest list) pred)))
(t (filter (rest list) pred))))

Higher-order functions

» = functions taking other functions as arguments or return values.

? (defun filter (list pred)
(cond ((null list) nil)
((funcall pred (first list))
(cons (first list)
(filter (rest list) pred)))
(t (filter (rest list) pred))))

7 (filter '(11 22 33 44 55) #'evenp)
— (22 44)

7 (filter '(11 22 33 44 55) #'oddp)
— (11 33 55)

Higher-order functions

» = functions taking other functions as arguments or return values.

? (defun filter (list pred)
(cond ((null list) nil)
((funcall pred (first list))
(cons (first list)
(filter (rest list) pred)))
(t (filter (rest list) pred))))

7 (filter '(11 22 33 44 55) #'evenp)
— (22 44)

7 (filter '(11 22 33 44 55) #'oddp)
— (11 33 55)

Higher-order functions

» = functions taking other functions as arguments or return values.

? (defun filter (list pred)
(cond ((null list) nil)
((funcall pred (first list))
(cons (first list)
(filter (rest list) pred)))
(t (filter (rest list) pred))))

7 (filter '(11 22 33 44 55) #'evenp)
— (22 44)

7 (filter '(11 22 33 44 55) #'oddp)
— (11 33 55)

Higher-order functions

» = functions taking other functions as arguments or return values.

? (defun filter (list pred)
(cond ((null list) nil)
((funcall pred (first list))
(cons (first list)
(filter (rest list) pred)))
(t (filter (rest list) pred))))

7 (filter '(11 22 33 44 55) #'evenp)
— (22 44)

7 (filter '(11 22 33 44 55) #'oddp)
— (11 33 55)

Higher-order functions

» = functions taking other functions as arguments or return values.

? (defun filter (list pred)
(cond ((null list) nil)
((funcall pred (first list))
(cons (first list)
(filter (rest list) pred)))
(t (filter (zrest list) pred))))

7 (filter '(11 22 33 44 55) #'evenp)
— (22 44)

7 (filter '(11 22 33 44 55) #'oddp)
— (11 33 55)

Higher-order functions

» = functions taking other functions as arguments or return values.

? (defun filter (list pred)
(cond ((null list) nil)
((funcall pred (first list))
(cons (first list)
(filter (rest list) pred)))
(t (filter (rest list) pred))))

7 (filter '(11 22 33 44 55) #'evenp)
— (22 44)

7 (filter '(11 22 33 44 55) #'oddp)
— (11 33 55)

Anonymous functions

» We can create functions without naming them with defun:
(lambda (parameters) body)

instead of

(defun name (parameters) body)

Anonymous functions

» We can create functions without naming them with defun:
(lambda (parameters) body)

instead of

(defun name (parameters) body)

» For example:

? (filter '(11 22 33 44 55)
#' (lambda (x)
(and (> x 20)
(< x 50))))

— (22 33 44)

Returning functions

» Having a function return another function is easy:

» Make the return value a 1lambda expression.

7 (defun create-range-test (lower upper)
#' (lambda (x)
(and (> x lower)
(< x upper))))

Returning functions

» Having a function return another function is easy:

» Make the return value a 1lambda expression.

7 (defun create-range-test (lower upper)
#' (lambda (x)
(and (> x lower)
(< x upper))))

? (defparameter foo '(11 22 33 44 55)

? (filter foo (create-range-test 10 30))
— (11 22)

Returning functions

» Having a function return another function is easy:

» Make the return value a 1lambda expression.

7 (defun create-range-test (lower upper)
#' (lambda (x)
(and (> x lower)
(< x upper))))

? (defparameter foo '(11 22 33 44 55)

? (filter foo (create-range-test 10 30))
— (11 22)

? (filter foo (create-range-test 20 50))
— (22 33 44)

Parameter lists: Variable arities and ordering

Optional parameters

? (defun foo (x &optional y (z 42))
(list x y 2))

? (foo 1) — (1 nil 42)

? (foo 1 23) = (1 23)

Parameter lists: Variable arities and ordering

Optional parameters Keyword parameters

? (defun foo (x &optional y (z 42)) 7 (defun foo (x &key y (z 42))
(list x y 2)) (list x y 2))

? (foo 1) — (1 nil 42) ? (foo 1) — (1 nil 42)

? (foo 1 2 3) — (1 2 3) ? (foo 1 :2 3 :y 2) — (1 2 3)

Parameter lists: Variable arities and ordering

Optional parameters Keyword parameters

? (defun foo (x &optional y (z 42)) ? (defun foo (x &key y (z 42))

(list x y 2)) (list x y 2))
? (foo 1) — (1 nil 42) 7 (foo 1) — (1 nil 42)
? (foo 1 2 3) — (1 2 3) ? (foo 1 :2 3 :y 2) — (1 2 3)

Rest parameters

? (defun avg (x &rest rest)
(let ((numbers (cons x rest)))

(/ (apply #'+ numbers)

(length numbers))))

? (avg 3) — 3

?7(avg 1234567 —4

Pitch: programs that generate programs.

Macros provide a way for our code to manipulate itself (before it's
passed to the compiler).

Can implement transformations that extend the syntax of the language.
Allows us to control (or even prevent) the evaluation of arguments.

We've already used some built-in Common Lisp macros:
and, or, if, cond, defun, setf, etc.

Pitch: programs that generate programs.

Macros provide a way for our code to manipulate itself (before it's
passed to the compiler).

Can implement transformations that extend the syntax of the language.
Allows us to control (or even prevent) the evaluation of arguments.

We've already used some built-in Common Lisp macros:
and, or, if, cond, defun, setf, etc.

Although macro writing is out of the scope of this course, let’s look at
perhaps the best example of how macros can redefine the syntax of the
language — for good or for worse, depending on who you ask:

» loop

[teration

(let ((evens nil))
(dolist (x '(0 1 2 3 4 5))
(when (evenp x)
(push x evens)))
» While recursion is a powerful (reverse evens))

control structure, 029

» sometimes jteration comes
more natural.

» dolist and dotimes are fine
for simple iteration.

[teration

» While recursion is a powerful
control structure,

» sometimes jteration comes
more natural.

» dolist and dotimes are fine
for simple iteration.

(let ((evens nil))
(dolist (x '(0 1 2 3 4 5))
(when (evenp x)
(push x evens)))
(reverse evens))

— (0 2 4)

(let ((evens nil))
(dotimes (x 6)
(when (evenp x)
(push x evens)))
(reverse evens))

— (0 2 4)

[teration

» While recursion is a powerful
control structure,

» sometimes jteration comes
more natural.

» dolist and dotimes are fine
for simple iteration.

» But loop is much more
versatile.

(let ((evens nil))
(dolist (x '(0 1 2 3 4 5))
(when (evenp x)
(push x evens)))
(reverse evens))

— (0 2 4)

(let ((evens nil))
(dotimes (x 6)
(when (evenp x)
(push x evens)))
(reverse evens))

— (0 2 4)

(loop for x below 6
when (evenp x)
collect x)

— (0 2 4)

lteration with loop

(1oop
for i from 10 to 50 by 10
collect i)

— (10 20 30 40 50)

> lllustrates the power of syntax extension through macros;

» loop is basically a mini-language for iteration.

lteration with loop

(1oop
for i from 10 to 50 by 10
collect i)

— (10 20 30 40 50)

v

[llustrates the power of syntax extension through macros;

v

loop is basically a mini-language for iteration.

v

Reduced uniformity: different syntax based on special keywords.

v

Paul Graham on loop: “one of the worst flaws in Common Lisp”.

v

But non-Lispy as it may be, loop is extremely general and powerful!

loop: a few more examples

7 (loop
for i below 10
when (oddp i)
sum i)

10

loop: a few more examples

7 (loop
for i below 10
when (oddp i)
sum i)

— 25

? (loop for x across "foo" collect x)

— (#\f #\o #\o)

10

loop: a few more examples

7 (loop
for i below 10
when (oddp i)
sum i)

— 25

? (loop for x across "foo" collect x)

— (#\f #\o #\o)

7 (loop
with foo = '(a b ¢ d)
for i in foo
for j from O
until (eq i 'c)
do (format t "~a: ~a ~%" j 1))

oy
W =

loop: a few more examples

? (loop for foo in '(1 2 3) collect foo)
— (1 2 3)

11

loop: a few more examples

? (loop for foo in '(1 2 3) collect foo)
— (1 2 3)

? (loop for foo on '(1 2 3) collect foo)
— ((1 2 3) (23) (3)

11

loop: a few more examples

? (loop for foo in '(1 2 3) collect foo)
— (1 2 3)

? (loop for foo on '(1 2 3) collect foo)
— ((1 2 3) (23) (3)

? (loop for foo on '(1 2 3) append foo)
— (1 232323)

11

loop: a few more examples

? (loop for foo in '(1 2 3) collect foo)
— (1 2 3)

? (loop for foo on '(1 2 3) collect foo)
— ((1 2 3) (23) (3)

? (loop for foo on '(1 2 3) append foo)
— (1 232323)

? (loop
for i from 1 to 10
when (evenp i)
collect i into evens
else collect i into odds
finally (return (list evens odds)))

—+((246810) (1357 9)

11

loop: The Swiss Army Knife of Iteration

» lteration over lists or vectors: for symbol { in|on|across } sequence

» Counting through ranges:
for symbol [from number] { to|downto } number [by number]

» lteration over hash tables:
for symbol being each { hash-key |hash-value } in hash table

» Stepwise computation: for symbol = sexp then sexp

» Accumulation: { collect|append|sum|minimize|count|...} sexp
» Control: { while|until|repeat|when|unless|...} sexp

» Local variables: with symbol = sexp

» Initialization and finalization: { initially|finally } sexp™

» All of these can be combined freely, e.g. iterating through a list,
counting a range, and stepwise computation, all in parallel.

» Note: without at least one accumulator, 1oop will only return nil.

12

Input and output

» Reading and writing is mediated through streams.

» The symbol t indicates the default stream, the terminal.
? (format t "~a is the ~a.~%" 42 "answer")

~» 42 is the answer.
— nil

13

Input and output

» Reading and writing is mediated through streams.

» The symbol t indicates the default stream, the terminal.

? (format t "~a is the ~a.~%" 42 "answer")
~» 42 is the answer.
— nil

» (read-line stream nil) reads one line of text from stream,
returning it as a string.

» (read stream nil) reads one well-formed s-expression.

» The second reader argument asks to return nil upon end-of-file.

13

Input and output

» Reading and writing is mediated through streams.

» The symbol t indicates the default stream, the terminal.

? (format t "~a is the ~a.-~%" 42 "answer"
~» 42 is the answer.
— nil

» (read-line stream nil) reads one line of text from stream,
returning it as a string.

» (read stream nil) reads one well-formed s-expression.

» The second reader argument asks to return nil upon end-of-file.

(with-open-file (stream "sample.txt" :direction :input)
(loop
for line = (read-line stream nil)
while line do (format t "~a~%" line)))

13

Recap: Equality for one and all

eq tests object identity; it is not useful for numbers or characters.
eql is like eq, but well-defined on numbers and characters.
equal tests structural equivalence

v v . vyvYy

equalp is like equal but insensitive to case and numeric type.

14

Recap: Equality for one and all

eq tests object identity; it is not useful for numbers or characters.
eql is like eq, but well-defined on numbers and characters.
equal tests structural equivalence

equalp is like equal but insensitive to case and numeric type.

?(eq '(123) '(123)) —nil

14

Recap: Equality for one and all

eq tests object identity; it is not useful for numbers or characters.
eql is like eq, but well-defined on numbers and characters.
equal tests structural equivalence

equalp is like equal but insensitive to case and numeric type.

?(eq '(123) '(123)) —nil
? (equal '(1 23) '(123)) —t

14

Recap: Equality for one and all

eq tests object identity; it is not useful for numbers or characters.
eql is like eq, but well-defined on numbers and characters.
equal tests structural equivalence

equalp is like equal but insensitive to case and numeric type.

?(eq '(123) '(123)) —nil

? (equal '(1 2 3) '(123) —t

? (eq 42 42) — ? [implementation-dependent]

14

Recap: Equality for one and all

eq tests object identity; it is not useful for numbers or characters.
eql is like eq, but well-defined on numbers and characters.
equal tests structural equivalence

equalp is like equal but insensitive to case and numeric type.

?(eq '(123) '(123)) —nil

-~

(equal '(1 23) '(1 23)) =t

-~

(eq 42 42) — ? [implementation-dependent]

? (eql 42 42) — t

14

Recap: Equality for one and all

eq tests object identity; it is not useful for numbers or characters.
eql is like eq, but well-defined on numbers and characters.
equal tests structural equivalence

equalp is like equal but insensitive to case and numeric type.

?(eq '(123) '(123)) —nil

-~

(equal '(1 23) '(1 23)) =t

-~

(eq 42 42) — ? [implementation-dependent]
? (eql 42 42) — t

7 (eql 42 42.0) — nil

14

Recap: Equality for one and all

eq tests object identity; it is not useful for numbers or characters.
eql is like eq, but well-defined on numbers and characters.
equal tests structural equivalence

equalp is like equal but insensitive to case and numeric type.

?(eq '(123) '(123)) —nil

-~

(equal '(1 23) '(1 23)) =t

-~

(eq 42 42) — ? [implementation-dependent]
? (eql 42 42) — t
7 (eql 42 42.0) — nil

? (equalp 42 42.0) — t

14

Recap: Equality for one and all

> eq tests object identity; it is not useful for numbers or characters.
» eql is like eq, but well-defined on numbers and characters.

» equal tests structural equivalence

» equalp is like equal but insensitive to case and numeric type.

?(eq '(123) '(123)) —nil

? (equal '(1 23) '(123)) —t

? (eq 42 42) — ? [implementation-dependent]
? (eql 42 42) — t

7 (eql 42 42.0) — nil

? (equalp 42 42.0) — t

-~

(equal "foo" "foo") — t

14

Recap: Equality for one and all

> eq tests object identity; it is not useful for numbers or characters.
» eql is like eq, but well-defined on numbers and characters.

» equal tests structural equivalence

» equalp is like equal but insensitive to case and numeric type.

?(eq '(123) '(123)) —nil

? (equal '(1 23) '(123)) —t

? (eq 42 42) — ? [implementation-dependent]
? (eql 42 42) — t

7 (eql 42 42.0) — nil

? (equalp 42 42.0) — t

-~

(equal "foo" "foo") — t

? (equalp "FOO" "foo") — t

14

Recap: Equality for one and all

> eq tests object identity; it is not useful for numbers or characters.
» eql is like eq, but well-defined on numbers and characters.

» equal tests structural equivalence

» equalp is like equal but insensitive to case and numeric type.

?(eq '(123) '(123)) —nil

? (equal '(1 23) '(123)) —t

? (eq 42 42) — ? [implementation-dependent]
? (eql 42 42) — t

7 (eql 42 42.0) — nil

? (equalp 42 42.0) — t

-~

(equal "foo" "foo") — t

? (equalp "FOO" "foo") — t

» Also many type-specialized tests like =, string=, etc.

14

You've already seen lists. . .

...now we'll do a quick tour of

some other

data
structures

15

» Integer-indexed container (indices count from zero)

? (defparameter array (make-array 5)) — #(nil nil nil nil nil)
? (setf (aref array 0) 42)— 42

7 array — #(42 nil nil nil nil)

16

» Integer-indexed container (indices count from zero)

? (defparameter array (make-array 5)) — #(nil nil nil nil nil)
? (setf (aref array 0) 42)— 42

7 array — #(42 nil nil nil nil)

v

Can be fixed-sized (default) or dynamically adjustable.

16

Integer-indexed container (indices count from zero)

(defparameter array (make-array 5)) — #(nil nil nil nil nil)
(setf (aref array 0) 42)— 42

array — #(42 nil nil nil nil)

Can be fixed-sized (default) or dynamically adjustable.
Can also represent ‘grids’ of multiple dimensions:

(defparameter array (make-array '(2 5) :initial-element 0))
> #((0 0 0 0 0) (000 0 0))

(incf (aref array 1 2)) — 1

16

Arrays: Specializations and generalizations

» Vectors = specialized type of arrays: one-dimensional.

» Strings = specialized type of vectors (similarly: bit vectors).

» Vectors and lists are subtypes of an abstract data type sequence.

» Large number of built-in sequence functions, e.g.:

17

Arrays: Specializations and generalizations

» Vectors = specialized type of arrays: one-dimensional.

» Strings = specialized type of vectors (similarly: bit vectors).

v

Vectors and lists are subtypes of an abstract data type sequence.

v

Large number of built-in sequence functions, e.g.:

? (length "foo") — 3

17

Arrays: Specializations and generalizations

» Vectors = specialized type of arrays: one-dimensional.

» Strings = specialized type of vectors (similarly: bit vectors).

v

Vectors and lists are subtypes of an abstract data type sequence.

v

Large number of built-in sequence functions, e.g.:

? (length "foo") — 3
7 (elt "foo" 0) — #\f

17

Arrays: Specializations and generalizations

» Vectors = specialized type of arrays: one-dimensional.
» Strings = specialized type of vectors (similarly: bit vectors).
» Vectors and lists are subtypes of an abstract data type sequence.

» Large number of built-in sequence functions, e.g.:

? (length "foo") — 3
? (elt "foo" 0) — #\f
? (count-if #'numberp '(1 a "2" 3 (b))) —

17

Arrays: Specializations and generalizations

» Vectors = specialized type of arrays: one-dimensional.
» Strings = specialized type of vectors (similarly: bit vectors).
» Vectors and lists are subtypes of an abstract data type sequence.

» Large number of built-in sequence functions, e.g.:

? (length "foo") — 3
? (elt "foo" 0) — #\f
? (count-if #'numberp '(1 a "2" 3 (b))) — 2

17

Arrays: Specializations and generalizations

» Vectors = specialized type of arrays: one-dimensional.
» Strings = specialized type of vectors (similarly: bit vectors).
» Vectors and lists are subtypes of an abstract data type sequence.

» Large number of built-in sequence functions, e.g.:

? (length "foo") — 3
? (elt "foo" 0) — #\f
? (count-if #'numberp '(1 a "2" 3 (b))) — 2

7 (subseq "foobar" 3 6) — "bar"

17

Arrays: Specializations and generalizations

» Vectors = specialized type of arrays: one-dimensional.
» Strings = specialized type of vectors (similarly: bit vectors).
» Vectors and lists are subtypes of an abstract data type sequence.

» Large number of built-in sequence functions, e.g.:

? (length "foo") — 3

? (elt "foo" 0) — #\f

? (count-if #'numberp '(1 a "2" 3 (b))) — 2
7 (subseq "foobar" 3 6) — "bar"

7 (substitute #\a #\o "hoho") — "haha"

17

Arrays: Specializations and generalizations

» Vectors = specialized type of arrays: one-dimensional.
» Strings = specialized type of vectors (similarly: bit vectors).
» Vectors and lists are subtypes of an abstract data type sequence.

» Large number of built-in sequence functions, e.g.:

? (length "foo") — 3

? (elt "foo" 0) — #\f

? (count-if #'numberp '(1 a "2" 3 (b))) — 2
7 (subseq "foobar" 3 6) — "bar"

7 (substitute #\a #\o "hoho") — "haha"

? (remove 'a '(a b b a)) — (b b)

17

Arrays: Specializations and generalizations

» Vectors = specialized type of arrays: one-dimensional.
» Strings = specialized type of vectors (similarly: bit vectors).
» Vectors and lists are subtypes of an abstract data type sequence.

» Large number of built-in sequence functions, e.g.:

? (length "foo") — 3

? (elt "foo" 0) — #\f

? (count-if #'numberp '(1 a "2" 3 (b))) — 2
7 (subseq "foobar" 3 6) — "bar"

7 (substitute #\a #\o "hoho") — "haha"

? (remove 'a '(a b b a)) — (b b)

? (some #'listp '(1 a "2" 3 (b)) —

17

Arrays: Specializations and generalizations

» Vectors = specialized type of arrays: one-dimensional.
» Strings = specialized type of vectors (similarly: bit vectors).
» Vectors and lists are subtypes of an abstract data type sequence.

» Large number of built-in sequence functions, e.g.:

? (length "foo") — 3

? (elt "foo" 0) — #\f

? (count-if #'numberp '(1 a "2" 3 (b))) — 2
7 (subseq "foobar" 3 6) — "bar"

7 (substitute #\a #\o "hoho") — "haha"

? (remove 'a '(a b b a)) — (b b)

? (some #'listp '(1 a "2" 3 (b)) — t

17

Arrays: Specializations and generalizations

» Vectors = specialized type of arrays: one-dimensional.
» Strings = specialized type of vectors (similarly: bit vectors).
» Vectors and lists are subtypes of an abstract data type sequence.

» Large number of built-in sequence functions, e.g.:

? (length "foo") — 3

? (elt "foo" 0) — #\f

? (count-if #'numberp '(1 a "2" 3 (b))) — 2
7 (subseq "foobar" 3 6) — "bar"

7 (substitute #\a #\o "hoho") — "haha"

? (remove 'a '(a b b a)) — (b b)

? (some #'listp '(1 a "2" 3 (b)) — t

7?7 (sort '(121310) #'<) - (011123)

17

Arrays: Specializations and generalizations

» Vectors = specialized type of arrays: one-dimensional.
» Strings = specialized type of vectors (similarly: bit vectors).
» Vectors and lists are subtypes of an abstract data type sequence.

» Large number of built-in sequence functions, e.g.:

? (length "foo") — 3

? (elt "foo" 0) — #\f

? (count-if #'numberp '(1 a "2" 3 (b))) — 2
? (subseq "foobar" 3 6) — "bar"

? (substitute #\a #\o "hoho") — "haha"

? (remove 'a '(a b b a)) — (b b)

? (some #'listp '(1 a "2" 3 (b)) — t

7?7 (sort '(121310) #'<) - (011123)

» And many others: position, every, count, remove-if, find, merge,
map, reverse, concatenate, reduce, ...

17

Sequence functions and keyword parameters

» Many higher-order sequence functions take functional arguments
through keyword parameters.

» When meaningful, built-in functions allow :test, :key, :start, etc.

» Use function objects of built-in, user-defined, or anonymous functions.

18

Sequence functions and keyword parameters

\4

Many higher-order sequence functions take functional arguments
through keyword parameters.

» When meaningful, built-in functions allow :test, :key, :start, etc.

» Use function objects of built-in, user-defined, or anonymous functions.

? (member "bar" '("foo" "bar" "baz"))

—

18

Sequence functions and keyword parameters

\4

Many higher-order sequence functions take functional arguments
through keyword parameters.

» When meaningful, built-in functions allow :test, :key, :start, etc.

» Use function objects of built-in, user-defined, or anonymous functions.

? (member "bar" '("foo" "bar" "baz"))

— nil

18

Sequence functions and keyword parameters

\4

Many higher-order sequence functions take functional arguments
through keyword parameters.

v

When meaningful, built-in functions allow :test, :key, :start, etc.

Use function objects of built-in, user-defined, or anonymous functions.

v

? (member "bar" '("foo" "bar" "baz"))

— nil

? (member "bar" '("foo" "bar" "baz") :test #'equal)

—

18

Sequence functions and keyword parameters

» Many higher-order sequence functions take functional arguments
through keyword parameters.

» When meaningful, built-in functions allow :test, :key, :start, etc.

» Use function objects of built-in, user-defined, or anonymous functions.

? (member "bar" '("foo" "bar" "baz"))

— nil

? (member "bar" '("foo" "bar" "baz") :test #'equal)

— (”bar” "baz”)

18

Sequence functions and keyword parameters

» Many higher-order sequence functions take functional arguments
through keyword parameters.

» When meaningful, built-in functions allow :test, :key, :start, etc.

» Use function objects of built-in, user-defined, or anonymous functions.

? (member "bar" '("foo" "bar" "baz"))

— nil

? (member "bar" '("foo" "bar" "baz") :test #'equal)

= (”bar” "baz”)
7 (defparameter bar '(("baz" 23) ("bar" 47) ("foo" 11)))

7 (sort bar #'< :key #'(lambda (foo) (first (rest foo))))

—

18

Sequence functions and keyword parameters

» Many higher-order sequence functions take functional arguments
through keyword parameters.

» When meaningful, built-in functions allow :test, :key, :start, etc.

» Use function objects of built-in, user-defined, or anonymous functions.

? (member "bar" '("foo" "bar" "baz"))

— nil

? (member "bar" '("foo" "bar" "baz") :test #'equal)

= (”bar” "baz”)
7 (defparameter bar '(("baz" 23) ("bar" 47) ("foo" 11)))

7 (sort bar #'< :key #'(lambda (foo) (first (rest foo))))
— (("foo" 11) ("baz" 23) ("bar" 47))

18

Associative key—value look-up

» Several built-in possibilities.

» In order of increasing power:
» Plists (property lists)
» Alists (association lists)
» Hash tables

19

Plists (property lists)

» A property list is a list of alternating keys and values:

? (defparameter plist (list :artist "Elvis" :title "Blue Hawaii"))

20

Plists (property lists)

» A property list is a list of alternating keys and values:

? (defparameter plist (list :artist "Elvis" :title "Blue Hawaii"))

? (getf plist :artist) — "Elvis"

20

Plists (property lists)

v

A property list is a list of alternating keys and values:

? (defparameter plist (list :artist "Elvis" :title "Blue Hawaii"))
? (getf plist :artist) — "Elvis"

? (getf plist :year) — nil

20

Plists (property lists)

v

A property list is a list of alternating keys and values:

(defparameter plist (list :artist "Elvis" :title "Blue Hawaii"))
(getf plist :artist) — "Elvis"
(getf plist :year) — nil

(setf (getf plist :year) 1961) — 1961

20

Plists (property lists)

v

A property list is a list of alternating keys and values:

? (defparameter plist (list :artist "Elvis" :title "Blue Hawaii"))
? (getf plist :artist) — "Elvis"

? (getf plist :year) — nil

? (setf (getf plist :year) 1961) — 1961

? (remf plist :title) — t

20

Plists (property lists)

v

A property list is a list of alternating keys and values:

(defparameter plist (list :artist "Elvis" :title "Blue Hawaii"))
(getf plist :artist) — "Elvis"

(getf plist :year) — nil

(setf (getf plist :year) 1961) — 1961

(remf plist :title) — t

plist — (:artist "Elvis" :year 1961)

20

Plists (property lists)

v

A property list is a list of alternating keys and values:

? (defparameter plist (list :artist "Elvis" :title "Blue Hawaii"))
? (getf plist :artist) — "Elvis"

? (getf plist :year) — nil

? (setf (getf plist :year) 1961) — 1961

? (remf plist :title) — t

? plist — (:artist "Elvis" :year 1961)

» getf and remf always test using eq (not allowing :test argument);
» restricts what we can use as keys (typically symbols / keywords).

» Association lists (alists) are more flexible.

20

Alists (association lists)

» An association list is a list of pairs of keys and values:

7 (defparameter alist (pairlis '(:artist :title)
'("Elvis" "Blue Hawaii")))

— ((:artist . "Elvis") (:title . "Blue Hawaii"))

21

Alists (association lists)

» An association list is a list of pairs of keys and values:

7 (defparameter alist (pairlis '(:artist :title)
' ("Elvis" "Blue Hawaii")))
— ((:artist . "Elvis") (:title . "Blue Hawaii"))

? (assoc :artist alist) — (:artist . "Elvis")

21

Alists (association lists)

» An association list is a list of pairs of keys and values:

7 (defparameter alist (pairlis '(:artist :title)
'("Elvis" "Blue Hawaii")))

— ((:artist . "Elvis") (:title . "Blue Hawaii"))
? (assoc :artist alist) — (:artist . "Elvis")

? (setf alist (acons :year 1961 alist))
— ((:artist . "Elvis") (:title . "Blue Hawaii") (:year . 1961))

21

Alists (association lists)

» An association list is a list of pairs of keys and values:

7 (defparameter alist (pairlis '(:artist :title)
'("Elvis" "Blue Hawaii")))

— ((:artist . "Elvis") (:title . "Blue Hawaii"))
? (assoc :artist alist) — (:artist . "Elvis")

? (setf alist (acons :year 1961 alist))
— ((:artist . "Elvis") (:title . "Blue Hawaii") (:year . 1961))

» Note: The result of cons’'ing something to an atomic value other than
nil is displayed as a dotted pair; (cons 'a 'b) — (a . b)

21

Alists (association lists)

» An association list is a list of pairs of keys and values:

7 (defparameter alist (pairlis '(:artist :title)
'("Elvis" "Blue Hawaii")))

— ((:artist . "Elvis") (:title . "Blue Hawaii"))
? (assoc :artist alist) — (:artist . "Elvis")

? (setf alist (acons :year 1961 alist))

— ((:artist . "Elvis") (:title . "Blue Hawaii") (:year . 1961))

» Note: The result of cons’'ing something to an atomic value other than
nil is displayed as a dotted pair; (cons 'a 'b) — (a . b)

» With the :test keyword argument we can specify the lookup test
function used by assoc; keys can be any data type.

21

Alists (association lists)

» An association list is a list of pairs of keys and values:

7 (defparameter alist (pairlis '(:artist :title)
' ("Elvis" "Blue Hawaii")))
— ((:artist . "Elvis") (:title . "Blue Hawaii"))

7 (assoc :artist alist) — (:artist . "Elvis")
? (setf alist (acons :year 1961 alist))

— ((:artist . "Elvis") (:title . "Blue Hawaii") (:year . 1961))

» Note: The result of cons’'ing something to an atomic value other than
nil is displayed as a dotted pair; (cons 'a 'b) — (a . b)

» With the :test keyword argument we can specify the lookup test
function used by assoc; keys can be any data type.

» With look-up in a plist or alist, in the worst case, every element in the
list has to be searched (linear complexity in list length).

21

Hash tables

» While lists are inefficient for indexing large data sets, and arrays
restricted to numeric keys, hash tables efficiently handle a large number
of (almost) arbitrary type keys.

» Any of the four built-in equality tests can be used for key comparison.

? (defparameter table (make-hash-table :test #'equal))

22

Hash tables

» While lists are inefficient for indexing large data sets, and arrays
restricted to numeric keys, hash tables efficiently handle a large number
of (almost) arbitrary type keys.

» Any of the four built-in equality tests can be used for key comparison.

? (defparameter table (make-hash-table :test #'equal))
? (gethash "foo" table) — nil

22

Hash tables

» While lists are inefficient for indexing large data sets, and arrays
restricted to numeric keys, hash tables efficiently handle a large number
of (almost) arbitrary type keys.

» Any of the four built-in equality tests can be used for key comparison.
? (defparameter table (make-hash-table :test #'equal))

? (gethash "foo" table) — nil

? (setf (gethash "foo" table) 42) — 42

22

Hash tables

» While lists are inefficient for indexing large data sets, and arrays
restricted to numeric keys, hash tables efficiently handle a large number
of (almost) arbitrary type keys.

» Any of the four built-in equality tests can be used for key comparison.

? (defparameter table (make-hash-table :test #'equal))
? (gethash "foo" table) — nil

? (setf (gethash "foo" table) 42) — 42

» ‘Trick' to test, insert and update in one go (specifying 0 as the default):

? (incf (gethash "bar" table 0)) — 1
7 (gethash "bar" table) — 1

22

Hash tables

» While lists are inefficient for indexing large data sets, and arrays
restricted to numeric keys, hash tables efficiently handle a large number
of (almost) arbitrary type keys.

» Any of the four built-in equality tests can be used for key comparison.

? (defparameter table (make-hash-table :test #'equal))
? (gethash "foo" table) — nil
? (setf (gethash "foo" table) 42) — 42

» ‘Trick' to test, insert and update in one go (specifying 0 as the default):

? (incf (gethash "bar" table 0)) — 1
7 (gethash "bar" table) — 1

» Hash table iteration: use maphash or specialized loop directives.

22

Structures ('structs’)

» defstruct creates a new abstract data type with named slots.
» Encapsulates a group of related data (i.e. an ‘object’).
» Each structure type is a new type distinct from all existing Lisp types.

» Defines a new constructor, slot accessors, and a type predicate.

? (defstruct album
(artist "unknown")
(title "unknown"))

23

Structures ('structs’)

» defstruct creates a new abstract data type with named slots.
» Encapsulates a group of related data (i.e. an ‘object’).
» Each structure type is a new type distinct from all existing Lisp types.

» Defines a new constructor, slot accessors, and a type predicate.

? (defstruct album
(artist "unknown")
(title "unknown"))

? (defparameter foo (make-album :artist "Elvis"))

23

Structures ('structs’)

» defstruct creates a new abstract data type with named slots.
» Encapsulates a group of related data (i.e. an ‘object’).
» Each structure type is a new type distinct from all existing Lisp types.

» Defines a new constructor, slot accessors, and a type predicate.

? (defstruct album
(artist "unknown")
(title "unknown"))

? (defparameter foo (make-album :artist "Elvis"))
— #S(album :artist "Elvis" :title "unknown")

23

Structures ('structs’)

» defstruct creates a new abstract data type with named slots.
» Encapsulates a group of related data (i.e. an ‘object’).
» Each structure type is a new type distinct from all existing Lisp types.

» Defines a new constructor, slot accessors, and a type predicate.

? (defstruct album
(artist "unknown")
(title "unknown"))

? (defparameter foo (make-album :artist "Elvis"))
— #S(album :artist "Elvis" :title "unknown")

? (listp foo) — nil

? (album-p foo) — t

23

Structures ('structs’)

» defstruct creates a new abstract data type with named slots.
» Encapsulates a group of related data (i.e. an ‘object’).
» Each structure type is a new type distinct from all existing Lisp types.

» Defines a new constructor, slot accessors, and a type predicate.

? (defstruct album
(artist "unknown")
(title "unknown"))

? (defparameter foo (make-album :artist "Elvis"))

— #S(album :artist "Elvis" :title "unknown")
? (listp foo) — nil
? (album-p foo) — t

? (setf (album-title foo) "Blue Hawaii")

23

Structures ('structs’)

v

defstruct creates a new abstract data type with named slots.

v

Encapsulates a group of related data (i.e. an ‘object’).

v

Each structure type is a new type distinct from all existing Lisp types.

v

Defines a new constructor, slot accessors, and a type predicate.

? (defstruct album
(artist "unknown")
(title "unknown"))

? (defparameter foo (make-album :artist "Elvis"))
— #S(album :artist "Elvis" :title "unknown")

? (listp foo) — nil

? (album-p foo) — t

)

(setf (album-title foo) "Blue Hawaii')

-~

foo — #S(album :artist "Elvis" :title "Blue Hawaii")

23

Good Lisp style

Bottom-up design

» Instead of trying to solve everything with one large function: Build your
program with layers of smaller functions.

» Eliminate repetition and patterns.

» Related; define abstraction barriers.

» Separate the code that uses a given data abstraction from the code that
implement that data abstraction.

» Promotes code re-use:
» Makes the code shorter and easier to read, debug and maintain.

24

Good Lisp style

Bottom-up design

» Instead of trying to solve everything with one large function: Build your
program with layers of smaller functions.

» Eliminate repetition and patterns.

» Related; define abstraction barriers.

» Separate the code that uses a given data abstraction from the code that
implement that data abstraction.

» Promotes code re-use:
» Makes the code shorter and easier to read, debug and maintain.

» Somewhat more mundane:

» Adhere to the time-honored 80 column rule.
» Close multiple parens on the same line.
» Use Emacs’ auto-indentation (TAB).

24

Next week

» Can we automatically infer the meaning of words?

Distributional semantics

\4

v

Vector spaces: Spatial models for representing data

» Semantic spaces

25

