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Summing up the previous lecture
I Semantic spaces: Vector space models for distributional semantics.

I Words are represented as points/vectors in a feature space, positioned
by their co-occurrence counts for various context features.

I For each word, extract context features across a corpus.

I Let each feature type correspond to a dimension in the space.

I Each word oi is represented by a (length-normalized) n-dimensional
feature vector ~xi = 〈xi1, . . . , xin〉 ∈ <n .

I We can now measure, say, the Euclidean
distance of words in the space, d(~x,~y).

I Semantic relatedness ≈
distributional similarity ≈
spatial proximity
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An aside: Term–document spaces for IR

I So far we’ve looked at vector space models for detecting words with
similar meanings.

I It’s important to realize that vector space models are widely used for
other purposes as well.

I For example, vector space models are commonly used in IR for finding
documents with similar content.

I Each document dj is represented by a feature vector, with features
corresponding to the terms t1, . . . , tn occurring in the documents.

I Spatial distance ≈ similarity of content.

I Can also represent a search query as a vector:

I The relevance of a documents given by their distance to the query.
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Today’s main topic

I Machine learning: Classification

I Representing classes and membership

I Rocchio classifiers

I kNN classifiers
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Two categorization tasks in machine learning

Clustering
I Unsupervised learning from unlabeled data.
I Automatically group similar objects together.
I No predefined classes or structure, we only specify the similarity
measure. Relies on “self-organization”.

I (The topic for the next lectures.)

Classification
I Supervised learning, requiring labeled training data.
I Train a classifier to automatically assign new instances to predefined
classes, given some set of examples.

I (Topic for today.)
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Classification

Some examples of classification tasks
I Named entity recognition
I Document (topic) classification
I Authorship attribution
I Sentiment analysis
I Spam filtering

I We’ll look at two simple examples of vector space classifiers:
I Rocchio
I kNN
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Classes and classification

I A class can simply be thought of as a collection of objects.
I In our vector space model, objects are represented as points, so a class
will correspond to a collection of points; a region.

I Vector space classification is based on the the contiguity hypothesis:

I Objects in the same class form a
contiguous region, and regions of
different classes do not overlap.

I Classification amounts to
computing the boundaries in the
space that separate the classes;
the decision boundaries.

I How we draw the boundaries is
influenced by how we choose to
represent the classes.
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Different ways of representing classes

Exemplar-based
I No abstraction. Every stored instance of a group can potentially
represent the class.

I Used in so-called instance based or memory based learning (MBL).
I In its simplest form; the class = the collection of points.
I Another variant is to use medoids, – representing a class by a single
member that is considered central, typically the object with maximum
average similarity to other objects in the group.

Centroid-based
I The average, or the center of mass in the region.
I Given a class ci , where each object oj being a member is represented as
a feature vector ~xj , we can compute the class centroid ~µi as

~µi = 1
|ci |

∑

~xj∈ci

~xj
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Different ways of representing classes (cont’d)

Some more notes on centroids, medoids and typicality
I Both centroids and medoids represent a group by a single prototype.
I But while a medoid is an actual member of the group, a centroid is an
abstract prototype; an average.

I Typicality can be defined by a member’s distance to the prototype.
I The centroid could also be distance weighted:
Let each member’s contribution to the average be determined by its
average pairwise similarity to the other members of the group.

I There are parallel discussions on how to represent classes and determine
typicality within linguistic and psychological prototype theory.

9

Representing class membership

Hard classes
I Membership considered a Boolean property: a given object is either
part of the class or it is not.

I A crisp membership function.
I A variant: disjunctive classes. Objects can be members of more than
one class, but the memberships are still crisp.

Soft classes
I Class membership is a graded property.
I Distance weighted.
I Probabilistic: The degree of membership for a given object restricted to

[0, 1], and the sum across classes must be 1.
I Fuzzy: The membership function is still restricted to [0, 1], but without
the probabilistic constraint on the sum.
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Rocchio classification

I AKA nearest centroid classifier or nearest prototype classifier.

I Uses centroids to represent classes.

I Each class ci is represented by its centroid ~µi , computed as the average
of the normalized vectors ~xj of its members;

~µi = 1
|ci |

∑

~xj∈ci

~xj

I To classify a new object oj (represented by a feature vector ~xj);
– determine which centroid ~µi that ~xj is closest to,
– and assign it to the corresponding class ci .

I The centroids define the boundaries of the class regions.
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The decision boundary of the Rocchio classifier

I Defines the boundary between
two classes by the set of points
equidistant from the centroids.

I In two dimensions, this set of
points corresponds to a line.

I In multiple dimensions: A line in
2D corresponds to a hyperplane in
a higher-dimensional space.
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Problems with the Rocchio classifier

I The classification decision ignores the distribution of members locally
within a class, only based on the centroid distance.

I Implicitly assumes that classes are spheres with similar radiuses.

I Does not work well for classes than cannot be accurately represented by
a single prototype or center (e.g. disconnected or elongated regions).

I Because the Rocchio classifier defines a linear decision boundary, it is
only suitable for problems involving linearly separable classes.
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Ideal
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Problematic: Elongated regions
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Problematic: Non-contiguous regions
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Problematic: Different sizes

17

Problematic: Nonlinear boundary
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A side-note on nonlinearity

I Before we turn to talk about non-linear classifiers, note that:
Classes that are not linearly seperable in a given feature space. . .
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A side-note on nonlinearity

I . . . may become linearly separable when the features are mapped to a
higher-dimensional space (this is the basis for so-called kernel methods).
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kNN-classification

I k Nearest Neighbor classification.
I An example of a non-linear classifier.
I For k = 1: Assign each object to the class of its closest neighbor.
I For k > 1: Assign each object to the majority class among its k closest
neighbors.

I Rationale: given the contiguity hypothesis, we expect a test object oi to
have the same label as the training objects in the local region of ~xi .

I The parameter k must be specified in advance.
I Unlike Rocchio, the kNN decision boundary is determined locally.

I The decision boundary defined by the Voronoi tessellation.
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Voronoi tessellation

I Assuming k = 1: For a given set of objects in the space, let each object
define a cell consisting of all points that are closer to that object than
to other objects.

I Results in a set of convex
polygons; so-called Voronoi cells.

I Decomposing a space into such
cells gives us the so-called
Voronoi tessellation.

I In the general case of k ≥ 1, the Voronoi cells are given by the regions
in the space for which the set of k nearest neighbors is the same.
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Voronoi tessellation for 1NN

Decision boundary for 1NN: defined along the regions of Voronoi cells for
the objects in each class. Shows the non-linearity of kNN.
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“Softened” kNN-classification

A probabilistic version
I The probability of membership in a
class c given by the proportion of the
k nearest neighbors in c.

Distance weighted votes
I The score for a given class ci can be computed as

score(ci , oj) =
∑

~xn∈knn(~xj)
I(ci ,~xn) sim( ~xn , ~xj)

where knn(~xj) is the set of k nearest neighbors of ~xj , sim is the
similarity measure, and I(ci ,~xn) is 1 if ~xn ∈ ci and 0 otherwise.

I Can give more accurate results, and also help resolve ties.
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Some peculiarities of kNN

I Not really any learning or estimation going on at all;

I simply memorizes all training examples.

I Generaly with in ML; the more training data the better.

I But for kNN, large training sets come with an efficiency penalty.

I Test time is linear in the size of the training set,

I but independent of the number of classes.

I A potential advantage for problems with many classes.
I Notice the similarity to the problem of ad hoc retrieval (e.g., returning
relevant documents for a given query);

I Both are instances of finding nearest neighbors.
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Obligatory assignment 2b

I Builds on oblig 2a: Vector space representation of a set of words based
on BoW features extracted from a sample of the Brown corpus.

I For 2b we’ll provide class labels for most of the words.

I Train a Rocchio classifier to predict labels for a set of unlabeled words.

Label Examples

food potato, food, bread, fish, eggs . . .
institution embassy, institute, college, government, school . . .
title president, professor, dr, governor, doctor . . .
place_name italy, dallas, france, america, england . . .
person_name lizzie, david, bill, howard, john . . .

unknown department, egypt, robert, butter, senator . . .
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Testing a classifier

I Vector space classification amounts to computing the boundaries in the
space that separate the class regions: the decision boundaries.

I To evaluate the boundary, we measure the number of correct
classification predictions on unseeen test items.

I Many ways to do this. . .

I We want to test how well a model generalizes on a held-out test set.
I (Or, if we have little data, by n-fold cross-validation.)
I Labeled test data is sometimes refered to as the gold standard.
I Why can’t we test on the training data?
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Example: Evaluating classifier decisions

I Predictions for a given class can be wrong or correct in two ways:

gold = positive gold = negative
prediction = positive true positive (TP) false positive (FP)
prediction = negative false negative (FN) true negative (TN)
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Example: Evaluating classifier decisions

accuracy = TP+TN
N

= 1+6
10 = 0.7

precision = TP
TP+FP

= 1
1+1 = 0.5

recall = TP
TP+FN

= 1
1+2 = 0.33

F -score =
2×precision×recall

precision+recall = 0.4
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Evaluation measures

I accuracy = TP+TN
N = TP+TN

TP+TN+FP+FN
I The ratio of correct predictions.
I Not suitable for unbalanced numbers of positive / negative examples.

I precision = TP
TP+FP

I The number of detected class members that were correct.

I recall = TP
TP+FN

I The number of actual class members that were detected.
I Trade-off: Positive predictions for all examples would give 100% recall
but (typically) terrible precision.

I F -score = 2×precision×recall
precision+recall

I Balanced measure of precision and recall (harmonic mean).
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Evaluating multi-class predictions

Macro-averaging
I Sum precision and recall for each class, and then compute global
averages of these.

I The macro average will be highly influenced by the small classes.

Micro-averaging
I Sum TPs, FPs, and FNs for all points/objects across all classes, and
then compute global precision and recall.

I The micro average will be highly influenced by the large classes.
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Next lecture

I Unsupervised machine learning for class discovery: Clustering
I Flat vs. hierarchical clustering.
I C-Means Clustering.
I Reading: Chapters 16 and 17 in Manning, Raghavan & Schütze (2008)
(see course page for the relevant sections).
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