— INF4820 — Algorithms for AI and NLP

Evaluating Classifiers Clustering

Erik Velldal & Stephan Oepen

Language Technology Group (LTG)

September 23, 2015

Agenda

Last week

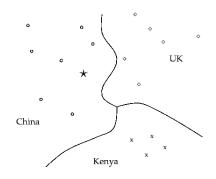
- Supervised vs unsupervised learning.
- ► Vectors space classification.
- ► How to represent classes and class membership.
- ightharpoonup Rocchio + kNN.
- Linear vs non-linear decision boundaries.

Today

- ► Evaluation of classifiers
- Unsupervised machine learning for class discovery: Clustering
- ► Flat vs. hierarchical clustering.
- ► *k*-means clustering
- Vector space quiz

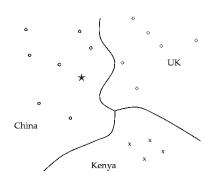
Testing a classifier

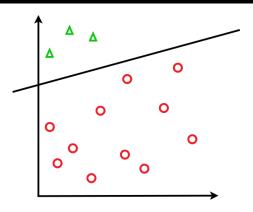
- ► Vector space classification amounts to computing the boundaries in the space that separate the class regions: *the decision boundaries*.
- ► To evaluate the boundary, we measure the number of correct classification predictions on unseeen test items.
- ► Many ways to do this...



Testing a classifier

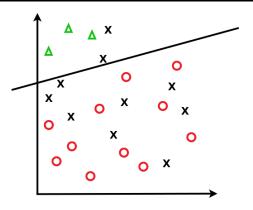
- ► Vector space classification amounts to computing the boundaries in the space that separate the class regions: *the decision boundaries*.
- ► To evaluate the boundary, we measure the number of correct classification predictions on unseeen test items.
- ► Many ways to do this...
- ► We want to test how well a model generalizes on a held-out test set.
- Labeled test data is sometimes refered to as the gold standard.
- ► Why can't we test on the training data?





▶ Predictions for a given class can be wrong or correct in two ways:

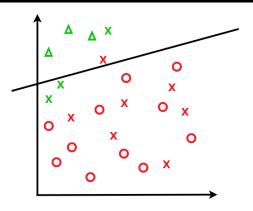
	gold = positive	gold = negative
prediction = positive	true positive (TP)	false positive (FP)
prediction = negative	false negative (FN)	true negative (TN)



▶ Predictions for a given class can be wrong or correct in two ways:

	gold = positive	gold = negative
prediction = positive	true positive (TP)	false positive (FP)
prediction = negative	false negative (FN)	true negative (TN)

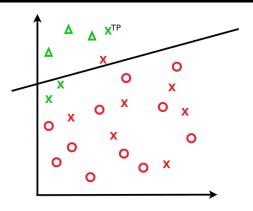
4



► Predictions for a given class can be wrong or correct in two ways:

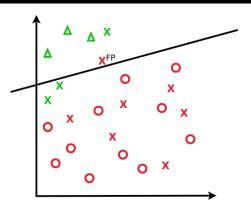
	gold = positive	gold = negative
prediction = positive	true positive (TP)	false positive (FP)
prediction = negative	false negative (FN)	true negative (TN)

4



▶ Predictions for a given class can be wrong or correct in two ways:

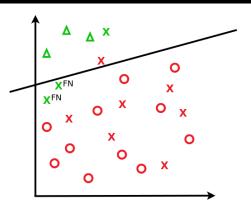
```
\begin{array}{cccc} & \text{gold} = \text{positive} & \text{gold} = \text{negative} \\ & \text{prediction} = \text{positive} & \text{true positive (TP)} & \text{false positive (FP)} \\ & \text{prediction} = \text{negative} & \text{false negative (FN)} & \text{true negative (TN)} \\ \end{array}
```

► Predictions for a given class can be wrong or correct in two ways:

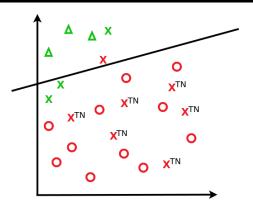
	gold = positive	gold = negative
prediction = positive	true positive (TP)	false positive (FP)
prediction = negative	false negative (FN)	true negative (TN)

4



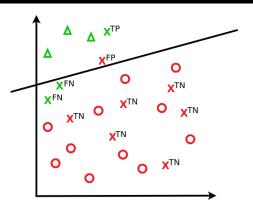
► Predictions for a given class can be wrong or correct in two ways:

	gold = positive	gold = negative
prediction = positive	true positive (TP)	false positive (FP)
prediction = negative	false negative (FN)	true negative (TN)



▶ Predictions for a given class can be wrong or correct in two ways:

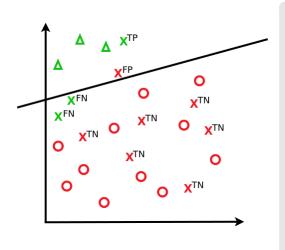
	gold = positive	gold = negative
prediction = positive	true positive (TP)	false positive (FP)
prediction = negative	false negative (FN)	true negative (TN)



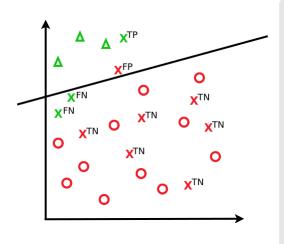
▶ Predictions for a given class can be wrong or correct in two ways:

	gold = positive	gold = negative
prediction = positive	true positive (TP)	false positive (FP)
prediction = negative	false negative (FN)	true negative (TN)

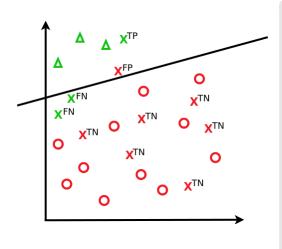
4



 $\frac{accuracy}{N} = \frac{TP + TN}{N}$



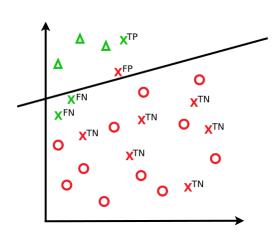
$$\frac{accuracy}{accuracy} = \frac{TP + TN}{N}$$
$$= \frac{1+6}{10} = 0.7$$



$$\begin{array}{l} {accuracy} = \frac{TP + TN}{N} \\ = \frac{1+6}{10} = 0.7 \end{array}$$

$$precision = \frac{TP}{TP + FP}$$

$$\frac{recall}{TP+FN}$$

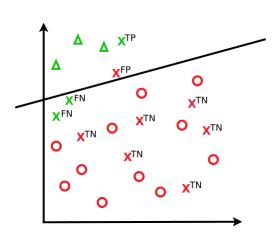


$$\begin{array}{l} {accuracy} = \frac{TP+TN}{N} \\ = \frac{1+6}{10} = 0.7 \end{array}$$

$$\frac{precision}{precision} = \frac{TP}{TP+FP}$$
$$= \frac{1}{1+1} = 0.5$$

$$\begin{aligned} & \underline{recall} = \frac{TP}{TP + FN} \\ &= \frac{1}{1+2} = 0.33 \end{aligned}$$

5



$$\begin{array}{l} accuracy = \frac{TP + TN}{N} \\ = \frac{1+6}{10} = 0.7 \end{array}$$

$$\frac{precision}{precision} = \frac{TP}{TP+FP}$$
$$= \frac{1}{1+1} = 0.5$$

$$\begin{array}{l} \textit{recall} = \frac{\mathit{TP}}{\mathit{TP} + \mathit{FN}} \\ = \frac{1}{1+2} = 0.33 \end{array}$$

$$F\text{-}score = 2 \times \frac{precision \times recall}{precision + recall} = 0.4$$

Evaluation measures

$$\qquad \qquad \bullet \ \ \, \frac{accuracy}{N} = \frac{TP + TN}{N} = \frac{TP + TN}{TP + TN + FP + FN}$$

- ► The ratio of correct predictions.
- ► Not suitable for unbalanced numbers of positive / negative examples.
- ightharpoonup $precision = \frac{TP}{TP + FP}$
 - ► The number of detected class members that were correct.
- $ightharpoonup recall = \frac{TP}{TP + FN}$
 - ► The number of actual class members that were detected.
 - ► Trade-off: Positive predictions for all examples would give 100% recall but (typically) terrible precision.
- F-score = $2 \times \frac{precision \times recall}{precision + recall}$
 - ► Balanced measure of precision and recall (harmonic mean).

Evaluating multi-class predictions

Macro-averaging

- ► Sum precision and recall for each class, and then compute global averages of these.
- ► The **macro** average will be highly influenced by the small classes.

Evaluating multi-class predictions

Macro-averaging

- ► Sum precision and recall for each class, and then compute global averages of these.
- ► The **Macro** average will be highly influenced by the small classes.

Micro-averaging

- ► Sum TPs, FPs, and FNs for all points/objects across all classes, and then compute global precision and recall.
- ► The micro average will be highly influenced by the large classes.

7

- ► Builds on oblig 2a: Vector space representation of a set of words based on BoW features extracted from a sample of the Brown corpus.
- ► For 2b we'll provide class labels for most of the words.
- ► Train a Rocchio classifier to predict labels for a set of unlabeled words.

Label	Examples
FOOD	potato, food, bread, fish, eggs
INSTITUTION	embassy, institute, college, government, school
TITLE	president, professor, dr, governor, doctor
$PLACE_NAME$	italy, dallas, france, america, england
PERSON_NAME	lizzie, david, bill, howard, john
UNKNOWN	department, egypt, robert, butter, senator

- ▶ For a given set of objects $\{o_1, \ldots, o_m\}$ the proximity matrix R is a square $m \times m$ matrix where R_{ij} stores the proximity of o_i and o_j .
- For our word space, R_{ij} would give the dot-product of the normalized feature vectors \vec{x}_i and \vec{x}_j , representing the words o_i and o_j .

- For a given set of objects $\{o_1, \ldots, o_m\}$ the proximity matrix R is a square $m \times m$ matrix where R_{ij} stores the proximity of o_i and o_j .
- For our word space, R_{ij} would give the dot-product of the normalized feature vectors \vec{x}_i and \vec{x}_j , representing the words o_i and o_j .
- Note that, if our similarity measure \sin is symmetric, i.e. $\sin(\vec{x}, \vec{y}) = \sin(\vec{y}, \vec{x})$, then R will also be symmetric, i.e. $R_{ij} = R_{ji}$

- ▶ For a given set of objects $\{o_1, \ldots, o_m\}$ the proximity matrix R is a square $m \times m$ matrix where R_{ij} stores the proximity of o_i and o_j .
- For our word space, R_{ij} would give the dot-product of the normalized feature vectors \vec{x}_i and \vec{x}_j , representing the words o_i and o_j .
- Note that, if our similarity measure \sin is symmetric, i.e. $\sin(\vec{x}, \vec{y}) = \sin(\vec{y}, \vec{x})$, then R will also be symmetric, i.e. $R_{ij} = R_{ji}$
- ► Computing all the pairwise similarities *once* and then storing them in *R* can help save time in many applications.
 - ► R will provide the input to many clustering methods.
 - ▶ By sorting the row elements of *R*, we get access to an important type of similarity relation; nearest neighbors.
- ► For 2b we will implement a proximity matrix for retrieving knn relations.

Two categorization tasks in machine learning

Classification

- ► Supervised learning, requiring labeled training data.
- ► Given some training set of examples with class labels, train a classifier to predict the class labels of new objects.

Clustering

- ► Unsupervised learning from unlabeled data.
- Automatically group similar objects together.
- ▶ No pre-defined classes: we only specify the similarity measure.
- ► "The search for structure in data" (Bezdek, 1981)
- General objective:
 - Partition the data into subsets, so that the similarity among members of the same group is high (homogeneity) while the similarity between the groups themselves is low (heterogeneity).

 $\,\blacktriangleright\,$ Visualization and exploratory data analysis.

- Visualization and exploratory data analysis.
- ► Many applications within IR. Examples:
 - ► Speed up search: First retrieve the most relevant cluster, then retrieve documents from within the cluster.
 - Presenting the search results: Instead of ranked lists, organize the results as clusters.

- Visualization and exploratory data analysis.
- ► Many applications within IR. Examples:
 - ► Speed up search: First retrieve the most relevant cluster, then retrieve documents from within the cluster.
 - Presenting the search results: Instead of ranked lists, organize the results as clusters.
- ► Dimensionality reduction / class-based features.

- Visualization and exploratory data analysis.
- ► Many applications within IR. Examples:
 - ► Speed up search: First retrieve the most relevant cluster, then retrieve documents from within the cluster.
 - Presenting the search results: Instead of ranked lists, organize the results as clusters.
- ► Dimensionality reduction / class-based features.
- ► News aggregation / topic directories.
- ► Social network analysis; identify sub-communities and user segments.
- ▶ Image segmentation, product recommendations, demographic analysis,

13

Main types of clustering methods

Hierarchical

- ► Creates a tree structure of hierarchically nested clusters.
- ► Topic of the next lecture.

Flat

- Often referred to as partitional clustering.
- ► Tries to directly decompose the data into a set of clusters.
- ► Topic of today.

Flat clustering

- ▶ Given a set of objects $O = \{o_1, \ldots, o_n\}$, construct a set of clusters $C = \{c_1, \ldots, c_k\}$, where each object o_i is assigned to a cluster c_i .
- ▶ Parameters:
 - ▶ The cardinality k (the number of clusters).
 - ► The similarity function s.
- ▶ More formally, we want to define an assignment $\gamma: O \to C$ that optimizes some objective function $F_s(\gamma)$.
- ► In general terms, we want to optimize for:
 - High intra-cluster similarity
 - ► Low inter-cluster similarity

Flat clustering (cont'd)

Optimization problems are search problems:

- ▶ There's a finite number of possible partitionings of *O*.
- ▶ Naive solution: enumerate all possible assignments $\Gamma = \{\gamma_1, \dots, \gamma_m\}$ and choose the best one,

$$\hat{\gamma} = \operatorname*{arg\,min}_{\gamma \in \Gamma} F_s(\gamma)$$

Flat clustering (cont'd)

Optimization problems are search problems:

- ► There's a finite number of possible partitionings of *O*.
- ▶ Naive solution: enumerate all possible assignments $\Gamma = \{\gamma_1, \dots, \gamma_m\}$ and choose the best one,

$$\hat{\gamma} = \operatorname*{arg\,min}_{\gamma \in \Gamma} F_s(\gamma)$$

- ► Problem: Exponentially many possible partitions.
- ► Approximate the solution by iteratively improving on an initial (possibly random) partition until some stopping criterion is met.

k-means

- Unsupervised variant of the Rocchio classifier.
- ▶ Goal: Partition the n observed objects into k clusters C so that each point $\vec{x_j}$ belongs to the cluster c_i with the nearest centroid $\vec{\mu_i}$.
- ightharpoonup Typically assumes Euclidean distance as the similarity function s.

k-means

- Unsupervised variant of the Rocchio classifier.
- ▶ Goal: Partition the n observed objects into k clusters C so that each point $\vec{x_j}$ belongs to the cluster c_i with the nearest centroid $\vec{\mu_i}$.
- lacktriangle Typically assumes Euclidean distance as the similarity function s.
- ► The optimization problem: For each cluster, minimize the *within-cluster* sum of squares, $F_s = WCSS$:

WCSS =
$$\sum_{c_i \in C} \sum_{\vec{x}_j \in c_i} ||\vec{x}_j - \vec{\mu}_i||^2$$

► Equivalent to minimizing the average squared distance between objects and their cluster centroids (since n is fixed) – a measure of how well each centroid represents the members assigned to the cluster.

k-means (cont'd)

Algorithm

Initialize: Compute centroids for k seeds.

Iterate:

- Assign each object to the cluster with the nearest centroid.
- Compute new centroids for the clusters.

Terminate: When stopping criterion is satisfied.

k-means (cont'd)

Algorithm

Initialize: Compute centroids for k seeds.

Iterate:

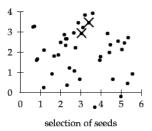
- Assign each object to the cluster with the nearest centroid.
- Compute new centroids for the clusters.

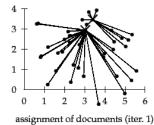
Terminate: When stopping criterion is satisfied.

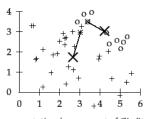
Properties

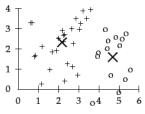
- ► In short, we iteratively reassign memberships and recompute centroids until the configuration stabilizes.
- ► WCSS is monotonically decreasing (or unchanged) for each iteration.
- ► Guaranteed to converge but not to find the global minimum.
- ▶ The time complexity is linear, O(kn).

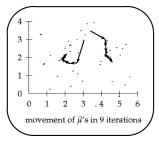
\overline{k} -means example for $\overline{k=2}$ in R^2 (Manning, Raghavan & Schütze 2008)











recomputation/movement of $\vec{\mu}$'s (iter. 1) $\vec{\mu}$'s after convergence (iter. 9)

"Seeding"

- ► We initialize the algorithm by choosing random *seeds* that we use to compute the first set of centroids.
- Many possible heuristics for selecting seeds:
 - ullet pick k random objects from the collection;
 - pick k random points in the space;
 - lacksquare pick k sets of m random points and compute centroids for each set;
 - ► compute a hierarchical clustering on a subset of the data to find *k* initial clusters; etc..

"Seeding"

- ► We initialize the algorithm by choosing random *seeds* that we use to compute the first set of centroids.
- Many possible heuristics for selecting seeds:
 - ightharpoonup pick k random objects from the collection;
 - ▶ pick k random points in the space;
 - lacktriangledown pick k sets of m random points and compute centroids for each set;
 - ► compute a hierarchical clustering on a subset of the data to find *k* initial clusters; etc..
- ► The initial seeds can have a large impact on the resulting clustering (because we typically end up only finding a local minimum of the objective function).
- Outliers are troublemakers.

Possible termination criterions

- ► Fixed number of iterations
- ► Clusters or centroids are unchanged between iterations.
- ► Threshold on the decrease of the objective function (absolute or relative to previous iteration)

Possible termination criterions

- ► Fixed number of iterations
- ► Clusters or centroids are unchanged between iterations.
- ► Threshold on the decrease of the objective function (absolute or relative to previous iteration)

Some close relatives of k-means

▶ *k*-medoids: Like *k*-means but uses medoids instead of centroids to represent the cluster centers.

Possible termination criterions

- ► Fixed number of iterations
- ► Clusters or centroids are unchanged between iterations.
- ► Threshold on the decrease of the objective function (absolute or relative to previous iteration)

Some close relatives of k-means

- ► *k*-medoids: Like *k*-means but uses medoids instead of centroids to represent the cluster centers.
- Fuzzy c-means (FCM): Like k-means but assigns soft memberships in [0,1], where membership is a function of the centroid distance.
 - ► The computations of both WCSS and centroids are weighted by the membership function.

Flat Clustering: The good and the bad

Pros

- ► Conceptually simple, and easy to implement.
- ► Efficient. Typically linear in the number of objects.

Cons

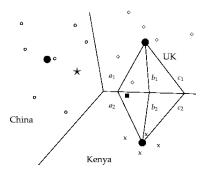
- ► The dependence on random seeds as in *k*-means makes the clustering non-deterministic.
- ▶ The number of clusters k must be pre-specified. Often no principled means of a priori specifying k.
- ► The clustering quality often considered inferior to that of the less efficient hierarchical methods.
- ► Not as informative as the more stuctured clusterings produced by hierarchical methods.

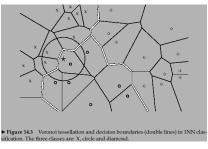
- ► Focus of the last two lectures: Rocchio / nearest centroid classification, kNN classification, and k-means clustering.
- ▶ Note how *k*-means clustering can be thought of as performing Rocchio classification in each iteration.

- ► Focus of the last two lectures: Rocchio / nearest centroid classification, kNN classification, and k-means clustering.
- ▶ Note how *k*-means clustering can be thought of as performing Rocchio classification in each iteration.
- ► Moreover, Rocchio can be thought of as a 1 Nearest Neighbor classifier with respect to the centroids.

- ► Focus of the last two lectures: Rocchio / nearest centroid classification, kNN classification, and k-means clustering.
- ▶ Note how *k*-means clustering can be thought of as performing Rocchio classification in each iteration.
- Moreover, Rocchio can be thought of as a 1 Nearest Neighbor classifier with respect to the centroids.
- ► How can this be? Isn't kNN non-linear and Rocchio linear?

- \triangleright Recall that the kNN decision boundary is locally linear for each cell in the Voronoi diagram.
- \blacktriangleright For both Rocchio and k-means, we're partitioning the observations according to the Voronoi diagram generated by the centroids.





- ► Hierarchical clustering.
- ► Creates a tree structure of hierarchically nested clusters.
- Divisive (top-down): Let all objects be members of the same cluster; then successively split the group into smaller and maximally dissimilar clusters until all objects is its own singleton cluster.
- ► Agglomerative (bottom-up): Let each object define its own cluster; then successively merge most similar clusters until only one remains.
- ► How to measure the inter-cluster similarity ("linkage criterions").

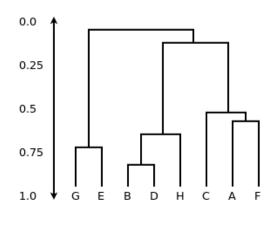
Agglomerative clustering

- ► Initially; regards each object as its own singleton cluster.
- Iteratively "agglomerates" (merges) the groups in a bottom-up fashion.
- ► Each merge defines a binary branch in the tree.
- ► Terminates; when only one cluster remains (the root).
- $\begin{array}{l} \textbf{parameters:} \ \{o_1,o_2,\ldots,o_n\}, \ \text{sim} \\ \hline C = \{\{o_1\},\{o_2\},\ldots,\{o_n\}\} \\ T = [] \\ \textbf{do for } i = 1 \ \textbf{to } n-1 \\ \{c_j,c_k\} \leftarrow \mathop{\arg\max}_{\{c_j,c_k\} \subseteq C \, \land \, j \neq k} \sin(c_j,c_k) \\ C \leftarrow C \backslash \{c_j,c_k\} \\ C \leftarrow C \cup \{c_j \cup c_k\} \\ T[i] \leftarrow \{c_i,c_k\} \end{array}$

- ► At each stage, we merge the pair of clusters that are most similar, as defined by some measure of inter-cluster similarity; sim.
- lacktriangle Plugging in a different \sin gives us a different sequence of merges T.

Dendrograms

- A hierarchical clustering is often visualized as a binary tree structure known as a dendrogram.
- A merge is shown as a horizontal line connecting two clusters.
- ► The y-axis coordinate of the line corresponds to the *similarity* of the merged clusters.



► We here assume dot-products of normalized vectors (self-similarity = 1).

Definitions of inter-cluster similarity

- ► So far we've looked at ways to the define the similarity between
 - pairs of objects.
 - objects and a class.
- ► Now we'll look at ways to define the similarity between *collections*.

Definitions of inter-cluster similarity

- ► So far we've looked at ways to the define the similarity between
 - ▶ pairs of objects.
 - objects and a class.
- ▶ Now we'll look at ways to define the similarity between *collections*.
- ▶ In agglomerative clustering, a measure of cluster similarity $sim(c_i, c_j)$ is usually referred to as a *linkage criterion*:
 - ► Single-linkage
 - ► Complete-linkage
 - ► Centroid-linkage
 - ► Average-linkage
- ► The linkage criterion determines which pair of clusters we will merge to a new cluster in each step.

Bezdek, J. C. (1981). Pattern recognition with fuzzy objective function algorithms. Plenum Press.