
— INF4820 —
Algorithms for AI and NLP

Evaluating Classifiers
Clustering

Erik Velldal & Stephan Oepen

Language Technology Group (LTG)

September 23, 2015

Agenda

Last week
I Supervised vs unsupervised learning.
I Vectors space classification.
I How to represent classes and class membership.
I Rocchio + kNN.
I Linear vs non-linear decision boundaries.

Today
I Evaluation of classifiers
I Unsupervised machine learning for class discovery: Clustering
I Flat vs. hierarchical clustering.
I k-means clustering
I Vector space quiz

2



Testing a classifier

I Vector space classification amounts to computing the boundaries in the
space that separate the class regions: the decision boundaries.

I To evaluate the boundary, we measure the number of correct
classification predictions on unseeen test items.

I Many ways to do this. . .
I We want to test how well a model
generalizes on a held-out test set.

I Labeled test data is sometimes
refered to as the gold standard.

I Why can’t we test on the training
data?

3

Example: Evaluating classifier decisions

I Predictions for a given class can be wrong or correct in two ways:

gold = positive gold = negative
prediction = positive true positive (TP) false positive (FP)
prediction = negative false negative (FN) true negative (TN)

4



Example: Evaluating classifier decisions

accuracy = TP+TN
N

= 1+6
10 = 0.7

precision = TP
TP+FP

= 1
1+1 = 0.5

recall = TP
TP+FN

= 1
1+2 = 0.33

F -score =
2× precision×recall

precision+recall = 0.4

5

Evaluation measures

I accuracy = TP+TN
N = TP+TN

TP+TN+FP+FN
I The ratio of correct predictions.
I Not suitable for unbalanced numbers of positive / negative examples.

I precision = TP
TP+FP

I The number of detected class members that were correct.

I recall = TP
TP+FN

I The number of actual class members that were detected.
I Trade-off: Positive predictions for all examples would give 100% recall
but (typically) terrible precision.

I F -score = 2× precision×recall
precision+recall

I Balanced measure of precision and recall (harmonic mean).

6



Evaluating multi-class predictions

Macro-averaging
I Sum precision and recall for each class, and then compute global
averages of these.

I The macro average will be highly influenced by the small classes.

Micro-averaging
I Sum TPs, FPs, and FNs for all points/objects across all classes, and
then compute global precision and recall.

I The micro average will be highly influenced by the large classes.

7

A note on obligatory assignment 2b

I Builds on oblig 2a: Vector space representation of a set of words based
on BoW features extracted from a sample of the Brown corpus.

I For 2b we’ll provide class labels for most of the words.

I Train a Rocchio classifier to predict labels for a set of unlabeled words.

Label Examples

food potato, food, bread, fish, eggs . . .
institution embassy, institute, college, government, school . . .
title president, professor, dr, governor, doctor . . .
place_name italy, dallas, france, america, england . . .
person_name lizzie, david, bill, howard, john . . .

unknown department, egypt, robert, butter, senator . . .

8



A note on obligatory assignment 2b

I For a given set of objects {o1, . . . , om} the proximity matrix R is a
square m ×m matrix where Rij stores the proximity of oi and oj .

I For our word space, Rij would give the dot-product of the normalized
feature vectors ~xi and ~xj , representing the words oi and oj .

I Note that, if our similarity measure sim is symmetric, i.e.
sim(~x,~y) = sim(~y,~x), then R will also be symmetric, i.e. Rij = Rji

I Computing all the pairwise similarities once and then storing them in R
can help save time in many applications.

I R will provide the input to many clustering methods.
I By sorting the row elements of R, we get access to an important type of
similarity relation; nearest neighbors.

I For 2b we will implement a proximity matrix for retrieving knn relations.

9

Two categorization tasks in machine learning

Classification
I Supervised learning, requiring labeled training data.
I Given some training set of examples with class labels, train a classifier
to predict the class labels of new objects.

Clustering
I Unsupervised learning from unlabeled data.
I Automatically group similar objects together.
I No pre-defined classes: we only specify the similarity measure.
I “The search for structure in data” (Bezdek, 1981)
I General objective:

I Partition the data into subsets, so that the similarity among members of
the same group is high (homogeneity) while the similarity between the
groups themselves is low (heterogeneity).

10



Example applications of cluster analysis

I Visualization and exploratory data analysis.
I Many applications within IR. Examples:

I Speed up search: First retrieve the most relevant cluster, then retrieve
documents from within the cluster.

I Presenting the search results: Instead of ranked lists, organize the results
as clusters.

I Dimensionality reduction / class-based features.
I News aggregation / topic directories.
I Social network analysis; identify sub-communities and user segments.
I Image segmentation, product recommendations, demographic analysis,
. . .

11

Main types of clustering methods

Hierarchical
I Creates a tree structure of hierarchically nested clusters.
I Topic of the next lecture.

Flat
I Often referred to as partitional clustering.
I Tries to directly decompose the data into a set of clusters.
I Topic of today.

12



Flat clustering

I Given a set of objects O = {o1, . . . , on}, construct a set of clusters
C = {c1, . . . , ck}, where each object oi is assigned to a cluster ci .

I Parameters:
I The cardinality k (the number of clusters).
I The similarity function s.

I More formally, we want to define an assignment γ : O → C that
optimizes some objective function Fs(γ).

I In general terms, we want to optimize for:
I High intra-cluster similarity
I Low inter-cluster similarity

13

Flat clustering (cont’d)

Optimization problems are search problems:
I There’s a finite number of possible partitionings of O.

I Naive solution: enumerate all possible assignments Γ = {γ1, . . . , γm}
and choose the best one,

γ̂ = arg min
γ∈Γ

Fs(γ)

I Problem: Exponentially many possible partitions.

I Approximate the solution by iteratively improving on an initial (possibly
random) partition until some stopping criterion is met.

14



k-means

I Unsupervised variant of the Rocchio classifier.
I Goal: Partition the n observed objects into k clusters C so that each
point ~xj belongs to the cluster ci with the nearest centroid ~µi .

I Typically assumes Euclidean distance as the similarity function s.
I The optimization problem: For each cluster, minimize the within-cluster
sum of squares, Fs = WCSS:

WCSS =
∑

ci∈C

∑

~xj∈ci

‖~xj − ~µi‖2

I Equivalent to minimizing the average squared distance between objects
and their cluster centroids (since n is fixed) – a measure of how well
each centroid represents the members assigned to the cluster.

15

k-means (cont’d)

Algorithm
Initialize: Compute centroids for k seeds.
Iterate:

– Assign each object to the cluster with the nearest centroid.
– Compute new centroids for the clusters.

Terminate: When stopping criterion is satisfied.

Properties
I In short, we iteratively reassign memberships and recompute centroids
until the configuration stabilizes.

I WCSS is monotonically decreasing (or unchanged) for each iteration.
I Guaranteed to converge but not to find the global minimum.
I The time complexity is linear, O(kn).

16



k-means example for k = 2 in R2
(Manning, Raghavan & Schütze 2008)

'

&

$

%

17

Comments on k-means

“Seeding”
I We initialize the algorithm by choosing random seeds that we use to
compute the first set of centroids.

I Many possible heuristics for selecting seeds:
I pick k random objects from the collection;
I pick k random points in the space;
I pick k sets of m random points and compute centroids for each set;
I compute a hierarchical clustering on a subset of the data to find k initial
clusters; etc..

I The initial seeds can have a large impact on the resulting clustering
(because we typically end up only finding a local minimum of the
objective function).

I Outliers are troublemakers.

18



Comments on k-means

Possible termination criterions
I Fixed number of iterations
I Clusters or centroids are unchanged between iterations.
I Threshold on the decrease of the objective function (absolute or relative
to previous iteration)

Some close relatives of k-means
I k-medoids: Like k-means but uses medoids instead of centroids to
represent the cluster centers.

I Fuzzy c-means (FCM): Like k-means but assigns soft memberships in
[0, 1], where membership is a function of the centroid distance.

I The computations of both WCSS and centroids are weighted by the
membership function.

19

Flat Clustering: The good and the bad

Pros
I Conceptually simple, and easy to implement.
I Efficient. Typically linear in the number of objects.

Cons
I The dependence on random seeds as in k-means makes the clustering
non-deterministic.

I The number of clusters k must be pre-specified. Often no principled
means of a priori specifying k.

I The clustering quality often considered inferior to that of the less
efficient hierarchical methods.

I Not as informative as the more stuctured clusterings produced by
hierarchical methods.

20



Connecting the dots

I Focus of the last two lectures: Rocchio / nearest centroid classification,
kNN classification, and k-means clustering.

I Note how k-means clustering can be thought of as performing Rocchio
classification in each iteration.

I Moreover, Rocchio can be thought of as a 1 Nearest Neighbor classifier
with respect to the centroids.

I How can this be? Isn’t kNN non-linear and Rocchio linear?

21

Connecting the dots

I Recall that the kNN decision boundary is locally linear for each cell in
the Voronoi diagram.

I For both Rocchio and k-means, we’re partitioning the observations
according to the Voronoi diagram generated by the centroids.

22



Next

I Hierarchical clustering.

I Creates a tree structure of hierarchically nested clusters.

I Divisive (top-down): Let all objects be members of the same cluster;
then successively split the group into smaller and maximally dissimilar
clusters until all objects is its own singleton cluster.

I Agglomerative (bottom-up): Let each object define its own cluster;
then successively merge most similar clusters until only one remains.

I How to measure the inter-cluster similarity (“linkage criterions”).

23

Agglomerative clustering

I Initially; regards each object as its
own singleton cluster.

I Iteratively “agglomerates”
(merges) the groups in a
bottom-up fashion.

I Each merge defines a binary
branch in the tree.

I Terminates; when only one cluster
remains (the root).

parameters: {o1, o2, . . . , on}, sim

C = {{o1}, {o2}, . . . , {on}}
T = []
do for i = 1 to n − 1
{cj , ck} ← arg max

{cj ,ck}⊆C ∧ j,k
sim(cj , ck)

C ← C\{cj , ck}
C ← C ∪ {cj ∪ ck}
T [i]← {cj , ck}

I At each stage, we merge the pair of clusters that are most similar, as
defined by some measure of inter-cluster similarity; sim.

I Plugging in a different sim gives us a different sequence of merges T.

24



Dendrograms

I A hierarchical clustering
is often visualized as a
binary tree structure
known as a dendrogram.

I A merge is shown as a
horizontal line connecting
two clusters.

I The y-axis coordinate of
the line corresponds to
the similarity of the
merged clusters.

I We here assume dot-products of normalized vectors
(self-similarity = 1).

25

Definitions of inter-cluster similarity

I So far we’ve looked at ways to the define the similarity between
I pairs of objects.
I objects and a class.

I Now we’ll look at ways to define the similarity between collections.
I In agglomerative clustering, a measure of cluster similarity sim(ci , cj) is
usually referred to as a linkage criterion:

I Single-linkage
I Complete-linkage
I Centroid-linkage
I Average-linkage

I The linkage criterion determines which pair of clusters we will merge to
a new cluster in each step.

26



Bezdek, J. C. (1981). Pattern recognition with fuzzy objective function algorithms.
Plenum Press.

26


