
— INF4820 —
Algorithms for AI and NLP

Semantic Spaces

Erik Velldal & Stephan Oepen

Language Technology Group (LTG)

September 9, 2015



Today and the next lectures

I Can a program automatically learn which words have similar meanings?
I Just by looking at data of actual language use?
I Without any prior knowledge?

I How can we represent word meaning in a mathematical model?

I (This is what we’ll be implementing for assignment 2a.)

Concepts
I Distributional semantics

I Vector spaces: Spatial models for representing data

I Semantic spaces

2



The distributional hypothesis

AKA the contextual theory of meaning

– Meaning is use. (Wittgenstein, 1953)

– You shall know a word by the company it keeps. (Firth, 1957)

– The meaning of entities, and the meaning of grammatical relations
among them, is related to the restriction of combinations of these
entities relative to other entities. (Harris, 1968)

�
�

�
�

He was hungover after drinking too many
shots of retawerif at the party last night.

3



The distributional hypothesis

AKA the contextual theory of meaning

– Meaning is use. (Wittgenstein, 1953)

– You shall know a word by the company it keeps. (Firth, 1957)

– The meaning of entities, and the meaning of grammatical relations
among them, is related to the restriction of combinations of these
entities relative to other entities. (Harris, 1968)

�
�

�
�

He was hungover after drinking too many
shots of retawerif at the party last night.

3



The distributional hypothesis (cont’d)

I The hypothesis: If two words share similar contexts, we can assume
that they have similar meanings.

I Comparing meaning reduced to comparing contexts,
– no need for prior knowledge!

I Given the processing power of modern computers and the availability of
vast amounts of electronic texts. . .

I . . . we can now implement in practice the classic empiricist claims of
Firth, Harris, Wittgenstein, et al.

4



The distributional hypothesis (cont’d)

I The hypothesis: If two words share similar contexts, we can assume
that they have similar meanings.

I Comparing meaning reduced to comparing contexts,
– no need for prior knowledge!

I Given the processing power of modern computers and the availability of
vast amounts of electronic texts. . .

I . . . we can now implement in practice the classic empiricist claims of
Firth, Harris, Wittgenstein, et al.

4



Distributional semantics in practice

A distributional approach to lexical semantics:
I Record contexts of words across a large collection of texts (corpus).

I Each word is represented by a set of features.

I Each feature records some property of the observed contexts.

I Words that are found to have similar features are expected to also have
similar meaning.

I But before we start looking at the details of how to compare the
context features for words, a couple of design decisions;

I How do we define ‘context’?
I How do we define a ‘word’?

5



Distributional semantics in practice

A distributional approach to lexical semantics:
I Record contexts of words across a large collection of texts (corpus).

I Each word is represented by a set of features.

I Each feature records some property of the observed contexts.

I Words that are found to have similar features are expected to also have
similar meaning.

I But before we start looking at the details of how to compare the
context features for words, a couple of design decisions;

I How do we define ‘context’?
I How do we define a ‘word’?

5



Defining ‘context’
I Let’s say we’re extracting features for the target bread in:�



�
	I bake bread for breakfast.

Context windows
I Context ≡ neighborhood of ±n words left/right of the focus word.
I Features for ±1: {left:bake, right:for}
I Some variants: distance weighting, ngrams.

Bag-of-Words (BoW)
I Context ≡ all co-occurring words, ignoring the linear ordering.
I Features: {I, bake, for, breakfast}
I Some variants: sentence-level, document-level.

6



Defining ‘context’
I Let’s say we’re extracting features for the target bread in:�



�
	I bake bread for breakfast.

Context windows
I Context ≡ neighborhood of ±n words left/right of the focus word.
I Features for ±1: {left:bake, right:for}
I Some variants: distance weighting, ngrams.

Bag-of-Words (BoW)
I Context ≡ all co-occurring words, ignoring the linear ordering.
I Features: {I, bake, for, breakfast}
I Some variants: sentence-level, document-level.

6



Defining ‘context’
I Let’s say we’re extracting features for the target bread in:�



�
	I bake bread for breakfast.

Context windows
I Context ≡ neighborhood of ±n words left/right of the focus word.
I Features for ±1: {left:bake, right:for}
I Some variants: distance weighting, ngrams.

Bag-of-Words (BoW)
I Context ≡ all co-occurring words, ignoring the linear ordering.
I Features: {I, bake, for, breakfast}
I Some variants: sentence-level, document-level.

6



Defining ‘context’ (cont’d)

�



�
	I bake bread for breakfast.

Grammatical context
I Context ≡ the grammatical relations to other words.
I Intuition: When words combine in a construction they often impose
semantic constraints on each-other.

I Requires deeper linguistic analysis than simple BoW approaches.
I Features: {dir_obj(bake), prep_for(breakfast)}

7



What is a word?

Raw: “The programmer’s programs had been programmed.”

Tokenized: the programmer ’s programs had been programmed .
Lemmatized: the programmer ’s program have be program .
W/ stop-list: programmer program program
Stemmed: program program program

I Tokenization: Splitting a text into sentences and words or other units.
I Different levels of abstraction and morphological normalization:

I What to do with case, numbers, punctuation, compounds, . . . ?
I Full-form words vs. lemmas vs. stems . . .

I Stop-list: filter out closed-class words or function words.
I The idea is that only content words provide relevant context.

8



What is a word?

Raw: “The programmer’s programs had been programmed.”
Tokenized: the programmer ’s programs had been programmed .

Lemmatized: the programmer ’s program have be program .
W/ stop-list: programmer program program
Stemmed: program program program

I Tokenization: Splitting a text into sentences and words or other units.
I Different levels of abstraction and morphological normalization:

I What to do with case, numbers, punctuation, compounds, . . . ?
I Full-form words vs. lemmas vs. stems . . .

I Stop-list: filter out closed-class words or function words.
I The idea is that only content words provide relevant context.

8



What is a word?

Raw: “The programmer’s programs had been programmed.”
Tokenized: the programmer ’s programs had been programmed .
Lemmatized: the programmer ’s program have be program .

W/ stop-list: programmer program program
Stemmed: program program program

I Tokenization: Splitting a text into sentences and words or other units.
I Different levels of abstraction and morphological normalization:

I What to do with case, numbers, punctuation, compounds, . . . ?
I Full-form words vs. lemmas vs. stems . . .

I Stop-list: filter out closed-class words or function words.
I The idea is that only content words provide relevant context.

8



What is a word?

Raw: “The programmer’s programs had been programmed.”
Tokenized: the programmer ’s programs had been programmed .
Lemmatized: the programmer ’s program have be program .
W/ stop-list: programmer program program

Stemmed: program program program

I Tokenization: Splitting a text into sentences and words or other units.
I Different levels of abstraction and morphological normalization:

I What to do with case, numbers, punctuation, compounds, . . . ?
I Full-form words vs. lemmas vs. stems . . .

I Stop-list: filter out closed-class words or function words.
I The idea is that only content words provide relevant context.

8



What is a word?

Raw: “The programmer’s programs had been programmed.”
Tokenized: the programmer ’s programs had been programmed .
Lemmatized: the programmer ’s program have be program .
W/ stop-list: programmer program program
Stemmed: program program program

I Tokenization: Splitting a text into sentences and words or other units.
I Different levels of abstraction and morphological normalization:

I What to do with case, numbers, punctuation, compounds, . . . ?
I Full-form words vs. lemmas vs. stems . . .

I Stop-list: filter out closed-class words or function words.
I The idea is that only content words provide relevant context.

8



Different contexts → different similarities

I What do we mean by similar?

I The type of context dictates the type of semantic similarity.

I ‘Relatedness’ vs. ‘sameness’. Or domain vs. content.

I Similarity in domain: {car, road, gas, service, traffic, driver, license}

I Similarity in content: {car, train, bicycle, truck, vehicle, airplane, buss}

I While broader definitions of context tend to give clues for domain-based
relatedness, more fine-grained and linguistically informed contexts give
clues for content-based similarity.

9



Different contexts → different similarities

I What do we mean by similar?

I The type of context dictates the type of semantic similarity.

I ‘Relatedness’ vs. ‘sameness’. Or domain vs. content.

I Similarity in domain: {car, road, gas, service, traffic, driver, license}

I Similarity in content: {car, train, bicycle, truck, vehicle, airplane, buss}

I While broader definitions of context tend to give clues for domain-based
relatedness, more fine-grained and linguistically informed contexts give
clues for content-based similarity.

9



Different contexts → different similarities

I What do we mean by similar?

I The type of context dictates the type of semantic similarity.

I ‘Relatedness’ vs. ‘sameness’. Or domain vs. content.

I Similarity in domain: {car, road, gas, service, traffic, driver, license}

I Similarity in content: {car, train, bicycle, truck, vehicle, airplane, buss}

I While broader definitions of context tend to give clues for domain-based
relatedness, more fine-grained and linguistically informed contexts give
clues for content-based similarity.

9



Different contexts → different similarities

I What do we mean by similar?

I The type of context dictates the type of semantic similarity.

I ‘Relatedness’ vs. ‘sameness’. Or domain vs. content.

I Similarity in domain: {car, road, gas, service, traffic, driver, license}

I Similarity in content: {car, train, bicycle, truck, vehicle, airplane, buss}

I While broader definitions of context tend to give clues for domain-based
relatedness, more fine-grained and linguistically informed contexts give
clues for content-based similarity.

9



Representation / model

I We’ve outlined the distributional approach to word meaning.

I But how exactly should we represent our words and context features?

I How exactly can we compare the features of different words?

10



Vector space model

I A general model for representing data based on a spatial metaphor.

I Each object is represented as a vector (or point) positioned in a
coordinate system.

I Each coordinate (or dimension) of the space corresponds to some
descriptive and measurable property (feature) of the objects.

I To measure similarity of two objects, we can measure their geometrical
distance / closeness in the model.

I Vector representations are foundational to a wide range of ML methods.

11



Semantic spaces

I AKA distributional semantic models or word space models.
I A semantic space is a vector space model where
I points represent words,
I dimensions represent context of use,
I and distance in the space represents semantic similarity.

I How do we define the vector values?
I How do we measure distance?

12



Semantic spaces

I AKA distributional semantic models or word space models.
I A semantic space is a vector space model where
I points represent words,
I dimensions represent context of use,
I and distance in the space represents semantic similarity.
I How do we define the vector values?
I How do we measure distance?

12



Feature vectors
I A vector space model is defined by a system of n dimensions –
objects are represented as real valued vectors in the space <n .

I Our observed context features must be encoded numerically:
I Each context feature is mapped to a dimension j ∈ [1, n].
I For a given word, the value of a given feature is its number of
co-occurrences for the corresponding context across our corpus.

I Let the set of n features describing the lexical contexts of a word oi be
represented as a feature vector ~xi = 〈xi1, . . . , xin〉.

Example
I If we assume that
I the ith word is cake and
I the jth feature is OBJ_OF(bake), then
I xij = 4 would mean that we have observed cake to be the object of the
verb bake in our corpus 4 times.

13



Feature vectors
I A vector space model is defined by a system of n dimensions –
objects are represented as real valued vectors in the space <n .

I Our observed context features must be encoded numerically:
I Each context feature is mapped to a dimension j ∈ [1, n].
I For a given word, the value of a given feature is its number of
co-occurrences for the corresponding context across our corpus.

I Let the set of n features describing the lexical contexts of a word oi be
represented as a feature vector ~xi = 〈xi1, . . . , xin〉.

Example
I If we assume that
I the ith word is cake and
I the jth feature is OBJ_OF(bake), then
I xij = 4 would mean that we have observed cake to be the object of the
verb bake in our corpus 4 times.

13



Euclidean distance
I We can now compute semantic similarity in terms of spatial proximity.

I One standard metric for this is the Euclidean distance:

d(~x,~y) =
√∑n

i=1 (~xi − ~yi)2

I Computes the norm (or length) of the
difference of the vectors.

I The norm of a vector is:

‖~x‖ =
√∑n

i=1 ~x2
i =

√
~x · ~x

I Intuitive interpretation: The
distance between two points
corresponds to the length of the
straight line connecting them.

14



Euclidean distance and length bias

I However, a potential problem with Euclidean distance is that it is very
sensitive to extreme values and the length of the vectors.

I As vectors of words with different frequencies will tend to have different
length, the frequency will also affect the similarity judgment.

15



Overcoming length bias by normalization

I One way to reduce frequency effects is to first normalize all our vectors
to have unit length, i.e. ‖~x‖ = 1

I Can be achieved by simply dividing each element by the length: ~x 1
‖~x‖

I Amounts to all vectors pointing to the surface of a unit sphere.
16



Cosine similarity
I Another way to deal with length bias: use the cosine measure.

I Computes similarity as a function of the angle between the vectors:

cos(~x,~y) =
∑

i ~xi~yi√∑
i

~x2
i

√∑
i

~y2
i

= ~x·~y
‖~x‖‖~y‖

I Constant range between 0 and 1.

I Avoids the arbitrary scaling caused
by dimensionality, frequency, etc.

I As the angle between the vectors
shortens, the cosine approaches 1.

17



Cosine similarity (cont’d)

I For normalized (unit) vectors, the cosine is simply the dot product:

cos(~x,~y) = ~x · ~y =
∑n

i=1 ~xi~yi

I Can be computed very efficiently.

I Note; the cosine measures proximity rather than distance.

I The same relative rank order as the Euclidean distance for unit vectors!

18



Cosine similarity (cont’d)

I For normalized (unit) vectors, the cosine is simply the dot product:

cos(~x,~y) = ~x · ~y =
∑n

i=1 ~xi~yi

I Can be computed very efficiently.

I Note; the cosine measures proximity rather than distance.

I The same relative rank order as the Euclidean distance for unit vectors!

18



Practical comments: Sparsity

I Conceptually, a vector space is often thought of as a matrix.
I Dimensions correspond to columns; each feature vector is a row.
I For m words and n features we have an m × n co-occurrence matrix.

I Note; although the space will be extremely high-dimensional, the
number of non-zero elements will be very low.

I Few active features per word.

I We say that the vectors are sparse.

I This has implications for how to implement our data structures and
vector operations:

I Don’t want to waste space representing zero-valued features.

I Don’t want to waste time iterating over zero-valued features.

19



Practical comments: Sparsity

I Conceptually, a vector space is often thought of as a matrix.
I Dimensions correspond to columns; each feature vector is a row.
I For m words and n features we have an m × n co-occurrence matrix.

I Note; although the space will be extremely high-dimensional, the
number of non-zero elements will be very low.

I Few active features per word.

I We say that the vectors are sparse.

I This has implications for how to implement our data structures and
vector operations:

I Don’t want to waste space representing zero-valued features.

I Don’t want to waste time iterating over zero-valued features.

19



Practical comments: Vector operations

I In theory, you can view formulas like Euclidean norm and cosine as
“pseudo-code” that you can translate directly into Lisp.

I But again; our feature vectors are sparse.

I Taken directly, a formula like the Euclidean norm requires iterating over
every dimension n in our space.

I But we don’t want to waste time iterating over zero elements if we
don’t have to!

20



Word–context association

I Problem: Raw co-occurrence frequencies are not always the best
indicators of relevance.

I Imagine we have some features recording information about direct
objects and we’ve collected the following counts for the noun wine:

I OBJ_OF(buy) = 14
I OBJ_OF(pour) = 8
I . . . but the feature OBJ_OF(pour) seems more indicative of the semantics
of wine than OBJ_OF(buy).

I Solution: Weight the counts by an association function, “normalizing”
our observed frequencies for chance co-occurrence.

I A range of different tests of statistical are used; e.g. pointwise mutual
information, log odds ratio, the t-test, log likelihood, . . .

I Note: We’ll skip this step in our implementation (assignment 2a).

21



Word–context association

I Problem: Raw co-occurrence frequencies are not always the best
indicators of relevance.

I Imagine we have some features recording information about direct
objects and we’ve collected the following counts for the noun wine:

I OBJ_OF(buy) = 14
I OBJ_OF(pour) = 8
I . . . but the feature OBJ_OF(pour) seems more indicative of the semantics
of wine than OBJ_OF(buy).

I Solution: Weight the counts by an association function, “normalizing”
our observed frequencies for chance co-occurrence.

I A range of different tests of statistical are used; e.g. pointwise mutual
information, log odds ratio, the t-test, log likelihood, . . .

I Note: We’ll skip this step in our implementation (assignment 2a).

21



Word–context association

I Problem: Raw co-occurrence frequencies are not always the best
indicators of relevance.

I Imagine we have some features recording information about direct
objects and we’ve collected the following counts for the noun wine:

I OBJ_OF(buy) = 14
I OBJ_OF(pour) = 8
I . . . but the feature OBJ_OF(pour) seems more indicative of the semantics
of wine than OBJ_OF(buy).

I Solution: Weight the counts by an association function, “normalizing”
our observed frequencies for chance co-occurrence.

I A range of different tests of statistical are used; e.g. pointwise mutual
information, log odds ratio, the t-test, log likelihood, . . .

I Note: We’ll skip this step in our implementation (assignment 2a).

21



Next week

I Computing neighbor relations in the semantic space

I Representing classes

I Representing class membership

I Classification algorithms: KNN-classification / c-means, etc.

22



Firth, J. R. (1957). A synopsis of linguistic theory 1930–1955. In Studies in linguistic
analysis. Philological Society, Oxford.

Harris, Z. S. (1968). Mathematical structures of language. New York: Wiley.
Wittgenstein, L. (1953). Philosophical investigations. Oxford: Blackwell.

22


