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Agenda

Last week

◮ Evaluation of classifiers

◮ Machine learning for class discovery: Clustering
◮ Unsupervised learning from unlabeled data.
◮ Automatically group similar objects together.
◮ No pre-defined classes: we only specify the similarity measure.

◮ Flat clustering, with k-means.
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Agenda

Last week

◮ Evaluation of classifiers

◮ Machine learning for class discovery: Clustering
◮ Unsupervised learning from unlabeled data.
◮ Automatically group similar objects together.
◮ No pre-defined classes: we only specify the similarity measure.

◮ Flat clustering, with k-means.

Today

◮ Hierarchical clustering
◮ Top-down / divisive
◮ Bottom-up / agglomerative

◮ Crash course on probability theory

◮ Language modeling
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Agglomerative clustering

◮ Initially: regards each object as its
own singleton cluster.

◮ Iteratively ‘agglomerates’ (merges)
the groups in a bottom-up fashion.

◮ Each merge defines a binary
branch in the tree.

◮ Terminates: when only one cluster
remains (the root).

parameters: {o1, o2, . . . , on}, sim

C = {{o1}, {o2}, . . . , {on}}
T = []
do for i = 1 to n − 1
{cj , ck} ← arg max

{cj ,ck}⊆C ∧ j,k

sim(cj , ck)

C ← C\{cj , ck}
C ← C ∪ {cj ∪ ck}
T [i]← {cj , ck}

◮ At each stage, we merge the pair of clusters that are most similar, as
defined by some measure of inter-cluster similarity: sim.

◮ Plugging in a different sim gives us a different sequence of merges T.

3



Dendrograms

◮ A hierarchical clustering
is often visualized as a
binary tree structure
known as a dendrogram.

◮ A merge is shown as a
horizontal line connecting
two clusters.

◮ The y-axis coordinate of
the line corresponds to
the similarity of the
merged clusters.

◮ We here assume dot-products of normalized vectors
(self-similarity = 1).
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Definitions of inter-cluster similarity

◮ So far we’ve looked at ways to the define the similarity between

◮ pairs of objects.

◮ objects and a class.

◮ Now we’ll look at ways to define the similarity between collections.
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Definitions of inter-cluster similarity

◮ So far we’ve looked at ways to the define the similarity between

◮ pairs of objects.

◮ objects and a class.

◮ Now we’ll look at ways to define the similarity between collections.

◮ In agglomerative clustering, a measure of cluster similarity sim(ci , cj) is
usually referred to as a linkage criterion:

◮ Single-linkage

◮ Complete-linkage

◮ Average-linkage

◮ Centroid-linkage

◮ Determines the pair of clusters to merge in each step.
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Single-linkage

◮ Merge the two clusters with the
minimum distance between any
two members.

◮ ‘Nearest neighbors’.

◮ Can be computed efficiently by taking advantage of the fact that it’s
best-merge persistent:

◮ Let the nearest neighbor of cluster ck be in either ci or cj . If we merge
ci ∪ cj = cl , the nearest neighbor of ck will be in cl .

◮ The distance of the two closest members is a local property that is not
affected by merging.

◮ Undesirable chaining effect: Tendency to produce ‘stretched’ and
‘straggly’ clusters.

6



Complete-linkage

◮ Merge the two clusters where the
maximum distance between any
two members is smallest.

◮ ‘Farthest neighbors’.

◮ Amounts to merging the two clusters whose merger has the smallest
diameter.

◮ Preference for compact clusters with small diameters.

◮ Sensitive to outliers.

◮ Not best-merge persistent: Distance defined as the diameter of a merge
is a non-local property that can change during merging.
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Average-linkage (1:2)

◮ AKA group-average
agglomerative clustering.

◮ Merge the clusters with the
highest average pairwise
similarities in their union.

◮ Aims to maximize coherency by considering all pairwise similarities
between objects within the cluster to merge (excluding self-similarities).

◮ Compromise of complete- and single-linkage.

◮ Not best-merge persistent.

◮ Commonly considered the best default clustering criterion.
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Average-linkage (2:2)

◮ Can be computed very efficiently
if we assume (i) the dot-product

as the similarity measure for (ii)
normalized feature vectors.

◮ Let ci ∪ cj = ck , and sim(ci , cj) = W (ci ∪ cj) = W (ck), then W (ck) =

1

|ck |(|ck | − 1)

∑

~x∈ck

∑

~y,~x∈ck

~x · ~y =
1

|ck | (|ck | − 1)











∑

~x∈ck

~x





2

− |ck |







◮ The sum of vector similarities is equal to the similarity of their sums.
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Centroid-linkage

◮ Similarity of clusters ci and cj

defined as the similarity of their
cluster centroids ~µi and ~µj .
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Centroid-linkage

◮ Similarity of clusters ci and cj

defined as the similarity of their
cluster centroids ~µi and ~µj .

◮ Equivalent to the average
pairwise similarity between
objects from different clusters:

sim(ci , cj) = ~µi · ~µj =
1

|ci ||cj |

∑

~x∈ci

∑

~y∈cj

~x · ~y
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Centroid-linkage

◮ Similarity of clusters ci and cj

defined as the similarity of their
cluster centroids ~µi and ~µj .

◮ Equivalent to the average
pairwise similarity between
objects from different clusters:

sim(ci , cj) = ~µi · ~µj =
1

|ci ||cj |

∑

~x∈ci

∑

~y∈cj

~x · ~y

◮ Not best-merge persistent.

◮ Not monotonic, subject to inversions: The combination similarity can
increase during the clustering.
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Monotinicity

◮ A fundamental
assumption in clustering:
small clusters are more
coherent than large.

◮ We usually assume that a
clustering is monotonic:

◮ Similarity is decreasing

from iteration to
iteration.

◮ This assumpion holds true for all our clustering criterions except for
centroid-linkage.
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Inversions – a problem with centroid-linkage

◮ Centroid-linkage is
non-monotonic.

◮ We risk seeing so-called
inversions:

◮ Similarity can increase
during the sequence of
clustering steps.

◮ Would show as crossing
lines in the dendrogram.

◮ The horizontal merge bar is lower than the bar of a previous merge.
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Linkage criterions

Single-link Complete-link

Average-link Centroid-link

◮ All the linkage criterions can be computed on the basis of the object
similarities; the input is typically a proximity matrix.
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Cutting the tree

◮ The tree actually
represents
several partitions:

◮ one for each level.

◮ If we want to turn the
nested partitions into a
single flat partitioning. . .

◮ we must cut the tree.

◮ A cutting criterion can be defined as a threshold on e.g. combination
similarity, relative drop in the similarity, number of root nodes, etc.
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Divisive hierarchical clustering

Generates the nested partitions top-down:

◮ Start: all objects considered part of the same cluster (the root).

◮ Split the cluster using a flat clustering algorithm
(e.g. by applying k-means for k = 2).

◮ Recursively split the clusters until only singleton clusters remain (or
some specified number of levels is reached).
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Divisive hierarchical clustering

Generates the nested partitions top-down:

◮ Start: all objects considered part of the same cluster (the root).

◮ Split the cluster using a flat clustering algorithm
(e.g. by applying k-means for k = 2).

◮ Recursively split the clusters until only singleton clusters remain (or
some specified number of levels is reached).

◮ Flat methods are generally very effective (e.g. k-means is linear in the
number of objects).

◮ Divisive methods are thereby also generally more efficient than
agglomerative, which are at least quadratic (single-link).

◮ Also able to initially consider the global distribution of the data, while
the agglomerative methods must commit to early decisions based on
local patterns.
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Changing of the Guard

So far: Point-wise classification; geometric models.

Next: Structured classification; probabilistic models.
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Changing of the Guard

So far: Point-wise classification; geometric models.

Next: Structured classification; probabilistic models.

◮ sequences

◮ labelled sequences

◮ trees

Kristian (December 10, 2014) Guro (March 16, 2015)
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By the End of the Semester . . .

. . . you should be able to determine

◮ which string is most likely:
◮ How to recognise speech vs. How to wreck a nice beach
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Probability Basics (1/4)

◮ Experiment (or trial)
◮ the process we are observing

◮ Sample space (Ω)
◮ the set of all possible outcomes

◮ Event(s)
◮ the subset of Ω we are interested in

P(A) is the probability of event A, a real number ∈ [0, 1]
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Probability Basics (2/4)

◮ Experiment (or trial)
◮ rolling a die

◮ Sample space (Ω)
◮ Ω = {1, 2, 3, 4, 5, 6}

◮ Event(s)
◮ A = rolling a six: {6}
◮ B = getting an even number: {2, 4, 6}

P(A) is the probability of event A, a real number ∈ [0, 1]
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Probability Basics (3/4)

◮ Experiment (or trial)
◮ flipping two coins

◮ Sample space (Ω)
◮ Ω = {HH , HT , TH , TT}

◮ Event(s)
◮ A = the same both times: {HH , TT}
◮ B = at least one head: {HH , HT , TH}

P(A) is the probability of event A, a real number ∈ [0, 1]
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Probability Basics (4/4)

◮ Experiment (or trial)
◮ rolling two dice

◮ Sample space (Ω)
◮ Ω = {11, 12, 13, 14, 15, 16, 21, 22, 23, 24, . . . , 63, 64, 65, 66}

◮ Event(s)
◮ A = results sum to 6: {15, 24, 33, 42, 51}
◮ B = both results are even: {22, 24, 26, 42, 44, 46, 62, 64, 66}

P(A) is the probability of event A, a real number ∈ [0, 1]
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Joint Probability

◮ P(A, B): probability that both A and B happen

◮ also written: P(A ∩ B)

A B
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Joint Probability

◮ P(A, B): probability that both A and B happen

◮ also written: P(A ∩ B)

A B

What is the probability, when throwing two fair dice, that

◮ A: the results sum to 6 and 5
36

◮ B: at least one result is a 1? 11
36
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Conditional Probability

Often, we know something about a situation.

What is the probability P(A|B), when throwing two fair dice, that

◮ A: the results sum to 6 given

◮ B: at least one result is a 1?
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Conditional Probability

Often, we know something about a situation.

What is the probability P(A|B), when throwing two fair dice, that

◮ A: the results sum to 6 given

◮ B: at least one result is a 1?

A B

Ω

A B

☛

✡

✟

✠
P(A|B) = P(A∩B)

P(B) (where P(B) > 0)
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The Chain Rule

Joint probability is symmetric:

P(A ∩ B) = P(A) P(B|A)
= P(B) P(A|B) (multiplication rule)
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The Chain Rule

Joint probability is symmetric:

P(A ∩ B) = P(A) P(B|A)
= P(B) P(A|B) (multiplication rule)

More generally, using the chain rule:

P(A1 ∩ · · · ∩ An) = P(A1)P(A2|A1)P(A3|A1 ∩ A2) . . . P(An | ∩n−1
i=1 Ai)

The chain rule will be very useful to us through the semester:

◮ it allows us to break a complicated situation into parts;

◮ we can choose the breakdown that suits our problem.
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(Conditional) Independence

If knowing event B is true has no effect on event A, we say

A and B are independent of each other.

If A and B are independent:

◮ P(A) = P(A|B)

◮ P(B) = P(B|A)

◮ P(A ∩ B) = P(A) P(B)
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Intuition? (1/3)

Let’s say we have a rare disease, and a pretty accurate test for detecting it.
Yoda has taken the test, and the result is positive.

The numbers:

◮ disease prevalence: 1 in 1000 people

◮ test false negative rate: 1%

◮ test false positive rate: 2%

What is the probability that he has the disease?
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Intuition? (2/3)

Given:

◮ event A: have disease

◮ event B: positive test

We know:

◮ P(A) =

◮ P(B|A) =

◮ P(B|¬A) =

We want

◮ P(A|B) = ?
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Intuition? (2/3)

Given:

◮ event A: have disease

◮ event B: positive test

We know:

◮ P(A) = 0.001

◮ P(B|A) = 0.99

◮ P(B|¬A) = 0.02

We want

◮ P(A|B) = ?
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Intuition? (3/3)

A ¬ A

B
¬ B

P(A) = 0.001; P(B|A) = 0.99; P(B|¬A) = 0.02
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B
¬ B

0.001 1
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Intuition? (3/3)

A ¬ A

B
¬ B

0.001 0.999 1

P(A) = 0.001; P(B|A) = 0.99; P(B|¬A) = 0.02
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Intuition? (3/3)

A ¬ A

B 0.00099
¬ B

0.001 0.999 1

P(A) = 0.001; P(B|A) = 0.99; P(B|¬A) = 0.02

P(A ∩ B) = P(B|A)P(A)
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Intuition? (3/3)

A ¬ A

B 0.00099 0.01998
¬ B

0.001 0.999 1

P(A) = 0.001; P(B|A) = 0.99; P(B|¬A) = 0.02

P(A ∩ B) = P(B|A)P(A)
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Intuition? (3/3)

A ¬ A

B 0.00099 0.01998 0.02097
¬ B

0.001 0.999 1

P(A) = 0.001; P(B|A) = 0.99; P(B|¬A) = 0.02

P(A ∩ B) = P(B|A)P(A)
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Intuition? (3/3)

A ¬ A

B 0.00099 0.01998 0.02097
¬ B 0.00001 0.97902 0.97903

0.001 0.999 1

P(A) = 0.001; P(B|A) = 0.99; P(B|¬A) = 0.02

P(A ∩ B) = P(B|A)P(A)
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Intuition? (3/3)

A ¬ A

B 0.00099 0.01998 0.02097
¬ B 0.00001 0.97902 0.97903

0.001 0.999 1

P(A) = 0.001; P(B|A) = 0.99; P(B|¬A) = 0.02

P(A ∩ B) = P(B|A)P(A)

P(A|B) =
P(A ∩ B)

P(B)
=

0.00099

0.02097
= 0.0472
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Bayes’ Theorem

◮ From the two ‘symmetric’ sides of the joint probability equation:

P(A|B) = P(B|A)P(A)
P(B)

◮ reverses the order of dependence (which can be useful)

◮ in conjunction with the chain rule, allows us to determine the
probabilities we want from the probabilities we know

Other useful axioms

◮ P(Ω) = 1

◮ P(A) = 1 − P(¬A)
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Bonus: The Monty Hall Problem

◮ On a gameshow, there are three doors.

◮ Behind 2 doors, there is a goat.

◮ Behind the 3rd door, there is a car.

◮ The contestant selects a door that she hopes has the car behind it.

◮ Before she opens that door, the gameshow host opens one of the other
doors to reveal a goat.

◮ The contestant now has the choice of opening the door she originally
chose, or switching to the other unopened door.

What should she do?
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Coming up Next

◮ Do you want to come to the movies and ?
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Coming up Next

◮ Do you want to come to the movies and ?

◮ Det var en ?

◮ Je ne parle pas ?

Natural language contains redundancy, hence can be predictable.

Previous context can constrain the next word

◮ semantically;

◮ syntactically;

→ by frequency.
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Recall: By the End of the Semester . . .
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◮ which string is most likely:
◮ How to recognise speech vs. How to wreck a nice beach
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Language Models

◮ A probabilistic (also known as stochastic) language model M assigns
probabilities PM (x) to all strings x in language L.

◮ L is the sample space
◮ 0 ≤ PM (x) ≤ 1
◮

∑
x∈L

PM (x) = 1

◮ Language models are used in machine translation, speech recognition
systems, spell checkers, input prediction, . . .
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Language Models

◮ A probabilistic (also known as stochastic) language model M assigns
probabilities PM (x) to all strings x in language L.

◮ L is the sample space
◮ 0 ≤ PM (x) ≤ 1
◮

∑
x∈L

PM (x) = 1

◮ Language models are used in machine translation, speech recognition
systems, spell checkers, input prediction, . . .

◮ We can calculate the probability of a string using the chain rule:

P(w1 . . . wn) = P(w1)P(w2|w1)P(w3|w1 ∩ w2) . . . P(wn | ∩n−1
i=1 wi)

P(I want to go to the beach) =
P(I) P(want|I) P(to|I want) P(go|I want to) P(to|I want to go) . . .
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N -Grams

We simplify using the Markov assumption (limited history):

the last n − 1 elements can approximate the effect of the full sequence.

That is, instead of

◮ P(beach| I want to go to the)

selecting an n of 3, we use

◮ P(beach| to the)
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N -Grams

We simplify using the Markov assumption (limited history):

the last n − 1 elements can approximate the effect of the full sequence.

That is, instead of

◮ P(beach| I want to go to the)

selecting an n of 3, we use

◮ P(beach| to the)

We call these short sequences of words n-grams:

◮ bigrams: I want, want to, to go, go to, to the, the beach

◮ trigrams: I want to, want to go, to go to, go to the

◮ 4-grams: I want to go, want to go to, to go to the
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